

Q1 Stability Testing of Drug Substances and Drug Products

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the FDA staff responsible for this guidance as listed on the title page. The draft guidance has been left in the original International Council for Harmonisation format. The final guidance will be reformatted and edited to conform with FDA's good guidance practice regulation and style.

For questions regarding this draft document, contact (CDER) Ee-Sunn Chia, Ee-Sunn.Chia@fda.hhs.gov

FOREWORD

The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) has the mission of achieving greater regulatory harmonization worldwide to ensure that safe, effective, and high-quality medicines are developed, registered, and maintained in the most resource-efficient manner. By harmonizing the regulatory expectations in regions around the world, ICH guidelines have substantially reduced duplicative clinical studies, prevented unnecessary animal studies, standardized safety reporting and marketing application submissions, and contributed to many other improvements in the quality of global drug development and manufacturing and the products available to patients.

ICH is a consensus-driven process that involves technical experts from regulatory authorities and industry parties in detailed technical and science-based harmonization work that results in the development of ICH guidelines. The commitment to consistent adoption of these consensus-based guidelines by regulators around the globe is critical to realizing the benefits of safe, effective, and high-quality medicines for patients as well as for industry. As a Founding Regulatory Member of ICH, the Food and Drug Administration (FDA) plays a major role in the development of each of the ICH guidelines, which FDA then adopts and issues as guidance to industry.

**INTERNATIONAL COUNCIL FOR HARMONISATION OF TECHNICAL
REQUIREMENTS FOR PHARMACEUTICALS FOR HUMAN USE**

ICH HARMONISED GUIDELINE

**STABILITY TESTING OF DRUG SUBSTANCES AND DRUG
PRODUCTS**

Q1

Draft version

Endorsed on 11 April 2025

Currently under public consultation

At Step 2 of the ICH Process, a consensus draft text or guideline, agreed by the appropriate ICH Expert Working Group, is transmitted by the ICH Assembly to the regulatory authorities of the ICH regions for internal and external consultation, according to national or regional procedures.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

ICH Q1 Document History

Code	History	Date
Q1	Endorsement by the Members of the ICH Assembly under <i>Step 2</i> and release for public consultation.	04/11/2025

Legal notice: This document is protected by copyright and may, with the exception of the ICH logo, be used, reproduced, incorporated into other works, adapted, modified, translated or distributed under a public license provided that ICH's copyright in the document is acknowledged at all times. In case of any adaption, modification or translation of the document, reasonable steps must be taken to clearly label, demarcate or otherwise identify that changes were made to or based on the original document. Any impression that the adaption, modification or translation of the original document is endorsed or sponsored by the ICH must be avoided.

The document is provided "as is" without warranty of any kind. In no event shall the ICH or the authors of the original document be liable for any claim, damages or other liability arising from the use of the document.

The above-mentioned permissions do not apply to content supplied by third parties. Therefore, for documents where the copyright vests in a third party, permission for reproduction must be obtained from this copyright holder.

ICH HARMONISED GUIDELINE
STABILITY TESTING OF DRUG SUBSTANCES AND DRUG PRODUCTS

Q1

ICH CONSENSUS GUIDELINE

1	INTRODUCTION.....	6
1.1	OBJECTIVES OF THE GUIDELINE.....	6
1.2	SCOPE OF THE GUIDELINE.....	6
1.3	INTRODUCTION TO GUIDELINE AND GENERAL PRINCIPLES.....	7
2	DEVELOPMENT STABILITY STUDIES UNDER STRESS AND FORCED CONDITIONS.....	10
2.1	DEVELOPMENT STUDIES UNDER STRESS CONDITIONS	11
2.2	DEVELOPMENT STUDIES UNDER FORCED DEGRADATION CONDITIONS.....	12
2.3	ANALYSIS AND INTERPRETATION OF RESULTS	12
3	PROTOCOL DESIGN FOR FORMAL STABILITY STUDIES.....	13
3.1	GENERAL PRINCIPLES.....	13
3.2	STABILITY DATA TO SUPPORT THE INITIAL RE-TEST PERIOD AND SHELF LIFE ACCORDING TO THE STANDARD APPROACH.....	16
3.3	STABILITY-INDICATING CRITICAL QUALITY ATTRIBUTES	19
3.3.1	<i>Recommendations for Establishing a Re-Test Period or Shelf life.</i>	19
3.3.2	<i>Recommendation for Lifecycle Stability Protocols.....</i>	20
3.4	SPECIFICATIONS.....	20
3.4.1	<i>Tests and Analytical Procedures</i>	20
3.4.2	<i>Acceptance Criteria.....</i>	20
3.4.3	<i>Pharmacopoeial Critical Quality Attributes and Analytical Procedures</i>	21
3.5	ADDITIONAL CONSIDERATIONS FOR VACCINES	21
3.6	ADDITIONAL CONSIDERATIONS FOR THE COMBINATION OF A DRUG PRODUCT WITH A MEDICAL DEVICE.....	21
3.7	RISK MANAGEMENT	22
4	SELECTION OF BATCHES.....	22
4.1	CONSIDERATIONS FOR SELECTION OF PRIMARY STABILITY BATCHES.....	23
4.2	CONSIDERATIONS FOR MULTIPLE PRODUCTION SITES IN THE INITIAL REGULATORY SUBMISSION	24
4.3	CONSIDERATIONS FOR VACCINES	25
4.4	CONSIDERATIONS FOR CONTINUOUS MANUFACTURING PROCESSES	25
5	CONTAINER CLOSURE SYSTEM.....	25
6	TESTING FREQUENCY.....	26
7	STORAGE CONDITIONS.....	27
7.1	GENERAL CONSIDERATIONS	27
7.2	CONSIDERATIONS FOR PRODUCTS INTENDED TO BE STORED AT ROOM TEMPERATURE.....	29
7.2.1	<i>Storage Conditions for Products Packaged in Impermeable Containers.....</i>	30
7.2.2	<i>Storage Conditions for Products Packaged in Semi-Permeable Containers.....</i>	30
7.3	CONSIDERATIONS FOR REFRIGERATED TEMPERATURE STORAGE.....	32
7.4	CONSIDERATIONS FOR FROZEN TEMPERATURE STORAGE	33
8	PHOTOSTABILITY.....	33

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

8.1	PURPOSE OF PHOTOSTABILITY TESTING	33
8.2	FORCED PHOTODEGRADATION	35
8.3	CONFIRMATORY PHOTOSTABILITY	36
8.4	RADIATION SOURCE AND LIGHT EXPOSURE	37
9	STABILITY CONSIDERATIONS FOR PROCESSING AND HOLDING TIMES FOR INTERMEDIATES.....	39
9.1	GENERAL CONSIDERATIONS	39
9.2	CONSIDERATIONS FOR SYNTHETIC CHEMICAL ENTITIES	40
9.3	CONSIDERATIONS FOR BIOLOGICALS.....	40
9.4	EXAMPLES OF HOLDING TIME RISK ASSESSMENT CONSIDERATIONS	41
9.4.1	<i>Non-Sterile, Solid Oral Dosage Form</i>	41
9.4.2	<i>Sterile, Injectable Solution</i>	42
10	SHORT-TERM STORAGE CONDITIONS	42
11	IN-USE STABILITY	43
11.1	PURPOSE OF IN-USE STABILITY TESTING.....	43
11.2	IN-USE STABILITY STUDY PROTOCOL DESIGN	44
11.2.1	<i>Selection of Batches</i>	44
11.2.2	<i>Selection of Analytical Procedures and Acceptance Criteria</i>	45
11.3	LABELLING OF THE IN-USE PERIOD AND STORAGE CONDITIONS	45
12	REFERENCE MATERIALS, NOVEL EXCIPIENTS AND ADJUVANTS.....	46
12.1	REFERENCE MATERIALS.....	46
12.1.1	<i>Considerations for Synthetic Chemical Reference Materials</i>	46
12.1.2	<i>Considerations for Biological Reference Materials</i>	46
12.2	NOVEL EXCIPIENTS	47
12.3	VACCINE ADJUVANTS	47
13	DATA EVALUATION	48
13.1	GENERAL CONSIDERATIONS	48
13.1.1	<i>Re-Test Period</i>	49
13.1.2	<i>Start of Shelf Life for Synthetic Chemical Entity Drug Products</i>	49
13.1.3	<i>Start of Shelf Life for Biological Drug Products</i>	49
13.2	STATISTICAL EVALUATION OF THE LONG-TERM STORAGE CONDITION STABILITY PROFILE TO ESTABLISH THE RE-TEST PERIOD OR SHELF LIFE	50
13.2.1	<i>Linear Regression for an Individual Batch</i>	50
13.2.2	<i>Combining Batches</i>	51
13.2.3	<i>Scale Transformation of Data</i>	51
13.2.4	<i>Extrapolation and Stability Modelling</i>	52
13.2.5	<i>Extrapolation for Synthetic Chemical Entities</i>	53
13.2.6	<i>No Significant Change at Accelerated Condition</i>	55
13.2.6.1	Long-term and Accelerated Data Show Little to No Change Over Time and Little or No Variability (Scenario A) ..	55
13.2.6.2	Long-term or Accelerated Data Show Change Over Time and/or Variability (Scenario B).....	55
13.2.6.3	Data not amenable to statistical analysis (Scenario B.I).....	56
13.2.6.4	Data amenable to statistical analysis (Scenario B.II).....	57
13.2.7	<i>Significant Change at Accelerated Condition</i>	57
13.2.7.1	Significant Change at Accelerated Condition (refrigerated storage) (Scenario C)	57
13.2.7.2	Significant Change at Accelerated Condition and Significant Change at Intermediate Condition (room temperature storage) (Scenario D)	57
13.2.7.3	Significant Change at Accelerated Condition and No Significant Change at Intermediate Condition (room temperature storage) (Scenario E)	58
13.2.7.3.1	Data not amenable to statistical analysis (Scenario E.I).....	58
13.2.7.3.2	Data amenable to statistical analysis (Scenario E.II)	58
13.2.8	<i>Extrapolation for Chemical Entities when Stored Frozen</i>	58
13.2.9	<i>Extrapolation for Biologicals</i>	58

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

13.3	DATA EVALUATION FOR MULTI-FACTOR, FULL-DESIGN STUDIES	59
13.3.1	<i>Testing to Combine Batch Data per Individual Combination</i>	60
13.3.2	<i>Testing to Combine Data for All Factors and Factor Combinations</i>	60
13.4	DATA PRESENTATION.....	61
14	LABELLING	61
14.1	EXCURSIONS OUTSIDE OF A LABELLING CLAIM	62
15	STABILITY CONSIDERATIONS FOR COMMITMENTS AND PRODUCT LIFECYCLE MANAGEMENT	63
15.1	COMMITMENT STABILITY STUDIES.....	63
15.2	ONGOING STABILITY STUDIES	64
15.3	PRODUCT LIFECYCLE STABILITY STUDIES.....	65
15.4	STABILITY STUDIES TO SUPPORT NEW DOSAGE FORMS AND NEW STRENGTHS/CONCENTRATIONS	67
16	GLOSSARY	69
17	REFERENCES	74
18	ANNEXES	A1-1
	ANNEX 1 REDUCED STABILITY PROTOCOL DESIGN	A1-1
	ANNEX 2 STABILITY MODELLING	A2-1
	ANNEX 3 STABILITY OF ADVANCED THERAPY MEDICINAL PRODUCTS (ATMPS)	A2-1

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1 1 INTRODUCTION

2 1.1 Objectives of the Guideline

3 The following guideline outlines the stability data expectations for drug substances and drug products.
4 This guideline is applicable to marketed drug products, including those associated with registration and
5 lifecycle/post-approval changes and, when applicable, master files. These applications are hereafter
6 collectively referred to in the guideline as regulatory submissions. ICH Q1 is a consolidated revision
7 that supersedes ICH Q1A-F and Q5C guidelines and provides additional guidance on principles relating
8 to stability.

9 1.2 Scope of the Guideline

10 This guideline applies to synthetic and biological drug substances and drug products, including the
11 following:

- 12 • Chemically synthesised drug substances including oligonucleotides, polysaccharides and
13 polypeptides (collectively referred to as ‘synthetic chemical entities’ or ‘synthetics’ in this
14 guideline), semi-synthetic drug substances and fermentation-derived drug substances.
- 15 • Therapeutic proteins/polypeptides, polysaccharides and proteoglycans produced using
16 recombinant DNA (rDNA) technology or isolated from human, animal or plant tissues, other
17 natural sources, including body fluids (such as plasma-derived products), or cell cultures.
- 18 • Conjugated products that are made up of proteins/polypeptides linked to another moiety (e.g.,
19 antibody-drug conjugate).
- 20 • Vaccines, allergenic products, and adjuvants.
- 21 • Autologous and allogenic cell-based substances, including those which may be genetically
22 modified *ex-vivo* (refer to Annex 3 – Stability of Advanced Therapy Medicinal Products
23 (ATMPs)).
- 24 • Gene therapy products that mediate their effect by the expression (transcription or translation)
25 of transferred genetic materials and genome editing products used to modify cells (refer to
26 Annex 3 – Stability of Advanced Therapy Medicinal Products (ATMPs)).
- 27 • The drug constituent part of a combination of a drug product with a medical device (both
28 integral or co-packaged).
- 29 • Co-packaged solvents/diluents.
- 30 • Natural health products that are regulated as drug products.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

31 The guideline is applicable to all regulatory submissions and, in accordance with regional regulations,
32 can apply to prescription and non-prescription drug products (e.g., regulated over-the-counter products),
33 original drug products (e.g., new entities), new product presentations, abbreviated/abridged applications
34 (e.g., generics) and biosimilars.

35 The principles outlined in this guideline are applicable to support post-approval changes (PACs) that
36 require supportive and confirmatory stability studies, including those that are discussed within ICH
37 Q12.

38 Although this guideline is not directly applicable to drug substances and drug products during clinical
39 development stages, the concepts can apply proportionate to increasing level of product and process
40 understanding during pharmaceutical development. The data from development batches that meet
41 primary stability requirements may be used to support a regulatory submission and for product lifecycle
42 management. Refer to Section 15 - Stability Considerations for Commitments and Product Lifecycle
43 Management.

44 The guideline is not applicable to device constituent parts, radiopharmaceuticals and whole blood
45 products.

46 1.3 Introduction to Guideline and General Principles

47 The purpose of stability testing is to provide evidence on how the quality of a drug substance or drug
48 product varies with time under the influence of a variety of environmental and physical factors such as
49 temperature, humidity, light, or agitation. Stability testing establishes and confirms a re-test period or
50 shelf life for the drug substance or a shelf life for the drug product in the proposed container closure
51 system under the recommended storage conditions. Shelf life is also referred to as dating period or
52 expiry period in some regions. This guideline provides comprehensive guidance to establish stability
53 for all molecule types within its scope and includes recommendations on how science- and risk-based
54 principles may be applied. A standard approach to assess each stability-related topic is provided by
55 describing the general principles and strategies to assess stability. In addition, the principles of Quality
56 by Design described within ICH Q8-Q11 and Q14, through enhanced understanding of critical quality
57 attributes (CQAs) and the impact that the manufacturing process can have on these attributes, are
58 applicable to the design of an overall stability strategy.

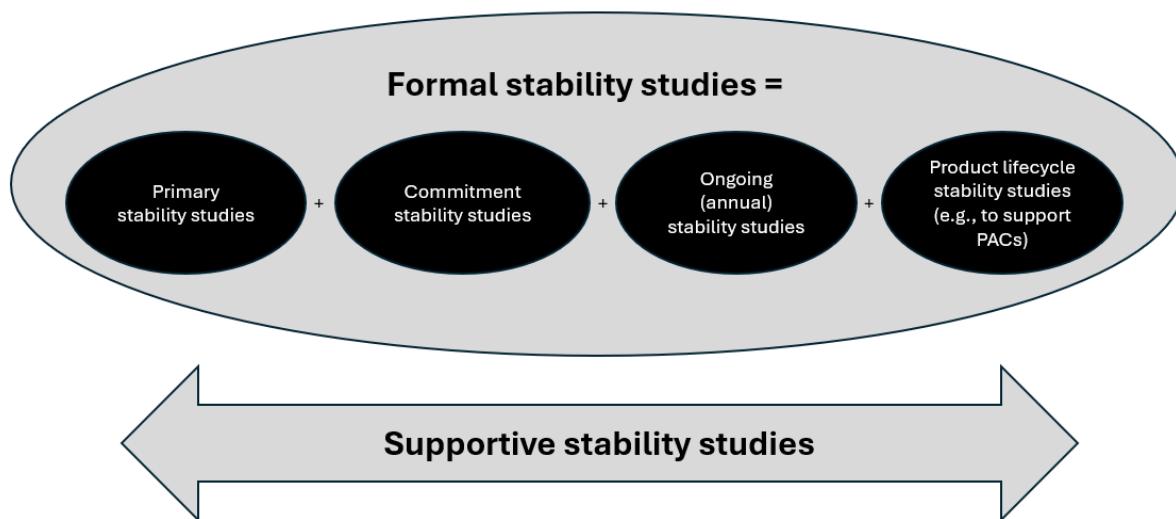
59 This guideline should be considered in its entirety for a comprehensive approach to stability studies.
60 The guideline exemplifies the standard stability data package for drug substances and drug products
61 and provides guidance on alternative and scientifically justified approaches that encompass the variety
62 of different situations that may be encountered due to specific scientific considerations and

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

63 characteristics of the data being evaluated. Alternative strategies based on science- and risk-based
64 principles (e.g., as described in ICH Q8-Q11 and section IX of ICH Q12) for drug substances and drug
65 products may be proposed by the applicant of a regulatory submission, leveraging quality risk
66 management principles, pharmaceutical development data (e.g., as discussed in Section 2 –
67 Development Studies Under Stressed and Forced Conditions), prior knowledge and modelling, (e.g., as
68 discussed in Annex 2 -Stability Modelling). Examples are provided under specific sections to illustrate
69 how science- and risk-based strategies may be applied.

70 Unless otherwise specified, the recommendations described in this guideline apply to both drug
71 substance and drug products. Additionally:

- 72 • Each section may include guidance for specific product types (e.g., synthetics, biologicals,
73 vaccines or a combination drug product with a medical device) where relevant.
- 74 • For semi-synthetics, fermentation and conjugated products, the recommendations for synthetics
75 and biologicals would apply, as appropriate.
- 76 • Where “products” is mentioned by itself in this guideline, this is to be interpreted as “drug
77 substances and drug products”.
- 78 • Recommendations on the general principles for stability studies and data expectations for drug
79 substances and drug products apply across all climatic zones for regulatory submissions and
80 lifecycle management. The mean kinetic temperature in any part of the world can be derived
81 from climatic data, which divides the world into four climatic zones, I-IV (13, 14). The four
82 zones are distinguished by their characteristic prevalent annual climatic conditions based on the
83 concept originally described by W. Grimm (15), updated in W. Grimm (16) and adopted under
84 WHO Technical Reports (13, 14). This guideline addresses all four climatic zones. The
85 principle has been established that if the stability information is generated under a more severe
86 climatic zone storage condition, it would be acceptable in the other climatic zones, provided
87 the information is consistent with this guideline and the labelling and storage statements are in
88 accordance with regional requirements.
- 89 • The recommendations may be applicable to drug substance intermediates and drug product
90 intermediates. Intermediates that are stored as part of manufacturing process activities (e.g.,
91 unprocessed bulk harvest, granulations) should be evaluated in accordance with Section 9 -
92 Stability Considerations for Processing and Holding Times for Intermediates. For those
93 intermediates that are packaged and stored outside of manufacturing process activities, a
94 holding time may be established or it may be appropriate to establish a re-test period or shelf


ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

95 life as per the applicable sections of this guideline (e.g., antibody prior to conjugation and a
96 spray dried dispersion).

- 97 • The recommendations may be applicable to reference materials as well as to drug products
98 containing certain excipients and adjuvants where the stability of these components can
99 significantly impact drug product performance. Refer to Section 12- Reference Materials,
100 Novel Excipients and Adjuvants for detailed guidance. Co-packaged solvents/diluents should
101 follow the recommendations for drug products.
- 102 • Regulatory expectations for the stability data package in this guideline are also applicable to
103 drug substances and drug products made using continuous manufacturing (CM) processes.
- 104 • Annexes are intended to either supplement the guideline with specific guidance on enhanced
105 approaches or to provide product-specific guidance for product types with specific and unique
106 stability considerations. Annex 1 provides guidance on Reduced Protocol Design; Annex 2
107 provides guidance on Stability Modelling; and Annex 3 provides Additional Considerations for
108 ATMPs.

109 The main types of stability studies are graphically represented in Figure 1.

110 **Figure 1: Stability Study Types**

119 Formal stability studies are primary, commitment, ongoing and product lifecycle stability studies
120 conducted under the accelerated, intermediate, or long-term storage conditions (as applicable) to
121 establish or confirm a re-test period or a shelf life. Supportive stability studies are those stability studies
122 that are conducted (as applicable) to support the practical use of the product (including label claims) or
123 a re-test period or a shelf life (e.g., photostability, in-use, short-term storage condition studies and

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

118 studies to support excursions or modelling). Formal and supportive stability studies and their purposes
119 are described in various sections of this guideline. In addition to formal stability studies, guidance is
120 provided on studies that inform stability knowledge and product understanding (refer to Section 2 –
121 Development Studies Under Stressed and Forced Conditions). These development studies are
122 introduced in Section 2 because some of this information is utilised to develop the primary stability
123 protocol and the validation of stability-indicating methodologies.

124 The guideline discusses strategies for protocol design within Section 3 - Stability Protocol Design to
125 Section 7 - Storage Conditions. The recommendations in these sections are applicable to primary
126 stability studies. However, the principles of protocol design are intended to apply to any stability
127 protocol (e.g., commitment, ongoing and product lifecycle stability studies, including those to support
128 changes).

129 The concept of a ‘representative batch’ to support establishing the re-test period or shelf life is
130 referenced throughout this guideline. The justification that a batch is representative will vary depending
131 on the drug substance and drug product types, their complexity and manufacturing processes. This is
132 discussed in detail within Section 4 - Selection of Batches.

133 The applicant should consider all available stability knowledge when designing stability protocols and
134 defining information for inclusion on the product labelling (e.g., storage statements). This includes
135 considerations of the impact of holding times, the primary stability data and supportive stability data to
136 inform long-term, short-term and in-use storage conditions. In many cases, stability protocol designs
137 may be dependent on the potential impact on the final product quality and therefore based on quality
138 risk management.

139 This guideline does not specify filing mechanisms or regional requirements.

140 **2 DEVELOPMENT STABILITY STUDIES UNDER STRESS AND FORCED 141 CONDITIONS**

142 Product knowledge is useful in the design of formal stability study protocols. Development studies may
143 be useful to characterise the physical, chemical and biological changes likely to occur with storage, to
144 establish the degradation profile and intrinsic stability of the product, to confirm and validate the
145 stability-indicating nature of the analytical procedures, to inform specifications and to determine
146 whether unexpected exposures to conditions other than those defined in the label are deleterious to the
147 product (refer to Section 14 – Excursions Outside of a Labelling Claim). In addition, these development
148 studies can be used to help design the primary stability protocol and may also be applied to protocols
149 used to support changes during the product lifecycle (refer to Section 3 - Stability Protocol Design and
150 Section 15 - Stability Considerations for Commitments and Product Lifecycle Management).

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

151 In the context of generating product knowledge, studies may be performed under accelerated and/or
152 stress conditions, including forced conditions. The nature of this testing should be proportionate to the
153 knowledge available, the type of the drug substance or drug product being evaluated and the quality
154 attribute(s) being investigated.

155 Accelerated conditions (temperature and when applicable, humidity), over a defined time period, are
156 intended to increase the rate of chemical degradation, physical change and/or biochemical change in
157 the product. Data generated under accelerated conditions can be used to gain product knowledge and
158 to support extrapolation, re-test or shelf life determination and to evaluate the impact of excursions
159 outside the label storage conditions. Accelerated testing is typically included as part of the formal
160 stability program as described in Sections 3 – Stability Protocol Design through Section 7 – Storage
161 Conditions.

162 Development studies undertaken to assess the effect of stress on the drug substance and/or drug product
163 can be divided into two categories:

164 1) Studies conducted under *stress conditions*: Conditions are more severe than the accelerated
165 conditions but not necessarily intended to deliberately degrade the sample.

166 2) Studies conducted under *forced degradation conditions*: Conditions are intended to deliberately
167 degrade the sample (such as elevated temperature, humidity, pH, oxidation, agitation and light).

168 The purpose of this section is to describe the principles of development studies under stress and forced
169 conditions. This section provides clarity on the concepts, study design and considerations for
170 interpreting the results.

171 **2.1 Development Studies Under Stress Conditions**

172 Studies under stress conditions can contribute to an understanding of product knowledge and the data
173 gathered from these studies can be useful in addressing unexpected excursions outside of the conditions
174 defined on the labelling (refer to Section 14.1 – Excursions Outside of a Labelling Claim).

175 Stress condition studies can include temperature and humidity levels above accelerated conditions,
176 thermal cycling and freeze-thaw studies, as appropriate. For synthetic chemicals entities, these studies
177 may be conducted on one batch of the drug product and where relevant one batch of the drug substance
178 directly exposed or in a container closure system, as applicable. For biologicals, at a minimum, stress
179 studies may be performed on a single batch of drug product, however, it may be possible to justify using
180 a single batch of drug substance if it is representative of the drug product.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

181 2.2 Development Studies Under Forced Degradation Conditions

182 Forced degradation studies may be utilised to investigate potential degradation pathways; gain product
183 knowledge; understand the intrinsic stability of product and used to develop and confirm stability-
184 indicating nature of the analytical procedure (refer to ICH Q2 and ICH Q14). It is acceptable to leverage
185 product knowledge when data is available on identified degradation products and pathways, including
186 scientific literature.

187 It is recommended to assess forced conditions on a single batch of the drug substance. It should include
188 the effect of elevated temperatures, humidity (e.g., 75% Relative Humidity (RH) or greater) where
189 appropriate, oxidation and photodegradation on the drug substance. Testing should evaluate the
190 susceptibility of the drug substance to hydrolysis across a range of pH values. Also, a combination of
191 forced conditions may be appropriate to test under certain circumstances (e.g., agitation and heat).

192 For drug products, testing under forced conditions is recommended on a single batch of exposed drug
193 product. It should include the effect of temperature, humidity (e.g., 75% RH or greater) where
194 appropriate and light. Additional forced conditions for specific types of products and dosage forms may
195 be appropriate.

196 For biologicals, studies under forced degradation conditions should be performed on a single batch of
197 drug substance; alternatively, it may be possible to justify using a single batch of drug product.

198 The forced photodegradation condition can be an integral part of forced degradation studies. The
199 purpose of forced photodegradation studies is to evaluate the overall photosensitivity of the product. A
200 forced photodegradation study requires exposure to light conditions which are more extreme than the
201 light conditions utilised in confirmatory studies (refer to Section 8 – Photostability).

202 With forced degradation studies, the conditions and duration may need to be varied depending on the
203 sensitivity of the product. For development and analytical procedure validation purposes, it is
204 appropriate to limit the exposure and end the forced degradation study if extensive decomposition
205 occurs. Similarly, for stable materials, studies may be terminated after an appropriate exposure level
206 has been used. The design of these experiments is left to the applicant's discretion although the exposure
207 levels used should be justified.

208 2.3 Analysis and Interpretation of Results

209 When testing under stressed conditions, including forced degradation, samples should be examined at
210 the end of the exposure period for any changes in physical, chemical, or biological properties (e.g.,
211 physical state, clarity, colour, degradation products, particle size, potency), as applicable, by a
212 procedure suitable to detect any evidence of change.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

213 Changes in attributes that are unlikely to occur under normal storage conditions may occur under forced
214 conditions and possibly under stress conditions (e.g., the formation of degradation products). This
215 information may be useful in developing and validating suitable analytical procedures and can be part
216 of a comprehensive approach to justify the overall control strategy.

217 The data obtained from these development studies may also inform product understanding and help
218 identify the potential stability-indicating CQAs that should be monitored during stability testing,
219 assisting in the design of the stability protocol (refer to Section 3 - Stability Protocol Design). Although
220 forced degradation studies are not part of the formal stability studies, results from the forced degradation
221 studies are an integral part of the information provided to regulatory authorities (e.g., support analytical
222 procedure validation, product characterisation, specifications or packaging considerations). Data from
223 development studies under stress condition should be included in regulatory submissions if they support
224 a claim on the product labelling.

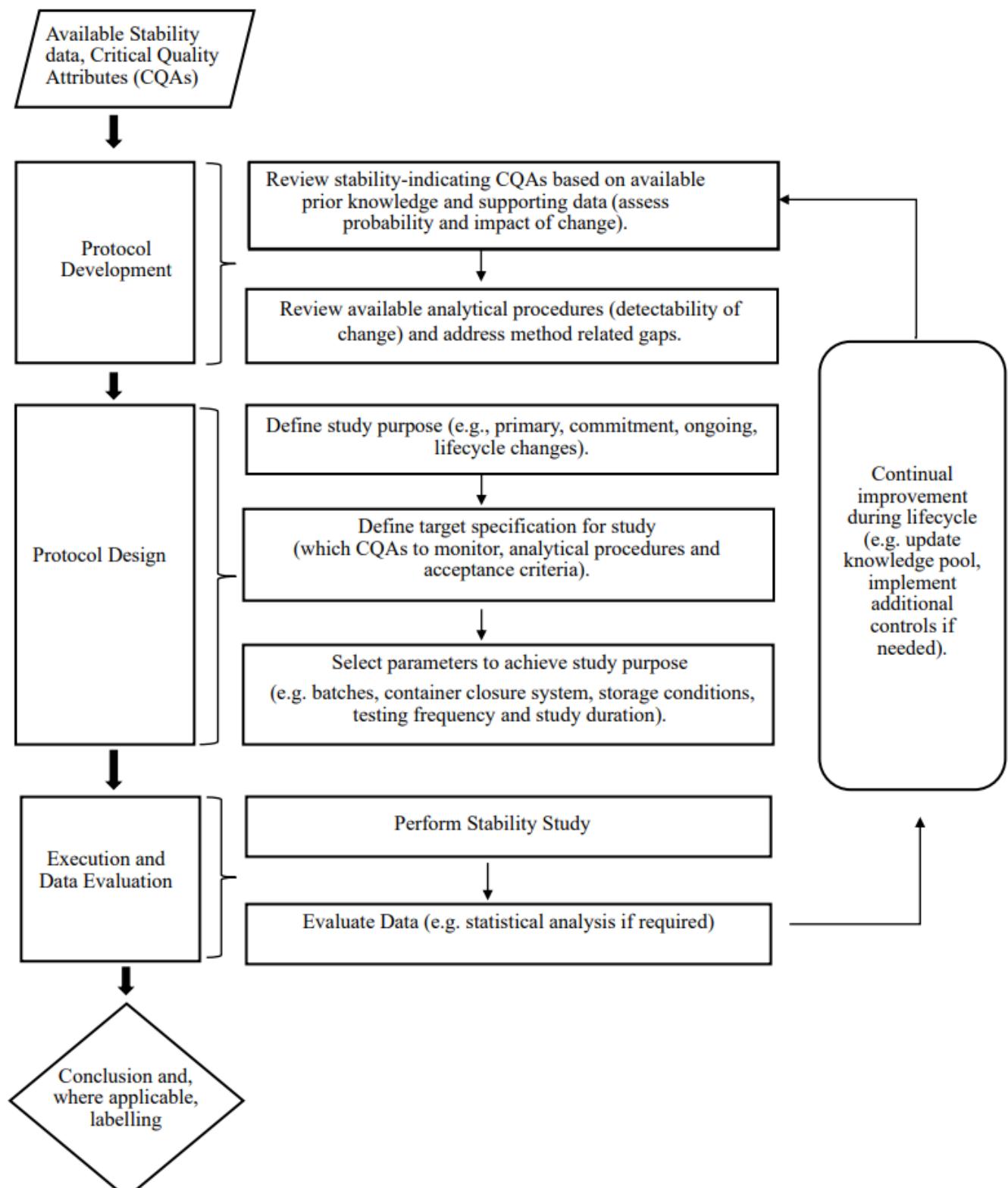
225 **3 PROTOCOL DESIGN FOR FORMAL STABILITY STUDIES**

226 This section provides guidance that is intended to be used in conjunction with Section 4 – Selection of
227 Batches through Section 7 – Storage Conditions to establish a formal stability study protocol. Figure 2
228 illustrates how an applicant may approach the design and development of a formal stability protocol.
229 The “available stability data” in the figure refers to knowledge gained from long-term and accelerated
230 stability studies conducted earlier in development and from development studies discussed in Section 2
231 – Development Studies Conducted on Stressed and Forced Conditions.

232 Where noted, these sections provide specific guidance for establishing a primary stability protocol to
233 determine a re-test period or shelf life (refer to Section 13 - Data Evaluation). When applicable, the
234 guidance in these sections should be utilised in conjunction with Section 15 - Stability Considerations
235 for Commitments and Product Lifecycle Management (for commitment stability studies, ongoing
236 stability studies and lifecycle stability studies) and Annex 1 - Reduced Stability Protocol Design (where
237 reduced study designs may be appropriate).

238 **3.1 General Principles**

239 A summary of the stability protocol should be provided in a regulatory submission when a re-test period
240 or shelf life is to be established or confirmed. The stability protocol incorporates all necessary
241 information to establish or confirm the stability of the drug substance or drug product under the
242 recommended storage conditions throughout the re-test period or shelf life. This includes consideration
243 of data from primary stability studies and supporting data to inform long-term storage, short-term
244 storage, excursions and in-use conditions.


ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

245 An illustration of the general process for the development, design and execution of a stability protocol
246 is shown in Figure 2. The applicant is responsible for building knowledge and understanding during
247 pharmaceutical development, leading to the identification of those CQAs that are or have the potential
248 to be stability-indicating under appropriate storage conditions and using this information to design the
249 protocol to support the formal stability studies. Stability studies should include testing of those attributes
250 that are susceptible to change during storage and can potentially influence quality, safety and efficacy.
251 During the product's lifecycle, as knowledge is gained, stability protocol designs may be optimised.
252 Changes to the stability protocol to extend a re-test period or shelf life should be established in
253 accordance with Section 15 - Stability Considerations for Commitments and Product Lifecycle
254 Management.

255

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

256 **Figure 2: General Process Flow for the Development, Design and Execution of a Stability Protocol**

257

258

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

259 The principles detailed for protocol design should be applied from initial regulatory submission through
260 product lifecycle. The precise protocol design will depend on the drug substance/drug product, study
261 purpose and the available prior knowledge.

262 Additional protocol considerations for photostability, excursions, short-term storage and in-use
263 conditions are described in the respective sections (refer to Section 8 – Photostability, Section 14.1 –
264 Excursions Outside of a Labelling Claim, Section 10 - Short-Term Storage Conditions and Section 11
265 – In-Use Stability).

266 A full design stability protocol is a protocol where at least three batches of the drug substance or at least
267 three batches of each strength of the drug product covering the proposed container closure systems for
268 every combination of all design factors are included and tested at all time points. Alternative approaches
269 to stability protocol design, such as bracketing, matrixing, knowledge- and risk-based protocol
270 reductions and stability models are described in Annex 1 – Reduced Stability Protocol Design and
271 Annex 2 – Stability Modelling. Additional considerations for ATMPs are provided in Annex 3 –
272 Stability of Advanced Therapy Medicinal Products (ATMPs).

273 **3.2 Stability Data to Support the Initial Re-test Period and Shelf Life According to the 274 Standard Approach**

275 This section provides guidance on establishing the re-test period, shelf life and storage conditions using
276 data from the primary stability study (refer to Section 4 – Selection of Batches). This is considered the
277 standard approach. When the standard approach is adopted, the recommendations provided in Table 1
278 establish an appropriate minimum dataset at the time of the initial regulatory submission to assign a re-
279 test period and shelf life in accordance with the guidance provided in Section 13 – Data Evaluation.
280 Alternative approaches to the principles and practices described in this section may be acceptable if
281 they are supported by adequate justification, including an enhanced knowledge of product performance
282 from prior knowledge, as per ICH Q8 - Q11 and modelling as discussed in Annex 2 - Stability
283 Modelling.

284 The stability package provided in the regulatory submission should be sufficient to support the proposed
285 re-test period or shelf life and storage conditions. The long-term stability protocol should, at a minimum,
286 ensure testing continues for the duration of the proposed re-test period or shelf life.

287 Data from the accelerated storage conditions and, if appropriate, from the intermediate storage
288 conditions can be used to evaluate the effect of short-term excursions outside the labelled storage
289 conditions (e.g., during shipping). For synthetics, data from the accelerated storage condition are also
290 needed to enable extrapolation in accordance with Section 13.2.5 – Extrapolation for Synthetic
291 Chemical Entities. For biologicals, data from the accelerated storage condition is utilised for product

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

292 understanding and may be used to support analytical comparability. Even though data generated under
293 accelerated storage conditions are not used to establish a re-test period or shelf life for biologicals, it is
294 strongly suggested to include these data in the regulatory submission.

295 Refer to Section 4 – Selection of Batches, Table 2 for guidance on selection of primary batches. For
296 synthetics and for biologicals, a primary batch may be a production batch but does not need to be a
297 production batch.

298 Biological drug substances and drug products usually require stringent conditions for their storage to
299 ensure maintenance of biological activity and to avoid degradation, because of dependence of molecular
300 conformation and biological activity on noncovalent as well as covalent forces, resulting their high
301 sensitivity to environmental factors (e.g., temperature changes, oxidation, light, ionic content and
302 shear). The evaluation of their stability may necessitate complex analytical methodologies including
303 physicochemical, biochemical and immunochemical methods, and consideration of many external
304 conditions which can affect the product's potency, purity and quality. For biological drug substances
305 and drug products, data from three primary batches that cover the duration of the proposed shelf life
306 should be submitted unless an alternative approach is justified. When these primary batches are not
307 production scale, a minimum of 6 months of data from production batches should also be submitted to
308 support the evaluation of the regulatory submission. A minimum of 6 months stability data from primary
309 batches should be submitted in cases where shelf life is greater than 6 months. For drug substances and
310 drug products with a shelf life of less than 6 months, the minimum amount of stability data in the initial
311 regulatory submission should be determined on a case-by-case basis. Refer to Section 15 - Stability
312 Considerations for Commitments and Product Lifecycle Management for guidance on providing
313 commitment stability data after marketing authorisation.

314 A stability study to establish a re-test period or shelf life should include at least three batches of the
315 drug substance or at least three batches of each strength of the drug product covering the proposed
316 container closure systems. Reduced designs may be applied where justified (refer to Annex 1 – Reduced
317 Stability Protocol Design).

318

319 For synthetic chemical entities and biologicals, if primary batches are not production scale or not all at
320 production scale, the applicant should commit to continuing or initiating and completing a commitment
321 stability study to establish and confirm the re-test period or shelf life in accordance with Section 15.1 -
322 Commitment Stability Studies.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

323 **Table 1: Recommended Core Stability Data for the Standard Approach at Submission to**
 324 **Support the Initial Re-test Period or Shelf Life¹**

Product Type	Batch Type	Number of Batches²	Long-term storage condition	Accelerated storage condition
New synthetic chemical entity drug substances and/or drug products for which a new drug regulatory submission is required ⁴	Primary ⁵	3	12 months	6 months ³
Existing synthetic chemical entity drug substances and/or drug products for which an abbreviated/ abridged regulatory submission is required	Primary ⁵	3	6 months	6 months ³
Biological drug substances and/or drug products	Primary, Production ⁵	3	6 months ⁶	6 months ⁷

¹ For testing frequency guidance refer to Section 6 – Testing Frequency

² For a full design, at least 3 batches of the drug substance or at least 3 batches of each strength of the drug product covering the proposed container closure systems are tested. Reduced designs may be applied where justified (refer to Annex 1 – Reduced Stability Protocol Design).

³ If a significant change (refer to Section 13 - Data Evaluation) or an out of specification result occurs at accelerated conditions within the first 3 months, it is considered unnecessary to continue to test through 6 months.

⁴ In principle, stability protocols for new dosage forms and new strengths/concentrations should follow the guidance for a new drug. However, a reduced stability dataset at submission time (e.g., 6 months accelerated and 6 months long term data) may be acceptable in certain justified cases (refer to Section 15.3 - Stability Studies to Support New Dosage Forms and New Strengths/Concentrations).

⁵ There should be a commitment to continue stability studies for production batches corresponding to the proposed re-test period or shelf life.

⁶ A primary batch can be a production batch but does not need to be a production batch. If the re-test period or shelf life proposed from non-production primary batch data is greater than 6 months, stability data from production batches should be a minimum of 6 months. The shelf life would generally be supported by three primary batches having stability data through to shelf life.

⁷ Testing under accelerated storage conditions is strongly suggested when appropriate for the storage condition and product type and the minimum time period should be justified by the applicant in accordance with the selected storage conditions. A minimum of three time points, including the initial and final, is recommended.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

326 For drug substances and drug products with intended storage periods of less than the recommendations
327 in Table 1, the minimum amount of stability data in the initial regulatory submission should be
328 determined based on the product-specific risks and in accordance with Section 6 – Testing Frequency.

329 **3.3 Stability-Indicating Critical Quality Attributes**

330 CQAs should be identified using the principles outlined in ICH Q6A, Q6B and ICH Q8-Q11. When
331 designing a stability protocol in support of a drug substance or drug product, information on the CQAs
332 and their target acceptance criteria should already be available. Based on prior knowledge and
333 development data, the applicant should identify the stability-indicating CQAs, which are those attributes
334 that may change upon storage and may impact the functionality and/or quality of the drug substance or
335 drug product.

336 ***3.3.1 Recommendations for Establishing a Re-Test Period or Shelf life.***

337 The stability protocol to establish a re-test period or shelf life should include stability-indicating CQAs
338 and compile a suitable dataset to demonstrate product quality through storage and use. For synthetic
339 chemical drug substances and drug products, the stability protocol should consider appropriate, physical
340 and chemical attributes. For biological drug substances and drug products, the protocol should assess
341 changes in CQAs that affect physicochemical properties, purity and impurity levels, immunochemical
342 properties and the biological activity of the product, as appropriate. For both synthetics and biologicals,
343 microbiological attributes and product performance characteristics should be confirmed on stability as
344 applicable. For products that are particularly sensitive to changes in temperature, oxidation, light,
345 moisture content and shear forces, quality attributes that may be impacted should be assessed. For
346 additional information on attributes to be included in the drug substance or drug product specification,
347 refer to ICH Q6A and Q6B.

348 Where excipient levels or their properties may change on stability, potentially impacting drug product
349 CQAs, they should be evaluated as part of drug product stability testing, (e.g., levels of surfactant,
350 preservative content). In cases where stabilisers are needed for a biological drug substance, the same
351 considerations should be applied. Co-packaged diluents should follow the recommendations for drug
352 products. A risk-based approach is recommended, where development data and excipient prior
353 knowledge can be used to understand whether additional drug substance and/or drug product stability
354 data are appropriate to support the re-test period or shelf life.

355 In accordance with the principles outlined in ICH Q3D and Q3E, stability-indicating CQAs
356 considerations should include potential interaction with the respective storage container, contact with
357 administration or delivery devices (e.g., syringe walls, catheters and injection needle) and dispersion
358 media (such as solvents for reconstitution or dilution).

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

359 **3.3.2 *Recommendation for Lifecycle Stability Protocols***

360 After additional knowledge is gained following establishment of the re-test period or shelf life, data
361 may confirm that some CQAs do not change on stability and stability protocols to support the product
362 lifecycle may be updated accordingly (refer to Section 15 – Stability Considerations for Commitments
363 and Product Lifecycle and Annex 1 - Reduced Stability Protocol Design)

364 **3.4 *Specifications***

365 **3.4.1 *Tests and Analytical Procedures***

366 Before a formal stability study protocol is initiated, the suitability of the proposed analytical procedures
367 to detect changes in the stability-indicating CQAs should be assessed in accordance with ICH Q2 and
368 ICH Q14. The analytical procedures used to monitor changes in the stability-indicating CQAs should
369 be chosen and validated to provide assurance that changes to product quality will be detected, measured
370 and understood over the expected re-test period or shelf life. Establishment of potential degradation
371 pathways (refer to Section 2.3 -Analysis and Interpretation of Results) is important when developing
372 and validating suitable analytical procedures. When feasible for synthetic chemical entities, the mass
373 balance relationship between tested attributes should be observed when selecting appropriate stability-
374 indicating tests. For example, for solid drug substances or drug products, an apparent decrease in the
375 active moiety could be caused by an increase in degradation products and/or an increase in moisture
376 content.

377 When justified, the analytical procedures used for stability testing may differ from the release analytical
378 procedure for the same quality attribute (e.g., container closure integrity testing may be used instead of
379 sterility testing during stability). In situations where stability-indicating quality attributes are not tested
380 as part of release testing (e.g., the relevant CQAs are measured and controlled during processing as
381 described in ICH Q8), additional analytical procedures should be established to support stability studies.

382 **3.4.2 *Acceptance Criteria***

383 The shelf life acceptance criteria should consider all available stability information from development
384 and manufacture of the drug substance through final drug product shelf life in accordance with ICH
385 Q6A and Q6B. As per these guidelines, when a stability-indicating CQA changes over time, it may be
386 appropriate to establish a release specification that is more stringent than the shelf life specification to
387 ensure that the drug substance and/or drug product quality is maintained through to the end of shelf life.
388 In general, any differences between the release and shelf life acceptance criteria should be justified with
389 data. In case a re-test period is assigned to a drug substance, generally the acceptance criteria are the
390 same as at release.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

391 ***3.4.3 Pharmacopoeial Critical Quality Attributes and Analytical Procedures***

392 When drug substance and/or drug product monographs or general procedures are available and relevant
393 to the region(s) where the regulatory submission is to be filed, the monographed CQAs and analytical
394 procedures are an appropriate starting point in designing a product-specific stability protocol. Any
395 differences in the proposed analytical procedures from those in the pharmacopeia should be
396 scientifically justified (e.g., including demonstration of equivalency). A knowledge- and risk-based
397 approach should then be applied to ensure that any differences in stability behaviour are properly
398 controlled.

399 **3.5 Additional Considerations for Vaccines**

400 In cases where the potency of the product is dependent on conjugation and/or adsorption of the active
401 ingredient to another moiety (e.g., carrier), applicants should evaluate potential dissociation of the active
402 ingredient(s) from the carrier during storage (e.g., in conjugate vaccines).

403 In cases where the potency of the product is dependent on the inclusion of an adjuvant, the CQAs for
404 the adjuvant should be evaluated during stability studies.

405 It is strongly recommended that stability studies for vaccines include mechanisms to evaluate the
406 potency (i.e., the specific ability or capacity to achieve its intended effect using suitable methods) of
407 the product.

408 **3.6 Additional Considerations for the Combination of a Drug Product with a Medical Device**

409 The stability of a combination of a drug product with a medical device considers (a) drug product CQAs
410 and (b) drug device combination performance characteristics through storage to the completion of
411 administration (refer to Section 11 – In Use Stability). The functional performance characteristics of
412 the device constituent alone are outside of the scope of this guideline and are addressed through device
413 design verification studies.

414 The stability protocol design for a combination of a drug product with a medical device (integral or co-
415 packaged) should follow the same principles as described for a drug product, including a risk assessment
416 and compatibility with contact materials. Stability-indicating attributes of the drug constituent may
417 impact the medical device functional performance characteristics, and stability studies and conclusions
418 should account for these interactions. Considerations should be made for the administration-dependent
419 functional performance characteristics of the fully assembled combination of a drug product with a
420 medical device that may be impacted by long-term storage (i.e., CQAs that can only be assessed after
421 assembly). The storage orientation may be established based on a risk assessment. The shelf life of a
422 co-packaged combination of a drug product with a medical device should be based on the shorter of

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

423 either the device constituent part or the drug constituent part shelf life. For integrated device-drug
424 products, the shelf life should be based on the shorter of either of the constituent part or the final
425 combination of a drug product with a medical device.

426 Each type of combination of a drug product with a medical device should have its own unique list of
427 quality attributes and administration-dependent functional performance characteristics. Attributes
428 should be risk assessed according to the specific design of that product to identify the critical attributes
429 or characteristics. The risk assessment may include data from device design development studies and
430 prior knowledge from similar combinations of a drug product with a medical device. The stability
431 protocol should use the assembled (integral or co-packaged) product representative of the product
432 proposed for marketing. If the stability studies were not performed with the combination of a drug
433 product with a medical device as proposed for marketing, the changes made should be assessed and
434 justified with respect to the impact on stability.

435 **3.7 Risk Management**

436 A science- and risk-based approach should be used to inform the different aspects of protocol design
437 outlined in Section 4 - Selection of Batches through Section 7 - Storage Conditions.

438 The inclusion of risk management information with a registered stability protocol is not mandatory, but
439 in cases where it forms the basis of a justification for enhanced/reduced protocol approaches,
440 information on the risk assessment process, outcome and the connection to the stability protocol should
441 be described.

442 **4 SELECTION OF BATCHES**

443 To establish a re-test period or shelf life for the drug substance and drug product, stability data should
444 generally be provided on three primary batches. Alternative approaches for batch requirements may be
445 supported when justified. The manufacturing process for the primary batches of drug substance and
446 drug product should be similar or representative, but not necessarily identical to the manufacturing
447 process used for production batches. Hence, a primary batch may be but is not necessarily a production
448 batch. Differences in the manufacturing processes for the primary batches and those proposed for
449 production batches should be justified. Specific considerations for primary stability batches are
450 provided in Table 2.

451 For studies that are not a primary study (e.g., in-use stability, photostability, supportive studies and
452 stability studies to support post-approval changes) and use non-production batches, the batches should
453 be representative as described below:

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

- 454 • Synthetic chemical entities: Chemically synthesised drug substances should be manufactured
455 by the same synthetic route. Changes to manufacturing process parameters should be
456 scientifically justified. Drug products should be of the same formulation and method of
457 manufacture.
- 458 • Biologicals: The quality of all drug substance and drug product batches placed in a stability
459 program should be manufactured using a similar process to the proposed production
460 manufacturing process and be analytically comparable to the production batches (refer to ICH
461 Q5E). The analytical comparability for the clinical batches and the non-production batches to
462 the production batches should be demonstrated. A comprehensive analytical comparability
463 exercise may include additional characterisation testing.

464 4.1 Considerations for Selection of Primary Stability Batches

465 Where possible, batches of drug product included in stability testing should be derived from different
466 batches of drug substance to account for variability in drug substance batches. Stability studies should
467 be performed on each individual strength, fill volume and container closure system of the drug product
468 unless a reduced protocol design is applied (refer to Annex 1 – Reduced Stability Protocol Design).

469 The primary stability batches of the drug substance and drug product should be representative of the
470 clinical and production batches as described above. Additional development batches that are
471 representative of the primary and production batches may also be included as supporting stability data.

472 Refer to Table 2 below for additional considerations at time of selection of primary stability batches.

473 **Table 2: Considerations for Primary Stability Batches of Drug Substance and Drug Product**

	Synthetic Chemical Entities	Biologics
Drug Substance	<ul style="list-style-type: none">• Same chemical synthetic route• Similar manufacturing process (differences justified)• At minimum, all batches manufactured at pilot scale²• Meet proposed registration specification• Containers constructed of the same material and type of container closure system as production batches.	<ul style="list-style-type: none">• Same cell production system, if applicable• Similar manufacturing process (differences justified)• Meet proposed registration release specification• Containers constructed of the same material and type of container closure system as production batches.• Comparable to production batches (ICH Q5E)

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

Drug Product	<ul style="list-style-type: none">• Same formulation¹ and dosage form• Minimum of 2 batches manufactured to at least pilot scale², other batch(es) can be smaller if justified• Same manufacturing process with equipment with the same operating principles.• Meet the proposed registration release specification• Same fill unless a reduced protocol design is applied¹• Same container closure system as proposed for marketing	<ul style="list-style-type: none">• Same formulation and dosage form• Comparable to production batches (e.g., ICH Q5E)• Meet proposed registration release specification• Same fill volume unless a reduced protocol design is applied¹• Same container closure system as proposed for marketing.
--------------	--	--

¹Refer to Annex 1 – Reduced Stability Protocol Design for details around when exceptions may apply

²In accordance with ICH Q13, the definition of a pilot batch for synthetics does not apply for continuous manufacturing.

474 When the long-term stability data do not cover the proposed re-test period or shelf life at the time the
475 marketing application is submitted, refer to Section 15 - Stability Considerations for Commitments and
476 Product Lifecycle Management for relevant commitments.

477 4.2 Considerations for Multiple Production Sites in the Initial Regulatory Submission

478 The stability data from each site, provided in the initial regulatory submission should be proportionate
479 to the overall product, process and facility risk and in accordance with regional requirements. For both
480 synthetics and biologicals, when the product, process and production site are comparable, the re-test
481 period and/or shelf life would not need to be re-established at an additional production site. An
482 additional production site refers to any production site proposed in the initial regulatory submission
483 other than the drug substance and drug product site where the original production scale batches are
484 manufactured.

485 For synthetic chemical entities, a comparison of batch data of the primary batches with data from each
486 production site should be provided in the regulatory submission. The amount of stability data provided
487 for each production site depends on the risk associated with implementing each additional production
488 site for the drug substance or drug product. A commitment stability study should be established for each
489 production site in accordance with Section 15.1 - Commitment Stability Studies. The number of
490 production batches from each site in the commitment stability study can be fewer than three with a
491 supporting scientific justification and risk assessment.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

492 For biologicals, the default minimum stability data presented for each production site, should be as
493 outlined in Table 1 of Section 3.2 -Recommended Minimum Core Stability Data for the Standard
494 Approach at Submission to Support Initial Re-test Period or Shelf Life. However, for biologicals with
495 an enhanced level of product and process understanding, an alternative science- and risk-based approach
496 may be justified for those additional sites that are receiving the transferred manufacturing process from
497 an originating production site. A comparability assessment inclusive of accelerated and/or stressed
498 condition stability results for commercial scale production batches manufactured at the proposed
499 additional site relative to primary batches from the original production site should be provided (refer to
500 ICH Q5E). Based on risk assessment that considers analytical comparability, process comparability and
501 production site history for the manufacture of similar product types, sites receiving the transferred
502 manufacturing process may initially propose a reduced number of production scale stability studies in
503 the regulatory submission. When a reduced data set is justified, a commitment should be made to
504 continue stability studies at each site through the proposed re-test period or shelf life for a total of three
505 production scale batches in accordance with Section 15.1 - Commitment Stability Studies.

506 4.3 Considerations for Vaccines

507 In general, production scale batches are expected to be used to set shelf life of vaccines. If non-
508 production scale batches are used as primary batches, a justification should be based on product
509 knowledge, comparability studies and risk. The remaining recommendations for primary batches for
510 biologicals in Table 2 are also applicable to vaccines.

511 4.4 Considerations for Continuous Manufacturing Processes

512 For guidance on selection of batches from a CM process, refer to ICH Q13 guideline. For recombinant
513 protein biologicals, the use of a single start-up/shutdown sequence (refer to ICH Q13) to manufacture
514 multiple primary drug substance stability batches is typically not applicable. Primary drug substance
515 stability batches should be obtained from multiple harvests/cell bank thaws and should cover the entire
516 cell culture duration. The drug product primary stability batches manufactured by CM processes should
517 incorporate the variability described for different drug substance batches.

518 5 CONTAINER CLOSURE SYSTEM

519 A container closure system comprises the primary (in contact with the product) and the secondary
520 packaging if the latter are functional (e.g., combination of a drug product with a medical device) or
521 intended to provide additional protection to the drug product. The stability study design should consider
522 and include the secondary package when it is protective or directly impacts the chemical, physical, or
523 functional attributes, unless otherwise justified.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

524 The primary stability studies for the drug substance should be conducted in a container closure system
525 that is the same or representative of the packaging proposed for storage and distribution. The container
526 closure system should be the same type and constructed of the same material as production batches
527 (dimensions may be smaller). For the drug product, the commercial container closure is recommended
528 to ensure that the proposed container closure system can adequately protect the dosage form, is
529 compatible with the dosage form and will function in the manner for which it is designed through a
530 product's intended shelf life. When applicable, impact of packaging components from which matter
531 may migrate into the product (e.g., ink or adhesive from labels) should also be considered.

532 Changes in the quality of a product may occur due to the interactions between the drug substance or
533 drug product and the respective container closure system, and the effect of such interactions on product
534 stability should be evaluated. Any impact of container orientation on the critical quality attributes of the
535 drug product should be assessed based on prior knowledge gained through development and/or as part
536 of stability studies. For primary batches of liquids, solutions, semi-solids and suspensions, the product
537 should be placed into an inverted (or horizontal) position and an upright (or vertical) position unless a
538 worst-case orientation is justified with supporting data. However, when drug product-container closure
539 interactions cannot be excluded, stability studies should include samples maintained in both the inverted
540 (or horizontal) position, as well as in the upright (or vertical) position (e.g., when storage orientation
541 can have a significant effect on the delivered dose/repriming period of pressurised metered dose
542 inhalers).

543 6 TESTING FREQUENCY

544 The proposed protocol should align with the principles outlined in Section 13 - Data Evaluation and
545 include sufficient timepoints to verify any proposed extrapolation or stability model, where appropriate
546 for the product type.

547 For primary stability studies, the frequency of testing should be sufficient to establish the stability
548 profile of the drug substance or drug product. For a drug substance or drug product with a proposed re-
549 test period/shelf life of 12 months or less, the frequency of testing at the long-term storage condition is
550 recommended monthly for the first 3 months and at 3-month intervals thereafter. For cases when an
551 intended re-test period/shelf life is very short, sufficient time points should be considered. For a drug
552 substance or drug product with a proposed re-test period/shelf life greater than 12 months, the
553 recommended frequency of testing at the long-term storage condition should normally be every 3
554 months over the first year, every 6 months over the second year and annually thereafter through to the
555 end of the proposed re-test period/shelf life. Sterility testing or alternatives (e.g., container closure

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

556 integrity testing) should be performed at a minimum annually, including initially and at the end of the
557 proposed re-test period or shelf life.

558 For studies under accelerated conditions, a minimum of three time points, including the initial and final
559 time points, is recommended (e.g., 0, 3 and 6 months is recommended for a 6-month study). Where an
560 expectation (e.g., based on development experience) exists that results from accelerated studies are
561 likely to approach significant change criteria (refer to Section 13 – Data Evaluation) or likely to be out
562 of specification, increased testing is recommended. Increased testing could be conducted either by (a)
563 including an additional less severe temperature condition (i.e., intermediate) that may be better
564 predictive of the long-term stability and /or (b) including an additional time point in the accelerated
565 study design which may be earlier than the final time point. Note that this would not preclude following
566 the recommendations in Section 13 - Data Evaluation, when deciding whether extrapolation is
567 applicable. At the intermediate storage condition, a minimum of four time points, including the initial
568 and final time points (e.g., 0, 6, 9 and 12 months, from a 12-month study) is recommended.

569 As discussed in Annex 1 - Reduced Stability Protocol Design and Section 15.3 - Product Lifecycle
570 Stability Studies, a reduced testing frequency may be justified when potential stability-indicating CQAs
571 show no change over time. The minimum testing frequency recommended in this section may not be
572 applicable if alternative strategies are applied (refer to Section 13 – Data Evaluation and Annex 2 –
573 Stability Modelling).

574 7 STORAGE CONDITIONS

575 7.1 General Considerations

576 Stability of drug substances and drug products should be evaluated under storage conditions with
577 appropriate tolerances that test for thermal and moisture stability and, if applicable, sensitivity to
578 potential solvent loss. For sensitivity to light, refer to Section 8 – Photostability. The storage conditions
579 and the duration of studies chosen should cover the intended storage and use, including considerations
580 for shipment and any short-term storage condition (refer to Section 10 – Short-Term Storage
581 Conditions). Advice on storage conditions to support an in-use period is detailed in Section 11 - In-Use
582 Stability.

583 Testing at accelerated conditions or stress testing is essential to establish product stability information,
584 such as to establish the degradation pathways and the intrinsic stability of the molecule, to confirm the
585 stability-indicating nature of the analytical procedures (refer to Section 2 – Development Studies Under
586 Stress and Forced Conditions and Section 3.3 – Stability-Indicating Critical Quality Attributes) and
587 unintended excursions in storage conditions. Data generated under accelerated conditions may enable

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

588 stability modelling. Accelerated conditions data may support extrapolation of the intended re-test period
589 and shelf life (refer to Section 13 – Data Evaluation).

590 Since most biologicals are sensitive to physical conditions, data obtained under accelerated conditions
591 may confirm the stability-indicating nature of the analytical procedures or help elucidate the degradation
592 profile of a biological drug substance or drug product. Data from accelerated conditions could also
593 support that a manufacturing change did not impact the stability profile.

594 Where it can be justified that a proposed container closure system and conditions of storage afford
595 sufficient protection against high and low humidity conditions, stability studies at different relative
596 humidities can usually be omitted. Appropriate stability data under recommended storage conditions
597 should be provided if containers other than impermeable containers are used.

598 The storage conditions to be applied to the different stability studies are detailed in the sections below.
599 The equipment utilised should be capable of controlling the storage condition within the ranges defined
600 in this guideline. The actual temperature and humidity (when controlled) should be monitored during
601 stability storage. Short-term spikes due to opening of doors of the storage facility are accepted as
602 unavoidable. The effect of excursions due to equipment failure should be addressed and reported if
603 judged to affect stability results. Excursions that exceed the defined tolerances for more than 24 hours
604 should be described in the study report and their effect assessed.

605 Alternative storage conditions can be used if justified. Recommendations are applicable to both
606 synthetic chemical entities and biological products, unless otherwise specified.

607

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

608 7.2 Considerations for Products Intended to be Stored at Room Temperature

609 The recommended storage conditions that are applicable to each climatic zone are outlined in the table
610 below.

611 **Table 3: Storage Condition Recommendations for Each Climatic Zone¹**

Climatic Zone ¹	Long-term ²	Intermediate	Accelerated
I and II	25°C ± 2°C/60% RH ± 5% RH	30°C ± 2°C/65% RH ± 5% RH, or 30°C ± 2°C/75% RH ± 5% RH	40°C ± 2°C/75% RH ± 5% RH
	30°C ± 2°C/65% RH ± 5% RH, or 30°C ± 2°C/75% RH ± 5% RH	Not applicable	40°C ± 2°C/75% RH ± 5% RH
III	30°C ± 2°C/35% RH ± 5% RH, or 30°C ± 2°C/65% RH ± 5% RH, or 30°C ± 2°C/75% RH ± 5% RH	Not applicable	40°C ± 2°C/75% RH ± 5% RH
IVa	30°C ± 2°C/65% RH ± 5% RH, or 30°C ± 2°C/75% RH ± 5% RH	Not applicable	40°C ± 2°C/75% RH ± 5% RH
IVb	30°C ± 2°C/75% RH ± 5% RH	Not applicable	40°C ± 2°C/75% RH ± 5% RH

¹Specific regional requirements for more severe storage conditions may however apply

²Refer to Section 1.3 – Introduction to Guideline and General Principles

612 The applicant should determine and justify the long-term stability studies conditions to be performed.

613 In general, it is acceptable for stability information to be generated under a more severe climatic zone
614 storage condition already defined in Table 3 to support the labelling. Testing at a more severe long-term
615 condition (e.g., 30°C ± 2°C/75% RH ± 5% RH) could be justified as it encompasses all climate zones
616 that a drug substance or drug product may be exposed to. However, if it is demonstrated that the drug
617 substance or drug product will not remain within its acceptance criteria when stored at the more severe
618 condition (e.g., 30°C ± 2°C/75% RH ± 5% RH) for the duration of the proposed re-test period or shelf
619 life, the following are some approaches to consider:

- 620
 - alternative long-term storage condition for the intended climatic zone.
 - a minimal reduction in re-test period or shelf life.
 - evaluation of stability in an alternative container closure system.
 - evaluation of formulation and manufacturing process options.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

- 624
- 625 When long-term studies are conducted at $25^{\circ}\text{C} \pm 2^{\circ}\text{C}/60\% \text{RH} \pm 5\% \text{RH}$ and a significant change occurs
626 at any time during 6 months' testing under accelerated conditions, additional testing at the intermediate
627 storage condition should be conducted and evaluated against significant change criteria (refer to Section
628 13 – Data Evaluation).
- 629 If $30^{\circ}\text{C} \pm 2^{\circ}\text{C}/65\% \text{RH} \pm 5\% \text{RH}$ or $30^{\circ}\text{C} \pm 2^{\circ}\text{C}/75\% \text{RH} \pm 5\% \text{RH}$ is the long-term condition, there is
630 no intermediate condition defined.
- 631 For Climatic Zone III stability studies, an alternative approach to studying at the reference relative
632 humidity (e.g., $35\% \text{RH} \pm 5\% \text{RH}$) can be achieved by performing the stability studies under higher
633 relative humidity (e.g., $65\% \text{RH} \pm 5\%$ or $75\% \text{RH} \pm 5\%$) through mathematical calculation. This can
634 be achieved by experimentally determining the permeation coefficient for the container closure system
635 (e.g., refer to Example 1 in Section 7.2.2 – Storage Conditions for Products Packaged in Semi-
636 Permeable Containers).
- 637 **7.2.1 Storage Conditions for Products Packaged in Impermeable Containers**
- 638 Since drug substance and drug products packaged in impermeable containers (e.g., aluminium /
639 aluminium foil blister, sealed glass container) provide a permanent barrier to passage of moisture or
640 solvent, sensitivity to moisture or potential for solvent loss is not a concern. Thus, stability studies for
641 products stored in impermeable containers can be conducted under any humidity condition.
- 642 **7.2.2 Storage Conditions for Products Packaged in Semi-Permeable Containers**
- 643 Sensitivity to moisture or potential for solvent loss is a concern for drug substance and drug products
644 packaged in semi permeable containers. Semi-permeable containers can allow the passage of moisture,
645 solvent, or gases while preventing solute loss. The mechanism for solvent transport occurs by absorption
646 into one container surface, diffusion through the bulk of the container material and desorption from the
647 other surface. Transport across the container wall is driven by a partial pressure gradient.
- 648 Aqueous-based products packaged in semi-permeable containers should be evaluated for potential
649 water loss in addition to physical, chemical, biological and microbiological stability. This evaluation
650 should be carried out under conditions of low relative humidity, as discussed below. Ultimately, it
651 should be demonstrated that aqueous-based products stored in semi-permeable containers can withstand
652 low relative humidity environments.
- 653 For non-aqueous, solvent-based products, comparable approaches can be developed and applied.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

654 **Table 4: Storage Condition Recommendations for Semi-Permeable Containers**

Long-term	Intermediate	Accelerated
$25^{\circ}\text{C} \pm 2^{\circ}\text{C}/40\% \text{ RH} \pm 5\% \text{ RH}$	$30^{\circ}\text{C} \pm 2^{\circ}\text{C}/35\% \text{ RH} \pm 5\% \text{ RH}$	$40^{\circ}\text{C} \pm 2^{\circ}\text{C}/\text{not more than (NMT) } 25\% \text{ RH}$
$30^{\circ}\text{C} \pm 2^{\circ}\text{C}/35\% \text{ RH} \pm 5\% \text{ RH}$	Not applicable	

- 655
- 656 Testing at a more severe long-term condition, e.g., $30^{\circ}\text{C} \pm 2^{\circ}\text{C}/35\% \text{ RH} \pm 5\% \text{ RH}$ could be justified.
- 657 A 5% loss in water from its initial value is considered a significant change for a product packaged in a
- 658 semi-permeable container after an equivalent of 3 months' storage at $40^{\circ}\text{C} \pm 2^{\circ}\text{C}$ /NMT 25% RH.
- 659 However, for small containers (1 mL or less) or unit-dose products, a water loss of 5% or more after an
- 660 equivalent of 3 months' storage at $40^{\circ}\text{C} \pm 2^{\circ}\text{C}$ /NMT 25% RH may be acceptable, if justified.
- 661 A significant change in water loss alone under the accelerated condition does not necessitate testing at
- 662 the intermediate storage condition. However, data should be provided to demonstrate that no significant
- 663 water loss has been observed throughout the proposed re-test period / shelf life if stored at $25^{\circ}\text{C} \pm 2^{\circ}\text{C}$
- 664 / 40% RH $\pm 5\% \text{ RH}$.
- 665 When long-term studies are conducted at $25^{\circ}\text{C} \pm 2^{\circ}\text{C}/40\% \text{ RH} \pm 5\% \text{ RH}$, additional testing at the
- 666 intermediate storage condition should be performed to evaluate the temperature effect at 30°C if
- 667 significant change other than water loss occurs during the 6 months testing at the accelerated condition.
- 668 If $30^{\circ}\text{C} \pm 2^{\circ}\text{C}/35\% \text{ RH} \pm 5\% \text{ RH}$ is the long-term condition, there is no intermediate condition.
- 669 An alternative approach to performing studies at the reference relative humidity as recommended in
- 670 Table 5 is performing the stability studies under higher relative humidity and deriving the water loss at
- 671 the reference relative humidity through calculation. This can be achieved by experimentally determining
- 672 the permeation coefficient for the container closure system (e.g., as shown in the illustrative example
- 673 below, using the calculated ratio of water loss rates for the container closure system between the two
- 674 relative humidity conditions at the same temperature). The permeation coefficient for a container
- 675 closure system can be experimentally determined by using the worst-case scenario (e.g., the most
- 676 diluted of a series of concentrations) for the proposed drug product.
- 677 *Example 1. An approach for determining water loss:*
- 678 For a product in a given container closure system, container size and fill, an appropriate approach for
- 679 deriving the water loss rate at the reference relative humidity is to multiply the water loss rate measured
- 680 at an alternative relative humidity at the same temperature by a water loss rate ratio determined

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

681 experimentally shown in Table 5 below. A linear water loss rate at the alternative relative humidity over
682 the storage period should be demonstrated.

683 For the below illustrative example, at a given temperature (e.g., 40°C) the water loss rate determined
684 experimentally for the proposed container closure system during storage at NMT 25% RH is the water
685 loss rate measured at 75% RH multiplied by 3.0, the corresponding water loss rate ratio.

686 **Table 5: Example of Ratio of Water Loss Calculations**

Alternative relative humidity	Reference relative humidity	Ratio of water loss rates at a given temperature ¹
60% RH	25% RH	1.9
60% RH	40% RH	1.5
65% RH	35% RH	1.9
75% RH	25% RH	3.0

¹Ratio of water loss = (100 - Reference % RH)/(100 - Alternative % RH)

687
688 The ratios described in Table 5 above are for illustrative purposes. Actual ratios for water loss rates
689 determined experimentally for the proposed container closure system under various relative humidity
690 conditions should be provided.

691 **7.3 Considerations for Refrigerated Temperature Storage**

692 Recommendations for drug substance and drug products intended for long-term storage under
693 refrigerated conditions are provided below. Accelerated conditions are intended to demonstrate the
694 effect of temperature, and active humidity control may not be needed when justified.

695 **Table 6: Storage Under Refrigerated Conditions**

Long-term	Accelerated
5°C ± 3°C	25°C ± 2°C or any alternative temperature condition when justified.

696
697 For an aqueous-based product packaged in a semi-permeable container, appropriate information should
698 be provided to assess the extent of water loss.

699 For products stored under refrigerated conditions, when a significant change or out of specification
700 occurs within the first 3 months of testing under accelerated conditions, a discussion should be provided
701 to address the effect of shipment and handling (refer to Section 14 – Labelling).

702 For synthetics, it is considered unnecessary to continue to test a product under accelerated conditions
703 through 6 months when a significant change has occurred within the first 3 months.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

704 7.4 Considerations for Frozen Temperature Storage

705 Recommendations for drug substance and drug products intended for long-term storage under frozen
706 conditions (as determined for the product) are provided below.

707 Table 7: Storage in a Freezer or below -20°C

Long-term
-20°C or below

708
709 Testing at accelerated or stress conditions (e.g., 5°C ± 3°C or 25°C ± 2°C or 30°C ± 2°C or any
710 appropriate condition based on the intrinsic properties of the drug substance or drug product) for an
711 appropriate time period should be conducted to address the effect of short-term excursions outside the
712 proposed label storage condition (refer to Section 14.1- Excursions Outside of a Labelling Claim).

713 8 PHOTOSTABILITY

714 8.1 Purpose of Photostability Testing

715 This section addresses the principles governing the generation of photostability information in initial
716 regulatory submission and for lifecycle management changes.

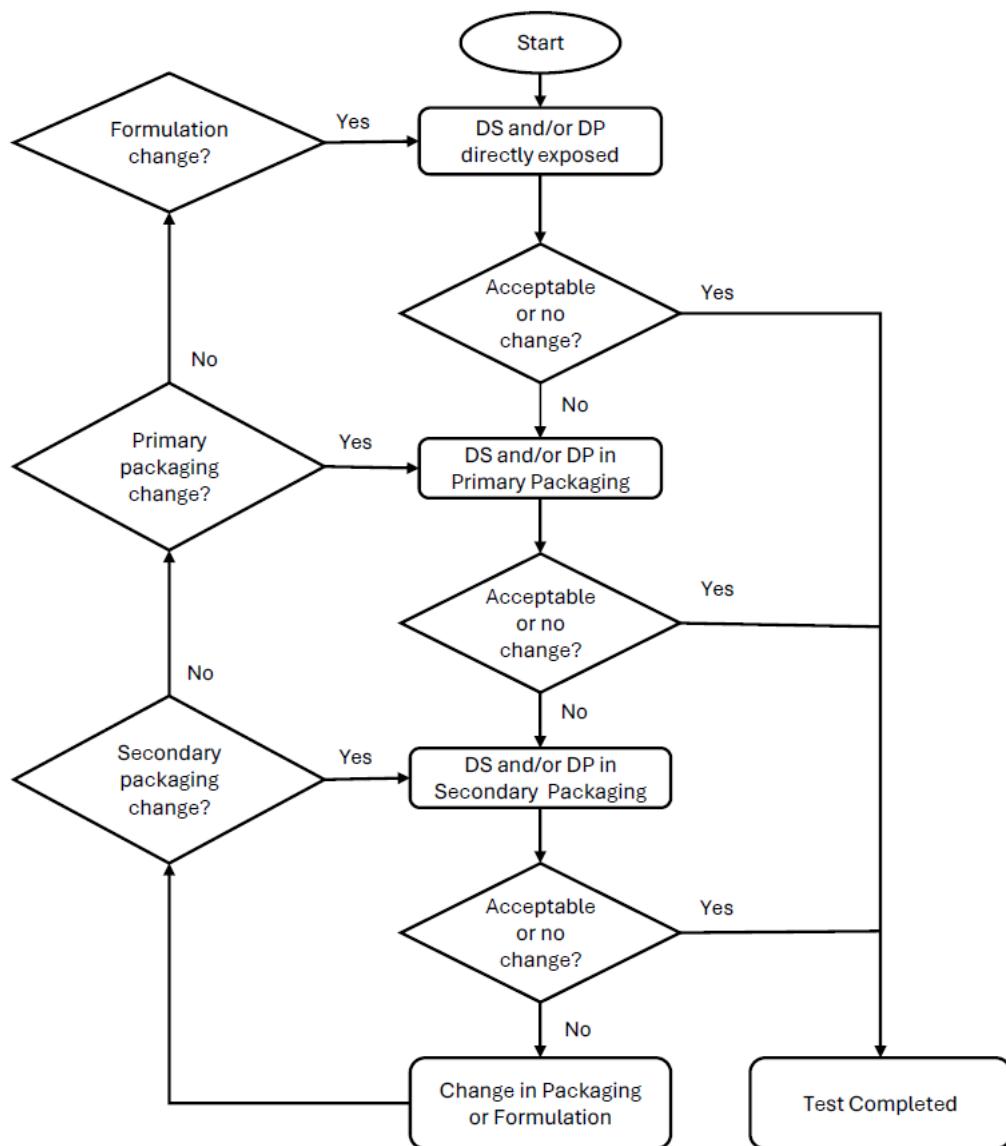
717 The intrinsic photostability characteristics of a product should be evaluated to demonstrate that light
718 exposure does not result in unacceptable change that could compromise product efficacy or patient
719 safety. Normally, photostability testing is carried out on a single representative batch suitable for the
720 purpose of the study. Repeating a photostability study may be required in response to relevant changes
721 (e.g., in the formulation, container closure system and in-use conditions) when the photostability
722 characteristics and controls established at the time of the initial regulatory submission are assessed to
723 be impacted (refer to Section 15.3 – Product Lifecycle Stability Studies).

724 Two specific studies are performed to generate and evaluate photostability data:

- 725 • Forced photodegradation study – A study that may be an integral part of forced degradation
726 evaluation and may be undertaken in the development phase. This information may be used to
727 evaluate the overall photosensitivity of the drug substance and drug product for method
728 development purposes, degradation pathway elucidation and to inform control strategies (refer
729 to Section 2-Development Stability Studies Under Stress and Forced Conditions).
- 730 • Confirmatory photostability studies – Studies performed when a risk of photodegradation has
731 been identified. The purpose of the studies is to establish the photostability characteristics to

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

732 understand the ability of the primary or secondary packaging material to protect light-sensitive
733 products and the impact of light on product quality through manufacture, storage, transportation
734 and in-use. These data may also support labelling (e.g., storage statements).


735 A systematic approach to photostability testing is recommended, covering as appropriate:

- 736 i) Tests on the drug substance and/or drug product directly exposed; and if necessary.
- 737 ii) Tests on the drug substance and/or drug product in the primary packaging; and if necessary.
- 738 iii) Tests on the drug substance and/or drug product in the secondary packaging.

739 Normally, the studies are carried out in a sequential manner starting with testing the sample directly
740 exposed then progressing as necessary to the drug substance and/or drug product in the primary
741 packaging and then in the secondary packaging, if applicable. If the product is known to be
742 photosensitive, e.g., most biologicals, parallel testing can be carried out as a science- and risk -based
743 approach. The extent of testing should be established by assessing whether acceptable change or no
744 change has occurred at the end of the light exposure testing. Acceptable change is a change within limits
745 previously justified by the applicant. If a non-acceptable change is observed, a change in the packaging
746 or the formulation should be proposed. Testing should progress until the results demonstrate that the
747 drug substance and/or drug product is adequately protected from exposure to light (refer to Figure 3 -
748 Decision Flow Chart for Systematic Photostability Testing).

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

749 **Figure 3: Decision Flow Chart for Systematic Photostability Testing**

750

751 **8.2 Forced Photodegradation**

752 As forced photodegradation is an integral part of forced degradation strategy, details on the concepts,
753 study design considerations and interpretation of results can be found in Section 2- Developmental
754 Studies Under Stress and Forced Conditions. For details on radiation sources and light exposure
755 conditions for forced photo degradation studies refer to Section 8.4 – Radiation Source and Light
756 Exposure.

757 If the forced photodegradation study is combined with the confirmatory photostability study, the
758 specific sample considerations provided in Section 8.3 - Confirmatory Photostability should be
759 considered, e.g., for solid substances.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

760 8.3 Confirmatory Photostability

761 The confirmatory studies are used to determine whether special precautionary measures are needed in
762 manufacturing, formulation of the product, long-term storage or in-use period (refer to Section 11 - In-
763 Use Stability) and if a light-resistant container closure system and/or special labelling information are
764 needed. Guidance is provided on determining whether a confirmatory study should be performed, study
765 design and interpretation of results (refer to Figure 3- Decision Flow Chart for Systematic Photostability
766 Testing).

767 For synthetic chemical entities, confirmatory photostability testing is generally performed on one batch
768 of the drug substance and the drug product, while for biologicals, testing is generally performed on one
769 batch of the drug product. Confirmatory testing is typically conducted in the primary container closure
770 system and including, if necessary, secondary packaging. Alternative science- and risk-based
771 approaches may be considered when appropriately justified and may include scenarios where
772 confirmatory photostability testing is not required. For example, if no photodegradation is observed in
773 the fully exposed drug substance sample or the fully exposed drug product sample, no further testing as
774 part of the confirmatory study is needed. For some products where it has been demonstrated that the
775 primary packaging is completely impenetrable to light (e.g., aluminium tubes cans or foil/foil blisters)
776 testing should normally only be conducted on directly exposed drug product.

777 If the results from the confirmatory study batch are not conclusive in terms of photostability or
778 photolability, testing of additional batches or a new study design should be considered.

779 As a direct challenge for samples of solid products, an appropriate amount of sample should be taken
780 and placed in a glass or plastic dish spread in a single layer and protected with a suitable transparent
781 cover, if considered necessary. Tablets and capsules should be spread in a single layer. Solids, except
782 tablets or capsules, should be spread across the dish to give a thickness of typically not more than 3
783 millimetres. When direct exposure is not feasible (e.g., liquids, or products sensitive to non-light
784 induced oxidation), the sample should be placed in a suitable protective inert transparent container (e.g.,
785 quartz). In general, the samples should be positioned to provide maximum area of exposure to the light
786 source.

787 If testing of the drug product in the primary or secondary packaging is needed, the samples should be
788 placed horizontally or transversely with respect to the light source, providing the most uniform exposure
789 of the samples. Some adjustment of testing conditions may have to be made when testing large-volume
790 containers (e.g., dispensing packs). In general, samples with the greatest light exposure surface in the
791 container should be tested.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

At the end of the exposure period, representative samples (taking homogeneity of light exposure into consideration) should be examined by analytical procedures (suitable for intended purpose) for any changes in physical, chemical or biological properties, including assay or potency and degradants that are determined from the characterisation studies that are likely to arise from photochemical degradation. When powder samples are involved, sampling should ensure that a representative portion is used in individual tests. For solid oral dosage form products (e.g., tablets, capsules), testing should be conducted on a suitable number of units (statistical sampling approaches may be used). Similar sampling considerations, such as homogeneity or solubilisation of the entire sample, apply to other materials that may not be homogeneous after exposure (e.g., creams, ointments, suspensions).

The analysis of the exposed sample should be performed concomitantly with that of any protected samples used as dark controls if these are used in the test. When evaluating the results of photostability studies to determine whether change due to exposure to light is acceptable, it is important to consider the results obtained from other formal stability studies to assure that the product will be within proposed specifications during the re-test period or shelf life. Depending on the extent of change or failure to meet acceptance criteria, special precautions may be needed to mitigate exposure to light, like formulation change, redesign of container closure system (including secondary packaging), a reduced re-test period or shelf life of drug substance or drug product (in conjunction with long term stability data) or change in labelling for storage and use (refer to Figure 3 - Decision Flow Chart for Systematic Photostability Testing).

8.4 Radiation Source and Light Exposure

This section describes the radiation source and light exposure that can be used to support forced photodegradation studies and confirmatory photostability studies. For forced degradation studies a variety of exposure conditions may be used, depending on the photosensitivity of the product and the intensity of the light sources used. Confirmatory photostability studies should be based on light exposure possible during manufacture, storage, distribution and in-use.

In photostability studies, it is important to consider the spectral characteristics of the light, cumulative light exposure and temperature, as the combination of these factors will influence the rate of photodegradation and the design of the study.

The light sources described below are considered appropriate for photostability testing. Alternative light sources may be applicable when justified. The applicant should either maintain appropriate temperature control to minimise the effect of localised temperature changes or include a dark control in the same environment unless otherwise justified. The applicant may rely on the spectral distribution specification of the light source manufacturer for the following options:

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

825 **Option 1:**

826 For light exposure similar to the D65 (outdoor daylight) emission standard (as currently defined in,
827 ISO/CIE 18909:2022) (17), an artificial daylight fluorescent lamp combining visible and ultraviolet
828 (UV) outputs, xenon or metal halide lamp, including appropriate filter(s) is recommended as radiation
829 light source.

830 **Option 2:**

831 A combined exposure to both cool white fluorescent and near ultraviolet lamp, which is capable of
832 producing a light exposure similar to the ID65 (indoor daylight) emission standard, for which the
833 ultraviolet lamp has at least 25% of the ultraviolet-A between 320 and 360 nm and at least 25% is
834 between 360 and 400 nm.

835 **Option 3:**

836 Ambient/mild light conditions (predominantly light >400 nm during manufacturing, processing and in-
837 use), for which a fluorescent or LED lamp is recommended.

838 Light exposure for forced photodegradation studies may require higher light intensity, such as doubling
839 the levels used in confirmatory studies. However, depending on the photosensitivity of the product,
840 milder conditions may be more suitable to avoid extensive decomposition. For example, samples might
841 be exposed to ambient/mild light conditions, typically ranging from $43-260 \times 10^3$ lux hours for >400 nm
842 and $0.3-3 \text{ Wh/m}^2$ for 350 – 400 nm, over an exposure period of 1 to 7 days.

843 In confirmatory studies, to assess the effects of light under controlled conditions during manufacturing,
844 storage and in use, samples maybe exposed to light providing an overall illumination of not less than
845 1.2 million lux hours and an integrated near ultraviolet energy of not less than 200 Wh/m^2 . When
846 justified, alternate approaches may also be appropriate depending on the photosensitivity of the product,
847 the light source selected, manufacturing conditions and packaging. The overall light exposure during
848 manufacture can be determined by measuring the light exposure and defining the average light exposure
849 and UV energy (e.g., in Luxh and/or Wh/m^2). The average light exposure reading, with the worst-case
850 light exposure time, could be used to define light exposure time and distance to light source
851 considerations in the confirmatory study.

852 **9 STABILITY CONSIDERATIONS FOR PROCESSING AND HOLDING TIMES**
853 **FOR INTERMEDIATES**

854 **9.1 General Considerations**

855 Good manufacturing practices (GMP) and good distribution practices (GDP) require that controls are
856 in place to ensure that intermediates (i.e., drug substance intermediates and drug product intermediates
857 (including bulk drug products)) are manufactured and stored under appropriate conditions. Storage
858 and/or transportation arrangements should not have deleterious effects on the subsequent processing,
859 stability, safety, or quality of intermediates, in accordance with good distribution practices.

860 The processing time can be considered as the established time period needed to perform a manufacturing
861 step or series of steps and should take into consideration compatibility with manufacturing equipment.
862 Whereas the holding time can be considered as the established time period for which materials (e.g.,
863 dispensed raw materials, drug substance intermediates and drug product intermediates) are awaiting
864 further processing or packaging in the final container closure system and may be held and/or transported
865 under specified conditions. For such intermediates, maximum holding times should be established to
866 ensure their quality and that they can be held, pending the next processing step, without having results
867 outside the established control strategy. Intermediates should not be used beyond the established
868 holding times. A written protocol, procedure or program for the holding time studies should be
869 followed taking into consideration the principles described in Section 3.1 – General Principles.

870 The data used to establish the holding time should cover the proposed holding times for the
871 intermediates and the stability studies should be performed at relevant temperature and humidity
872 conditions to support the expected storage conditions for the drug substance or drug product
873 intermediate. If the temperature and humidity conditions used during these studies do not correspond
874 with the storage conditions described in Section 7 - Storage Conditions of this guideline, other
875 conditions should be justified. If the product is sensitive to light exposure that may occur during storage,
876 data should confirm that controls are sufficient to limit exposure to acceptable levels as described in
877 Section 8 - Photostability. If more than one production site is involved, the stability studies should also
878 consider transportation of the intermediates. For consideration of reduced design, the principles of
879 Annex 1 - Reduced Stability Protocol Design may apply. Cumulative hold times are generally assessed
880 as part of process validation. If a stability risk is identified, a cumulative holding time study may be
881 necessary.

882 For drug substance and drug product intermediates that are packaged and stored outside of the
883 manufacturing process activities or that are purchased as such, it may be appropriate to establish a re-
884 test period or shelf life, as applicable, rather than a holding time. In these situations, the

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

885 recommendations described in the respective sections within this guideline should be followed for the
886 stability studies conducted to support the re-test period or shelf life with the corresponding storage
887 statements.

888 Stability recommendations for intermediates, including considerations that are specific for synthetic
889 chemical entities and biologicals, are described below.

890 **9.2 Considerations for Synthetic Chemical Entities**

891 The holding times of the drug substance intermediates should consider GMP principles and comply
892 with written procedures. However, in situations where an in-process step for the drug substance has a
893 holding time where the quality of the drug substance may be affected by the hold, then the principles in
894 this section apply.

895 When established, the processing times and maximum holding times for drug product intermediates
896 should be included in the description of the manufacturing processes. The risk assessment and control
897 strategy for the drug product manufacturing processes should include an assessment of whether holding
898 time studies should be performed. When applicable, the information to support the processing and
899 holding times should be included in the regulatory submission.

900 When the holding times of a drug product intermediate are prolonged (e.g., more than 30 days for solid
901 dosage forms for the entire manufacturing process or more than 24 hours for non-solid dosage forms or
902 sterile products), evidence of the suitability of the holding times, together with the proposed container
903 that is representative of that for marketing, the storage period or transportation arrangements, should be
904 included in the regulatory submission, when requested. Where intermediates are transported between
905 production sites, the transportation arrangements and method of transportation should be described in
906 general terms (e.g., intermediate container, storage and transportation conditions) in the description of
907 the manufacturing processes.

908 For a drug substance or drug product produced by batch processes (i.e., not by continuous
909 manufacturing processes), it is expected that the data to support the holding times is generated and is
910 representative of the overall process. If the data to support the holding times were not generated on
911 production scale batches, these data should be verified in post-approval stability commitment to conduct
912 these studies on production scale batches. If continuous manufacturing processes are used, the principles
913 outlined in ICH Q13 guideline should be followed when selecting batches to support holding times.

914 **9.3 Considerations for Biologicals**

915 During the manufacture of biologicals, the quality and control of certain process intermediates may be
916 critical to the production of the drug substance or drug product. In general, the manufacturer should

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

917 identify process intermediates and generate data and define process limits and holding times that assure
918 their stability within the conditions of the developed manufacturing process. Samples are periodically
919 tested for product quality attributes that may be affected by the holding time.

920 A holding time study for a biological will typically consider two elements: (a) physicochemical stability
921 and (b) microbial control strategy. The physicochemical stability part may be performed on small scale
922 batches that are representative of production scale as part of process characterisation and should be
923 assessed by monitoring relevant CQAs, such as purity and impurity. Microbial control should be
924 demonstrated for the manufacturing process of production scale batches. The use of surrogate material
925 as well as other approaches should be justified.

926 When physicochemical and microbial hold times are determined from separate studies, the established
927 hold time would be the shorter of the two times.

928 When analytical procedures cannot be applied to an intermediate to determine its holding time, the
929 adequacy of the holding time could be supported by evaluating the quality of the later stage
930 intermediates, drug substance, or drug product.

931 **9.4 Examples of Holding Time Risk Assessment Considerations**

932 The following are examples of the stages that may be considered during the risk assessment of two
933 different types of drug product manufacturing process. Depending on the dosage form, other stages and
934 considerations could be relevant.

935 **9.4.1 Non-Sterile, Solid Oral Dosage Form**

936 The following are examples of the stages that may be considered during the risk assessment of the drug
937 product manufacturing processes for a for a non-sterile, solid oral dosage form to identify potential
938 processing and holding times for intermediates. Depending on the dosage form, other stages and
939 considerations could be relevant.

940 **Table 8: Production steps and associated intermediates for non-sterile, solid oral dosage form**

Production Step	Intermediate
Binder preparation to granulation	Granulate
Wet granulation to drying	Dried granulate
Dried granules to lubrication/blending	Lubricated blend
Mixing to a dry blend	Blend
Granulation to compressed tablets	Tablet Cores
Coating solution/suspension to preparation	Coating solution/suspension

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

Coating to packaging in bulk containers	Bulk coated tablets
---	---------------------

941

942 **9.4.2 Sterile, Injectable Solution**

943 The following are examples of the stages that may be considered during the risk assessment of the
944 manufacturing processes for a sterile, injectable solution to identify potential processing and holding
945 times for intermediates:

- 946 • Processing times at 15-25°C during drug substance process to bulk drug substance
947 • Frozen in-process materials
948 • Processing time at room temperature (e.g., 15-25°C) from start of drug product manufacturing
949 (e.g., drug substance thaw) until end of fill

950 **10 SHORT-TERM STORAGE CONDITIONS**

951 The drug product labelling (refer to Section 14 – Labelling) may specify a short-term storage condition
952 for a drug product. Short term storage is a condition where the primary container closure is not breached
953 and that is different from the long-term storage condition and the in-use period. The short-term storage
954 condition does not need to be implemented by the patient/health care professional, as use of short-term
955 storage is optional. The short-term storage condition is intended for convenience of the patient or health
956 care professional in accordance with regional requirements based on anticipated storage of the drug
957 product. For example, a short-term storage condition would enable a patient to store a refrigerated drug
958 product at a room temperature condition for a specified duration of time. In these cases, the short-term
959 storage condition and duration should be stated on the labelling along with the long-term storage
960 condition and shelf life. The short-term storage condition is not intended to be applied beyond the shelf
961 life of the drug product. The short-term storage condition is different from any necessary manipulation
962 (e.g., equilibration to ambient temperature) that would be required to prepare a drug for administration
963 (e.g., as per relevant instructions in Instructions for Use). If the drug product can be returned to long-
964 term storage conditions after an acceptable period of short-term storage, data to support the short-term
965 storage conditions should be provided as part of the primary stability studies. A short-term storage
966 condition is not required for all products. Once a short-term storage condition is established it does not
967 need to be reevaluated periodically unless there is a change likely to impact stability.

968 The design of specific short-term storage condition stability studies should follow the general principles
969 applied to long-term stability studies (refer to Section 3 – Stability Protocol Design) and should consider
970 all relevant climatic zones. Generally, a minimum of 2 batches should be included in the study. The
971 number of batches and the considerations for aged sample should be based on the general principles

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

described for in-use stability studies (refer to Section 11.2.1 – Selection of Batches). Additionally, the applicant may justify alternative strategies, such as modelling (refer to Annex 2 – Stability Modelling), to support the short-term storage condition.

The applicant should demonstrate that drug product with a proposed short-term storage condition will remain within the shelf life specifications.

11 IN-USE STABILITY

11.1 Purpose of In-Use Stability Testing

This section describes the principles for in-use stability testing for the purpose of establishing or confirming an in-use period and storage conditions, during which the quality of the drug product is maintained within the pre-defined acceptance criteria. In-use conditions are defined as the conditions that mimic the intended use of the drug product after the primary container is first breached and, where applicable, through preparation, storage and administration as per the relevant instructions. The principles outlined in this section are generally applied to single-dose drug products that are handled or prepared and stored prior to administration, including dilution, reconstitution or co-mixing, as well as single containers or combinations of a drug product with a medical device containing drug product intended for multiple administrations or doses. Products packaged in single-use containers for immediate use and not requiring preparation generally do not require an in-use period and would not be subject to in-use stability testing. Assembly of a combination of a drug product with a medical device for immediate use does not constitute preparation in the context of in-use stability testing.

For a drug product that may remain in contact with a delivery device during administration over time under conditions that differ from the proposed storage (e.g., implantable infusion pump containing the drug product), an in-use study should demonstrate that the drug product remains stable and does not negatively impact the device delivering the drug during the in-use duration.

The conditions of use for those products requiring preparation and for multi-dose products may pose a risk to quality of the drug product regarding physicochemical properties and/or microbiological contamination. The regulatory submission for these products should include in-use stability data, upon which the in-use period and instructions are based. This section defines a core framework for establishing or confirming an in-use period and storage conditions, including selection of batches, study design, analytical procedures and acceptance criteria, that are applicable across multiple product types. It is expected that the material in contact with the product and used in the preparation and administration should be demonstrated to be compatible for use with the drug product.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1003 Under some circumstances these studies may need to be repeated if certain post-approval variations and
1004 changes are made to the product (e.g., formulation, container closure system). To determine whether
1005 these studies should be repeated, an assessment of change should be performed according to Section
1006 15.2 - Risk Assessments and Confirmatory Studies to Support Post-Approval Changes.

1007 **11.2 In-Use Stability Study Protocol Design**

1008 The design of in-use stability study protocols should follow the general principles outlined in Section 3
1009 - Stability Protocol Design. The protocol should simulate the intended use of the product, as detailed in
1010 the relevant instructions (e.g., for a multi-dose product stored in a vial, the in-use studies should
1011 demonstrate that the container closure system can withstand the conditions of repeated insertion and
1012 withdrawal). When designing in-use studies, conditions under which a drug product could be used,
1013 including the maximum time the drug product will be exposed to different environmental factors during
1014 use, should be considered. For samples requiring preparation, including reconstitution, dilution, or co-
1015 mixing, the in-use studies should demonstrate the stability of the product through preparation and
1016 handling under the specified storage conditions for the maximum storage period. The study duration,
1017 conditions and selection of the analytical procedures and acceptance criteria should be justified as
1018 suitable for demonstrating that product quality is maintained throughout the in-use period. Storage
1019 conditions and withdrawal frequency should, at minimum, reflect the instructions-for-use or may
1020 consider a worst-case scenario.

1021 Alternative (e.g., worst-case) approaches to protocol design may be considered when appropriately
1022 justified. For example, for solid oral doses, the applicant may justify the use of open dish studies instead
1023 of an in-use study.

1024 **11.2.1 Selection of Batches**

1025 Generally, in-use stability data should be provided on two batches of representative drug product. Based
1026 on a risk assessment considering product knowledge and available primary stability data, alternative
1027 approaches to batch selection may be considered when appropriately justified. At least one of the
1028 batches should be chosen towards the end of its shelf life. If such results are not available, one batch
1029 should be tested at the final point of the submitted stability studies. If aged batch data are not available
1030 at time of filing, a commitment to provide the data or a justification why those data may not be required
1031 based on a risk assessment should be provided in the regulatory submission.

1032 All in-use stability batches should be provided in the container closure system proposed for commercial
1033 use (e.g., multi-dose vial, assembled multi-dose combination of a drug product with a medical device),
1034 or the administration set up. For drug products presented with different fill volumes, strengths, or

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1035 presentations, a representative, worst-case or, bracketing or matrixing approach may be applied with
1036 justification (refer to Annex 1 – Reduced Stability Protocol Design).

1037 ***11.2.2 Selection of Analytical Procedures and Acceptance Criteria***

1038 The analytical procedures with acceptance criteria included in the study should be justified using a risk-
1039 based approach that considers the CQAs most likely to change during the proposed in-use period (refer
1040 to Section 3.3 - Stability-Indicating Critical Quality Attributes). The analytical procedures should be
1041 suitable for the intended purpose and selected to demonstrate the physical, chemical and microbial
1042 stability of the product through the proposed in-use period.

1043 For synthetic chemical entities, the physical and chemical quality attributes selected should be
1044 appropriate to the individual dosage form and formulation. For example, attributes such as colour,
1045 odour, clarity, closure integrity, particulate matter, particle size, moisture content, drug substance
1046 assay(s), degradation product level(s), dissolution, antimicrobial preservative and antioxidant
1047 content(s), pH and viscosity, and microbial testing should be considered for testing, as applicable with
1048 additional considerations for risk associated with dosage form.

1049 For biologicals, the physical and chemical quality attributes selected should be appropriate to the
1050 individual dosage forms (18). For example, physical and chemical quality attributes of protein content,
1051 appearance, clarity, colour, visible particles and high molecular weight species should be tested, unless
1052 otherwise justified, while product-related variants or impurities and sub-visible particles should be
1053 tested where applicable. Potency testing, or an analytical procedure covering the mode of action, should
1054 be included where applicable and potential analytical limitations should be understood. Microbial
1055 stability should be assessed through the proposed in-use period for biologicals. Common recommended
1056 testing includes a Preservative Efficacy Test (PET) / or Antimicrobial Effectiveness Test (AET), or a
1057 microbial enumeration method (e.g., bioburden). In lower risk situations, it may be possible to justify
1058 the absence of microbial testing where appropriately justified and based on an assessment of risk.

1059 ***11.3 Labelling of the in-use period and storage conditions***

1060 In-use stability data should be used to determine whether a declaration of an in-use period and storage
1061 condition are necessary. The in-use period and storage conditions should be stated on the labelling in
1062 accordance with regional regulations.

1063 There may be scenarios where an established in-use period may not be needed in the labelling. For
1064 example, prepared orally administered products, stored in multi-dose containers with a defined supply
1065 that is intended for continuous use (not intermittent dosing), may not need to include an in-use period
1066 on the labelling if the demonstrated in-use stability data support storage for the intended use of the
1067 product.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1068 **12 REFERENCE MATERIALS, NOVEL EXCIPIENTS AND ADJUVANTS**

1069 This section covers stability considerations for reference materials, novel excipients (e.g., those used
1070 for the first time in a drug product or through a new route of administration) and adjuvants. Novel
1071 excipients and adjuvants are discussed due to their significant potential impact on the quality of the drug
1072 product.

1073 Additives (e.g., stabilisers and preservatives) may degrade during the re-test period or shelf life of the
1074 drug substance or the shelf life of the drug product. These materials (additives) should be monitored
1075 during the stability program if there is an indication that their reaction, degradation, or depletion will
1076 adversely affect the quality of the drug product. Refer to Section 3.3 Stability-Indicating Critical Quality
1077 Attributes for general stability study design considerations.

1078 **12.1 Reference Materials**

1079 Reference materials (as defined in ICH Q2/Q14), that are used to control the quality attributes of a
1080 stored intermediate, drug substance, or drug product should be sufficiently homogenous and stable to
1081 ensure scientifically valid results are achieved. If the formulation, material composition, storage
1082 condition and/or container closure system for the reference material is different from the drug substance
1083 or drug product, a specific reference material stability program may be needed, with an established use
1084 period that reflects the differences. Externally sourced, well-characterised reference materials should
1085 follow manufacturer recommendations for stability and storage and should be managed within the
1086 quality management system (e.g., pharmacopeial materials). Stability data should be available to
1087 support the use period of the in-house reference material. These data are generally provided with the
1088 regulatory submission for biologicals and managed within the pharmaceutical quality system (PQS) for
1089 synthetics.

1090 ***12.1.1 Considerations for Synthetic Chemical Reference Materials***

1091 The use period of a synthetic chemical drug substance, intermediate and drug product reference material
1092 may be extended through acceptable stability data and requalification according to established control
1093 strategy under a PQS. A synthetic reference material may be stored under more conservative storage
1094 conditions than the drug substance and drug product.

1095 ***12.1.2 Considerations for Biological Reference Materials***

1096 The use period of a biological reference material, when kept under conditions used to store the
1097 corresponding drug substance, intermediate or drug product, should generally be supported by available
1098 long-term stability data. When a well-characterised drug substance or drug product is used as an in-
1099 house reference material and the storage conditions are the same as that used to store the drug substance

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1100 or drug product, the drug substance or drug product stability data may support the reference material
1101 use period, without a need for additional reference material specific stability testing.

1102 Alternative storage conditions may extend the use period of in-house biological reference materials
1103 beyond the re-test period or shelf life of the drug substance, intermediate, or drug product (e.g.,
1104 stabilising storage at a sufficiently lower temperature than the drug substance or drug product storage
1105 condition). The alternative storage condition should be justified with its own long-term stability data or
1106 a concurrent stability testing strategy that allows for a trend analysis of the data. The reference material
1107 use period may be extended through acceptable stability data according to a protocol (e.g.,
1108 qualification).

1109 In situations where a drug substance or product's stability-indicating critical quality attribute (e.g.,
1110 potency) is being controlled relative to a reference material, a risk-based approach, including more
1111 stringent stability acceptance criteria and trend analyses, should be considered for the reference
1112 material's stability to prevent drift in the stability profile of the drug substance or product.

1113 **12.2 Novel Excipients**

1114 Novel excipients should be evaluated for their impact on the stability of the drug product and relevant
1115 information should be included in the regulatory submission following the recommendations described
1116 in the applicable sections within this guideline (refer to Section 3 - Stability Protocol Design, Section 6
1117 -Testing Frequency and Section 7 - Storage Conditions). If the excipient itself is a protein (e.g., albumin)
1118 and used with a biological drug substance, additional risk assessments should be provided to clarify the
1119 known degradation profile of the excipient and its impact on the biological drug substance or drug
1120 product. For protein-based excipients, the drug product stability studies should address their potential
1121 protein-excipient interaction, quantity of intact excipient in the drug product and impact on drug product
1122 immunogenicity as well as their potential for masking process related impurities.

1123 **12.3 Vaccine Adjuvants**

1124 Adjuvant stability data should be provided in the regulatory submissions for vaccines. Stability of the
1125 adjuvant should be assessed by formal stability studies. If alternative strategies for determining stability
1126 of the adjuvant are potentially applicable, the applicant should consider early engagement with the
1127 regulatory authority.

1128 The stability studies will depend on the formulation/presentation, where vaccine drug product
1129 formulated with the adjuvant will have different consideration to formulations where the adjuvant is
1130 provided in a separate vial to the vaccine drug product. For adjuvants that are mixed with the drug
1131 substance at the production site to derive the adjuvanted vaccine drug product, data that support shelf
1132 life of the adjuvanted vaccine in the primary container is required. In case of adjuvanted vaccines that

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1133 depend on antigen adsorption to the adjuvant (e.g., alum/antigen mixture) stability monitoring should
1134 consider the degree of antigen adsorption/binding and extent of dissociation of antigen from the
1135 adjuvant upon storage, where relevant.

1136 When the adjuvant and vaccine antigen (vaccine components) are supplied in separate containers, the
1137 stability of each component should be assessed following appropriate pre-defined protocols that reflect
1138 storage duration and storage conditions of each vaccine component.

1139 The in-use stability of the adjuvant-antigen mixture should be assessed in the situation when the mixture
1140 is not administered immediately after preparation and should be performed at the intended in-use
1141 conditions and period (refer to Section 11 – In-Use Stability). It is important to set appropriate
1142 acceptance criteria to assess integrity of the adjuvant in the adjuvant/vaccine antigen mixture. The data
1143 generated in the in-use stability studies will support the instructions for use of the admixed vaccine.

1144 **13 DATA EVALUATION**

1145 **13.1 General Considerations**

1146 Stability data are obtained for multiple purposes throughout the product lifecycle. A systematic
1147 approach should be adopted in the presentation and evaluation of the stability information. This section
1148 focuses on the evaluation of stability data to establish a re-test period or shelf life for drug substance
1149 and the shelf life for drug product based on long-term data at the recommended storage condition. Refer
1150 to Section 3 - Stability Protocol Design, Table 1 for the minimum stability data at the time of
1151 submission. Alternatively, when there is limited long-term stability data at the recommended storage
1152 condition, the re-test period or shelf life can be proposed based on:

- 1153 • Use of enhanced stability modelling methodologies to predict or extrapolate the stability profile
1154 past the point of the available real-time data (refer to Annex 2 – Section A2-2- Enhanced
1155 Stability Modelling).
- 1156 • Limited extrapolation of the real-time data for synthetic chemical entities that may be supported
1157 by accelerated condition stability data using a decision tree approach. For biologicals, the
1158 decision tree approach, which is based on the extent of attribute change at accelerated storage
1159 conditions, is not considered suitable due to the inherent differences in degradation mechanisms
1160 and other structure/function differences within biologicals.

1161 A comprehensive stability data evaluation should take into consideration any stored intermediates,
1162 process hold times, any short-term storage outside of the long-term storage conditions, including the
1163 risk of excursions to the storage conditions and manipulations of the product to the completion of
1164 administration to the patient (in-use stability).

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1165 Guidance is provided for the data evaluation of drug substance and drug product that have stability data
1166 from at least three primary batches with batch as a single factor, and multi-factor products with full
1167 design (for example, products with the same drug substance at different fill volumes, varied
1168 concentration, container closure system dimensions, etc.). In addition, the degree of variability between
1169 batches and other factors affect the confidence that a future production batch will remain within
1170 acceptance criteria throughout its re-test period or shelf life. Multi-factor products with reduced design
1171 studies are discussed in Annex 1 - Reduced Stability Protocol Design.

1172 When the principles for extrapolation and modelling are considered to apply to other product types,
1173 such as ATMPs or vaccines, the applicant should seek early engagement with the regulatory authority.

1174 ***13.1.1 Re-Test Period***

1175 A re-test period is normally applicable to drug substances of synthetic chemical entities as an alternative
1176 to establishing a shelf life. This approach may also be proposed in certain cases for the drug substances
1177 of biologicals with a well understood stability profile, where justified. An example where a re-test
1178 period may apply for a biological drug substance is a well characterised IgG therapeutic monoclonal
1179 antibody that is stored frozen and shows little to no change in product quality over the duration of
1180 storage.

1181 ***13.1.2 Start of Shelf Life for Synthetic Chemical Entity Drug Products***

1182 The start of shelf life should be the date of production, which is defined as the date of the first
1183 manufacturing step that combines drug substance with other ingredients.

1184 In accordance with regional requirements, consider the following approaches:

- 1185 • When the date of release is less than 30 days from the date of production, the start of shelf life
1186 of a drug product batch could instead be calculated from the date of release of that batch.
- 1187 • For drug products consisting of a drug substance as a single ingredient, filled into the final drug
1188 product container, the initial date of the filling operation is taken as the date of production.

1189 In the case of a drug product intermediate storage step before further processing and when the start of
1190 shelf life is not defined as described above, these should be declared and justified and included in the
1191 drug product stability program of batches that represent the cumulative maximum holding times of drug
1192 product intermediates.

1193 ***13.1.3 Start of Shelf Life for Biological Drug Products***

1194 The start of shelf life for biological drug products begin on the date of manufacture e.g., date of filtration
1195 and/or filling for a liquid drug product. When the drug product filling operation takes place over more

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1196 than one day, then the initial date of the filling operation is taken as the date of manufacture. Other
1197 approaches used to define the start of shelf life can be used if justified.

1198 **13.2 Statistical Evaluation of the Long-term Storage Condition Stability Profile to Establish** 1199 **the Re-test Period or Shelf Life**

1200 All stability data from the primary and supportive stability studies should be evaluated to establish a re-
1201 test period or shelf life. The statistical evaluation should include all primary stability studies, any
1202 available production scale studies and supplemented, when applicable, with additional supportive data
1203 from batches included in the stability programme (refer to Section 4 - Selection of Batches). The
1204 stability profiles for the CQAs shown to potentially change over time at the recommended storage
1205 conditions should be evaluated to establish the re-test period or shelf life. Each CQA should be assessed
1206 separately, and an overall assessment should be made of findings for the purposes of proposing a shelf
1207 life or re-test period. The re-test period or shelf life proposed should not exceed that predicted for any
1208 single attribute.

1209 Data from quantitative analytical procedures should be evaluated using appropriate statistical tools;
1210 whereas results from semi-quantitative or qualitative analytical procedures, which may not be amenable
1211 to statistical analysis, should also be evaluated. The degree of variability across individual batches and
1212 the number of data time-points affects the confidence that a future production batch will remain within
1213 specification throughout the established re-test period or shelf life (24).

1214 There are many valid statistical methods to evaluate stability data to set a re-test period or shelf life
1215 from batches of substances, intermediates, or products. The statistical methodology used should be
1216 justified as suitable for the product type, the data set used for the analysis (batches, study design factors,
1217 etc.) and the purpose of the evaluation. The following sections outline selected, commonly used
1218 approaches and do not cover all situations (26, 27).

1219 ***13.2.1 Linear Regression for an Individual Batch***

1220 Each primary batch, stored under the long-term conditions, may be evaluated individually to establish
1221 the re-test period or shelf life. Where there are differences in stability observed among batches or among
1222 other factors or factor combinations that preclude the combining of data, the proposed re-test period or
1223 shelf life should not exceed the earliest time (worst-case) period supported by any batch, other factor,
1224 or factor combination. For quantitative attributes expected to change with time following a linear pattern
1225 or log transformed data that follow a linear pattern at the recommended storage condition, an approach
1226 for evaluating the data is by linear regression analysis. The appropriateness of the assumed linear
1227 relationship over time and normal distribution of the variables may be supported by evaluation of the
1228 residuals for the regression line (goodness of fit).

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1229 Analyses of a quantitative attribute can be performed by determining the earliest time at which the 95%
1230 percent confidence limit for the mean intersects the proposed acceptance criterion. For attributes with
1231 upper and lower acceptance criteria, a two-sided 95% confidence limit is recommended. The point at
1232 which the confidence limits for the mean intersects the acceptance limit for each individual batch under
1233 evaluation is generally determined (illustrated in Annex-2 Stability Modelling for an individual batch
1234 example). Using this approach, the upper and lower limits may each be evaluated individually as one-
1235 sided limits against their respective upper and lower acceptance criteria. For attributes with only a
1236 lower or an upper acceptance criterion, such as those for purity/impurity, a one-sided 95% confidence
1237 limit is recommended.

1238 Re-test period or shelf life for individual batches should first be estimated with individual intercepts,
1239 individual slopes and the pooled mean square error calculated from all batches. If each batch has an
1240 estimated re-test period or shelf life longer than that proposed, the proposed re-test period or shelf life
1241 will generally be considered appropriate. If, however, one or more of the estimated re-test periods or
1242 shelf lives are shorter than that proposed, a statistical test can be performed to determine whether the
1243 batches can be combined to estimate a longer re-test period or shelf life.

1244 ***13.2.2 Combining Batches***

1245 For the statistical evaluation, it may be advantageous to combine the data from different representative
1246 batches into one overall estimate. A linear regression analysis provides a test for the parameters that
1247 define the linear stability profile of an attribute from a single batch and whether they can be combined
1248 to determine: first the change over time or slope followed by the y-intercept. An appropriate statistical
1249 approach should be prospectively defined and justified to evaluate the ability of combining data from
1250 different batches (22, 23). Refer to Annex 2 - Stability Modelling for additional statistical
1251 considerations. A simulation study can be useful, if applicable, to demonstrate that the statistical
1252 properties of the procedure selected are appropriate (25).

1253 ***13.2.3 Scale Transformation of Data***

1254 When the degradation kinetics are complex and decelerating (e.g., a biphasic degradation profile
1255 characterised by fast initial rate followed by a slower longer-term rate or when the data that may show
1256 a plateauing profile), a linear regression analysis could be proposed when the linear regression provides
1257 a worst-case shelf life or re-test period. The nature of the relationship between an attribute and time will
1258 determine whether data should be transformed for linear regression analysis. The relationship can be
1259 represented by a linear or non-linear function on an arithmetic or logarithmic scale. In some cases, a
1260 non-linear regression can better reflect the true relationship. It should be noted that in some instances if
1261 a linear function is fit to plateauing data, data points beyond the plateau could skew the regression line
1262 towards later timepoints. Whereas this section describes linear regression analysis, other approaches

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1263 may be used (e.g., nonlinear regression) with justification. When scale of transformation is used,
1264 statistical methods should be prospectively employed to evaluate the goodness of fit on all batches and
1265 combined batches (where appropriate) to the inferred degradation profile. Transformation of a non-
1266 linear model should be justified from a scientific perspective (e.g., understanding of the attribute and/or
1267 analytical procedure).

1268 ***13.2.4 Extrapolation and Stability Modelling***

1269 Extrapolation is the practice of using a known data set to infer information about future data and is a
1270 form of stability modelling that, under certain conditions, may be applicable to synthetics and
1271 biologicals. Extension of shelf life beyond the period covered by long-term data, by extrapolation, can
1272 be proposed in the regulatory submission. Whether extrapolation of stability data is appropriate depends
1273 on the extent of understanding for the product type, relevant knowledge about the stability-indicating
1274 attributes and any change over time, the goodness of fit of any mathematical or other computational
1275 model type, and the existence of relevant supporting data that may include additional timepoints,
1276 additional batches or prior knowledge. Relevant supporting data include satisfactory long-term data
1277 from development batches that are (1) made with a comparable formulation to, (2) manufactured on a
1278 smaller scale than, or (3) packaged in a container closure system similar to that of the primary stability
1279 batches.

1280 For synthetics, certain quantitative chemical attributes (e.g., assay, chemical degradation products,
1281 preservative content) for a drug substance or product can generally be assumed to follow zero-order
1282 kinetics during long-term storage. Although the kinetics of other quantitative attributes (e.g., pH,
1283 dissolution) are generally not known, the same statistical analysis can be applied, if appropriate.
1284 Qualitative attributes and microbiological attributes are not amenable to this kind of statistical analysis.
1285 The decision tree approach would not be recommended for biological products because biological and
1286 immunological attributes are generally not amenable to extrapolation, as they cannot be assumed to
1287 follow zero order kinetics. For certain well characterised biologicals that have no statistically significant
1288 or meaningful change over time, extrapolation may be possible using the risk assessment criteria and
1289 supporting long term development data, as outlined in Section 13.2.9 – Extrapolation of Biologicals.

1290 An extrapolation of stability data assumes that the same change profile will continue to apply beyond
1291 the period covered by available long-term data and should be applicable to future batches. The
1292 correctness of the assumed change profile is a critical consideration, especially when stability data are
1293 limited. Any extrapolation should be justified and have a science-based rationale that may be based on
1294 prior knowledge.

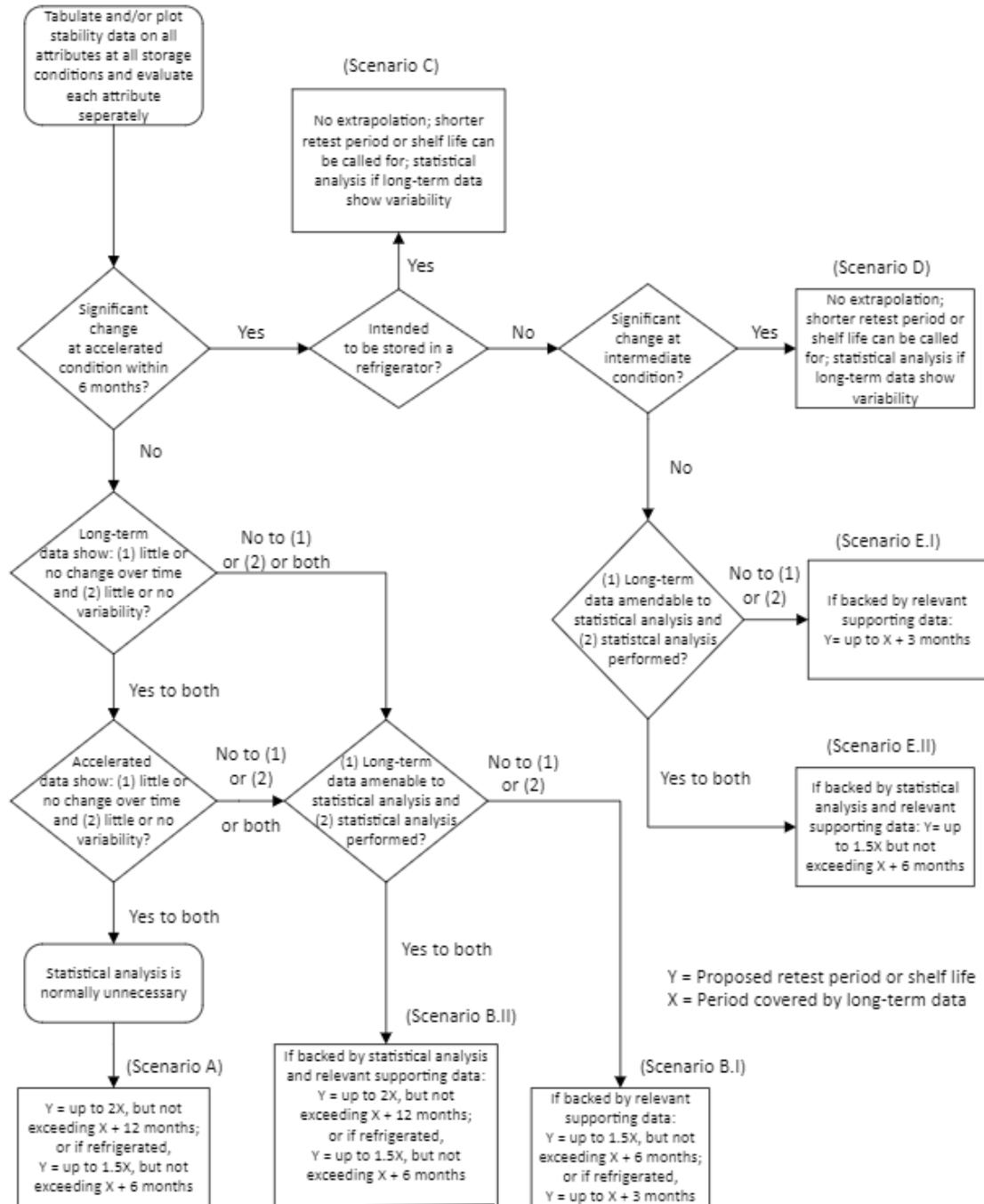
1295 The methodologies outlined in this section may be used to extrapolate the long-term stability data.
1296 When estimating a regression line or curve to fit the long-term data, the data themselves provide a check

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1297 on the correctness of the assumed change pattern, and statistical methods should be applied to evaluate
1298 the goodness of fit (or an equivalent valid statistical method) of the existing data to the inferred line or
1299 curve and to provide confidence that future batches will lie within the inferred stability profile (refer to
1300 Annex 2, Section A2-1 - Statistical Evaluation of Stability Data from Single or Multi-factor Study
1301 Designs). No such internal check is possible beyond the period covered by long-term data from primary
1302 batches, though an inferred trend may be supported by prior knowledge.

1303 Enhanced stability modelling, such as those referenced in Annex 2 (Annex 2- Section A2-2 Enhanced
1304 Stability Modelling) may also be considered.

1305 Any shelf life or re-test period proposed based on extrapolation should be verified by additional long-
1306 term stability data as these data become available.


1307 ***13.2.5 Extrapolation for Synthetic Chemical Entities***

1308 A systematic approach using a decision tree (Figure 4) is provided as a tool for appropriate data
1309 extrapolation beyond the period covered by long-term stability data. The decision tree is intended to
1310 apply to synthetic chemical entities that are stored long-term at room temperature or refrigerated
1311 conditions and that have stability data at an accelerated storage condition in addition to the long-term
1312 stability data. The decision tree is not intended for other products or other long-term conditions (e.g.,
1313 biologicals or frozen storage). The decision tree provides a complementary approach to the statistical
1314 analysis of long-term stability data. The decision tree approach may provide some limited extrapolation
1315 though greater extrapolation beyond these stated limits may be possible using other modelling
1316 methodologies (refer to Annex 2 –Stability Modelling).

1317 To use the decision tree, the variability between and within batches should allow reasonable confidence
1318 that the stability profile meets the attribute specification at the proposed re-test period or shelf life under
1319 the recommended storage conditions. The term “room temperature” refers to the general customary
1320 environment and should not be inferred to be the storage statement for labelling (refer to Section 14 –
1321 Labelling).

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1322 **Figure 4: Decision Tree for Data Evaluation for Re-test Period and Shelf Life Estimation for**
 1323 **Synthetic Chemical Entity Drug Substances and Drug Products (excluding frozen**
 1324 **products)**

1325
 1326
 1327 When the decision tree is used for extrapolation, each attribute on the shelf life specification should be
 1328 systematically evaluated. The assessment should begin with any significant change at the accelerated
 1329 condition and, if appropriate, at an intermediate condition, and progresses through the trends and
 1330 variability of the long-term data. The circumstances are delineated under which extrapolation of re-test

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1331 period or shelf life beyond the period covered by long-term data can be appropriate. If any attribute that
1332 is not quantifiable shows potential for significant change at the accelerated storage condition, then the
1333 decision tree cannot be used.

1334 The following subsections describe the decision tree approach, and the scenarios illustrated.

1335 ***13.2.6 No Significant Change at Accelerated Condition***

1336 Where no significant change occurs at the accelerated condition, the re-test period or shelf life would
1337 depend on the nature of the long-term and accelerated data. This applies to room temperature and
1338 refrigerated drug substances and drug products where no significant change occurs at the accelerated
1339 condition.

1340 ***13.2.6.1 Long-term and Accelerated Data Show Little to No Change Over Time and Little or 1341 No Variability (Scenario A)***

1342 Where the long-term data and accelerated data for an attribute show little or no change over time and
1343 little or no variability, it might be apparent that the drug substance or product will remain well within
1344 the acceptance criteria for that attribute during the proposed re-test period or shelf life. In these
1345 circumstances, a statistical analysis is normally considered unnecessary but justification for the
1346 omission should be provided. Justification can include a discussion of the change pattern or lack of
1347 change, relevance of the accelerated data, mass balance, and/or other supporting data. Extrapolation of
1348 the re-test period or shelf life beyond the period covered by long-term data can be proposed. The
1349 proposed re-test period or shelf life can be up to two times for products stored at room temperature, but
1350 should not be more than 12 months beyond, the period covered by long-term data. For refrigerated drug
1351 substances or drug products, if the long-term and accelerated data show little change over time and little
1352 variability, the proposed re-test period or shelf life can be up to one-and-a-half times, but should not be
1353 more than 6 months beyond the period covered by long-term data.

1354 ***13.2.6.2 Long-term or Accelerated Data Show Change Over Time and/or Variability 1355 (Scenario B)***

1356 The decision tree approach considers the significance of change over time under accelerated and long-
1357 term storage conditions and method variability. For a synthetic chemical drug substance, a significant
1358 change is when an attribute exceeds specification at the accelerated condition within 6 months or long-
1359 term storage condition within the intended shelf life or re-test period. For drug product, a significant
1360 change has additional considerations applicable to synthetic chemical products including:

- 1361 (1) 5% change in assay from its initial value
- 1362 (2) failure to meet the specification for degradation products, physical attributes (e.g., colour, phase
1363 separation, re-suspendability, caking, hardness) and, when applicable functionality tests (e.g., dose
1364 delivery per actuation);

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1365 and for certain dosage forms:

1366 (3) failure to meet specification for pH

1367 (4) failure to meet specification for dissolution testing

1368 With respect to physical attribute changes, the following can be expected to occur at the accelerated
1369 condition and would not be considered significant change that calls for intermediate testing if there is
1370 no other significant change:

- 1371 • softening of a suppository that is designed to melt at 37°C, if the melting point is clearly
1372 demonstrated,
- 1373 • failure to meet acceptance criteria for dissolution of a gelatine capsule or gel-coated tablet if the
1374 failure can be unequivocally attributed to cross-linking.

1375 However, if phase separation of a semi-solid dosage form occurs at the accelerated condition, testing at
1376 an intermediate condition should be performed. Potential interaction effects (e.g., other drug product
1377 components) should also be considered in establishing that there is no significant change.

1378 For product intended to be stored at room temperature, when a significant change is observed or
1379 anticipated at a particular accelerated storage condition, consider including an intermediate storage
1380 condition in the protocol and for the data evaluation. An appropriate intermediate storage condition, as
1381 applied to a synthetic chemical entity, depends on the climatic zones intended for the product (refer to
1382 Section 7 – Storage Conditions).

1383 If the long-term or accelerated data for an attribute show change over time and/or variability within a
1384 factor or among factors (e.g., strength, container size and/or fill), statistical analysis of the long-term
1385 data can be useful in establishing a re-test period or shelf life. When there are differences in stability
1386 observed across batches or among other factors or factor combinations (e.g., strength, container size
1387 and/or fill) that preclude the combining of data, the proposed re-test period or shelf life should not
1388 exceed the shortest period supported by any batch, other factor, or factor combination. Alternatively,
1389 where the differences are readily attributed to a particular factor (e.g., strength), different shelf lives can
1390 be assigned to different levels within the factor (e.g., different strengths). A discussion should be
1391 provided to address the cause for the differences and the overall significance of such differences on the
1392 product. Extrapolation beyond the period covered by long-term data can be proposed; however, the
1393 extent of extrapolation would depend on whether long-term data for the attribute are amenable to
1394 statistical analysis.

1395 **13.2.6.3 Data not amenable to statistical analysis (Scenario B.I)**

1396 Where long-term data are not amenable to statistical analysis (e.g., colour, clarity using qualitative or
1397 semi-quantitative methods), but change over time and relevant supporting data are provided, the

1398 proposed re-test period or shelf life at room temperature storage can be up to one and-a-half times but
1399 should not be more than 6 months beyond the period covered by long-term data. For refrigerator storage,
1400 the proposed re-test period or shelf life can be up to 3 months beyond the period covered by long-term
1401 data.

1402 **13.2.6.4 Data amenable to statistical analysis (Scenario B.II)**

1403 If long-term data are amenable to statistical analysis but no analysis is performed, the extent of
1404 extrapolation should be the same as when data are not amenable to statistical analysis. However, if a
1405 statistical analysis is performed, it can be appropriate to propose a re-test period or shelf life when stored
1406 at room temperature of up to twice but not more than 12 months beyond the period covered by long-
1407 term data, when the proposal is supported by the result of the analysis and relevant supporting data. For
1408 refrigerated chemical entities, where statistical analysis is performed, the proposed re-test period or
1409 shelf life can be up to one-and-a-half times, but should not be more than 6 months beyond, the period
1410 covered by long-term data.

1411 **13.2.7 Significant Change at Accelerated Condition**

1412 Where significant change occurs at the accelerated condition, the re-test period or shelf life would
1413 depend on the storage condition (room temperature or refrigerated) and if stability data at an
1414 intermediate condition are available.

1415 **13.2.7.1 Significant Change at Accelerated Condition (refrigerated storage) (Scenario C)**

1416 For refrigerated storage, if significant change occurs at the accelerated storage condition, the proposed
1417 re-test period or shelf life should be based on the long-term data and extrapolation is generally not
1418 considered appropriate. Intermediate conditions are also not considered applicable for products stored
1419 at refrigerated storage conditions. In addition, a re-test period or shelf life shorter than the period
1420 covered by long-term data could be proposed in a science- and risk-based manner. If the long-term data
1421 show variability, verification of the proposed re-test period or shelf life by statistical analysis can be
1422 appropriate.

1423 **13.2.7.2 Significant Change at Accelerated Condition and Significant Change at Intermediate
1424 Condition (room temperature storage) (Scenario D)**

1425 Where significant change occurs at both accelerated and the intermediate condition, the proposed re-
1426 test period or shelf life should be based on the long-term data and extrapolation is generally not
1427 considered appropriate. In addition, a re-test period or shelf life shorter than the period covered by
1428 long-term data could be proposed in a science- and risk-based manner. If the long-term data show
1429 variability, verification of the proposed re-test period or shelf life by statistical analysis can be
1430 appropriate.

1431 **13.2.7.3 Significant Change at Accelerated Condition and No Significant Change at**
1432 **Intermediate Condition (room temperature storage) (Scenario E)**

1433 If there is significant change at accelerated condition but no significant change at the intermediate
1434 condition, extrapolation beyond the period covered by long-term data can be proposed; however, the
1435 extent of extrapolation would depend on whether long-term data for the attribute are amenable to
1436 statistical analysis.

1437 **13.2.7.3.1 Data not amenable to statistical analysis (Scenario E.I)**

1438 When the long-term data for an attribute are not amenable to statistical analysis, the proposed re-test
1439 period or shelf life can be up to 3 months beyond the period covered by long-term data, if supported by
1440 relevant supporting data.

1441 **13.2.7.3.2 Data amenable to statistical analysis (Scenario E.II)**

1442 When the long-term data for an attribute are amenable to statistical analysis but no analysis is
1443 performed, the extent of extrapolation should be the same as when data are not amenable to statistical
1444 analysis. However, if a statistical analysis is performed, the proposed re-test period or shelf life can be
1445 up to one-and-a-half times, but should not be more than 6 months beyond, the period covered by long-
1446 term data, when backed by statistical analysis and relevant supporting data.

1447 **13.2.8 Extrapolation for Chemical Entities when Stored Frozen**

1448 When a drug substance or product is stored frozen, with no observable or no statistically significant
1449 change over time for the available data of all quality attributes monitored at the recommended storage
1450 conditions or a minor change that remains well within the acceptance criteria, extrapolation may be
1451 considered based on appropriate prior knowledge and enhanced stability modelling (Annex 2 –Stability
1452 Modelling).

1453 **13.2.9 Extrapolation for Biologicals**

1454 Extrapolation beyond the period covered by available long-term primary stability data may be
1455 considered for a well characterised biological drug substance stored frozen, for which the quality
1456 attributes are known, and their corresponding criticality and residual risks evaluated to ensure patient
1457 safety. Extrapolation of drug substance shelf life should be limited to one and a half times the available
1458 long-term data from the primary stability batches to a maximum of 12 months beyond available long-
1459 term data, when justified. Justification should include a risk-based approach to fully support the
1460 proposed extrapolation, including data available on batches that have long term data to the end of the
1461 proposed shelf life that are analytically comparable to primary batches. Justification should also include
1462 statistical analysis (such as using linear regression with 95% confidence limit) of available long-term
1463 data on representative batches and primary stability batches to show no statistically significant or
1464 meaningful change over time. Any observable trend should also be justified. In addition, the risk
1465 assessment should take into consideration other aspects such as, knowledge of the molecule and its

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1466 degradation profile, impact of degradation of the molecule on drug product, knowledge of the impact
1467 on stability due to the rate of freezing and thawing of the drug substance, the container/closure system,
1468 drug substance concentration and formulation to support the extrapolation.

1469 Alternative approaches can be proposed and justified for extrapolation and/or shelf life prediction based
1470 on appropriate prior knowledge and enhanced stability modelling (Annex 2 –Stability Modelling).

1471 The general principles outlined here for drug substance extrapolation may be applicable to drug product
1472 extrapolation, however, due to increased risk, applicants are encouraged to seek agreement with
1473 regulatory authorities on the extrapolation proposal and accompanying justification that includes
1474 potential impact to patient safety and efficacy. Additionally, for biological drug products, applicants
1475 are encouraged to consider enhanced modelling techniques as described in Annex 2 – Stability
1476 Modelling.

1477 For biologicals and synthetics, when the proposed shelf life is extrapolated beyond available long-term
1478 data from primary stability studies, the primary stability studies should be continued post-approval to
1479 confirm the shelf life with long-term data. The ongoing monitoring/trending of stability data should be
1480 managed by the manufacturer's PQS. The PQS should be capable of detecting and managing any
1481 confirmed changes in stability trend and out of specification results with appropriate corrective action
1482 and preventive actions (CAPA) as described in ICH Q10, relevant to any extrapolation being applied.

1483 **13.3 Data Evaluation for Multi-factor, Full-design Studies**

1484 The stability of the drug product, or drug substance if applicable, could differ to a certain degree among
1485 different factor combinations in a multi-factor, full-design study, for example, products with different
1486 fill volumes or content and different container dimensions. Two approaches can be considered when
1487 analysing such data.

- 1488 • To determine whether the data from all factor combinations (e.g., fill volume and container
1489 dimensions such as vial size), support the proposed shelf life for each combination of drug
1490 product presentation.
- 1491 • To determine whether the data from different factor combinations can be combined for an
1492 overall estimate of a single shelf life that applies to each presentation.

1493 A statistical model that includes all appropriate factors and factor combinations may be constructed and
1494 the shelf life should be estimated for each factor and for all factor combinations to support the product
1495 shelf life.

1496 If all shelf lives estimated by the aforementioned statistical model are longer than the proposed shelf
1497 life, further model building is considered unnecessary, and the proposed shelf life will generally be

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1498 appropriate for all combinations of factors. The stability data from different factors should not be
1499 combined unless supported by scientific understanding and statistical testing.

1500 ***13.3.1 Testing to Combine Batch Data per Individual Combination***

1501 If each factor combination is considered separately, the stability data can be statistically tested to
1502 combine those batch data for each individual combination. The shelf life for each non-batch factor
1503 combination can be estimated separately by applying the procedure described for single factor, full
1504 design (Refer to Annex 2, Section A2-1 – Statistical Evaluation of Stability Data from Single or Multi-
1505 Factor Study Designs). For example, for a drug product available in two strengths and four container
1506 sizes, eight sets of data from the 2 x 4 strength-size combinations can be analysed and eight separate
1507 shelf lives should be estimated accordingly. For a single shelf life across the strengths and container
1508 sizes, the shortest (worst-case) estimated shelf life among all factor combinations should become the
1509 shelf life for the product. However, this approach does not consider all the available data from all factor
1510 combinations, thus generally resulting in shorter shelf lives than the approach that combines batches for
1511 all factors and factor combinations.

1512 ***13.3.2 Testing to Combine Data for All Factors and Factor Combinations***

1513 If the stability data are tested to combine all factors and factor combinations and the results show that
1514 the data can be combined, a single shelf life across all combinations and longer than that estimated
1515 based on individual factor combinations may be proposed. The shelf life is longer because the width
1516 of the confidence limit(s) for the mean will become narrower as the amount of data increases when
1517 batches, strengths, container sizes and/or fills, etc. are combined into a single analysis of covariance
1518 (e.g., ANCOVA).

1519 Analysis of covariance (e.g., ANCOVA) can be employed to test the difference in slopes and intercepts
1520 of the regression lines among factors and factor combinations. The purpose of the procedure is to
1521 determine whether data from multiple factor combinations can be combined for the estimation of a
1522 single shelf life that could apply to all 8 presentations for the previous example (refer to Section 13.3.1
1523 - Testing to Combine Batch Data per Individual Combination).

1524 The full statistical model should include the y-intercept and slope terms for all main effects and
1525 interaction effects and a term reflecting the random error of measurement. If it can be justified that the
1526 higher order interactions are very small, there is generally no need to include these terms in the model.
1527 In cases where the analytical results at the initial time point are obtained from the dosage form prior to
1528 its packaging, the effect of container is taken into account in each measure as comparisons are made to
1529 the initial time point analysed prior to packaging.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1530 The tests to combine data should be specified to determine whether there are statistically significant
1531 differences among factors and factor combinations. Generally, the statistical tests for covariance should
1532 be performed in a proper order such that the slope terms are tested before the intercept terms and the
1533 interaction effects are tested before the main effects. For example, the tests can start with the slope and
1534 then the intercept terms of the highest order interaction and proceed to the slope and then the intercept
1535 terms of the simple main effects. The most reduced model, obtained when all remaining terms are found
1536 to be statistically significant, can be used to estimate the shelf life.

1537 All tests should be conducted using appropriate levels of significance (refer to Annex 2 – Stability
1538 Modelling). Typically, a significance level of 0.25 can be used for batch-related terms, and a
1539 significance level of 0.05 can be used for non-batch-related terms. If the tests show that the data from
1540 different factor combinations can be combined, the shelf life can be estimated according to the
1541 procedure described for a single batch (refer to Section 13.2.1 – Linear Regression for an Individual
1542 Batch), using the combined data.

1543 If the tests show that the data from certain factors or factor combinations should not be combined, then
1544 a single shelf life can be estimated based on the shortest estimated shelf life among all levels of factors
1545 and factor combinations remaining in the model.

1546 After model selection and implementation, model lifecycle consideration should be considered per
1547 Annex 2 - Stability Modelling, Section 2.7 – Risk Management and Model Lifecycle Considerations.

1548 13.4 Data Presentation

1549 The applicant should follow ICH M4Q for data presentation expectations. In general, for stability data,
1550 data for all attributes should be presented in an appropriate format (e.g., tabular, graphical, narrative)
1551 and an evaluation of such data. The values of quantitative attributes at all time points should be reported
1552 as measured and as calculated to support the label claim, where applicable. If a statistical analysis is
1553 performed, the procedure used and the assumptions underlying the model should be stated and justified.

1554 14 LABELLING

1555 Guidance for labelling and storage statements for drug substances and drug products are provided
1556 below. Note that the same principles should be applied to stored intermediates when applicable.

1557 A storage statement should be established for the labelling based on the evaluation of stability data with
1558 respect to the climatic zone where the drug substance and/or drug product are intended to be stored,
1559 shipped, or used. When applicable, storage statements should reflect information related to the in-use
1560 period and storage conditions. It is recommended that an appropriate temperature range be included on
1561 the label. Terms such as “ambient conditions” or “room temperature” should be avoided on the label.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1562 Where applicable, specific instructions should be provided within the labelling, particularly for drug
1563 substances, intermediates and drug products that cannot tolerate freezing and thawing, exposure to light
1564 or humidity. Additional information may be included on the label for drug products with an established
1565 short-term storage condition (refer to Section 10 – Short-Term Storage Conditions).

1566 There should be a direct link between the label storage statements and the demonstrated stability. An
1567 expiration date/re-test date, derived from the stability information, should be displayed on the container
1568 closure system labelling, as appropriate.

1569 **14.1 Excursions Outside of a Labelling Claim**

1570 The quality attributes of pharmaceutical drug substances and drug products can be impacted by the
1571 extent of the environmental factors experienced during handling, transport, and storage. Those impacts
1572 should be evaluated and specified instructions may be provided on the product labelling.

1573 Transient temperature excursions outside of the label storage conditions, may be acceptable if justified
1574 and supported by stability data. An assessment of the risk and impact of handling, transport, and storage
1575 excursions outside the label claim at various stages throughout the overall supply chain requires a
1576 comprehensive knowledge of the supply chain and an understanding of a drug substance and drug
1577 product's stability profile. Data from stability studies, including accelerated studies, stress testing (Refer
1578 to Section 2 – Development Studied Under Stress and Forced Conditions), or transport simulation
1579 studies (when appropriate) can be used to evaluate the effects of an excursion on the drug substance or
1580 drug product. Additionally, statistical evaluation or modelling can be leveraged to evaluate the impact
1581 of a storage condition excursion, provided sufficient knowledge of the degradation pathway is available
1582 and fits an appropriate model. Each excursion should be documented and handled within the
1583 corresponding quality management system or appropriate risk assessment.

1584

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

15 STABILITY CONSIDERATIONS FOR COMMITMENTS AND PRODUCT LIFECYCLE MANAGEMENT

1587 Consistent with ICH Q8, the product lifecycle includes all phases in the life of a drug substance and
1588 drug product from the initial development through the marketing until the product's discontinuation.
1589 Lifecycle management in the context of stability includes initial stability testing and re-test period and
1590 shelf life determination, ongoing (annual) stability testing, and stability studies supporting post-
1591 approval changes or commitments over a product's lifecycle. This also includes the introduction of new
1592 dosage forms or new strengths/concentrations. Commitment stability studies include studies to confirm
1593 the initially proposed re-test period/shelf life for commercial manufacture. This section also provides
1594 guidance on stability studies necessary to support the product lifecycle after an initial re-test period or
1595 shelf life has been established in the regulatory submission. While guidance in this section is focused
1596 on product lifecycle management of drug substances and drug products, general principles may also
1597 apply to intermediates that require studies to support re-test period/shelf life or holding times.

1598 In cases where data from commitment stability studies fall outside the acceptance criteria, as confirmed
1599 through quality investigation, the stability commitment should include a proposed action to the
1600 competent authority in accordance with regional requirements.

15.1 Commitment Stability Studies

1602 Commitment stability studies are conducted under the accelerated, intermediate, or long-term storage
1603 conditions (as applicable) to establish or confirm the initial re-test period or shelf life. Where the
1604 primary stability studies for a drug substance or drug product do not cover the proposed re-test period
1605 or shelf life period granted at the time of initial approval, a commitment should be made to continue the
1606 stability studies to confirm the proposed re-test period or shelf life. If applicable, data supporting the
1607 claim that manufacturing scale does not impact stability of the product should be provided for regulatory
1608 assessment. When all the batches used in the primary stability studies are production batches and
1609 stability data cover proposed re-test period and/or shelf life, a post-approval commitment is considered
1610 unnecessary. Otherwise, one of the following commitments should be made:

- 1611 • If the regulatory submission includes long-term data from stability studies less than the re-test
1612 period/shelf life for at least three production batches, a commitment should be made to continue
1613 these studies through the proposed re-test period/shelf life.
- 1614 • If the regulatory submission includes data from stability studies on fewer than three production
1615 batches, a commitment stability study should be conducted to generate stability data on at least
1616 three production scale batches in total. Commitment stability studies under the long-term
1617 storage conditions should be initiated or continued through the proposed re-test period and/or
1618 shelf life and, if applicable, under the accelerated storage conditions through to 6 months.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

- 1619 • For synthetics, if the regulatory submission does not include stability data on production
1620 batches, a commitment stability study should be conducted to generate stability data on at least
1621 three production scale batches. Commitment stability studies under the long-term storage
1622 conditions should be initiated and continued through the proposed re-test period and/or shelf
1623 life and, if applicable, under the accelerated storage conditions through to 6 months.

1624 The commitment stability study protocol should be the same as that for the primary stability study,
1625 unless otherwise scientifically justified. Continuation or application of new bracketing or matrixing
1626 approaches in the commitment stability studies for the stability commitment should also be justified as
1627 discussed in Annex 1 - Reduced Stability Protocol Design.

1628 15.2 Ongoing Stability Studies

1629 Ongoing stability studies are conducted under long-term storage conditions on an annual basis to ensure
1630 the consistency of stability related quality attributes at the commercial storage conditions over the
1631 product lifecycle. These studies also allow for the monitoring of the stability characteristics and examine
1632 trends in the stability data to confirm the appropriate storage conditions relevant for the product and to
1633 confirm a re-test period or a shelf life.

1634 In accordance with the general principles in ICH Q7, at least one production batch of the drug substance
1635 and one production batch of each strength of the drug product covering the container closure systems
1636 should be added to the ongoing stability program per year (unless none is produced that year). Ongoing
1637 stability studies are generally managed within the PQS unless a regulatory authority expects additional
1638 submission of the information and data. Each production site should maintain an ongoing stability
1639 programme in accordance with GMPs. Reduced designs (as discussed below and in Annex 1- Reduced
1640 Stability Protocol Design) can be applied where justified.

1641 Ongoing stability studies are not required to align with the primary stability protocol; however, testing
1642 should continue through to the end of the re-test period or shelf life. As product knowledge is gained,
1643 the applicant may consider removal of testing of attributes not related to stability and/or reduce testing
1644 timepoints based on risk assessment as detailed in Section 3 - Stability Protocol Design. Reductions,
1645 including bracketing and/or matrixing approaches, based on stability knowledge and risk assessment
1646 should be justified in the regulatory submission, where applicable, as detailed in Annex 1 (Reduced
1647 Stability Protocol Design). Reduced protocol designs applied in the original regulatory submission
1648 should be followed until there is a change in configuration (e.g., strength/concentration). Any change
1649 in the reduced design post-approval should be evaluated for its impact to the product quality prior to
1650 modifying the annual stability protocol. While the testing intervals listed during product development
1651 may be appropriate in the pre-approval stage, reduced testing may be appropriate after approval where

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1652 data are available that demonstrate adequate and consistent stability. Where data exist that indicate the
1653 stability of a product is not compromised, the applicant is encouraged to propose and justify, where
1654 applicable, a protocol which supports the reduction or elimination of specific testing (e.g., 9-month
1655 testing interval) or certain attributes (e.g., orthogonal testing) for post-approval, long-term studies.

1656 15.3 Product Lifecycle Stability Studies

1657 Product lifecycle stability studies are conducted under the accelerated, intermediate, or long-term
1658 storage conditions (as applicable) to support product lifecycle changes by assessing whether the change
1659 has an impact on any stability related quality attributes of the commercial drug substance or product
1660 under the labelled storage, handling and use conditions. A risk assessment should be conducted (refer
1661 to Section 3 – Stability Protocol Design and Annex 1 – Reduced Stability Protocol Design) and can be
1662 used to justify the change and determine the need and extent of studies required to support changes after
1663 approval in compliance with regional requirements. A post-approval change could fall into one of the
1664 following scenarios that are based on the nature and impact of the change, stability data requirements
1665 and where the re-test/shelf life establishment could change:

- 1666 • *Scenario 1:* A stability risk assessment indicates the proposed changes will *not have an impact* on
1667 the stability profile (e.g., change to a comparable analytical procedure, change in outside cap
1668 colour). Stability data in this case is unnecessary and the re-test period or shelf life will not be re-
1669 established. Maintained product stability would be confirmed as part of the Ongoing Stability
1670 Programme.
- 1671 • *Scenario 2:* The proposed changes *may potentially impact* the stability profile (e.g., manufacturing
1672 process change, change in formulation). A stability study, a stability risk assessment, or a
1673 combination thereof may be appropriate to support this change. The risk assessment process may
1674 include a well-designed study to determine whether additional formal stability studies or other
1675 supportive stability studies are necessary. The assessment should establish whether the re-test
1676 period/shelf life and storage condition may be maintained or if they should be re-established.
 - 1677 - If the proposed changes have a demonstrated impact that can reduce or extend the re-test
1678 period/shelf life based on the preliminary stability results, then a re-test period/shelf life
1679 and storage condition may need to be re-established per recommendations in Section 3 -
1680 Stability Protocol Design through Section 7 - Storage Conditions.
 - 1681 - If the proposed change is expected to have a low impact but formal stability studies are
1682 warranted based on preliminary data and risk assessment, a commitment should be made
1683 to continue these stability studies through the re-test period/shelf life and the re-test period
1684 or shelf life does not need to be re-established.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

- 1685 - If the proposed change is demonstrated through the risk assessment and/or a well-designed
1686 stability study (including analytical comparability according to ICH Q5E for biological
1687 products), to not impact the re-test period or shelf life, then this assessment and/or data may
1688 be used to justify that formal stability studies are not needed to retain the current re-test
1689 period or shelf life (e.g., change in compendial excipient supplier).
1690 - If a risk assessment or an initial set of stability results do not allow for an understanding of
1691 the impact to the re-test period/shelf life, the re-test period/shelf life and storage condition
1692 may need to be re-established based on the post-change stability data.
1693 - Product lifecycle stability studies intended to extend the re-test period or shelf life should
1694 align with the principles outlined for primary stability (e.g., for setting re-test period/shelf
1695 life). Justification should be provided when a shelf life reduction is proposed as a post-
1696 approval change. This justification should only be based on scientific reasons.
- 1697 In most circumstances, stability evaluation is generally expected in the context of the specific change
1698 and should include assessment of impact on drug substance, intermediate and/or final drug product.
1699 Additional scientific, risk-based considerations and approaches for identifying stability-related quality
1700 attributes, use of appropriate tools to evaluate the impact of the intended change and developing
1701 strategies for confirmatory stability studies supporting stability for post-change material are included in
1702 ICH Q12, Chapter 9 (Stability Data Approaches to Support the Evaluation of CMC Changes) and
1703 recommendations for post-approval changes. For biologicals, after successful demonstration of
1704 analytical comparability according to ICH Q5E including the stability profile, the shelf life of the pre-
1705 change material can be assigned to the post-change material. If successful demonstration of analytical
1706 comparability is not achieved, additional stability studies would be needed.
- 1707 In some instances, a stability protocol may include additional time points beyond a proposed shelf life
1708 to allow shelf life extensions in the future (e.g., to avert supply management issues). An extension of
1709 the approved shelf life based on acceptable stability data from a minimum of 3 production or primary
1710 batches may be submitted to allow a longer shelf life.
- 1711 The applicant should apply an appropriate stability strategy that demonstrates the established re-test
1712 period/shelf life and storage conditions are still accurate. In such cases, an appropriate stability strategy
1713 may include:
- 1714 • A targeted stability study that focuses on the potentially impacted stability related quality
1715 attributes and re-test period/shelf life limiting attributes.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

- The use of comparative accelerated/stress and/or predictive stability studies (e.g., modelling, including extrapolation, or stability bridging study for biological product) to demonstrate the understanding from the process/product change.
- A risk assessment demonstrating that an understanding of the impact to any stability related quality attributes can support limited real-time data for post-change material while claiming the same re-test period/shelf life as the pre-change material.
- A full evaluation of stability related quality attributes through long-term studies. This may be necessary when the impact of the change is not well understood or demonstrated.

Reduced protocol designs may be applied for drug products with multiple commercial presentations where stability performance is generally well understood. For example, a worst-case approach may be applied to products with multiple bottle configurations, where the configuration with the highest moisture vapor transmission rate (MVTR) is selected for evaluation (refer to Annex 1 – Reduced Stability Protocol Design). Reduced protocol design considerations may also apply to photostability or in-use studies supporting changes such as primary/secondary packaging or in-use and should follow the same considerations as discussed above and in Section 8 - Photostability and Section 11 In-Use Stability.

If specific tests or timepoints from the primary stability studies had been removed for the ongoing stability protocol, these may need to be restored for the stability studies used to support a post-approval change.

15.4 Stability Studies to Support New Dosage Forms and New Strengths/Concentrations

This section addresses the recommendations on what should be submitted regarding stability of a new dosage form or a new strength/concentration by the owner of the original regulatory submission. A new dosage form or strength/concentration contains the same drug substance as included in the existing, approved drug product. Within scope of a new dosage form are new products with different administration route (e.g., oral to parenteral, intravenous to subcutaneous), new specific functionality/delivery systems (e.g., immediate release tablet to modified release tablet, lyophilised to liquid product) and different dosage forms of the same administration route (e.g., capsule to tablet, solution to suspension, vial to prefilled syringe).

Stability protocols for new dosage forms or new strengths/concentrations should generally follow the guidance for primary stability studies (refer to Table 1). In certain justified cases, based on prior knowledge and an established stability profile, a science- and risk-based, reduced stability protocol at submission may be acceptable (e.g., 6 months accelerated and 6 months long term data for a new dosage form for a synthetic chemical entity per Table 1). In cases where the existing commercial data are

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1749 relevant to the shelf life of the new dosage form or the new strength/concentration, a risk assessment
1750 with an appropriate justification and additional supporting information (e.g., predictive data,
1751 comparative bridging data and/or prior knowledge) should be provided. In these cases, a commitment
1752 stability study would also be expected in accordance with the principles discussed in Section 15.1 –
1753 Commitment Stability Studies.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1754 16 GLOSSARY

1755 **Accelerated Studies:** Testing conducted on drug substance and drug product that have been stored
1756 under conditions intended to increase the rate of physical, chemical and/or biochemical change
1757 (temperature and when applicable humidity), over a defined time period. These data can be used to gain
1758 product knowledge and to support extrapolation, re-test period or shelf life determination and to
1759 evaluate the impact of excursions outside the label storage conditions.

1760 **AI-ML:** Artificial Intelligence Machine Learning

1761 **ANCOVA:** Analysis of covariance

1762 **ATMP:** Advanced Therapy Medicinal Products

1763 **Container Closure System:** The sum of packaging components that together contain and protect the
1764 dosage form. This includes primary packaging components and secondary packaging components, if
1765 the latter are functional (e.g., combination of a drug product with a medical device) or intended to
1766 provide additional protection to the drug product. A packaging system is equivalent to a container
1767 closure system. For the drug substance the container closure system is the packaging proposed for
1768 storage and distribution.

1769 **Commitment stability studies:** Stability studies conducted under the accelerated, intermediate, or
1770 long-term storage conditions (as applicable) to establish or confirm the initial re-test period or shelf life
1771 in accordance with a commitment in the regulatory submission.

1772 **CAPA:** Corrective and Preventive Actions (ICH Q12)

1773 **CM:** Continuous Manufacturing (ICH Q13)

1774 **CQA:** Critical Quality Attributes (ICH Q8)

1775 **Degradation Product:** Molecular variants or impurities resulting from chemical or biochemical
1776 changes in the desired product or product-related substances brought about over time and/or by the
1777 action of, e.g., light, temperature, pH, water, or by reaction with an excipient and/or the container
1778 closure system and/or device component. Such changes may occur as a result of manufacture and/or
1779 storage (e.g., hydrolysis, deamidation, oxidation, aggregation, proteolysis). Degradation products may
1780 be either product-related substances or product-related impurities.

1781 **DS:** Drug Substance

1782 **DP:** Drug Product

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1783 **Full design stability protocol:** A protocol which includes at least three batches of the drug substance
1784 or at least three batches of each strength or concentration of the drug product covering the container
1785 closure systems for every combination of all design factors and tested at all time points.

1786 **Formal Stability Studies:** Primary, commitment, ongoing or product lifecycle stability studies
1787 conducted under the accelerated, intermediate, or long-term storage conditions (as applicable) to
1788 establish or confirm a re-test period or a shelf life.

1789 **GMP:** Good manufacturing practice

1790 **IgG:** Immunoglobulin G

1791 **Impermeable Container:** Containers that provide a permanent barrier to the passage of gases or
1792 solvents, e.g., sealed aluminium tubes for semi-solids, sealed glass ampoules for solutions and
1793 aluminium/aluminium blisters for solids.

1794 **Impurity:** Any component of the drug substance or drug product which is not the synthetic chemical
1795 or biological entity defined as the active ingredient, excipient, or other additives to the drug product.
1796 The source of the impurity could be product or process related.

1797 **Intermediate:** A material that is produced during a manufacturing process, which is not the final drug
1798 substance or the final drug product. Intermediates are identified by a manufacturer, who should establish
1799 and justify a control strategy to assure the intermediate's stability within conditions of the
1800 manufacturing process. Bulk drug products are considered drug product intermediates.

1801 **LED:** Light-emitting diode

1802 **Long-term Testing:** Stability studies under the recommended long-term storage condition for the re-
1803 test period or shelf life proposed (or approved) for labelling. Long-term testing results in real time data
1804 obtained at the long-term storage condition.

1805 **Mass balance:** For synthetic chemical entities, the process of adding together the assay value and levels
1806 of degradation products to see how closely these add up to 100% of the initial value, with due
1807 consideration of the margin of analytical error.

1808 **Mean kinetic temperature:** A single derived temperature that, if maintained over a defined period of
1809 time, affords the same thermal challenge to a drug substance or drug product as would be experienced
1810 over a range of both higher and lower temperatures for an equivalent defined period. The mean kinetic
1811 temperature is higher than the arithmetic mean temperature and takes into account the Arrhenius
1812 equation.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1813 When establishing the mean kinetic temperature for a defined period, the formula of J. D. Haynes (28)
1814 can be used.

1815 **Model verification:** The process of ensuring the model is implemented as intended. For example,
1816 confirmation that the modelled data for the initially proposed shelf life or re-test period are comparable
1817 to confirmatory experimental data.

1818 **Model validation:** The process of determining the suitability of a model by challenging it with
1819 independent test data and comparing the results against predetermined performance criteria.

1820 **NMT:** Not More Than

1821 **Ongoing stability studies (also referred to as annual stability studies):** Stability studies conducted
1822 under long-term storage conditions on an annual basis to ensure the consistency of stability related
1823 quality attributes at the approved storage conditions over the product lifecycle. These studies also allow
1824 for the monitoring of the stability characteristics and examine trends in the stability data to confirm the
1825 appropriate storage conditions relevant for the product and to confirm a re-test period or a shelf life.

1826 **Open Dish Study:** A study conducted without the protection of the immediate container, representing
1827 a worst-case scenario under controlled conditions.

1828 **Pilot Scale Batch:** A batch of an active pharmaceutical ingredient or finished pharmaceutical product
1829 manufactured by a procedure fully representative of and simulating that to be applied to a full
1830 production-scale batch. For example, for synthetic chemical entities in solid dosage forms, a pilot scale
1831 is generally, at a minimum, one-tenth that of a full production scale or 100 000 units, whichever is the
1832 larger, unless otherwise adequately justified. For biologics, the steps of upstream and downstream
1833 processing should be identical except for the scale of production.

1834 **PQS:** Pharmaceutical Quality System

1835 **Primary Batch:** A batch of a drug substance or drug product used in a primary stability study.

1836 **Primary Stability Studies:** Stability studies conducted under the accelerated and long term (and, where
1837 applicable, intermediate) storage conditions undertaken on primary stability batches to establish a re-
1838 test period or a shelf life. Where appropriate, the primary stability studies may be conducted on non-
1839 production scale batches.

1840 **Prior Knowledge:** Prior knowledge refers to existing knowledge and includes internal knowledge (e.g.,
1841 development and manufacturing experience), external knowledge (e.g., scientific and technical
1842 publications, including vendors' data, literature and peer-reviewed publications), or the application of
1843 established scientific principles (e.g., chemistry, physics and engineering principles).

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1844 **Production Batch:** A batch of a drug substance or drug product manufactured at production scale using
1845 production equipment and process in the commercial production site as specified in the regulatory
1846 submission.

1847 **Product lifecycle stability studies:** Stability studies conducted under the accelerated, intermediate, or
1848 long-term storage conditions (as applicable) to support product lifecycle changes by assessing whether
1849 the change has an impact on any stability related quality attributes of the commercial drug substance or
1850 product under the labelled storage, handling and use conditions.

1851 **RH:** Relative Humidity

1852 **Re-test Date:** The date after which samples of the drug substance should be examined to ensure that
1853 the material is still in compliance with the specification and thus suitable for use in the manufacture of
1854 a given drug product.

1855 **Re-test Period:** The re-test period is a period of time during which the drug substance is expected to
1856 remain within its specification and, therefore, can be used in manufacture of a given drug product,
1857 provided the drug substance has been stored under the defined conditions. After this period, a batch of
1858 drug substance can be re-tested for compliance with its specification and then used immediately for
1859 manufacture of drug product. A re-test period is normally applicable to synthetic drug substances and
1860 may be applicable to certain well-characterised biological drug substances.

1861 **Semi-permeable Containers:** Containers that allow the passage of solvent or gas, while preventing
1862 solute loss. Examples of semi-permeable containers include plastic bags and semi-rigid, low-density
1863 polyethylene (LDPE) pouches for large volume parenteral (LVPs), and LDPE ampoules, bottles and
1864 vials.

1865 **Shelf life:** The time period during which a drug substance or drug product is expected to remain within
1866 the approved shelf life specification, provided that it is stored under the conditions defined on the label.

1867 **Significant Change for Synthetics:** Significant change for a drug substance is defined as failure to
1868 meet its specification. In general, “significant change” for a drug product is defined as: (1) A 5% change
1869 in assay from its initial value; or failure to meet the acceptance criteria for potency when using
1870 biological or immunological procedures (e.g., for antibiotics); (2) Any degradation product exceeding
1871 its acceptance criterion; (3) Failure to meet the acceptance criteria for appearance, physical attributes
1872 and functionality test (e.g., colour, phase separation, re-suspendability, caking, hardness, dose delivery
1873 per actuation); however, some changes in physical attributes (e.g., softening of suppositories, melting
1874 of creams) may be expected under accelerated conditions; and, as appropriate for the dosage form; (4)
1875 Failure to meet the acceptance criterion for pH; (5) Failure to meet the specification for dissolution
1876 testing; or, (6) A 5% loss in water from its initial value for products stored in semi-permeable containers.

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1877 **Storage Condition Tolerances:** The acceptable variations in temperature and relative humidity of
1878 storage facilities for formal stability studies.

1879 **Stress Studies:** Studies undertaken to assess the effect of stress conditions on the drug substance and/or
1880 drug product which can be divided into two categories:

1881 1) Studies conducted under stress conditions that are more severe than the accelerated conditions, but
1882 not necessarily intended to deliberately degrade the sample, which may be useful in gaining product
1883 knowledge and evaluating the effect of excursions outside the label storage conditions.

1884 2) Studies conducted under forced degradation conditions that are intended to deliberately degrade the
1885 sample (such as elevated temperature, humidity, pH, oxidation, agitation and light) and may be used to:
1886 investigate the potential degradation pathways; gain product knowledge; understand the intrinsic
1887 stability of drug substance; and used to develop and confirm stability-indicating nature of the analytical
1888 procedure.

1889 **Supporting Data:** Data, other than those from formal stability studies, that support the analytical
1890 procedures, the proposed re-test period or shelf life and the label storage statements. Such data include
1891 (1) stability data on early synthetic route batches of drug substance, small scale batches of materials,
1892 investigational formulations not proposed for marketing, related formulations and product presented in
1893 containers and closures other than those proposed for marketing; (2) information regarding test results
1894 on containers; and (3) other scientific rationales.

1895 **Supportive stability studies:** Ancillary stability studies that are conducted (as applicable) to support
1896 the practical use of the product (including label claims) or a re-test period or a shelf life (e.g.,
1897 photostability, in-use, short-term studies and studies to support excursions or modelling). Data to
1898 support short-term storage conditions, where relevant, may be provided as part of the primary stability
1899 studies.

1900

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

1901 17 REFERENCES

- 1902 1. ICH Q2 Validation of Analytical Procedures/ ICH Q14 Analytical Procedure Development
- 1903 2. ICH Q5E Comparability of Biotechnological/Biological Products Subject to Changes in their
- 1904 Manufacturing Process
- 1905 3. ICH Q6A Specifications: Test Procedures and Acceptance Criteria for New Drug Substances
- 1906 and New Drug Products: Chemical Substances)
- 1907 4. ICH Q6B Specifications: Test Procedures and Acceptance Criteria for
- 1908 Biotechnology/Biological Products
- 1909 5. ICH Q7 Good Manufacturing Practice Guide for Active Pharmaceutical Ingredients
- 1910 6. ICH Q8 Pharmaceutical Development
- 1911 7. ICH Q9 Quality Risk Management
- 1912 8. ICH Q10 Pharmaceutical Quality System
- 1913 9. ICH Q11 Development and Manufacture of Drug Substances (Chemical Entities and
- 1914 Biotechnological/Biological Entities
- 1915 10. ICH Q12 Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle
- 1916 Management
- 1917 11. ICH Q13 Continuous Manufacturing of Drug Substances and Drug Products
- 1918 12. ICH Quality Implementation Working Group Points to Consider (R2): Guide for ICH
- 1919 Q8/Q9/Q10 Implementation
- 1920 13. World Health Organisation. Technical Report Series 953, Annex 2, Appendix 1: Stability
- 1921 testing of active pharmaceutical ingredients and finished pharmaceutical products: Stability
- 1922 conditions for WHO Member States by Region (Updated March 2021).
- 1923 14. WHO TRS 1010 - Annex 10: WHO guidelines on stability testing of active pharmaceutical
- 1924 ingredients and finished pharmaceutical products (2018).
- 1925 15. Grimm W. Drugs Made in Germany. 1985;28:196-202 and 1986; 29:39-47
- 1926 16. Grimm W. Drug Dev Ind Pharm. 1998;24(4):313-25
- 1927 17. ISO/CIE International Organization for Standardization/International Commission on
- 1928 Illumination, International Standard 18909:2022,
- 1929 18. Blümel A, et al. Journal of Pharmaceutical Sciences. 2023; 112(9):2332-2346,
- 1930 19. Qiu F, Scrivens G. Accelerated predictive stability (APS): fundamentals and pharmaceutical
- 1931 industry practices. London, UK;2018
- 1932 20. Murphy JR, Weisman D. Using random slopes for estimating shelf-life. Proceedings of the
- 1933 American Statistical Association of the Biopharmaceutical Section. 1990; p. 196-200
- 1934 21. Carstensen JT. Stability and dating of solid dosage forms. In: Pharmaceutics of solids and solid
- 1935 dosage forms. Wiley-Interscience; 1977. p. 182-185

ICH Q1 STABILITY STUDIES FOR DRUG SUBSTANCES AND DRUG PRODUCTS

- 1936 22. Ruberg SJ, Stegeman JW. Pooling data for stability studies: Testing the equality of batch
1937 degradation slopes. *Biometrics*. 1991;47(4):1059-1069
- 1938 23. Ruberg SJ, Hsu JC. Multiple comparison procedures for pooling batches in stability studies.
1939 *Technometrics*. 1992;34(4):465-472
- 1940 24. Shao J, Chow SC. Statistical inference in stability analysis. *Biometrics*. 1994;50(3):753-763
- 1941 25. Yoshioka S, Aso Y, Kojima S. Assessment of shelf-life equivalence of pharmaceutical
1942 products. *Chem Pharm Bull (Tokyo)*. 1997;45(8):1482-4
- 1943 26. Chen JJ, Ahn H, Tsong Y. Shelf-life estimation for multifactor stability studies. *Drug Inf J*.
1944 1997;31(3):573-587
- 1945 27. Fairweather W, Lin TD, Kelly R. Regulatory, design, and analysis aspects of complex stability
1946 studies. *J Pharm Sci*. 1995;84(11):1322-1326
- 1947 28. J. D. Haynes, *J. Pharm. Sci.*, 60:927-929, (1971)

1948 **18 ANNEXES**

1949 **Annex 1 Reduced Stability Protocol Design**

1950 **A1-1 Introduction**

1951 This annex is intended to address recommendations on the application of reduced stability protocol designs
1952 conducted in accordance with principles outlined in the core guideline.

1953 A reduced stability protocol design is one in which samples for every factor combination are not all tested
1954 at all time points.

1955 The reduced stability designs presented below may be proposed for any formal stability study protocol, i.e.,
1956 primary, commitment, ongoing (annual), product lifecycle. Implementation of some strategies requires a
1957 strong understanding of product stability performance and risks and may be more suitable for lifecycle
1958 applications or where prior knowledge may be leveraged. If a reduced protocol design is introduced after
1959 the original marketing authorisation, change management procedures should be followed (refer to ICH
1960 Q10) in accordance with regional requirements.

1961 This annex provides guidance on bracketing and matrixing study designs and other science- and risk-based
1962 reduced stability design strategies. Specific principles are defined for situations in which reduced stability
1963 strategies can be applied. Sample designs are provided for illustrative purposes and should not be
1964 considered the only, or the most appropriate, designs in all cases.

1965 **A1-2 General Principles for Reduced Stability Designs**

1966 Any reduced design should be able to meet the objective of the study with a defined and acceptable risk as
1967 compared to a full design. The potential risk associated with a reduced design should be considered (e.g.,
1968 establishing a shorter re-test period or shelf life than could be derived from a full design due to the reduced
1969 amount of data collected).

1970 Reduced designs can be applied to long-term stability studies for most types of drug products, although
1971 additional justification should be provided for complex products (e.g., a drug delivery system where there
1972 are many potential drug-device interactions, certain biological products). For the study of drug substances,
1973 matrixing is usually of limited utility and bracketing is generally not applicable; however, reduced time
1974 points and/or attribute testing could be justified where little or no degradation occurs. Additional reduced
1975 protocol designs are also discussed and may be most relevant when product and stability knowledge are

Annex 1 Reduced Stability Protocol Design
ICH Q1 Stability Studies for Drug Substances and Drug Products

1976 high (e.g., to support post-approval changes; Refer to Section 15 – Stability Considerations for
1977 Commitments and Product Lifecycle Management).

1978 Whether a reduced design can be applied depends on a number of circumstances, as discussed in detail
1979 below. The use of any reduced design should be justified. In certain cases, the condition described in this
1980 annex is sufficient justification for use, while in other cases, additional justification should be provided.
1981 The type and level of justification in each of these cases will depend on the available supporting data and
1982 risk assessment.

1983 The reduced designs discussed below are based on different principles. Therefore, careful consideration
1984 and scientific justification should precede the use of more than one reduced design principle together in one
1985 design.

1986 If risks are identified during a reduced design study, a change to full testing or to a less reduced design may
1987 be implemented with an explanation of the drivers for the increase to the design. Proper adjustments should
1988 be made to the statistical analysis, where applicable, to account for the increase in sample size as a result
1989 of the change (26-27). Once the design is changed, full testing or less reduced testing should be carried out
1990 through the remaining time points of the stability study.

1991 **A1-3 Reduced Design Approaches**

1992 **A1-3.1 Bracketing**

1993 Bracketing is design of a stability schedule such that only samples on the extremes of certain design factors,
1994 e.g., strength, package size, would be tested at all time points as in a full design. The design assumes that
1995 the stability of any intermediate levels is represented by the stability of the extremes tested. Bracketing can
1996 be applied to different container sizes or different fills in the same container closure system.

1997 The use of a bracketing design would not be considered appropriate if it cannot be demonstrated that the
1998 strengths or container sizes and/or fills selected for testing are indeed the extremes.

1999 **A1-3.1.1 Design Factors**

2000 Design factors are variables (e.g., strength, container size and/or fill) to be evaluated in a study design for
2001 their effect on product stability.

2002 **A1-3.1.1.1 Strength**

2003 Bracketing can be applied to studies with multiple strengths of identical or closely related formulations

Annex 1 Reduced Stability Protocol Design
ICH Q1 Stability Studies for Drug Substances and Drug Products

2004 whose stability trends could be reasonably considered similar. Examples include but are not limited to (1)
2005 capsules of different strengths made with different fill plug sizes from the same powder blend, (2) tablets
2006 of different strengths manufactured by compressing varying amounts of a common blend, (3) liquid
2007 formulation of a biological of different concentration or fill volume, unless there are additional
2008 considerations for excluding some complex biologicals or live vaccines, (4) solutions and solid dosage
2009 forms for oral use of different strengths with formulations that differ only in minor excipients (e.g.,
2010 colourants, flavourings).

2011 With justification and supporting data, bracketing can be applied to studies with multiple strengths where
2012 the relative amounts of drug substance and excipients change in a formulation.

2013 In cases where different excipients are used among strengths, bracketing generally should not be applied.

2014 **A1-3.1.1.2 Container Closure Sizes and/or Fills**

2015 Bracketing can be applied to studies of the same container closure system where either container size or fill
2016 varies while the other remains constant. However, if a bracketing design is considered where both container
2017 size and fill vary, it should not be assumed that the largest and smallest containers represent the extremes
2018 of all container closure system configurations. Care should be taken to select the extremes by comparing
2019 the various characteristics of the container closure system that may affect product stability. Depending on
2020 the dosage form and container closure system, the following characteristics may be considered relevant:
2021 container wall thickness, closure geometry, surface area to volume ratio, headspace to volume ratio, water
2022 vapour permeation rate or oxygen permeation rate per dosage unit or unit fill volume, product contact
2023 coating, stopper or closure formulation and coating, as appropriate.

2024 Bracketing can be applied to studies for the same container when the closure varies. Justification could
2025 include a discussion of the relative permeation rates of the bracketed container closure systems. Special
2026 consideration and justification may be required for drug products stored in semi-permeable containers (refer
2027 to Section 7.2.2 – Storage Conditions for Products Packaged in Semi-Permeable Containers).

2028 **A1-3.1.2 Design Considerations and Potential Risks**

2029 Before a bracketing design is applied, its effect on the re-test period or shelf life estimation should be
2030 assessed. If the stability of the extremes is shown to be different, the intermediates should be considered
2031 no more stable than the least stable extreme (i.e., the shelf life for the intermediates should not exceed that
2032 for the least stable extreme).

2033 If, after starting the studies, one of the extremes is no longer expected to be marketed, the study design can

2034 be maintained to support the bracketed intermediates.

2035 **A1-3.1.3 Design Example**

2036 An example of a bracketing design is given in **Table A1- 1**. This example is based on a product available
2037 in three strengths and three container sizes. In this example, the 15 mL and 500 mL container sizes represent
2038 the extremes. The batches for each selected combination should be tested at each time point as in a full
2039 design. Note that the example below could represent multiple product types (synthetics and biologicals).

2040 **Table A1- 1: Example of a Bracketing Design**

Strength		50 mg			75 mg			100 mg		
Batch		1	2	3	1	2	3	1	2	3
Container size	15 mL	T	T	T				T	T	T
	100 mL									
	500 mL	T	T	T				T	T	T

2041 Key: T = Sample tested

2042 **A1-3.2 Matrixing**

2043 Matrixing is the design of a stability schedule such that a selected subset of the total number of possible
2044 samples for all factor combinations would be tested at a specified time point. At a subsequent time point,
2045 another subset of samples for all factor combinations is tested. The design assumes that the stability of each
2046 subset of samples tested represents the stability of all samples at a given timepoint. The differences in the
2047 samples for the same drug product should be identified, for example, covering different batches, different
2048 strengths, different sizes of the same container closure system and different container closure systems.

2049 When a secondary packaging system contributes to the stability of the drug product, matrixing can be
2050 performed across the container closure systems (e.g., inclusion of a foil overwrap).

2051 Each storage condition should be treated separately under its own matrixing design. Matrixing should not
2052 be performed across test attributes. However, alternative matrixing designs for different test attributes can
2053 be applied if justified.

2054 **A1-3.2.1 Design Factors**

2055 Matrixing designs can be applied to strengths with identical or closely related formulations. Examples
2056 include but are not limited to (1) capsules of different strengths made with different fill plug sizes from the
2057 same powder blend, (2) tablets of different strengths manufactured by compressing varying amounts of the

Annex 1 Reduced Stability Protocol Design
ICH Q1 Stability Studies for Drug Substances and Drug Products

2058 same granulation and (3) oral solutions of different strengths with formulations that differ only in minor
2059 excipients (e.g., colourants or flavourings), (4) biological of different concentration and fill volume, (5)
2060 biologicals of different concentration with different size container or pre-filled syringe size, (6) relative
2061 amounts of excipients (e.g., minor variation to the concentration of the filler). Justification should generally
2062 be based on supporting data. For example, to matrix across two different closures or container closure
2063 systems, supporting data could be supplied showing relative moisture vapour transmission rates or similar
2064 protection against light. Alternatively, supporting data could be supplied to show that the drug product is
2065 not affected by oxygen, moisture, or light.

2066 Other factors for matrixing may be considered if justified, e.g., batches made by using the same process
2067 and equipment and container sizes and/or fills in the same container closure system.

2068 **A1-3.2.2 Design Considerations**

2069 A matrixing design should be balanced as far as possible so that each combination of factors is tested to the
2070 same extent over the intended duration of the study and through the last time point prior to submission.
2071 However, due to the recommended full testing at certain time points, as discussed below, it may be difficult
2072 to achieve a complete balance in a design where time points are matrixed.

2073 In a design where time points are matrixed, all selected factor combinations should be tested at the initial
2074 and final time points, while only certain fractions of the designated combinations should be tested at each
2075 intermediate time point. In addition, unless justified, data from at least three time points, including initial,
2076 should be available for each selected combination through the first 12 months of the study.

2077 For matrixing at an accelerated storage condition, care should be taken to ensure testing occurs at a
2078 minimum of three time points, including initial and final, for each selected combination of factors. Thus,
2079 matrixing for accelerated studies may have limited application.

2080 When a matrix on design factors is applied, if one strength or container size and/or fill is no longer intended
2081 for marketing, stability testing of that strength or container size and/or fill can be continued to support the
2082 other strengths or container sizes and/or fills in the design. Stability commitments in accordance with
2083 Section 15 – (Stability Considerations for Commitments and Product Lifecycle Management) should reflect
2084 the proposed commercial presentations.

2085 **A1-3.2.3 Design Examples**

2086 Examples of matrixing designs on time points for a product in two strengths (50 mg and 75 mg) are shown
2087 in Tables A1-2 and A1-3. The terms one-half reduction and one-third reduction refer to the reduction

Annex 1 Reduced Stability Protocol Design
ICH Q1 Stability Studies for Drug Substances and Drug Products

2088 strategy initially applied to the full study design for timepoints excluding initial, 12-months and final. For
2089 example, a one-half reduction initially eliminates one in every two time points from the full study design
2090 and a one-third reduction initially removes one in every three. In the examples shown in Tables 2 and 3,
2091 the reductions are less than one-half and one-third due to the inclusion of full testing of all factor
2092 combinations at some time points.

2093 **Table A1- 2 Example One-Half Reduction Matrix Design on Time Points for a Product with Two
2094 Strengths**

Time point (months)			0	3	6	9	12	18	24	36
Strength	50 mg	Batch 1	T	T		T	T		T	T
		Batch 2	T	T		T	T	T		T
		Batch 3	T		T		T	T		T
	75 mg	Batch 1	T		T		T		T	T
		Batch 2	T	T		T	T	T		T
		Batch 3	T		T		T		T	T

2095 Key: T = Sample tested

2096 **Table A1- 3 Example One-Third Reduction Matrix Design on Time Points for a Product with Two
2097 Strengths**

Time point (months)			0	3	6	9	12	18	24	36
Strength	50 mg	Batch 1	T	T		T	T		T	T
		Batch 2	T	T	T		T	T		T
		Batch 3	T		T	T	T	T	T	T
	75 mg	Batch 1	T		T	T	T	T	T	T
		Batch 2	T	T		T	T		T	T
		Batch 3	T	T	T		T	T		T

2098 Key: T = Sample tested

2099 Additional examples of matrixing designs for a product with three strengths (50 mg, 75 mg and 100 mg)
2100 and three container sizes (15 mL, 100 mL and 500 mL) are given in Tables A1-4 and A1-5. Table A1-4
2101 shows a design with matrixing on time points only and Table 5 depicts a design with matrixing on time
2102 points and factors. In Table A1-4, all combinations of batch, strength and container size are tested, while
2103 in Table A1-5, certain combinations of batch, strength and container size are not tested.

Annex 1 Reduced Stability Protocol Design
ICH Q1 Stability Studies for Drug Substances and Drug Products

2104 **Table A1- 4 Examples of Matrixing on Time Points for a Product with Three Strengths and Three**
2105 **Container Sizes**

Strength	50 mg			75 mg			100 mg		
Container size	15 mL	100 mL	500 mL	15 mL	100 mL	500 mL	15 mL	100 mL	500 mL
Batch 1	T1	T2	T3	T2	T3	T1	T3	T1	T2
Batch 2	T2	T3	T1	T3	T1	T2	T1	T2	T3
Batch 3	T3	T1	T2	T1	T2	T3	T2	T3	T1

2106

2107 **Table A1- 5 Examples of Matrixing on Time Points and Factors for a Product with Three Strengths**
2108 **and Three Container Sizes**

Strength	50 mg			75 mg			100 mg		
Container size	15 mL	100 mL	500 mL	15 mL	100 mL	500 mL	15 mL	100 mL	500 mL
Batch 1	T1	T2		T2		T1		T1	T2
Batch 2		T3	T1	T3	T1		T1		T3
Batch 3	T3		T2		T2	T3	T2	T3	

2109

2110 **Key for Table A1- 4 and Table A1- 5:**

Time-point (months)	0	3	6	9	12	18	24	36
T1	T		T	T	T	T	T	T
T2	T	T		T	T		T	T
T3	T	T	T		T	T		T

2111 T = Sample tested

2112 **A1-3.2.4 Applicability and Degree of Reduction**

2113 The following, although not an exhaustive list, should be considered when a matrixing design is
2114 contemplated:

- 2115 • knowledge of data variability
2116 • expected stability of the product
2117 • availability of supporting data, including enhanced stability knowledge if available
2118 • stability differences in the product within a factor or among factors

Annex 1 Reduced Stability Protocol Design
ICH Q1 Stability Studies for Drug Substances and Drug Products

- 2119 • number of factor combinations in the study and/or
2120 • stability risk assessment, if performed.

2121 Data variability and product stability, as shown by supporting data, should be considered when a matrixing
2122 design is applied. If the supportive data show large variability, a matrixing design should not be applied.

2123 If a matrixing design is considered applicable, the degree of reduction that can be made from a full design
2124 depends on the number of factor combinations being evaluated. The more factors associated with a product
2125 and the more levels in each factor, the larger the degree of reduction that can be considered. However, any
2126 reduced design should have the ability to adequately predict the product shelf life.

2127 **A1-3.2.5 Potential Risk**

2128 Due to the reduced amount of data collected, a matrixing design on factors other than time points generally
2129 has less precision in shelf life estimation and yields a shorter shelf life than the corresponding full design.
2130 In addition, such a matrixing design may have insufficient power to detect certain main or interaction
2131 effects, thus leading to incorrect pooling of data from different design factors during shelf life estimation.
2132 If there is an excessive reduction in the number of factor combinations tested and data from the tested factor
2133 combinations cannot be pooled to establish a single shelf life, it may be impossible to estimate the shelf
2134 lives for the missing factor combinations. The risk may be mitigated through use of supportive stability
2135 data.

2136 A study design that matrixes on time points only may be used to detect differences in rates of change among
2137 factors and to establish a reliable shelf life. This strategy assumes linearity and full testing of all other factor
2138 combinations at both the initial and final time points.

2139 **A1-3.3 Knowledge and Risk Based Protocol Reductions**

2140 Additional reduced stability protocol designs that are different from bracketing and matrixing approaches
2141 may also be applied. Product knowledge and risk-based assessments are used to justify these stability
2142 strategies. If the knowledge- and risk-based reduced protocol is used to support a post-approval change,
2143 the risk assessment should also consider the potential impact of the change on the stability performance of
2144 the product. As discussed in ICH Q12, Chapter 9, there are numerous methods to assess the impact of a
2145 change in addition to long-term stability studies.

2146 **A1-3.3.1 Design Factors**

2147 Where justified, a reduction may be applied to attributes, timepoints, samples and/or storage conditions.

Annex 1 Reduced Stability Protocol Design
ICH Q1 Stability Studies for Drug Substances and Drug Products

2148 To apply these strategies, the applicant should present an understanding of what attributes are subject to
2149 change over the re-test period/shelf life and what conditions might impact their rate of change. This should
2150 be supported by data and/or product knowledge and used to conduct a risk assessment that justifies the
2151 proposed reductions.

2152 **A1-3.3.2 Design Considerations and Potential Risks**

2153 Stability risk assessment tools should be developed throughout the product lifecycle in accordance with
2154 ICH Q9. The stability understanding used to assess risk may come from multiple sources, including stress
2155 testing, accelerated testing, formal stability studies and prior knowledge from product development, e.g.,
2156 on leachables and container closure integrity.

2157 Quality attributes that are considered low risk for stability testing are those that are unlikely to change on
2158 stability and are not critical to safety and efficacy of the product. An example of this is residual solvent
2159 content in a crystalline synthetic drug substance, since residual solvent content is assessed at release and
2160 will not increase over time and does not have the potential to impact other CQAs. With appropriate
2161 justification, these attributes may be removed from the stability protocol.

2162 Certain quality attributes may be removed when the attribute has the potential to change but has been
2163 demonstrated not to change over time or is monitored via other quality attributes and the change is
2164 established to not have a meaningful impact on quality, safety and efficacy through the re-test period or
2165 shelf life. However, to support a future change the impact on the stability of these quality attributes should
2166 be assessed and if necessary, reintroduced.

2167 **A1-3.3.3 Design Strategies and Examples**

2168 Descriptions of protocol reduction strategies and examples of instances where a reduced protocol approach
2169 may be applied with justification are provided below. These strategies may be applied to other situations as
2170 well when justified.

2171 **Reductions from the Primary Stability Protocol for Stability Commitments:** Based on overall product
2172 knowledge, development data and/or results of the ongoing or completed primary stability study, the
2173 applicant may propose to remove attributes, storage conditions and/or timepoints for new protocols. This
2174 may be justified if the applicant:

- 2175 • Demonstrates that the attribute is unchanging on stability, not clinically meaningful, not relevant
2176 to the assessment of re-test period or shelf life and not required for monitoring of the quality, safety
2177 and efficacy of the drug product after release and during its expected lifecycle.

Annex 1 Reduced Stability Protocol Design
ICH Q1 Stability Studies for Drug Substances and Drug Products

- 2178 • Demonstrates how different storage conditions may impact stability and the worst-case storage
2179 conditions relevant to the drug substance or drug product are selected for evaluation.
2180 • Demonstrates that specific timepoints are not meaningful for assessment of trends.

2181 ***Example 1 – Reduction from Primary Stability Study to the Commitment Study that Confirms Shelf Life for***
2182 ***Synthetic Solid Oral Tablet.***

2183 Justification for the reduction from the primary protocol to the commitment protocol to confirm the shelf
2184 life (refer to Section 15 Stability Considerations for Commitments and Product Lifecycle Management)
2185 below may include historical data and accumulated knowledge supporting:

- 2186 • lack of change to water activity and microbiological attributes,
2187 • demonstration that trends are not significant justifying removal of the 9- and 18-month timepoints
2188 • knowledge the product is stable when stored at 30 °C/75 % RH and that this data may be used to
2189 represent storage at less strenuous room temperature conditions

2190 **Table A1- 6 Example of a Protocol Design for Primary Stability Studies**

Storage Condition	Timepoint (months)							
	Initial	3	6	9	12	18	24	36
25°C/60% RH	A	B	B	B	C	B	C	C
30°C/75% RH		B	B	B	C	B	C	C
40°C/75%RH		B	B					

2191 A: Release Testing

2192 B: Appearance, Assay, Degradation Products, Dissolution, Water Content

2193 C: Appearance, Assay, Degradation Products, Dissolution, Water Content, Microbiological Testing

2194

2195 **Table A1- 7 Example of a Protocol Design for Commitment Stability Studies to Confirm Shelf Life**

Storage Condition	Timepoint (months)					
	Initial	3	6	12	24	36
30°C/75% RH	A	B	B	B	B	B
40°C/75%RH		B	B			

2196 A: Release Testing

2197 B: Appearance, Assay, Degradation Products, Dissolution

2198 **Targeted Stability Designs:**

2199 ***Worst-Case Analysis Strategies:*** When stability characteristics for a product are well understood and a
2200 worst-case presentation is predictable, the applicant may design a stability strategy that evaluates the worst-
2201 case presentation with the conclusion that other presentations will demonstrate equivalent or better stability
2202 performance.

2203 ***Example 2 - Different Drug Product Concentrations.*** If it is well-understood and predictable how the
2204 relative amounts of drug substance and excipients impact the stability profile for multiple concentrations,
2205 a worst-case approach could be proposed to support a reduction to samples. This approach may be justified
2206 where the concentration that provides the worst-case effect on stability is assessed. It is inferred based on
2207 product knowledge that if suitable stability is demonstrated for the worst-case concentration, the stability
2208 for other concentrations would be similar or improved.

2209 ***Example 3 - Multiple Container Closure System Configurations and/or Fill Volume.*** If the characteristics
2210 of the product in different container sizes and/or with different fills are well understood and their impact on
2211 stability related quality attributes are predictable, then a worst-case approach could be proposed to support
2212 a reduction to samples. In this example, the configuration that presents the 'worst-case' for product stability
2213 is selected for the stability study. It is inferred based on product knowledge that if suitable stability is
2214 demonstrated for the worst-case configuration, the stability for other configurations would be similar or
2215 improved.

2216 **A1-4 Data Evaluation for Reduced Study Designs**

2217 The statistical procedures described in Section 13 - Data Evaluation can be applied to the analysis of
2218 stability data obtained from any reduced study design.

2219 If a bracketing design is utilised, there is an assumption that the stability of the intermediate strengths or
2220 sizes/fills is represented by the stability at the extremes. If the statistical analysis indicates that the stability
2221 of the extreme strengths or sizes/fills is different, the intermediate strengths or sizes/fills should be
2222 considered no more stable than the least stable extreme. The statistical procedures suitable for multi-factor,
2223 full design study can be applied to the analysis of stability data obtained from a matrixing design study.
2224 The statistical analysis should clearly identify the procedure and assumptions used. The use of a matrixing
2225 design can result in an estimated shelf life shorter than that resulting from a full design.

2226 Where bracketing and matrixing are combined in one design or when an alternative reduced protocol is
2227 utilised, the same statistical principles may be applied.

Annex 2 Stability Modelling
ICH Q1 Stability Studies for Drug Substances and Drug Products

2228 **Annex 2 Stability Modelling**

2229 General information on selection of batches and minimum stability data at the time of submission and steps
2230 towards a comprehensive evaluation of available stability data are presented in Section 3 - Stability Protocol
2231 Design, Table 1 and Section 13 - Data Evaluation, respectively. When limited real-time data are available,
2232 Section 13.1 - General Considerations may be referenced for general considerations related to establishing
2233 an initial re-test or shelf life of drug substance or drug product using the decision tree for synthetics. While
2234 shelf life for biological products is generally established based on long-term stability data, enhanced
2235 stability modelling approaches could be considered for biological drug substances and drug products using
2236 the principles in section 2 of this Annex or using extrapolation principles (refer to Section 13.2.9-
2237 Extrapolation of Biologicals) for certain well-characterised biological drug substances with a well
2238 understood stability profile. This Annex provides additional and specific recommendations on statistical
2239 tools and models to support the use of extrapolation and enhanced stability modelling approaches.

2240 This Annex is structured in two parts, the first provides examples for the statistical tools and models
2241 commonly used to assess the data variability between batches for single factor and multi-factor, full design
2242 studies to establish re-test period or shelf life. The second part describes enhanced stability models for
2243 well-characterised molecules that may be based on empirical fit of stability data to kinetic functions or
2244 incorporating prior knowledge into data evaluation.

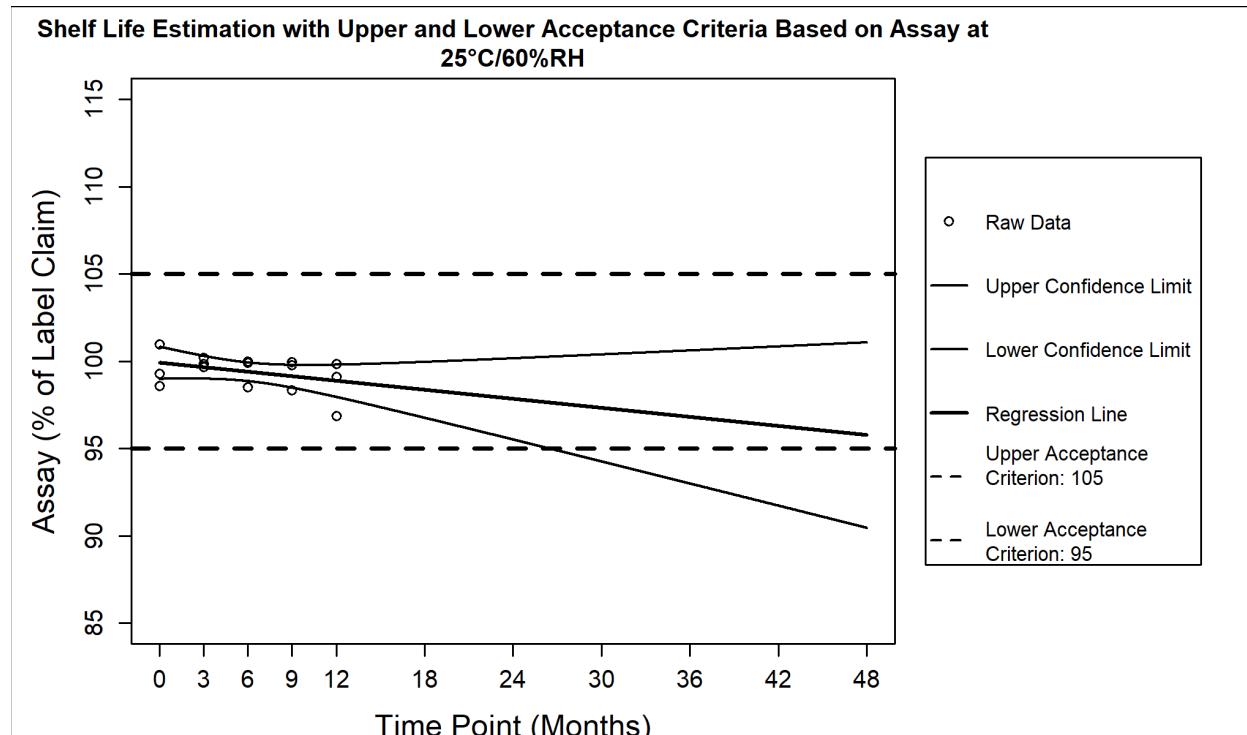
2245 As a general principle, the least complex statistical model that best describes the data is recommended to
2246 be used. Depending on the model and its context of use, the core study design elements that should be a
2247 part of any prospective stability modelling strategy include (1) defining the purpose of the model, (2) a
2248 description of the model, type of modelling (e.g., mechanistic or empirical) and its components, including
2249 specifying what is being estimated, tested for, or predicted, (3) identification of variables and appropriate
2250 statistical tools to achieve the stated study objectives, (4) sample size planning, (5) model development and
2251 fitting, including justification of the appropriateness of the input data (6) description, relevance and
2252 justification for use of product-specific prior knowledge and sources of prior knowledge, (7) model
2253 evaluation, including output data, limitations and assessing model robustness, (8) the quantitation and
2254 impact of uncertainty in any estimates or predictions providing adequate statistical assurance of any
2255 conclusions drawn (e.g., confidence, tolerance or prediction intervals) (9) model validation and verification
2256 with real-time data (10) plans for ongoing model monitoring and lifecycle considerations, as needed and
2257 (11) the risk management strategy if differences are observed between the predicted shelf life and actual
2258 shelf life based on confirmatory data. Consequently, its usage can be expected to be constrained by the
2259 modelling method, input or output data, conditions evaluated, etc., and should not be applied to conditions

Annex 2 Stability Modelling
ICH Q1 Stability Studies for Drug Substances and Drug Products

2260 outside the model's validated range, including different molecules, without a mechanistic understanding or
2261 robust scientific justification based on relevant prior knowledge. Refer to ICH Q8-10 Points to Consider
2262 for additional general principles related to model development, validation and verification. Models should
2263 be managed through a pharmaceutical quality system (PQS) after successful validation and verification.

2264 **A2-1 Statistical Evaluation of Stability Data from Single or Multi-factor Study Designs**

2265 In this section of the Annex, data evaluation is discussed for (A) single factor and (B) multi-factor, full-
2266 design studies; where a single factor could be the batches used for a single product and multi-factors
2267 includes different fill volumes, concentrations, container dimensions etc, to set re-test period or shelf life
2268 when the stability protocol is not reduced by bracketing or matrixing (21). When data from non-primary
2269 batches are used, the representativeness of the process, container closure system and analytical procedure
2270 should be justified, including the impact of any differences, in the context of the modelling strategy being
2271 proposed. Data from primary stability batches need to meet criteria outlined in Section 3 – Stability Protocol
2272 Design and elsewhere in this guideline. Useful references for the statistical approaches demonstrated in this
2273 guideline can be found in Section 17 – References (19, 25-27). Data evaluation for reduced study designs
2274 is described in Annex 1 (Reduced Stability Protocol Design) and Section 13 (Data Evaluation).

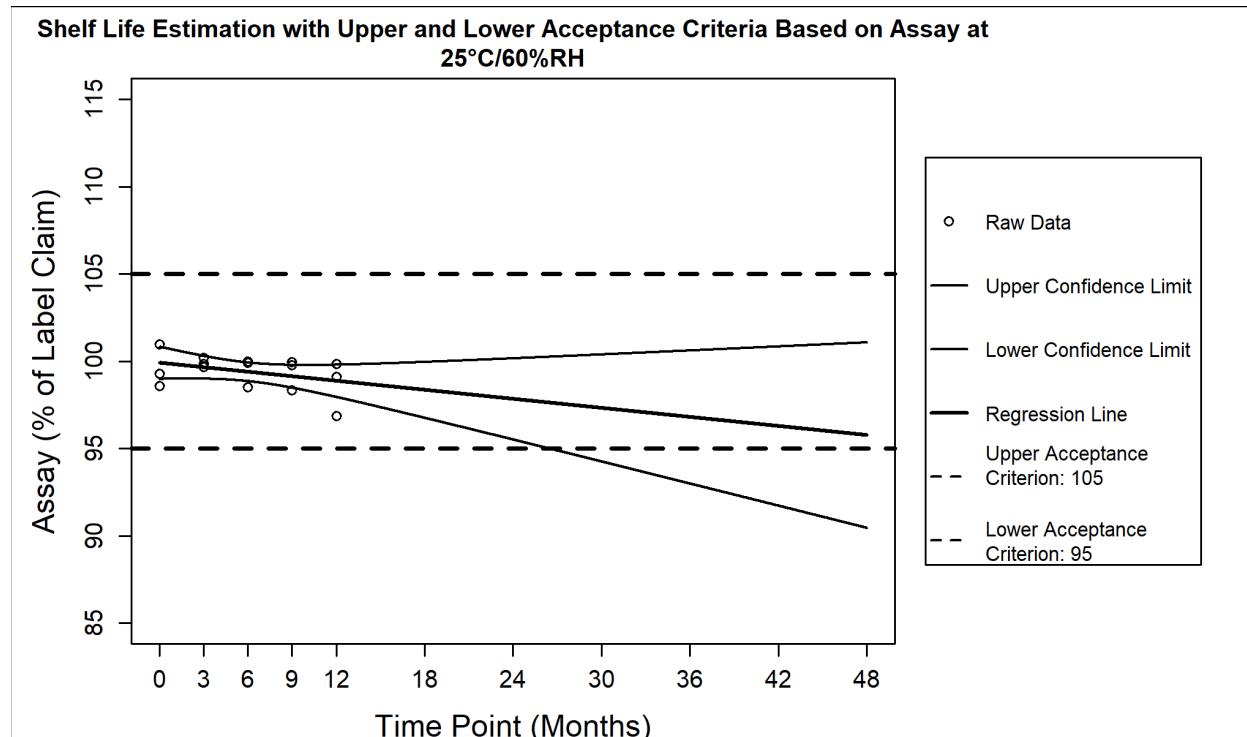

2275 **A2-1.1 Evaluation of Variability for Stability Data in Single-factor, Full Design Studies**
2276 **Using Linear Regression Models**

2277 In general, the mathematical relationship between certain drug substance or drug product quantitative
2278 quality attributes and time is inferred to be linear as a reasonable approximation in a range of interest. The
2279 guideline (refer to Section 13 – Data Evaluation) describes how, for chemical synthetic entities, the
2280 available long-term stability data may be extrapolated to establish a shelf life using a decision tree approach.
2281 Each primary, production and representative development batch in a formal stability protocol, stored under
2282 the long-term conditions, may be evaluated separately and the worst-case batch used to establish the re-test
2283 period or shelf life. Combining multiple batches is discussed in Annex 2, Section A2-1.2 - Linear Models
2284 Used to Assess Stability Profile and Section 13.2.2 - Combining Batches.

2285 Figure: A2- 1 shows the single batch (single-factor) regression line for assay of a synthetic chemical drug
2286 product with upper and lower acceptance criteria of 105 percent and 95 percent of label claim for assay,
2287 respectively. From 12 months of long-term data, a shelf life of 24 months can be proposed by extrapolation
2288 if no significant trends in accelerated and/or intermediate stability data. In this example, two-sided 95
2289 percent confidence limits for the mean are calculated. The lower confidence limit intersects the lower
2290 acceptance criterion at 30 months, while the upper confidence limit does not intersect with the upper
2291 acceptance criterion until later. Therefore, the proposed shelf life of 24 months can be supported by the

Annex 2 Stability Modelling
ICH Q1 Stability Studies for Drug Substances and Drug Products

2292 statistical analysis of the assay. A similar approach may be used for an attribute, such as an impurity, that
2293 increases over time and has a one-sided upper 95% confidence limit intersecting the attribute specification
2294 and support the target shelf life (: Shelf Life Estimation with Upper and Lower Acceptance Criteria



2295
2296 Figure: A2- 2). When the above approach is used, the mean value of the quantitative attribute (e.g., assay,
2297 degradation products) can be expected to remain within the acceptance criteria through the end of the re-
2298 test period or shelf life at a confidence level of 95 percent.

Annex 2 Stability Modelling
ICH Q1 Stability Studies for Drug Substances and Drug Products

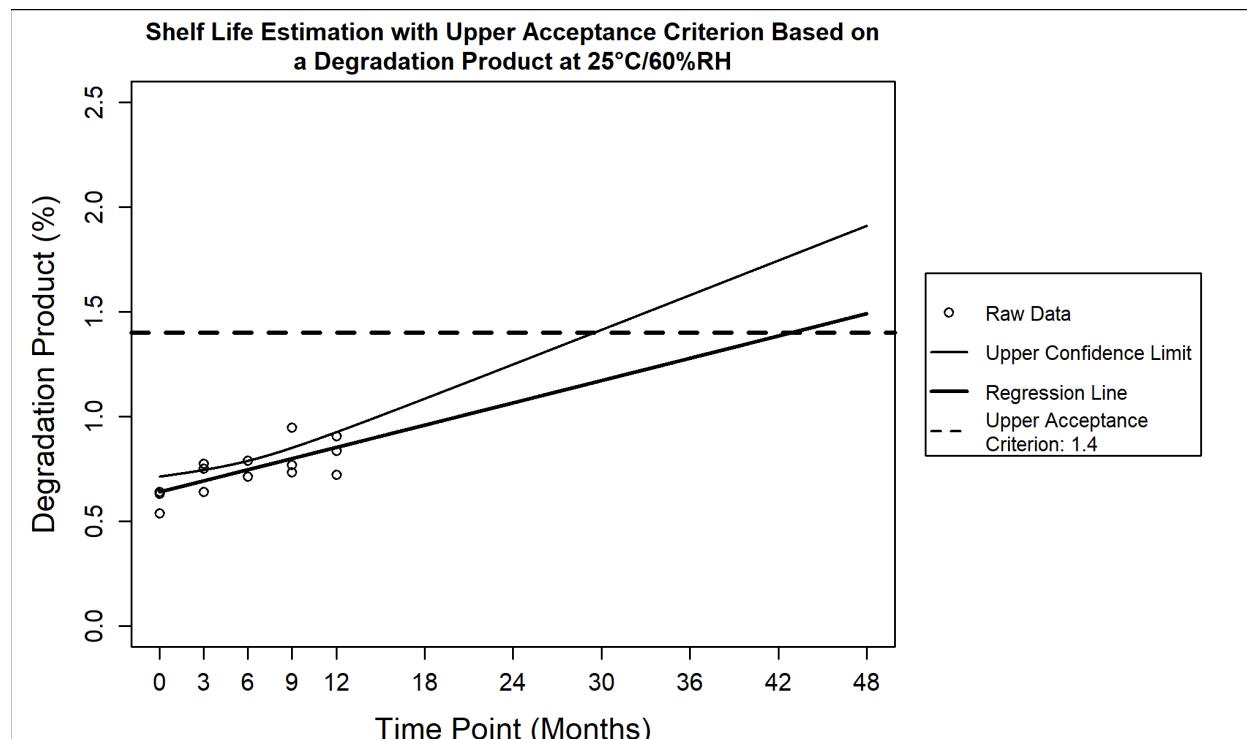

2299

Figure: A2- 1: Shelf Life Estimation with Upper and Lower Acceptance Criteria

2300

Figure: A2- 2: Shelf Life Estimation with Upper Acceptance Criterion

2302

2303

2304 **A2-1.2 Linear Models to Assess Stability Profile Using Multiple Batches**

2305 When stability data for more than a single batch are available, the data evaluation may use a linear model
2306 to evaluate the attribute stability profile at stated storage conditions and either establish or support a re-test
2307 period or shelf life. A linear model (Analysis of Covariance (ANCOVA), fixed effects or mixed effects
2308 model) may be applied to stability data, in which, the aim is to generate confidence bounds (or tolerance
2309 intervals for mixed effect models) and establish the maximum re-test period or shelf life that may be
2310 claimed. The accuracy and precision of the analysis is determined by the number of batches suitable for the
2311 analysis, confidence in the uniformity of data, and the number of data points within each time-course study.
2312 Applicants are advised that there is inherent risk of inaccurate representation of the stability profiles of
2313 manufactured batches dependent on the number of batches used and that batch numbers should be a
2314 consideration for study design. The minimum data set is discussed in the guideline (refer to Section 3 –
2315 Stability Protocol Design). A confidence interval based approach may be applied to evaluate shelf life when
2316 long-term data through shelf life are available (20).

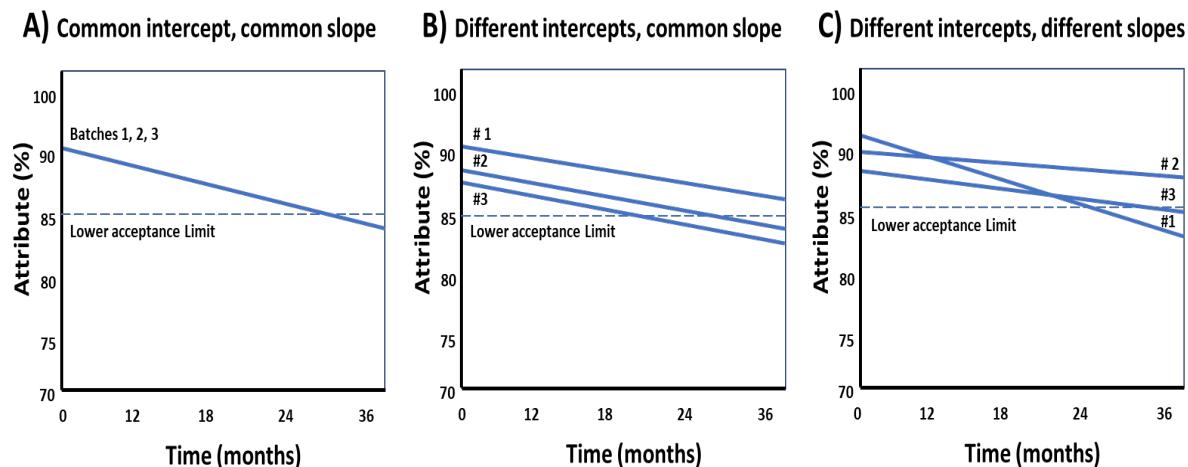
2317 Two model types are outlined below for the linear regression evaluation of stability data to establish re-test
2318 period or shelf life, fixed effects and mixed effects models. The models transform according to whether the
2319 batches are considered as a fixed (refer to Annex 2-Stability Modelling, Section 1.2.1 – Fixed Effects
2320 Model) or random variable (refer to Annex 2, Section 1.2.2 – Mixed Effects Model) and whether the
2321 variables are fixed or random. The choice of model generally depends on the number of batches used for
2322 the evaluation.

2323 **A2-1.2-1 Fixed Effects Model**

2324 A Fixed Effects Model may be chosen when limited batches are available, e.g., three primary stability
2325 batches. The ANCOVA Fixed Effects Model expresses the attribute value at each timepoint and each batch
2326 as a function of the average y-intercept and average slope with their respective variability across the batches.
2327 The level of significance for similarity between batches for intercept and slope should be proportionate to
2328 the number of batches used in the analysis, where a higher number of batches leads to lower significance
2329 level. When only 3 batches are available representative of the production batches, the model may consider
2330 batch as a fixed effect rather than as a random variable, with a selected significance level (p-value) for
2331 intercept and slope of 0.25. From regression lines, 95% confidence bounds for attributes may be one-sided
2332 or two-sided, depending on their acceptance criteria and if the attribute is known to be increasing or
2333 decreasing, e.g., a purity attribute typically has a one-sided acceptance criterion, whereas potency, for a
2334 biological drug substance or drug product, typically has two-sided acceptance criteria. Increasing the
2335 significance level for one-sided confidence intervals may be appropriate.

Annex 2 Stability Modelling
ICH Q1 Stability Studies for Drug Substances and Drug Products

2336 The possible models after sequentially evaluating the significance of slope variability and intercept
2337 variability between batches are indicated in Figure 3. There is no option for Different Slopes, Common
2338 Intercept because it is not realistic from a practical perspective to have all batches start from the same initial
2339 value at time (t)=0, but then have different slopes. When there is a distribution for the attribute at release
2340 (time zero), owing to lot-to-lot and assay variability, the model allows for different intercepts between
2341 batches.


2342 Scenario A: When the statistical analysis demonstrated no statistically significant differences among slopes
2343 and no statistically significant differences among y-intercepts (p-values > 0.25), the batch term is dropped
2344 from the model and a common slope/common intercept model is fit to the data, which can be recognised as
2345 a simple linear regression model supporting, in this example, a 24 months shelf life based on the confidence
2346 bound crossing the shelf life specification acceptance limit at or after the proposed shelf life.

2347 Scenario B: For attributes where the differences between the slopes were not statistically significant (p-
2348 value > 0.25), but differences between the y-intercepts were statistically significant (p-value < 0.25), the
2349 common slope/different intercepts model was used as the final model. The worst-case batch was identified
2350 as described in Figure 3 (batch #3). The shelf life is met if the worst-case batch's confidence bound crosses
2351 the shelf life specification acceptance limit at or after the proposed shelf life (e.g., after 18 months).

2352 Scenario C: For attributes where the differences between slopes were statistically significant (p-value
2353 <0.25), the different slopes/different intercepts model was used as the final model. The worst-case batch is
2354 the one whose confidence bound yields the earliest intersection with shelf life specification acceptance limit
2355 (batch #1). The shelf life is claimed if the worst-case batch's 95% confidence bound crosses the shelf life
2356 specification acceptance limit at or after the proposed shelf life (e.g., after 24 months).

Annex 2 Stability Modelling
ICH Q1 Stability Studies for Drug Substances and Drug Products

2357 **Figure A2- 3: Potential Final Models After Evaluating Slope and Intercept**

2358

2359 The final models per attribute may then be used to predict the mean attribute values and the 95% confidence
2360 bound(s), to establish the re-test period or shelf life as no more than the point of intersection of the
2361 appropriate upper or lower confidence bound with the attribute specification.

2362 **Mixed Effects Model**

2363 A mixed effects model may be chosen when five or more batches are available for statistical evaluation so
2364 that batch can be treated as a random variable. Batches, in addition to those defined as the primary stability
2365 batches, would be deemed as sufficiently representative of the primary batches and future production
2366 batches through analytical comparability with differences concluded to not impact the stability profile of
2367 the drug substance or drug product. A mixed effects model is recommended when there is risk to batch
2368 uniformity (i.e., greater risk of batch to batch variability). If the variance components for the random slope
2369 and intercept terms are estimated to be or close to zero (0), applying the fixed effect model can be more
2370 appropriate.

2371 The mixed effects model reflects the expectation of random variation among the batches in terms of initial
2372 levels and trends over time (i.e., intercepts and slopes for a linear model), and hence the true shelf life is
2373 unique to each batch. The larger number of batches provides greater assurance that the inferred stability
2374 profile is representative of future batches manufactured using the same process. A tolerance interval-based
2375 approach using the linear mixed effects model may be applied to determine an extended shelf life beyond
2376 the period covered by long-term data. For instance, the shelf life of the product is determined as the (latest)
2377 timepoint where the (95%) the lower confidence limit of the 5th percentile (or the lower limit of the
2378 95%/90% tolerance interval – first percentage refers to population covered, second confidence level) of the

Annex 2 Stability Modelling
ICH Q1 Stability Studies for Drug Substances and Drug Products

2379 CQA is above acceptance limits. Corresponding tolerance interval-based approaches may be used to
2380 extrapolate an extended shelf life beyond the period covered by long-term data from the linear mixed effects
2381 model.

2382 **A2-2 Enhanced Stability Modelling**

2383 This section provides scientific and regulatory considerations for enhanced stability model development,
2384 qualification and maintenance over product lifecycle for the purpose of supporting a re-test period or shelf
2385 life. Guidance is provided for stability models that may be applied to well-understood drug substances or
2386 drug products that have been extensively characterised, including the identification of their relevant
2387 degradation pathways. When enhanced stability modelling is used, applicants are encouraged to consult
2388 with regulatory authorities to understand submission expectations.

2389 Focus is placed on the design and data evaluation of enhanced stability models that can evaluate and
2390 extrapolate linear and non-linear quality attribute changes over time and includes the use of prior
2391 knowledge. Linear regression for the extrapolation of stability data and the use of stability data from
2392 different batches are discussed in the core guideline (refer to Section 13 – Data Evaluation) and Section 1
2393 of this Annex (refer to Section A2-1 Statistical Evaluation of Stability Data from Single or Multi-factor
2394 Study Designs).

2395 **A2-2.1 General Principles of Enhanced Stability Modelling**

2396 The principles described in the ICH Points to Consider guide to implement ICH Q8/Q9/Q10, apply to
2397 stability models that are used to extrapolate re-test period or shelf life. These concepts are expanded in the
2398 subsequent sections of this annex. A stability model used to set commercial re-test period or shelf life would
2399 be considered a High-Impact Model in accordance with the elements for consideration in model validation,
2400 verification and documentation and would be of higher risk, than, for example models used during
2401 development studies.

2402 There are many types of stability models available or currently under development and, correspondingly,
2403 the tools to evaluate data from such stability models. This annex covers general principles of currently
2404 known kinetic, thermo-kinetic and mechanistic models as well as *in silico* or *de novo* computational
2405 methods that simulate known attribute stability profiles. This annex does not attempt to be comprehensive
2406 in describing all possible stability models or means of model data evaluation that could be considered
2407 acceptable when justified. Stability models may be empirical in nature by fitting the available stability data
2408 and known variables to derived mathematical relationships that describe how the quality attribute stability

Annex 2 Stability Modelling
ICH Q1 Stability Studies for Drug Substances and Drug Products

2409 profile changes over time and measured under defined conditions. While enhanced stability models may be
2410 used to predict the stability profile at submission, these models should be considered as part of a
2411 comprehensive stability program and are not intended to replace long-term stability studies.

2412 An enhanced level of understanding for a drug substance or drug product under development (ICH Q8),
2413 which may encompass prior knowledge from drug substance or drug product development studies and
2414 information from structurally and functionally related molecules, referred to as “analogous molecules”,
2415 enables the use of stability models. See Sections 2 (Development Studies under Stress and Forced
2416 Conditions) and 3 (Stability Protocol Design) for considerations for prior knowledge. The sum of
2417 knowledge of the available stability data including confirmatory data, could support a quantitative
2418 prediction model.

2419 There are many situations when a stability model may be applicable, including: setting the re-test period or
2420 shelf life and assessing the impact of storage condition excursions or manufacturing changes. A stability
2421 model may be applied during drug substance or drug product development, for an initial regulatory
2422 submission or as a post-approval, lifecycle management activity. The purpose of the model and the specific
2423 context of its use should be clearly stated.

2424 **A2-2.2 Model Development**

2425 **A2-2.2.1 Choice of Model Type**

2426 Certain types of stability model are built using data obtained at elevated conditions of temperature and/or
2427 humidity. The experimental accelerated conditions may be a selected set of defined parameters that may
2428 or may not overlap with the formal accelerated and stressed storage conditions as described in Section 7 -
2429 Storage Conditions.

2430 Depending on the underlying principles of the proposed stability modelling methodologies, the product
2431 type under consideration and the specific purpose of the model, certain model types may be more
2432 appropriate than others. The choice of model could depend on:

- 2433 • the intended context of use for the model,
- 2434 • fit of stability data at the recommended storage condition to a kinetic formula,
- 2435 • thermo-kinetic reactions with the fit of Arrhenius equation or its derivatives to stability data at
2436 accelerated temperatures,
- 2437 • the access to relevant prior knowledge,
- 2438 • the nature of the shelf life limiting attributes, their criticality ranking, impact on the stability profile

Annex 2 Stability Modelling
ICH Q1 Stability Studies for Drug Substances and Drug Products

- 2439 • and known correlations with structure or function of the molecule.
- 2440 The appropriateness of the selected model for its intended use should be briefly described and justified in
2441 the specific context of its proposed use. The model should be described in sufficient detail to understand
2442 how it was developed and how the model is used to provide accurate prediction or inference of a quality
2443 attribute stability profile.
- 2444 A biological drug substance or drug product may be less amenable to modelling by the humidity modified
2445 Arrhenius equation using accelerated condition data, whereas the temperature/humidity-dependent kinetics
2446 for a solid synthetic chemical drug substance or drug product may obey the humidity modified Arrhenius
2447 equation for the shelf life limiting attributes. In addition, a model, on a case-by-case basis, may not be
2448 appropriate for physical attribute changes.
- 2449 Enhanced stability models can fall under two broad classes: (1) those that utilise only the product-specific
2450 representative batch stability data (long-term and/or accelerated) and (2) those that additionally utilise prior
2451 knowledge from analogous-molecules combined with the product-specific information. Prior knowledge
2452 may be incorporated into the stability model evaluation in different ways, for example, to establish an
2453 acceptable range for the attribute stability profile, or by using Bayesian statistics.
- 2454 It is recognised that novel model types are likely to emerge in the future (e.g., use of Artificial Intelligence
2455 Machine Learning, AI-ML). The principles outlined in this Annex should be generally applicable when
2456 developing a novel stability model, though other considerations regarding data requirements may also
2457 apply. Early engagement with regulators is recommended in such instances.
- 2458 **2.2.1 Selection of Critical Quality Attributes for Stability Modelling**
- 2459 Those attributes selected for modelling should be chosen according to the purpose of the model and the
2460 available stability knowledge. Those attributes not selected for modelling should be justified. The selection
2461 of CQAs for modelling follows the same principles described in the core guideline for protocol design and
2462 adapted to the purpose of stability model development. The selection of stability-indicating CQAs used in
2463 models, from those that define the stability profile (refer to Section 3 – Stability Protocol Design) should
2464 be justified and the impact of an attribute (not part of the model) changing unexpectedly should be
2465 considered as part of risk management (see Annex 2-Stability Modelling, Section 2.5-Risk Management
2466 and Model Lifecycle Considerations).
- 2467 To establish a re-test period or shelf life, the CQAs that have been identified as those most likely to impact
2468 the product shelf life, would be selected for stability modelling, that is, those attributes that are considered

Annex 2 Stability Modelling
ICH Q1 Stability Studies for Drug Substances and Drug Products

2469 to most likely approach the upper or lower bounds in the attribute specification over the storage period
2470 (ICH Q6A and 6B) and are ‘shelf life limiting’. The selected quality attributes should be justified and be
2471 the focus for developing a stability model.

2472 **A2-2.2.2 Selection of Data and Parameters to Construct a Stability Model**

2473 The data used to build a stability model are typically based on results from the long-term primary and
2474 production stability batches or at accelerated conditions (e.g., elevated temperature and/or humidity). They
2475 may also incorporate data from earlier development studies when there is sufficient understanding of
2476 comparability between the development and production molecules.

2477 When limited data from the formal stability protocol are available, one may consider leveraging prior
2478 knowledge into the evaluation and model building. Prior knowledge from non-product analogous molecules
2479 may supplement the product-specific stability data. Models being developed using information from other,
2480 related products require access to sufficient prior knowledge that can be justified as transferable to the drug
2481 substance or drug product. The prior knowledge molecules that are grouped as a family or class may be
2482 justified through an evaluation of relevant characteristics for the differences between the prior knowledge
2483 molecule(s) and the drug substance or drug product. These characteristics may include structural modality,
2484 stability influencing attributes, manufacturing processes, formulation, container closure, storage conditions,
2485 analytical procedures and the available stability data, including degradation profile. Prior knowledge may
2486 be used together with primary and production batch data to generate a stability model. Any prior knowledge
2487 data from the molecule or analogous molecules should be described and structure-function differences
2488 justified, in terms of impact on a stability profile. In addition, similar analytical procedures should be used
2489 for the attributes so that the data can be appropriately transferred for inclusion in generating the stability
2490 model.

2491 When prior knowledge from analogous molecules is used in a stability model, it is important to identify
2492 and address any potential for bias that could result in over-fitting or under-fitting of the model, thereby
2493 reducing model accuracy. The management of bias in the model from the datasets used should be described.

2494 The parameters (e.g., reaction rate, order of reaction) used to build a stability model should be chosen to
2495 maximise the accuracy of the inferred stability profile, while avoiding over-fitting. When prior knowledge
2496 is available, model accuracy may be assessed by using a relevant dataset that is not included in the model
2497 design for which the stability profile is known. The development of a stability model may run through
2498 several iterations while optimising the parameters to achieve a final, simplest model that provides the best
2499 prediction accuracy (least difference between the predicted value and actual experimental value).

2500 **A2-2.3 Evaluation of Data for Stability Modelling**

2501 The statistical approach and associated statistical parameters used should be clearly described and justified.
2502 Stability models define the trends of quality attributes that change over time, based on experimental data
2503 that may be linear or non-linear. The statistical approaches for molecule-specific stability data evaluated
2504 using linear regression and for the combining of batches for drug substance or drug product are outlined in
2505 Section 13 - Data Evaluation of the core guideline and Section 1 of this Annex. The following sections in
2506 this Annex provide additional options when using the enhanced stability models for the purpose of
2507 extrapolating the stability profile past the available data at the recommended storage conditions. The data
2508 distribution over time is typically characterised using justified statistical intervals to ensure that a defined
2509 proportion of the data lies within or that future data will lie within the interval, as appropriate for the model
2510 and statistical interval chosen.

2511 Most current enhanced stability models start with an empirical approach with the experimental stability
2512 data being compared to a mathematical or kinetic function of time. When an empirical model is used and
2513 the available stability data are being compared to the model, a demonstration of goodness of fit should be
2514 performed using appropriate statistical tools to avoid overfitting the kinetic function to the data when the
2515 model incorporates the variability and thereby reducing the accuracy of prediction.

2516 It is important that the accuracy of the model to infer or predict the stability profile, past the last time point
2517 of the available data, is demonstrated using appropriate statistical tools (19-27). For example, by applying
2518 the model to a known, full stability data set, for which the last timepoint result(s) has not been included, the
2519 value for that last timepoints may be predicted. The predicted value can then be compared to the known,
2520 experimentally derived value as a measure of accuracy. For quality attributes with high variability, other
2521 statistical methods of model validation should be considered because demonstration of the model's
2522 accuracy for any single timepoint may not be sufficient.

2523 Prior knowledge data may be evaluated using Bayesian statistics as an alternative to conventional
2524 Frequentist statistics and can allow for prediction of drug substance or drug product stability data over time,
2525 past the point of available long-term condition data. The Bayesian method derives a posterior distribution
2526 for the parameters of interest by combining the likelihood distributions for the observed data with the prior
2527 knowledge. The method for derivation of the prior distribution should be justified by the applicant. The
2528 general principles outlined in this Annex for a stability model would apply to models using a Bayesian
2529 approach including verification and validation to demonstrate that the model and data used are fit for the
2530 intended purpose.

Annex 2 Stability Modelling
ICH Q1 Stability Studies for Drug Substances and Drug Products

2531 While enhanced modelling strategies are not currently associated with an upper limit for shelf life and re-
2532 test period prediction, applicants should provide risk-based and scientifically justified duration for the
2533 proposed shelf life or re-test period using enhanced approaches. When utilising enhanced stability
2534 modelling to support a shelf life or re-test period, the extent of prediction should be based on scientific
2535 understanding, risk assessment (including totality of available long-term and supportive data), prior
2536 knowledge (e.g., representative batches out to the proposed shelf life), considerations of the limits discussed
2537 in Section 13 - Data Evaluation, container closure limitations, feedback from model lifecycle considerations
2538 (e.g., emerging confirmatory data) and statistical design.

2539 **A2-2.4 Model Validation and Verification**

2540 A stability model should be shown to be suitable for its intended purpose. This may be demonstrated
2541 through validation and verification procedures, for which the methodology would depend on the purpose
2542 and type of model. A comprehensive approach to model verification and validation should include
2543 discussion with experts in both analytical and statistical approaches. Model predictions may be validated
2544 by using data from earlier development studies, provided comparability has been demonstrated and the
2545 batches are considered representative of the commercial material (refer to Section 4- Selection of Batches).
2546 When a model uses accelerated condition data and the degradation kinetics obey a modified Arrhenius
2547 equation, the model may be considered as verified by fit to the modified Arrhenius equation at different
2548 storage conditions.

2549 Stability models are not intended to replace long-term data through the proposed re-test period or shelf life,
2550 which should be performed in addition to the model. Data should be continually obtained and evaluated, as
2551 confirmatory or ongoing verification, to assess whether the model predictions are still reliable. Models that
2552 are built using accelerated condition data may include the available long-term stability data as part of the
2553 model verification.

2554 **A2-2.5 Risk Management and Model Lifecycle Considerations**

2555 Any stability model that infers or predicts a stability profile beyond the available drug substance or drug
2556 product data, incurs an inherent risk. A description of risk management should be provided in the regulatory
2557 submission that introduces an enhanced stability model used for setting re-test period or shelf life. The
2558 risks in using a stability model should be identified using risk management methodologies (ICH Q9) and,
2559 when applicable, appropriate mitigation strategies should be in place to reduce those risks through
2560 verification and validation activities. The resulting risk of using the stability model should be as low as
2561 possible. Use of stability models is intended for drug substances and drug products that are well understood,

Annex 2 Stability Modelling

ICH Q1 Stability Studies for Drug Substances and Drug Products

2562 for which the quality attributes would be known, and their corresponding criticality and residual risks
2563 evaluated to ensure patient safety. The stability-indicating attributes are also selected, and the stability
2564 profile defined. Particular note should be taken in discussing risk presented by any use of “analogous
2565 molecules” that refers to differences between molecules that may impact their stability profile and the extent
2566 that the knowledge is transferable for use in the stability model.

2567 A stability model, depending on the model type and intended purpose, may require updating through drug
2568 substance and drug product lifecycle. The need to update a model should be evaluated as part of risk
2569 management. The risk assessment outcomes (from formal or informal risk management as described in ICH
2570 Q9) should also be reviewed as new data are obtained through the period that the stability model is in use.
2571 Generally, when a model is used once to establish a re-test period or shelf life it would not be necessary to
2572 continuously update the model during lifecycle management as long as new long-term stability data are
2573 obtained that support the identified attribute trend. The post-approval and ongoing monitoring/trending of
2574 new drug substance or drug product stability data should be managed by the manufacturer’s PQS
2575 (Pharmaceutical Quality System). The PQS should be capable of detecting and managing any unexpected
2576 changes in stability trend and out of specification results with appropriate corrective action and preventive
2577 actions (CAPA) as described in ICH Q10, relevant to any stability model being used to establish re-test
2578 period or shelf life. Should an unexpected change in trend be confirmed with potential for the attribute to
2579 exceed acceptance criteria and impact the re-test period or shelf life, the model and its use should be
2580 reassessed.

2581

2582 **Annex 3 Stability of Advanced Therapy Medicinal Products (ATMPs)**

2583 **A3-1 INTRODUCTION**

2584 Advanced therapy medicinal products (ATMPs) are a diverse category of innovative and complex
2585 biological products which includes somatic cell therapy, gene therapies and tissue-engineered products.
2586 ATMPs have several unique characteristics that should be reflected in the design and execution of the
2587 stability program. In some circumstances, the mechanism of action may be complex with multiple targets
2588 and potentially multiple modes of action and, as such, the critical quality attributes are not always fully
2589 understood. Owing to their complex degradation properties, accelerated stability testing conditions may not
2590 be predictive of the actual degradation profiles during storage. However, if accelerated studies can be
2591 utilised to support knowledge of the degradation profile and/or stability profile, then data and justification
2592 can be provided. The small batch size for some patient-specific ATMPs can severely limit the availability
2593 of material for stability testing. ATMPs that are designed for small patient populations may be
2594 manufactured in small batch sizes or a single batch that may even be sufficient for the entire clinical study,
2595 leading to challenges in conducting stability studies using multiple production batches. ATMPs are a class
2596 of therapeutics, which may have limited prior knowledge available to support model-based approaches to
2597 the stability assessment. In general, the shelf life for drug substance, intermediate, and/or drug product
2598 should be based on real-time stability studies.

2599 This annex provides recommendations for designing stability studies for ATMPs. When a topic is not
2600 included in the Annex, the reader is referred to the core guidance for stability principles that are considered
2601 generally relevant to ATMPs. The basic elements of the information detailed in Section 3 - Stability
2602 Protocol Design through to Section 14 - Labelling should serve as the basis for designing a stability program
2603 for ATMPs. For example, where an in-use period is warranted, the applicant should refer to Section 11 -
2604 In-Use Stability for general information on the principles, with the caveat that not all information in these
2605 sections may be directly relevant to ATMPs.

2606 **A3-2 SCOPE**

2607 The recommendations in this annex apply to the assessment of stability considerations for drug substance,
2608 intermediates, and the drug products of ATMPs as appropriate depending on the product and the
2609 manufacturing process. This annex also addresses the stability considerations for starting materials (e.g.,
2610 viral banks/viral seed stock). Stability considerations for reference materials used in the assessment of
2611 ATMPs are consistent with those for reference materials for other biologicals and is discussed under Section

Annex 3 Stability of Advanced Therapy Medicinal Products (ATMPs)
ICH Q1 Stability Studies for Drug Substances and Drug Products

2612 12.1.2 - Consideration for Biological Reference Materials, of the core guidance. The document covers the
2613 generation and submission of stability data for products containing biological active substances such as
2614 autologous and allogeneic cell-based products (e.g., mesenchymal stromal cells (MSCs), Islet cells, T-cells,
2615 NK cells), xenotransplantation products (e.g., animal derived cell products), gene therapy products that are
2616 directly administered to humans (e.g., genetically modified cells, recombinant nucleic acids, viral and
2617 genetically modified bacterial vectors), oncolytic products, genome editing products and tissue engineered
2618 products.

2619 This Annex is applicable to vectors that are administered directly as a drug product or used ex vivo to
2620 modify cells (e.g., retroviruses, adeno associated viral and other nucleic acid-based vectors) and viral banks
2621 used in the manufacture of viral and bacterial vectors.

2622 Due to the diversity of ATMP products, the stability program should be based on process and product
2623 knowledge. The recommendations in this annex will highlight specific differences in product types, but
2624 any stability plan should consider the type of ATMP product and its manufacturing process. For example,
2625 the primary stability protocol for a vector-based gene therapy for treating larger patient populations may be
2626 different from a patient-specific cell-based therapy (i.e., personalised cellular therapies).

2627 **A3-3 STABILITY STUDY DESIGN**

2628 As outlined in the core guideline, stability studies should be established based on an understanding of the
2629 product's CQAs. ATMP stability study design should be based on process and product knowledge of the
2630 specific product type and manufacturing process. Stability testing frequency should follow the
2631 recommended testing frequency as detailed in Section 6 – Testing Frequency. When the patient specific
2632 ATMPs are stored or when the available product lot has a limited quantity, a risk-based approach to testing
2633 frequency is recommended and should be justified based on available developmental data and prior
2634 knowledge. Stability studies for ATMPs may be performed using container closure system differing from
2635 the commercial system, when justified and supported by data showing suitability of the alternative container
2636 closure system. Shipping stability studies for ATMPs should generally follow the principles described in
2637 the core guidance. Shipping stability studies for cell based ATMPs should also include tests to evaluate the
2638 effect of physical forces exerted during shipping.

2639 The applicant is encouraged to use a risk-based approach to the design of the stability study. Where a risk-
2640 based approach is employed, the risk assessment and supporting justification should be provided.

2641 **A1-3.1 Selection of Analytical Procedures and Acceptance Criteria**

2642 Selection of analytical procedures and acceptance criteria are detailed in the core guideline (refer to Section
2643 3.4 - Specification). Uncertainty surrounding stability CQAs due to high assay variability may be mitigated
2644 by performing orthogonal assays, where for a given CQA, orthogonal assays may provide greater
2645 confidence in the stability trends over time. Potency is a critical quality attribute for determining stability
2646 of ATMPs. However, assessing potency of some ATMPs may be challenging and complex due to
2647 incomplete knowledge of the mechanism of action of the product, absence of suitable analytical procedures
2648 to accurately predict the product function, the inherent variability in patient-specific products, and due to
2649 the complex modes of action of the ATMP to exert a given result. Therefore, determining the change in
2650 potency during storage should be performed through a suitable assurance of the intended biological effect.
2651 The capability of the chosen potency assay to detect subpotent or degraded product should be justified and
2652 an evaluation of the degradation profile and its impact on potency provided. When one assay is not sufficient
2653 to fully evaluate all the different product functions, multiple assays may be used to assess potency. For cell-
2654 based products, this may be evaluated through tests such as cell viability assays, immunochemistry and
2655 immunoassays for cell surface markers, and assays that evaluate function (potency). For gene therapy
2656 products, this may be evaluated through tests such as transduction, infectivity, gene expression, and/or
2657 activity of the expressed product.

2658 The purity of the ATMP should be assessed to ensure that storage period and conditions do not lead to an
2659 increase in the levels of impurities beyond the demonstrated acceptable range. Impurities in ATMPs result
2660 from either the manufacturing process or are product related, where the latter may include for instance the
2661 following impurities: dead cells, empty viral particles, or degraded products. While process-related
2662 impurities are controlled during the manufacturing process, storage conditions and duration of storage may
2663 lead to an increase in the product-related impurities. For this reason, a quantitative enumeration of the levels
2664 of product-related impurities in an ATMP should be assessed and the acceptable stability limits should be
2665 justified. Stability attributes related to product impurities should be based on a risk assessment at various
2666 manufacturing and storage steps (e.g., freeze-thaw step). Based on the risk, measurement of representative
2667 characteristics of the degraded/product derived material may be sufficient to assess stability, when
2668 performed in combination with other product CQAs.

2669 In addition to the general considerations for assessing stability of ATMPs, the following are examples for
2670 product-specific stability considerations that should be evaluated as a part of the stability assessment
2671 (additional product-specific parameters may also be required to assess stability):

Annex 3 Stability of Advanced Therapy Medicinal Products (ATMPs)
ICH Q1 Stability Studies for Drug Substances and Drug Products

- For live cell-based products that are stored frozen, it is important to measure viability of cells after they are thawed as part of the stability studies. The impact of changes in cell viability and cell concentration should be considered for subsequent processing (for intermediates) or dosing (for final product).
- For virus-based products, product CQAs such as changes to total particle number, genome copy number, infectious particle number and viral genome titre should be included in the stability studies.
- For viral therapy vectors that are used to further modify cells *ex vivo*, vector integrity, potency and strength are stability-indicating CQAs that should normally be included in stability studies.
- For bacteria-based products, the viability, bacteria count, plasmid copy number (if applicable) should be considered.
- For DNA or RNA based products, stability determination may also include an assessment of structural integrity and quantity in addition to other purity assessments.
- For Tissue Engineered products physicochemical and functional critical quality attributes should be evaluated as a part of the stability studies. The product's structural stability may be evaluated through tests such as measurement of size and shape, and assessment of structural integrity. In the case of products formulated with carrier or support materials, the stability of the complex formed with the drug substance should be studied.

Acceptance criteria should be justified considering the data from material used in preclinical and clinical studies. For substances that cannot be properly characterised or products for which an exact analysis of the stability-indicating CQAs cannot be determined through routine analytical procedures, the applicant should propose and justify alternative testing procedures. The attributes tested for batch release may not be entirely suitable for stability determination for some ATMPs (e.g., definition of mature and immature dendritic cells based on the surface expression of markers such as CD80, CD86, CD83, and MHC II; percent (%)) transduced products in case of an *ex vivo* modified cellular product; virus phenotype and genetic identity of virus). Acceptance criteria for acceptable impurities should be derived from the analytical profiles of batches of the drug substance and drug product used in the preclinical and clinical studies, and batches that did not adversely impact safety or potency should be used to set acceptance limits for impurities. When justified, shelf life specifications may differ from the release specification.

2701 **A1-3.2 Selection of Study Conditions**

2702 Recommendations around the selection of study conditions are outlined in the core guideline (refer to
2703 Section 3 – Stability Protocol Design through Section 7 – Storage Conditions). It is expected that the
2704 stability studies for ATMPs include real-time storage and in-use period conditions. Generally, accelerated
2705 or stress testing may not provide direct information to support shelf life, however testing under accelerated
2706 and stressed conditions are recommended for ATMPs. Accelerated studies may be utilised to gain
2707 knowledge of the stability profile. Testing under these conditions help in the determination of the extent of
2708 temperature deviations that can be tolerated while the harsher stress conditions may provide information
2709 on the degradation profile of the product. Accelerated or forced degradation studies can also be useful to
2710 demonstrate the stability-indicating nature of assays and their corresponding levels of sensitivity. The
2711 accelerated conditions defined in Section 7 - Storage Conditions of the core guideline may not be directly
2712 applicable for ATMPs, and the accelerated and stressed conditions should be carefully selected based on a
2713 risk assessment and worst-case conditions relevant to ATMP's handling and storage.

2714 **A1-3.3 Selection of Batches**

2715 Recommendations around the selection of batches are outlined in the core guideline. Generally, stability
2716 data from 3 primary batches are recommended to support the proposed shelf life of ATMPs, however on
2717 the basis of risk evaluation alternative number of stability batches may be justified. The risk to an accurate
2718 determination of predicted shelf life of an ATMP will depend on various factors including the assay
2719 limitations and variabilities in and the quality of starting materials. The shelf life of ATMPs should
2720 generally be justified based on long-term stability data through the proposed shelf life. In some instances,
2721 a stability profile based on prior knowledge from analogous products (refer to Annex 2-Stability Modelling)
2722 may provide additional supporting stability data. As described in the core guideline Section 4.1 -
2723 Considerations for Selection of Primary Stability Batches, the manufacturing scale of the primary stability
2724 batches for ATMPs may differ from that of the production batch, unless the scale change represents a
2725 significant risk to stability. Primary stability batches may be clinical batches not at production scale,
2726 provided appropriate comparability has been demonstrated to production batches. When primary batches
2727 are not production scale batches, a post-approval commitment may be required to confirm the stability.

2728 Stability of patient-specific cellular ATMPs should be obtained from patient derived materials. However,
2729 this may not always be feasible due to limited availability (e.g., autologous CAR-T cells), and when
2730 justified, stability data from representative healthy donor derived materials along with stability data from
2731 patient-derived material may be acceptable. When patient derived material is only available in limited

Annex 3 Stability of Advanced Therapy Medicinal Products (ATMPs)
ICH Q1 Stability Studies for Drug Substances and Drug Products

2732 quantities to perform the recommended stability studies as per the stability protocol, the principles of
2733 bracketing (refer to Annex 1 - Reduced Stability Protocol Design) may be applied to ATMPs. Stability-
2734 indicating CQAs that are assessed to determine stability will depend on the drug product and should be
2735 justified. Stability of cryopreserved cells used as cell substrates for the manufacture of ATMPs may apply
2736 the principle of modelling based on prior knowledge (e.g., cell type, formulation, container, cell density) to
2737 set initial shelf life beyond long-term data at submission.

2738 ATMPs may differ in the standard manufacturing process flow without having distinct bulk drug substance
2739 batches and manufactured in one uninterrupted stream with no distinct drug substance storage step. Under
2740 such circumstances, there would not be a need to evaluate the storage period of a drug substance. Examples
2741 of this type of manufacturing include a number of cell-based products that are continuously cultured,
2742 purified, formulated and stored (or administered fresh) as the final ready-to-use drug product.

2743 For ATMPs that have a distinct drug substance stage, the date of manufacturing of the drug substance and
2744 the date of manufacturing of the drug product may be two separate dates and the duration of storage of the
2745 drug substance prior to it being processed into the final drug product may influence the storage period of
2746 the drug product. If this is the case, a risk assessment should be performed to determine if the stability
2747 assessments should also take into consideration the cumulative storage period of the drug substance and
2748 drug product.

2749 When the manufacturing process includes a short hold time, a risk assessment to determine the need and
2750 extent of hold time stability studies should be assessed and justified. Some ATMP manufacturing process
2751 may include a freezing step (e.g., short term storage of cells prior to further processing). In such instances,
2752 the stability of the stored intermediate should be evaluated upon thaw.

2753 **A3-4 STARTING MATERIALS AND STABILITY**

2754 The protocol should take into consideration that stability of ATMPs may be affected by the quality of
2755 starting materials and viral vectors, and stability assessment should consider the impact of starting materials
2756 for cell therapy products (e.g., allogenic, autologous cells), transport, storage steps in the manufacturing
2757 process, and their short or long-term storage conditions (e.g., short-term cell storage versus long-term
2758 cryopreservation). The stability of cellular starting materials (e.g., donor cells) should be assessed during
2759 their storage and shipping. In general, assessment of stability of cellular starting materials during their
2760 storage and shipping should follow the recommendations detailed in this guideline for cell based ATMPs
2761 and should follow a risk based approach to determining their stability. Stability of starting materials used

Annex 3 Stability of Advanced Therapy Medicinal Products (ATMPs)
ICH Q1 Stability Studies for Drug Substances and Drug Products

2762 to manufacture gene therapy vectors (e.g., plasmids, virus banks used to make vectors) should also be
2763 controlled.

2764 Viral vectors that are used to modify cells *ex vivo* to make ATMPs (e.g., retrovirus, lentivirus) are normally
2765 manufactured in bulk, purified and adjusted for a desired concentration and stored frozen until use. Stored
2766 viral vectors should be assessed for stability related CQAs, such as vector integrity, strength (e.g., infectious
2767 titre, transducing titre, genomic titre and viral particle count), product related impurity profile, ratio of
2768 empty to full particles (if applicable), activity (e.g., gene expression), and sterility (or container closure
2769 integrity testing). When the viral vectors are stored at varying concentrations, stability of the viral vectors
2770 at each individual concentration should be assessed, unless bracketing is justified (refer to Annex 1-
2771 Reduced Stability Protocol Design).

2772 **A3-4.1 Cell and Viral Banks**

2773 The stability of cell banks under defined storage conditions should be generated to verify that the thawed
2774 cells have survived the preservation process and retain their CQAs, consistent with the recommendations
2775 outlined in ICH Q5D. A stability protocol for monitoring of banked cells should be provided in the
2776 submission. Stability-indicating CQAs that are assessed to determine stability should be justified.

2777 Stability of viral banks that are either used in the production of viral drug products for direct administration
2778 or for viral vectors used in the production of *in vitro* modification of cells should be evaluated for stability.

2779 The quality of the viral bank should be well established and would typically include an evaluation of its
2780 stability-indicating CQAs. When establishing the stability period of viral banks, virus stability may be
2781 demonstrated in some cases through assessing the quality attributes of the drug substance, manufactured
2782 from the stored material at the end of the viral bank's shelf life. The stability of the established master viral
2783 banks (also referred to as viral seed stock in some regions) and working viral banks should be evaluated
2784 periodically per a stability protocol. The stability protocol should describe and justify the test parameters
2785 and stability acceptance criteria which should be based on its intended use. Potency may also be a stability-
2786 indicating CQA, depending on the intended use of the viral bank (e.g., when used to manufacture a viral
2787 drug product). Depending on the intended use of the viral bank (e.g., when used to manufacture a viral drug
2788 product), infectious titre may also be a stability-indicating CQA and should be included as a part of viral
2789 bank's stability assessments.

2790 **A3-5 ESTABLISHMENT OF SHELF LIFE**

2791 The shelf life of ATMPs may not be accurately predicted from accelerated stability studies, as their
2792 behaviour can vary considerably based on the temperature and related changes in the storage medium.
2793 When the accelerated stability studies only provide a limited information, due to differences in degradation
2794 profile, stability studies designed to support product stability should be performed in real time, under the
2795 intended storage conditions. When sufficient real-time stability data from the production lot is not available
2796 for ATMPs, stability data from developmental batches and prior knowledge from similar products may be
2797 used as supporting data to justify setting initial stability period, with a concurrent testing strategy built into
2798 the stability testing protocol. The use of prior knowledge to support shelf life determination of an ATMP
2799 should be discussed with regulatory authorities as appropriate.

2800 A minimum of 6 months stability data should be included at the time of submission. The shelf life may be
2801 extended beyond the initial 6-month period when additional stability data becomes available. For drug
2802 products with storage periods of less than 6 months, the minimum amount of stability data in the initial
2803 regulatory submission should cover the intended shelf life.

2804 ATMPs that have a storage period at the drug substance stage and at the drug product stage should be
2805 assessed for stability under the stability protocol as detailed in Section 3 - Stability Protocol Design of the
2806 core guidance. When intermediates used in the manufacture of cellular products and viral vectors are
2807 stored, they should also be assessed for their stability under a pre-specified stability program and a shelf
2808 life established based on real-time stability information.