
COVID-19: Developing Drugs and Biological Products for Treatment or Prevention Guidance for Industry

This guidance is for immediate implementation.

FDA is issuing this guidance for immediate implementation in accordance with 21 CFR 10.115(g)(2). Submit one set of either electronic or written comments on this guidance at any time. Submit electronic comments to <https://www.regulations.gov>. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. You should identify all comments with the docket number listed in the notice of availability that publishes in the *Federal Register*.

For questions regarding this document, contact (CDER) Maria Clary 240-402-8615, or (CBER) Office of Communication, Outreach and Development, 800-835-4709 or 240-402-8010.

**U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)
Center for Biologics Evaluation and Research (CBER)**

**November 2023
Clinical/Medical**

COVID-19: Developing Drugs and Biological Products for Treatment or Prevention Guidance for Industry

Additional copies are available from:

*Office of Communications, Division of Drug Information
Center for Drug Evaluation and Research
Food and Drug Administration
10001 New Hampshire Ave., Hillandale Bldg., 4th Floor
Silver Spring, MD 20993-0002*

*Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353; Email: druginfo@fda.hhs.gov
<https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs>*

and/or

*Office of Communication, Outreach, and Development
Center for Biologics Evaluation and Research
Food and Drug Administration
10903 New Hampshire Ave., Bldg. 71, Room 3128
Silver Spring, MD 20993-0002*

*Phone: 800-835-4709 or 240-402-8010; Email: ocod@fda.hhs.gov
<https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances>*

**U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)
Center for Biologics Evaluation and Research (CBER)**

**November 2023
Clinical/Medical**

TABLE OF CONTENTS

I.	INTRODUCTION.....	1
II.	BACKGROUND	2
III.	DISCUSSION	2
A.	Treatment Trials	2
1.	<i>Population.....</i>	2
2.	<i>Trial Design and Conduct.....</i>	4
3.	<i>Efficacy Endpoints</i>	7
4.	<i>Safety Considerations</i>	9
5.	<i>Statistical Considerations</i>	10
B.	Prevention Trials.....	12
	APPENDIX A	14
	APPENDIX B	16
	APPENDIX C	18

COVID-19: Developing Drugs and Biological Products for Treatment or Prevention Guidance for Industry¹

This guidance represents the current thinking of the Food and Drug Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the FDA office responsible for this guidance as listed on the title page

I. INTRODUCTION

The purpose of this guidance is to assist sponsors in the clinical development of drugs² for the treatment or prevention of COVID-19. This guidance describes FDA's current recommendations for phase 2 and phase 3 trials with a focus on trial population, trial design, efficacy endpoints, safety considerations, and statistical considerations. There may be additional considerations for some biological products (e.g., cellular and gene therapies and blood products), so FDA encourages sponsors to reach out to the applicable review division as appropriate.

The development of drugs for the treatment of Long COVID-19, preventative vaccines³ and convalescent plasma⁴ is not within the scope of this guidance.

FDA is implementing this guidance without prior public comment because the Agency has determined that prior public participation is not feasible or appropriate (see 21 CFR 10.115(g)(2)

¹ This guidance has been prepared by the Office of New Drugs and the Office of Biostatistics in the Center for Drug Evaluation and Research (CDER) and the Center for Biologics Evaluation and Research (CBER) at the Food and Drug Administration.

² For the purposes of this guidance, all references to *drugs* include both human drugs and biological products unless otherwise specified.

³ Clinical trials of preventative vaccines raise different and additional considerations, including those pertaining to subject selection, safety monitoring, and effectiveness evaluation. We encourage developers of preventative vaccines to contact the Office of Vaccines Research and Review in CBER and to see the guidance for industry *Development and Licensure of Vaccines to Prevent COVID-19* (October 2023). We update guidances periodically. For the most recent version of a guidance, check the FDA guidance web page at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents>.

⁴ FDA has issued guidance to provide recommendations to health care providers and investigators on the administration and study of investigational convalescent plasma collected from individuals who have recovered from COVID-19 (COVID-19 convalescent plasma). See the guidance for industry *Investigational COVID-19 Convalescent Plasma* (October 2023).

Contains Nonbinding Recommendations

29 and (g)(3). FDA made this determination because although the COVID-19-related public health
30 emergency under section 319 has expired, SARS-CoV-2 continues to circulate, COVID-19
31 remains a serious health risk for some individuals, and there is a need to ensure that sponsors are
32 aware of FDA's recommendations to facilitate timely development of drugs and biological
33 products for treatment and prevention of COVID-19. This guidance document is being
34 implemented immediately, but it remains subject to comment in accordance with the Agency's
35 good guidance practices.

36
37 In general, FDA's guidance documents do not establish legally enforceable responsibilities.
38 Instead, guidances describe the Agency's current thinking on a topic and should be viewed
39 only as recommendations, unless specific regulatory or statutory requirements are cited. The
40 use of the word *should* in Agency guidances means that something is suggested or
41 recommended, but not required.

42
43
44 **II. BACKGROUND**

45
46 COVID-19, the disease caused by the SARS-CoV-2 virus, can range from mild to severe or
47 critical disease, the latter including pneumonia, severe acute respiratory syndrome, multi-organ
48 failure, and death. Additionally, the SARS-CoV-2 virus can cause asymptomatic infection.
49 Clinical management includes the use of preventative vaccines and therapeutic agents (e.g.,
50 direct antivirals, immunomodulators) and supportive care, such as supplemental oxygen,
51 mechanical ventilation, and extracorporeal membrane oxygenation.

52
53
54 **III. DISCUSSION**

55
56 **A. Treatment Trials**

57
58 *1. Population*

59
60 Sponsors of drugs to treat COVID-19 should consider the following:

61

- 62 • The enrolled population should reflect the intended use of the product. For example:
 - 63 – Non-hospitalized individuals at standard risk of progression to serious disease
 - 64 – Non-hospitalized individuals at high risk of progression to serious disease
 - 65 – Hospitalized individuals requiring supplemental oxygen
 - 66 – Hospitalized individuals with respiratory failure
- 67
- 68 • For treatment trials, sponsors should document diagnosis of laboratory-confirmed SARS-
 - 69 – CoV-2 as well as the duration of symptoms before treatment.
- 70
- 71 • For treatment trials, FDA recommends that sponsors categorize the baseline severity of
 - 72 – COVID-19 in the enrolled population. The criteria used to describe baseline disease
- 73

Contains Nonbinding Recommendations

74 severity should incorporate objective measures. Examples of disease severity criteria are
75 provided in Appendix A.

76

77 • Clinical trials intended to demonstrate prevention of serious outcomes, including
78 hospitalization or death, should include groups of persons at high risk of progression to
79 severe disease.

80

81 • Age is one of the strongest risk factors for severe COVID-19 outcomes. To the fullest
82 extent possible, older adults, including individuals 75 years of age and older, should be
83 represented in relevant clinical trials. Sponsors should consider conducting trials in
84 nursing homes or other eldercare facilities.

85

86 • Individuals from underrepresented racial and ethnic groups should be represented in
87 clinical trials. Sponsors should select clinical study site locations to facilitate enrollment
88 of a representative study population.

89

90 • Studies to characterize the effect of extrinsic factors (e.g., drug-drug interactions) and
91 intrinsic factors (e.g., renal impairment or hepatic impairment) on the pharmacokinetics
92 of a drug should be conducted early in development to inform the management of drug-
93 drug interactions and inclusion of individuals with renal and/or hepatic impairment in
94 clinical trials as appropriate. Sponsors should consider recommendations in relevant
95 guidances for industry.⁵

96

97 • The principles outlined in this document can be used to guide drug development for
98 children and for pregnant and lactating women. There is a need to generate clinical trial
99 data to inform the use of drugs in these populations.

100

101 – Because COVID-19 during pregnancy may increase the risk of severe symptoms and
102 preterm birth, sponsors should ensure that adequate nonclinical studies have been
103 completed so that pregnant women can be enrolled in phase 3 (efficacy) clinical
104 trials.⁶

105

106 – FDA encourages enrolling lactating women in phase 3 (efficacy) clinical trials.

107

⁵ See the guidances for industry *In Vitro Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions* (January 2020), *Clinical Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions* (January 2020), *Pharmacokinetics in Patients with Impaired Hepatic Function: Study Design, Data Analysis, and Impact on Dosing and Labeling* (May 2003), and the draft guidance for industry *Pharmacokinetics in Patients with Impaired Renal Function — Study Design, Data Analysis, and Impact on Dosing and Labeling* (September 2020). When final, this guidance will represent the FDA's current thinking on this topic. For the most recent version of a guidance, check the FDA guidance web page at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents>.

⁶ FDA has proposed relevant recommendations in the draft guidance for industry *Pregnant Women: Scientific and Ethical Considerations for Inclusion in Clinical Trials* (April 2018). When final, this guidance will represent the FDA's current thinking on this topic.

Contains Nonbinding Recommendations

108 – Children should not be categorically excluded from clinical trials of investigational
109 COVID-19 products in which there is a prospect for direct benefit.⁷
110

111 ▪ Sponsors are encouraged to discuss pediatric drug development with FDA early in
112 the course of clinical development, including the potential for extrapolation of
113 efficacy data from studies in adults, appropriate pharmacokinetic trials in
114 pediatric subjects to support dose selection, and the recommended size of the
115 preapproval safety database in children. In addition, disease severity classification
116 should reflect age-appropriate norms, as applicable. Decisions on the timing of
117 initiating pediatric studies depend on several factors, including but not limited to
118 the amount of available clinical and/or nonclinical safety data for the drug. For
119 example, if dosing recommendations for a drug are the same for adults and
120 adolescents⁸ and there is a prospect of direct benefit, then adolescents should be
121 included in the initial phase 3 clinical trials.
122

123 ▪ Sponsors are encouraged to submit an initial pediatric study plan as soon as
124 practicable.⁹
125

126 ▪ Under the Pediatric Research Equity Act, all applications for new active
127 ingredients (which include new salts and new fixed combinations), new
128 indications, new dosage forms, new dosing regimens, or new routes of
129 administration are required to contain an assessment of the safety and
130 effectiveness of the product for the claimed indication or indications in pediatric
131 populations unless this requirement is waived, deferred, or inapplicable.¹⁰ FDA
132 intends to work with sponsors to reach agreement on the initial pediatric study
133 plan and any pediatric trial protocols as quickly as possible to avoid any
134 unnecessary delays in the initiation of trials or submission of any marketing
135 application.
136

137 2. *Trial Design and Conduct*
138

139 Sponsors of drugs to treat COVID-19 should consider the following:
140

141 • FDA strongly recommends that drugs to treat COVID-19 be evaluated in randomized,
142 controlled, double-blind clinical trials.
143

⁷ For additional safeguards for children in clinical investigations, see 21 CFR part 50, subpart D.

⁸ For the purposes of this guidance, *adolescents* are defined as age 12 to younger than 18 years of age.

⁹ See 505B(e) of the FD&C Act. Additionally, FDA has proposed relevant recommendations in the guidance for industry *Pediatric Study Plans: Content of and Process for Submitting Initial Pediatric Study Plans and Amended Initial Pediatric Study Plans* (July 2020).

¹⁰ See 21 U.S.C. 355c.

Contains Nonbinding Recommendations

144 – Typically, trials should be designed as placebo-controlled superiority studies. An add-
145 on placebo design (i.e., the investigational agent or placebo added on to standard of
146 care) may be necessary to maintain equipoise.

147

148 – For agents with a similar mechanism of action as the background standard of care
149 (e.g., direct antiviral agent as the investigational agent when the standard of care is
150 also a direct antiviral agent), an active-comparator controlled study design may be
151 considered. A superiority trial design or noninferiority design¹¹ may be appropriate.

152

153 • Sponsors are encouraged to use quantitative clinical pharmacology approaches that
154 leverage all available information for selection of dosing regimen(s) to be evaluated in
155 clinical trials.¹²

156

157 • Sponsors should plan to collect baseline vaccination status, changes in vaccination status
158 during the trial, and baseline and concomitant medication use, including COVID-19
159 standard of care therapies.

160

161 • Sponsors should address the possibility of drug and COVID-19 vaccine interactions for
162 drugs that may interfere with vaccine effectiveness (i.e., monoclonal antibodies targeting
163 the vaccine antigen). Sponsors should consult with the Agency early in the development
164 program for such drugs.

165

166 • SARS-CoV-2 has and continues to evolve, resulting in the emergence of SARS-CoV-2
167 with genetic changes that may impact the effectiveness of antiviral drugs. Sponsors
168 should determine the antiviral activity (EC₅₀ and EC₉₀ values) of their drug against
169 currently predominant and emerging U.S. variants.

170

171 • Using an antiviral drug to treat COVID-19 may contribute to the emergence of viruses
172 with reduced susceptibility to the drug or to other approved or investigational drugs.
173 Sponsors should characterize drug resistance pathways and the potential for cross-
174 resistance to other drugs using both nonclinical and clinical studies. Details regarding
175 drug resistance analysis are provided in Appendix B. Sponsors should also refer to the
176 guidance for industry *Antiviral Product Development — Conducting and Submitting*
177 *Virology Studies to the Agency* (June 2006).

178

179 • Clinical trial protocols should include plans to characterize the impact of drugs on viral
180 shedding and immune responses as described in Appendix C.

181

182 • Decentralized clinical trials (DCTs) may play a role in COVID-19 drug development
183 programs. Sponsors considering a DCT should plan early discussions with the

¹¹ The noninferiority margin must be sufficiently supported to conduct a noninferiority trial and the justification should be discussed with FDA. See the guidance for industry *Non-Inferiority Clinical Trials to Establish Effectiveness* (November 2016).

¹² See the guidances for industry *Population Pharmacokinetics* (February 2022) and *Exposure-Response Relationships — Study Design, Data Analysis, and Regulatory Applications* (May 2003).

Contains Nonbinding Recommendations

184 appropriate review division, as a DCT may introduce additional complexities related to
185 feasibility, design, implementation, and analysis of the data.^{13,14}

186

187 – Sponsors should consider several factors when determining if conducting a DCT is
188 appropriate, selecting the location of a trial visit, and/or selecting personnel
189 performing an assessment. These factors include the following:

190

- 191 ▪ The severity of COVID-19

192

- 193 ▪ The nature of the investigational product (e.g., ease of administration, safety
194 profile, stability profile, storage conditions)

195

- 196 ▪ The type of trial procedure or assessment (e.g., administration of investigational
197 product, clinical laboratory assessment, clinical outcome assessment, or adverse
198 event assessment/follow-up)

199

- 200 • Sponsors considering the use of adaptive design elements in their clinical trial should
201 review the guidance for industry *Adaptive Designs for Clinical Trials of Drugs and*
202 *Biologics* (November 2019). If a trial incorporates any adaptations to the sample size,
203 dosing arms, or other design features, sponsors should prospectively plan the design in a
204 manner to ensure control of the type I error rate and reliable treatment effect estimation.

205

- 206 • FDA strongly discourages disseminating data from ongoing trials. Knowledge of
207 accumulating data by trial investigators and subjects can adversely affect subject accrual,
208 adherence, and retention, as well as endpoint assessment, compromising the ability of the
209 trial to reliably achieve its objective in a timely manner. Issues with trial conduct caused
210 by knowledge of interim results are difficult to predict and generally impossible to adjust
211 for in statistical analyses. Therefore, releasing interim results could have ramifications on
212 the integrity of the ongoing trial and the ability to collect reliable and interpretable data
213 needed to support regulatory decision-making. If sponsors intend to conduct interim
214 analyses, FDA recommends they prospectively plan these analyses and incorporate
215 processes to maintain the integrity of the trial (e.g., using an independent DMC).¹⁵ FDA
216 recognizes there may be exceptional circumstances in which a sponsor determines it
217 needs to disseminate results for safety or other reasons. In such situations, the sponsor is
218 strongly encouraged to discuss with FDA before releasing such results.

219

- 220 • FDA encourages sponsors to incorporate prospectively planned criteria to stop the trial
221 for futility (lack of efficacy) or harm in any confirmatory trial. The stopping criteria

¹³ See the draft guidance for industry *Decentralized Clinical Trials for Drugs, Biological Products, and Devices* (May 2023). When final, this guidance will represent the FDA's current thinking on this topic.

¹⁴ See the draft guidance for industry, investigators, and other stakeholders *Digital Health Technologies for Remote Data Acquisition in Clinical Investigations* (December 2021). When final, this guidance will represent the FDA's current thinking on this topic.

¹⁵ See guidance for industry *Adaptive Designs for Clinical Trials of Drugs and Biologics*.

Contains Nonbinding Recommendations

222 should aim to ensure a high probability of halting the trial if the drug is harmful (e.g.,
223 associated with a higher risk of death), a reasonable probability of halting the trial if the
224 drug is ineffective, and a high probability of continuing the trial if the drug is effective.
225

226 • FDA encourages sponsors to use an independent, external data monitoring committee
227 (DMC) to ensure subject safety and trial integrity.
228

229 – Sponsors should submit the DMC charter to FDA before enrolling subjects.
230

231 – Sponsors should ensure there will be appropriate DMC monitoring to safeguard the
232 welfare of subjects, accounting for important factors such as the expected enrollment
233 rate, the expected lag time to analyze interim data for DMC meetings, and the
234 frequency of DMC meetings.¹⁶
235

236 • The trial should aim to minimize missing data. The protocol should distinguish between
237 discontinuation from the study drug and withdrawal from study assessments. Trial
238 subjects may choose to discontinue treatment during the trial for various reasons, such as
239 experiencing adverse events or perceived lack of efficacy. Unless the subject withdraws
240 consent,¹⁷ sponsors should encourage subjects who discontinue therapy to remain in the
241 study and to continue follow-up for key safety and efficacy assessments. Virtual follow-
242 up is acceptable, if appropriate, and the aim should be to record vital status for all
243 subjects.
244

245 • Applicable clinical trials need to be registered at www.ClinicalTrials.gov as required by
246 42 CFR part 11. FDA encourages responsible parties to promptly update
247 www.clinicaltrial.gov with the results of completed trials given their public health
248 importance.
249

3. Efficacy Endpoints

250 Sponsors of drugs to treat COVID-19 should consider the following:
251

252

253 • The drug development program should evaluate the effect of the investigational drug
254 relative to placebo or an active comparator on clinically meaningful aspects of the
255 disease. The relevance and appropriateness of measures may depend on factors such as
256 the mechanism of action of the drug, the population studied, the clinical setting, the phase
257 of drug development, and/or baseline disease severity (see Appendix A).
258

259 • Examples of important clinical outcome measures in treatment trials include the
260 following:
261

¹⁶ See the guidance for industry *Establishment and Operation of Clinical Trial Data Monitoring Committees* (March 2006).

¹⁷ Withdrawal of consent refers to a subject's voluntary termination of participation in the clinical trial during the course of the trial. The reason for withdrawal of consent should be captured in a case report form.

Contains Nonbinding Recommendations

263 – All-cause mortality.

264

265 – Respiratory failure (i.e., need for mechanical ventilation, extracorporeal membrane

266 oxygenation, noninvasive positive pressure ventilation, or high-flow nasal cannula

267 oxygen delivery).

268

269 – Need for invasive mechanical ventilation.

270

271 – Need for hospitalization.

272

273 – Objective measures of sustained improvement (e.g., return to room air or baseline

274 oxygen requirement).

275

276 – Sustained symptom alleviation or resolution. For trials evaluating non-hospitalized

277 patients, this can be defined as occurring when no key COVID-19-related symptom

278 scored higher than a prespecified threshold over a clinically meaningful time period

279 (as documented using a patient-reported outcome instrument).¹⁸

280

281 – Clinical status using an ordinal scale that incorporates multiple clinical outcomes of

282 interest ordered by their clinical importance.

283

284 • The choice, time frame, and interpretation of endpoints may differ depending on the

285 population evaluated in the trial. For example,

286

287 – In a trial in severe and/or critically ill patients, examples of appropriate endpoints

288 could be

289

290 ▪ All-cause mortality at an appropriate time point (e.g., at least 28 days for

291 hospitalized noncritically ill patients, 60 days for critically ill patients¹⁹)

292

293 ▪ Proportion of patients alive and free of respiratory failure at an appropriate time

294 point (e.g., at least 28 days for hospitalized noncritically ill patients, 60 days for

295 critically ill patients)

296

297 – In an outpatient treatment trial, examples of appropriate endpoints could be

¹⁸ See the guidances for industry *Assessing COVID-19-Related Symptoms in Outpatient Adult and Adolescent Subjects in Clinical Trials of Drugs and Biological Products for COVID-19 Prevention or Treatment* (September 2020) and *Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims* (December 2009) for additional information on using patient-reported outcome measures to define clinical recovery. Also see FDA Patient-Focused Drug Development Guidance Series which can be found at <https://www.fda.gov/drugs/development-approval-process-drugs/fda-patient-focused-drug-development-guidance-series-enhancing-incorporation-patients-voice-medical>.

¹⁹ C Karagiannidis, C Mostert, C Hentschker, T Voshaar, J Malzahn, G Schillinger, J Klauber, U Janssens, G Marx, S Weber-Carstens, S Kluge, M Pfeifer, L Grabenhenrich, T Welte, and R Busse, 2020, Case Characteristics, Resource Use, and Outcomes of 10021 Patients with COVID-19 Admitted to 920 German Hospitals: an Observational Study, *Lancet Respir Med*, 8(9):853–862.

Contains Nonbinding Recommendations

298

299 ▪ Proportion of patients progressing to hospitalization or death by an appropriate
300 time point (e.g., at least 28 days).

301

302 ▪ Time to sustained symptom alleviation or resolution assessed over an appropriate
303 duration.

304

305 • For primary endpoints other than all-cause mortality, a treatment effect could be driven
306 by nonmortality components (e.g., hospitalization) despite increased mortality while on
307 the investigational drug. Therefore, analyses of all-cause mortality will be important
308 regardless of the selected primary endpoint. Additionally, powering the trial based on
309 other endpoints, such as time to sustained recovery, may result in less precision in the
310 assessment of all-cause mortality attributable to a smaller patient sample size. Depending
311 on the population and mechanism of action of the investigational drug(s), additional
312 consideration may be needed to determine if the sample size is sufficient to provide an
313 adequate assessment of mortality.

314

315 • In their endpoint definition, sponsors should address the occurrence of relapses to ensure
316 adequate assessment of the durability of response.

317

318 • In phase 2 treatment trials, a virologic measure may be acceptable as a primary endpoint
319 to support progression to a phase 3 clinical endpoint trial. However, virologic endpoints
320 are not appropriate as primary endpoints in a phase 3 trial because there is no established
321 predictive relationship between magnitude and timing of reductions in viral RNA
322 shedding and the extent of clinical benefit of how a patient feels, functions, or survives.
323 Additionally, the optimal sample size, timing, and methods for collection procedures
324 have not been established and assays for clinically relevant virologic measurements have
325 not been validated. In phase 3 treatment trials, virologic endpoints may be assessed as
326 secondary endpoints. Collection of virologic data and evaluation of activity against
327 circulating variants and treatment-emergent resistance are important components of drug
328 development for COVID-19 (see Appendix B and Appendix C).

329

330 • For endpoints defined by events through or at a prespecified time point, the time point
331 should be defined as number of days after randomization. The time window should be
332 sufficiently long to ensure capture of important events related to patient status, treatment,
333 and COVID-19 progression.

334

4. Safety Considerations

335 Sponsors of drugs to treat COVID-19 should consider the following:

336

337

338

339 • The size and composition of the safety database needed to support an indication for
340 COVID-19 depends on factors such as the proposed population, the treatment effect, the
341 drug's toxicity, and the extent of the prior clinical experience with the drug (and possibly
342 with related drugs). For example, for drugs with a well-characterized safety profile with
343 low toxicity, a more streamlined approach to data collection may be appropriate (e.g.,

Contains Nonbinding Recommendations

344 limiting adverse event collection to serious adverse events, adverse events leading to
345 discontinuation, and grade 3 and grade 4 adverse events).²⁰ Conversely, for drugs that are
346 less well characterized or repurposed agents known to be highly toxic (e.g., some
347 oncologic drugs), a more detailed collection of safety data would be warranted. Sponsors
348 are encouraged to discuss their proposed safety database with FDA early in the course of
349 clinical development.

350

- 351 • Sponsors may provide a standardized toxicity grading scale. For clinical trials in subjects
352 with severe COVID-19 or subjects with serious comorbidities, examples of toxicity
353 grading scales include those published by the National Institutes of Health's Division of
354 AIDS²¹ and the National Cancer Institute.²² For trials evaluating mild-to-moderate
355 COVID-19, an example grade scale can be found in the guidance for industry *Toxicity*
356 *Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive*
357 *Vaccine Clinical Trials* (September 2007).
- 358
- 359 • Sponsors should address the potential for drug-drug interactions that could increase the
360 risk for toxicities (caused by increased exposures of the investigational drug or the drug
361 that it interacts with) and propose mitigation strategies.
- 362
- 363 • Safety assessments (e.g., vital signs, laboratory studies, electrocardiograms) should be
364 performed on a schedule commensurate with severity of illness and the identified
365 potential risk of the study drug.
- 366
- 367 • Sponsors should conduct safety reporting as outlined in FDA regulations²³ and relevant
368 guidance.²⁴

5. Statistical Considerations

370 Sponsors of drugs to treat COVID-19 should consider the following:

371

- 372 • Sponsors should justify their assumptions in sample size calculations. The sample size
373 should be large enough to provide a reliable answer to the safety and efficacy questions
374 the trial is meant to address.

²⁰ See the guidance for industry *E19 A Selective Approach to Safety Data Collection in Specific Late-Stage Pre-approval or Post-Approval Clinical Trials* (December 2022).

²¹ See the National Institutes of Health's Division of AIDS Adverse Event Grading Tables, available at <https://rsc.niaid.nih.gov/clinical-research-sites/daids-adverse-event-grading-tables>.

²² See the National Cancer Institute's Common Terminology Criteria for Adverse Events, available at https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm.

²³ See 21 CFR 312.32.

²⁴ See the guidance for industry *Safety Reporting Requirements for INDs and BA/BE Studies* (December 2012). In addition, FDA has proposed relevant recommendations in the draft guidance for industry *Safety Assessment for IND Safety Reporting*.

Contains Nonbinding Recommendations

377

378 • Sponsors are encouraged to consider the estimands²⁵ of interest and to adequately define
379 those estimands in both the protocol and the statistical analysis plan.

380

381 – The primary efficacy analysis should be conducted in all randomized subjects.

382

383 – For key efficacy endpoints in treatment trials, FDA generally recommends the
384 following approaches for handling intercurrent events.²⁶ For any alternative
385 strategies, sponsors should justify that the estimand addresses a meaningful clinical
386 question of interest and can be estimated with plausible assumptions.

387

388 ▪ Sponsors should use a composite variable strategy²⁷ to handle death, with death
389 taking a sufficiently unfavorable value. Death should not be considered a form of
390 missing data.

391

392 ▪ Sponsors should also use the composite variable strategy for handling
393 hospitalization in the outpatient population.

394

395 ▪ Sponsors should use a treatment policy strategy²⁸ for other intercurrent events.

396

397 • To improve the precision of treatment effect estimation and inference, sponsors should
398 consider adjusting for prespecified prognostic baseline covariates (e.g., age, baseline
399 severity, comorbidities, baseline medications, and COVID-19 vaccination status) in the
400 primary efficacy analysis and should propose methods of covariate adjustment. For
401 example, for a binary endpoint, methods can be used to gain precision in the evaluation
402 of the difference in proportions.^{29,30}

403

404 • Restricting analyses to a subset of patients defined by a post-randomization variable (e.g.,
405 intensive care unit admission, ventilator use) can lead to results that are difficult to
406 interpret. The analysis set or sets to be used in the statistical analyses for any key efficacy
407 endpoint should be defined according to measurements and characteristics that can be
408 observed at baseline.

²⁵ See the guidance for industry *E9(R1) Statistical Principles for Clinical Trials: Addendum: Estimands and Sensitivity Analysis in Clinical Trials* (May 2021).

²⁶ Intercurrent events are events occurring after treatment initiation that affect either the interpretation or the existence of the measurements associated with the clinical question of interest. See ICH E9(R1).

²⁷ Ibid.

²⁸ Ibid.

²⁹ JA Steingrimsson, DF Hanley, and M Rosenblum, 2017, Improving Precision by Adjusting for Prognostic Baseline Variables in Randomized Trials With Binary Outcomes, Without Regression Model Assumptions, *Contemp Clin Trials*, 54:18–24.

³⁰ T Ye, M Bannick, Y Yi, and J Shao, 2023, Robust Variance Estimation for Covariate-Adjusted Unconditional Treatment Effect in Randomized Clinical Trials With Binary Outcomes, *Stat Theory and Relat Fields*, 7(2):159–163.

Contains Nonbinding Recommendations

409

410 • If a treatment trial enrolls a mixture of subjects with different baseline severity levels, baseline medication use, and/or vaccination statuses, sponsors should conduct subgroup or interaction analyses to assess for differential treatment effects. Sponsors should also provide analyses describing concomitant medication use and changes in vaccination status during the trial overall and by treatment arm.

411

412

413

414

415

416 • Sponsors should submit a statistical analysis plan for review before any unblinding of data. In addition to the statistical methods provided in the protocol, the statistical analysis plan for a trial should contain detailed information on each primary and secondary endpoint; the main, supplemental, and sensitivity analysis methods of key efficacy endpoints; the multiple testing procedure for controlling the overall type I error rate, if applicable; and methods for handling missing data. If applicable, sponsors should prespecify the interim analysis procedures (e.g., statistical methods, boundaries) and should provide in a DMC charter detailed procedures and discussions of methods to maintain trial integrity (e.g., unblinded personnel, firewalls).

417

418

419

420

421

422

423

424

425

426 **B. Prevention Trials**

427

428 • The availability of vaccines and timing of vaccine administration to prevent COVID-19 has implications for the design and conduct of trials evaluating drugs for the prevention of COVID-19. FDA recommends that sponsors contact the Agency early on in the planning of such trials.

429

430

431

432

433 • In prevention trials, the primary endpoint should be the occurrence of laboratory-confirmed SARS-CoV-2 infection (with or without symptoms) or SARS-CoV-2 infection with symptoms (i.e., COVID-19) through a prespecified time point.

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

– Sponsors are encouraged to evaluate both laboratory-confirmed SARS-CoV-2 infection (with or without symptoms) and SARS-CoV-2 infection with symptoms (i.e., COVID-19) when possible.

– Ascertaining whether COVID-19 is milder in persons receiving drugs for the prevention of COVID-19 compared with persons not receiving such therapies is of interest. Sponsors should collect clinical outcome data (e.g., hospitalization) and data on symptoms to support such analyses.

• Sponsors should also conduct SARS-CoV-2 antibody testing at baseline and at later time points to detect serologic evidence of infection in prevention trials, which may identify cases of asymptomatic infection or infections that were otherwise undetected by virologic testing.

• For pre- or post-exposure prevention trials, protocols should include clear plans and testing algorithms for detecting SARS-CoV-2 infection. Protocols should indicate the specific viral assay(s) to be used and should describe assay performance characteristics,

Contains Nonbinding Recommendations

454
455

including any known or predicted impact of emerging SARS-CoV-2 variants on assay performance.

456

APPENDIX A

457

EXAMPLES OF BASELINE SEVERITY CATEGORIZATION

459

SARS-CoV-2 infection without symptoms

461

- Positive testing by virologic test (i.e., a nucleic acid amplification test or an antigen test)
- No symptoms

465

Mild COVID-19

467

- Positive testing by virologic test (i.e., a nucleic acid amplification test or an antigen test)
- Symptoms of mild illness with COVID-19 that could include fever, cough, sore throat, malaise, headache, muscle pain, nausea, vomiting, diarrhea, and loss of taste or smell, without shortness of breath or dyspnea
- No clinical signs indicative of Moderate, Severe, or Critical Severity

475

Moderate COVID-19

477

- Positive testing by virologic test (i.e., a nucleic acid amplification test or an antigen test)
- Symptoms of moderate illness with COVID-19, which could include any symptom of mild illness or shortness of breath with exertion
- Clinical signs suggestive of moderate illness with COVID-19, such as respiratory rate \geq 20 breaths per minute, heart rate \geq 90 beats per minute; with saturation of oxygen (SpO_2) $> 93\%$ on room air at sea level¹
- No clinical signs indicative of Severe or Critical Severity

488

Severe COVID-19

490

- Positive testing by virologic test (i.e., a nucleic acid amplification test or an antigen test)
- Symptoms suggestive of severe systemic illness with COVID-19, which could include any symptom of moderate illness or shortness of breath at rest, or respiratory distress

¹ Although pulse oximetry is useful for estimating blood oxygen levels, pulse oximeters have limitations and a risk of inaccuracy under certain circumstances that should be considered. See FDA's Pulse Oximeter Accuracy and Limitations: FDA Safety Communication, issued February 19, 2021, available at <https://www.fda.gov/news-events/fda-brief/fda-brief-fda-warns-about-limitations-and-accuracy-pulse-oximeters>.

Contains Nonbinding Recommendations

496 • Clinical signs indicative of severe systemic illness with COVID-19, such as respiratory
497 rate \geq 30 per minute, heart rate \geq 125 per minute, $\text{SpO}_2 \leq 93\%$ on room air at sea level or
498 $\text{PaO}_2/\text{FiO}_2 < 300$

499

500 • No clinical criteria for Critical Severity

501

502 **Critical COVID-19**

503

504 • Positive testing by virologic test (i.e., a nucleic acid amplification test or an antigen test)

505

506 • Evidence of critical illness, defined by at least one of the following:

507

508 – Respiratory failure defined as requiring at least one of the following:

509

510 ▪ Endotracheal intubation and mechanical ventilation, oxygen delivered by high-
511 flow nasal cannula (heated, humidified, oxygen delivered via reinforced nasal
512 cannula at flow rates $> 20 \text{ L/min}$ with fraction of delivered oxygen ≥ 0.5),
513 noninvasive positive pressure ventilation, extracorporeal membrane oxygenation

514

515 – Shock (defined by systolic blood pressure $< 90 \text{ mm Hg}$, or diastolic blood pressure $<$
516 60 mm Hg or requiring vasopressors)

517

518 – Multi-organ dysfunction/failure

519

520

521

APPENDIX B

522

DRUG RESISTANCE ANALYSIS

524

525 The drug resistance analysis plan should include the following:

526

- 527 • Characterize the antiviral activity of the drug in cell culture assays against a panel of
528 geographically, temporally, and phylogenetically distinct SARS-CoV-2 isolates,
529 including isolates representative of the most common variants currently circulating
530 globally.
- 531
- 532 • Evaluate combination antiviral activity relationships in cell culture assays between
533 candidate drugs planned for use in a combination regimen, or between the candidate
534 drug(s) and any other authorized or approved drugs if they are anticipated to be used in
535 combination.
- 536
- 537 • Select for viruses resistant to the drug in cell culture assays and characterize drug-
538 resistant viruses genotypically and phenotypically to support drug resistance and cross-
539 resistance analyses. These studies should be conducted under appropriate
540 biocontainment¹ or consider using a surrogate or recombinant virus expressing the
541 SARS-CoV-2 target protein.
- 542
- 543 • Identify reported SARS-CoV-2 amino acid polymorphisms in the drug target and
544 describe their prevalence and rates of emergence in publicly available viral sequence
545 databases. If the drug has been co-crystallized with the viral target protein, identify
546 polymorphisms in the viral target at amino acid positions that are within 5 angstroms of
547 the drug structure.
- 548
- 549 • Include detailed plans in clinical protocols to (a) characterize the impact of SARS-CoV-2
550 genetic variability on clinical and virologic outcomes (i.e., baseline resistance analyses)
551 and (b) identify SARS-CoV-2 genetic changes associated with treatment (i.e., treatment-
552 emergent resistance analyses).
- 553
- 554 • Characterize the impact of specific amino acid variants in the drug target on drug activity
555 using cell culture phenotype assays. If a pseudotyped virus-like particle assay or other
556 surrogate assay is used, conduct validation studies showing that the surrogate assay yields
557 results that are consistent with those obtained with authentic virus regarding the relative
558 impact of different variants.

¹ For biosafety considerations from the National Institutes of Health, see the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules and the FAQs — Interim Laboratory Biosafety Guidance for Research with SARS-CoV-2 and IBC Requirements under the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules, available at https://osp.od.nih.gov/wp-content/uploads/NIH_Guidelines.pdf. See also the Centers for Disease Control and Prevention's guideline Biosafety in Microbiological and Biomedical Laboratories, available at <https://www.cdc.gov/labs/BMBL.html>. Studies should also follow applicable federal policies and guidelines related to dual use research of concern, available at <https://aspr.hhs.gov/S3/Documents/USG-Policy-for-Oversight-of-DURC-and-PEPP-May2024-508.pdf>.

Contains Nonbinding Recommendations

559

- 560 • Assess the potential for cross-resistance with other drugs with the same target or similar
561 mechanism of action based on results of genotypic and phenotypic assays.

562

- 563 • Monitor continuously for emerging SARS-CoV-2 variants and evaluate phenotypically
564 any specific variants in the drug target that are becoming prevalent or could potentially
565 impact drug activity.

566

- 567 • Conduct proof of principle studies in small animal models given the limited availability
568 of nonhuman primates.

569

- 570 • Identify known human genetic polymorphisms and characterize their potential impact on
571 drug activity in nonclinical and/or clinical studies if the drug targets a host factor. The
572 types and frequencies of polymorphisms in different racial/ethnic groups should be
573 provided to FDA. Samples for resistance assessments should be collected in clinical trials
574 for host targeting antivirals as resistance can occur with these drugs.

575

- 576 • Follow established FDA guidance for submission of next generation sequencing data
577 generated from clinical trials.² Consult with the appropriate review division for additional
578 advice on collection and submission of drug resistance data.

579

² See the guidance for industry *Submitting Next Generation Sequencing Data to the Division of Antiviral Products* (July 2019). We update guidances periodically. For the most recent version of a guidance, check the FDA guidance web page at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents>.

580 APPENDIX C

581

582 **IMPACT OF DRUGS ON VIRAL SHEDDING AND IMMUNE RESPONSES**

583 Clinical trial protocols should include plans to characterize the impact of drugs on viral shedding
584 and immune responses as follows:

585

- 586 • Indicate specific time points and clinical specimens to be collected and analyzed.
- 587 • Describe the specific types of respiratory samples to be collected (e.g., nasopharyngeal
588 swabs, nasal mid-turbinate swab, saliva) and the collection procedures.
- 589 • Collect and analyze the same specimen type(s) for baseline and subsequent time points
590 when assessing the impact of treatment on viral shedding as assays may have varying
591 sensitivity or performance for different respiratory specimen types.
- 592 • Collect nonrespiratory specimens (e.g., blood, bronchoalveolar lavage fluid) for virologic
593 analyses when feasible to assess the impact of antiviral treatment on virus replication in
594 other compartments, which may play a role in disease pathogenesis.
- 595 • Include an assessment of viral RNA levels (e.g., quantitative RT-PCR) for viral shedding
596 analyses. Sponsors are encouraged to assess viral RNA shedding both quantitatively (e.g.,
597 \log_{10} decline from baseline at a specific time point) and qualitatively (e.g., detected or not
598 detected at a specific time point). Indicate the specific viral RNA assay(s) to be used and
599 whether they have received FDA emergency use authorization or approval.
- 600 • Consider conducting virus infectivity assays to characterize the impact of treatment on
601 shedding of cell culture infectious virus. Such assays should be conducted under
602 appropriate biocontainment.¹
- 603 • Describe assay performance characteristics, including any known or predicted impact of
604 emerging SARS-CoV-2 variants on assay performance.
- 605 • Characterize the impact of treatments on markers of inflammation (e.g., pro-
606 inflammatory cytokines) and on the development of anti-SARS-CoV-2 immune
607 responses when possible.

¹ For biosafety considerations from the National Institutes of Health, see the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules and the FAQs — Interim Laboratory Biosafety Guidance for Research with SARS-CoV-2 and IBC Requirements under the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules, available at https://osp.od.nih.gov/wp-content/uploads/NIH_Guidelines.pdf. See also the Centers for Disease Control and Prevention's and the National Institutes of Health's guideline Biosafety in Microbiological and Biomedical Laboratories, available at <https://www.cdc.gov/labs/BMBL.html>. Studies should also follow applicable federal policies and guidelines related to dual use research of concern, available at <https://aspr.hhs.gov/S3/Documents/USG-Policy-for-Oversight-of-DURC-and-PEPP-May2024-508.pdf>.

Contains Nonbinding Recommendations

617 • Consider conducting these laboratory assessments in central laboratories or include
618 internal assay references to minimize the potential introduction of variability attributable
619 to assessments being conducted in different laboratories.
620
621