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Abstract Image Reconstruction using the Generative AI : GAN 
Accurate and unbiased microstructure analysis from micrographs is crucial for thoroughly understanding the relationships between processes, 
microstructures, and properties, as well as for developing customized materials. However, as microstructures become more complex, advanced 
segmentation techniques are required. High-resolution imaging often necessitates special sample preparations and extended imaging times. In contrast, 
lower-resolution techniques are faster, however often present challenges in restoring fine details and textures. This project leverages generative AI to 
enhance microstructure inference from low resolution micrographs, aiming to provide a comprehensive understanding of process-microstructure property 
relations. Generative AI, particularly Generative Adversarial Networks (GANs), has demonstrated promise in generating high-resolution images from low-
resolution inputs by predicting and reconstructing missing details. 

Importance of Resolution for Quality Assessment 
Factors Low Resolution High Resolution 

Image Quality Poor, blurry, pixelated Clear, sharp, high definition 

High detail, contain Low detail, loose granular granular details, smooth Detail information, visible pixels edges

Storage Capacity Can store more images Can store fewer images 

Cost Inexpensive Expensive 

Viewing Experience Unpleasant, hard to view Pleasant, easy to view (A) Low resolution images – Input Image (B) Generated Image from the GAN Algorithm (C) High resolution images – Ground Truth Image 

File Size Small Large (a) Low Resolution Image of Naloxone (b) High Resolution Image of Naloxone Results and Discussion Measurement Time Shorter Longer Particles Particles 

Table: Benefits and Limitation of High- and Low- Resolution Images Figure: Benchtop Scanning Electron Microscope (SEM) images for low- and high- resolution
images for Naloxone Sample Size Distribution 120 Methodology 
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100 Images for Training & Validation 100 Images for Training & Validation
20 Images for Testing 20 Images for Testing Sample Size: 120 images for Electron Microscope 60 Input Image 
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