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Introduction 
Patient vital signs in the intensive care unit (ICU) are traditionally monitored and 
recorded on an hourly basis. Several factors can influence patient vital signs, including 
medications, treatments, and the condition or injury from which the patient suffers. 
Variation in vital signs is believed to be key in predicting impending patient death or 
recovery. Although some patients exhibit significant changes in vital signs as death 
approaches, others do not. 

Providing advance warning of mortality risk to health-care providers allows the 
opportunity for interventions to improve the patient’s chances of survival. The 
increasing number of ICU patients within the US makes this topic a significant public
health issue. 

The ICU data for this study was obtained from the Medical Information Mart for 
Intensive Care version IV (MIMIC-IV), generated from the Beth Israel Deaconess 
Medical Center (BIDMC) in Boston from 2008 through 2019. We selected subjects who 
were 20 years and older and in one of the 9 ICUs for at least 24 hours but no more than
7 days. 

The vital signs data, in addition to the use of mechanical ventilation, were restructured 
into an hourly longitudinal format for each eligible patient over the entirety of their ICU 
stay. In other words, we denormalized the MIMIC-IV dataset to present the data in its 
most granular form (Fig1). 

Materials and methods 
Denormalizing MIMIC-IV and reorganizing the data into a longitudinal database on a 
per-patient basis requires an algorithm that can predict whether mortality occurs and the
specific hour it happens. When the data is structured in this way, the occurrence of 
mortality becomes a rare event, leading to a highly imbalanced dataset. When dealing 
with a rare outcome in a classification algorithm, metrics like Accuracy can be 
misleading. 

A Bidirectional Long Short-Term Memory (LSTM) AI algorithm processed these vital
signs to make a mortality prediction for each patient. We chose an LSTM model as they
handle sequential data, capturing temporal dependencies and patterns vital to
understanding patient health trajectories. LSTM models are good at remembering long-
term dependencies that are key in identifying improving or deteriorating patient
conditions. In addition to their ability to filter statistical noise and focus on underlying 
patterns, they are adept at handling missing values. LSTMs are able to identify both 
linear and non-linear relationships between different physiological variables. An optimal 
LSTM model enables the possibility for early detection of critical events, personalized 
care, and, ultimately, improving patient outcomes in the ICU. 

The LSTM algorithm examines the patterns of each patient’s vital signs, including heart
rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, percent 
of oxygen in blood (SpO2), fraction of inspired oxygen (FiO2), respiratory rate, 
temperature, mechanical ventilation, and the Glasgow coma scores when available. 
There were no other laboratory tests or patient demographics outside of Age and Sex in 
predicting patient outcomes. The algorithm examines the patterns in two directions, as 
described in Fig 2. 

Figure 2. Conceptual diagram of a bidirectional LSTM algorithm. 

The algorithm is, in effect, a screening test designed to identify patients at risk of 
mortality based on their last 24 hours of vital signs. Sensitivity and the Positive 
Predictive Value (PPV) are metrics for assessing the performance of screening tests 
(Fig3). Alternate labels for Sensitivity and PPV are Recall and Precision, respectively. 

Figure 3. The traditional 2x2 screening test table with formulas for Sensitivity, Positive 
Predictive Value (PPV), Negative Predictive Value (NPV), and Specificity written in terms 
of True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives 
(FN). 

In the context of our problem, Sensitivity is the proportion of patients who are going to 
die that are correctly identified as positive by the algorithm. We want to reduce the
number of False Negatives (FN) to maximize Sensitivity. Reducing the number of FNs 
also maximizes the Negative Predictive Value (NPV). In the clinical setting, however, a 
different question may be important for the physician: If the test results are positive in 
the patient, what is the probability that this patient will die? This is the PPV. We want to 
reduce the number of False Positives (FP) to maximize PPV. Reducing the number of 
FPs also maximizes the Specificity. 

The PPV is highly susceptible to the prevalence. As the outcome becomes less 
common, the PPV's performance declines significantly. The performance of Sensitivity 
is based on the number of FNs. The cutoff threshold can be adjusted to balance the
number of FNs and FPs generated by the test. This is, in essence, a tradeoff in 
performance between Recall and Precision, as depicted in Fig 4. Since we are 
screening patients for risk of mortality, a FN is much more damaging than a FP in this 
scenario. Therefore, we tuned our model for high Recall at the expense of Precision. 
The F beta score described in Equation 1 is a performance metric that considers this 
tradeoff. 

Figure 4. The Precision-Recall curve for patients who spent 1 to 7 days in the ICU in a 
model tuned for high Precision (PPV). 

Equation 1. The F beta score combines Precision and Recall into a single metric. The 
more you care about Recall over Precision, then beta should be greater than 1. When 
beta is less than 1 (0 < beta < 1), the more we favor Precision. 

Results and discussion 
Descriptive statistics for the ICU patient population over the age of 20 are given in Table 1. 

Table 1. Summary statistics for BIDMC ICU patients over the age of 20 with stays 
varying from 1 to 7 days. 

Our implementation of a bidirectional LSTM AI algorithm coupled with highly granular 
ICU patient data was predictive of mortality risk. The model could be tuned for a high 
Sensitivity or high PPV, as seen in Table 2. Since the algorithm functions as a population 
screening tool, higher Sensitivity is preferred over a higher PPV. A Sensitivity of 99% 
was achieved for ICUpatients with stays of 1 to 7 days. 

Table 2. Performance metrics for six different models tuned for high Precision and high 
Recall involving BIDMC patients with varying ICU stays. 

Conclusion 
The results confirm that there is potential in predicting mortality risk within ICU patients 
utilizing routinely collected vital signs. An AI algorithm tuned for high Sensitivity 
offers the opportunity of an early warning to health care providers concerning 
patient mortality risk.

Disclaimer 
This poster reflects the views of the authors and does not necessarily reflect those of 
the U.S. Food and Drug Administration. Figure 1. Conceptual diagram of how the MIMIC-IV vital signs are denormalized and 

restructured into a longitudinal hour-by-hour format to expose the most granular level of
individual patient data. 

FDA | SYMPOSIUM | SCIENTIFIC COMPUTING + DIGITAL TRANSFORMATION | 2024 


	Scientific Poster



