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Introduction

Patient vital signs in the intensive care unit (ICU) are traditionally monitored and
recorded on an hourly basis. Several factors can influence patient vital signs, including
medications, treatments, and the condition or injury from which the patient suffers.
Variation in vital signs is believed to be key in predicting impending patient death or
recovery. Although some patients exhibit significant changes in vital signs as death
approaches, others do not.

Providing advance warning of mortality risk to health-care providers allows the
opportunity for interventions to improve the patient’s chances of survival. The
iIncreasing number of ICU patients within the US makes this topic a significant public
health issue.

The ICU data for this study was obtained from the Medical Information Mart for
Intensive Care version IV (MIMIC-1V), generated from the Beth Israel Deaconess
Medical Center (BIDMC) in Boston from 2008 through 2019. We selected subjects who
were 20 years and older and in one of the 9 ICUs for at least 24 hours but no more than
[ days.

The vital signs data, in addition to the use of mechanical ventilation, were restructured
into an hourly longitudinal format for each eligible patient over the entirety of their ICU
stay. In other words, we denormalized the MIMIC-IV dataset to present the data in its
most granular form (Fig1).

lswecr_lo = lncuswno PK ‘nmrowx ‘-—-
g O SUBJECT__ID((FK)) :

MADM 1D (FK) POy

[ cALOUT CAREGIVERS
o0 P4 Granular Single Patient Dat
Ol SUBJECT 10 (K [anUiar oingie ralient Lald
HADM_IO (FK) B HADHJD (P
| SUBJECT 10 (PK) INPUTEVENTS CV
SERVICES ROW_ID (PK)
O SUBJECT_ID (FK)
ggjﬁlg T(PI’:)){FK) O HADM 10 (FK)
X { O ICUSTAY 1D (FK)
HADM_D (FK} PO il ITEMID (FK) SOLEREE
ITEMIO (PK) CGID {FK) '
ORGCODES L INPUTEVENTS_ MV
ROW 1D (PK) A
. : , A ROW_ID (PK)
o A LABEVENTS SUBJECT_I0 (FK)
HAOMO(F) ¥ JOAHAOM 10 (FK)
! |~ ROW.ID (PK) e ICUSTAY 1D (FK)
: . {SUBJECT_ID (FK) T NoIREL
CPTEVENTS O HADM 10 (FK) CGID (FK) :
ITEMID (FK) ¢
ROW_ID (PK) [ .
SUBJECT ID (FK) DATETIMEEVENTS
1 HADM 10 (FK | NOTEEVENTS
- bé "cm_cof' ' b
ROW 1D (PK)

A ROW._ID (PK)
SUBJECT 10 (FK) 1 20
, \ " SUBJECT_ID (FK) ~+OGHADM 10 (FK)
OIS | OO 7 oqUTR DR |
K’ v | | ) T [
ROW._ID (PK) - CGID {FK) ‘ 9 l | | v Hoat rag
O] SUBJECT 1D (FK , -
. HADM mFK{ : b0 TRANSFERS 24004 N AL .aﬂa -4 ()2 saturation
. %"'CDQ:,CCOE" ROW 1D (PK) CHARTEVENTS g AV [ e V L N V1 Vs b w NIBP. mean
ul O4SUBJECT_I0 (FK) oqRNOPY g “ 1‘ . - \ | " Rl
O HADM I (FK " SUBJECT IO (FK) 3 ' " ko
ot ICUSTAY {l)()FK) O HADM.I0 (FK) 2 || ) A' “anll - e
ROW_ID {PK) \ - ~OF{ICUSTAY_ID (FK) 3 W | . Output volume, oL
* Lodaigiicr 1o gk . ITEMIO (FK) " X! ) } H a -
HADM IO (FK) DO~ GO0 %) : o \ [Ml '
; .% "IC0S CODE™ ROW 1D (PK) . | E
| ' X SUBJECT_ID (FK) QUTPUTEVENTS : 0
—OEHADM 1D (FK)
; . L ROW_I (PK) [ E
llcusm_om BO OJSUNECT. O (70 : 0
w1 O HADM. 10 (FK) , :
: OAICUSTAY 1D (FK) i 0
D ICD DIAGNOSES W& — ITEMID (FK) ;0 Rl g
. L ICO0 CODE CGID (FK) ' |
" .CODE (PK) The threa relations : S
1o the left do not )
I
l D ICD PROCEDURES ::::'z'"::*: PRUCEUEE SOV I
' I
ORDERID (PK
b= +{1C09,_CODE (PK) '““"' '“,;:;:?' X suaJecr_(no (}nq :
u:; nm") —K HADM |D(FK} |
- O ICUSTAY 1D {FK) Bl §
' L | ITEMID {FK) () * :
b= o [ROW ID CGID (FK - ‘ ' * ‘ - |
0P , || i L
] s e .
Links that are MICROBIOLOGYEVENTS | Time after admission o the infensive care unit hours
dotted linos have
Parent tables use alternate colors not boen used In O Fs{ma-lgr(p:)}(m :
and have ttles that are white and bokd. | | previous instantations | | 4L e i
Linking lines to a parent are colored the of MIMICANl (based on 8pEC TTEMID (FK) ?O 4
background color of the parent title, source SQL code) ORG ITEMID (FK) BO g

Figure 1. Conceptual diagram of how the MIMIC-IV vital signs are denormalized and
restructured into a longitudinal hour-by-hour format to expose the most granular level of
iIndividual patient data.

Materials and methods

Denormalizing MIMIC-IV and reorganizing the data into a longitudinal database on a
per-patient basis requires an algorithm that can predict whether mortality occurs and the
specific hour it happens. When the data is structured in this way, the occurrence of
mortality becomes a rare event, leading to a highly imbalanced dataset. When dealing
with a rare outcome in a classification algorithm, metrics like Accuracy can be
misleading.

A Bidirectional Long Short-Term Memory (LSTM) Al algorithm processed these vital
signs to make a mortality prediction for each patient. We chose an LSTM model as they
handle sequential data, capturing temporal dependencies and patterns vital to
understanding patient health trajectories. LSTM models are good at remembering long-
term dependencies that are key in identifying improving or deteriorating patient
conditions. In addition to their ability to filter statistical noise and focus on underlying
patterns, they are adept at handling missing values. LSTMs are able to identify both
linear and non-linear relationships between different physiological variables. An optimal
LSTM model enables the possibility for early detection of critical events, personalized
care, and, ultimately, improving patient outcomes in the ICU.

The LSTM algorithm examines the patterns of each patient’s vital signs, including heart
rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, percent
of oxygen in blood (Sp0O2), fraction of inspired oxygen (FiO2), respiratory rate,
temperature, mechanical ventilation, and the Glasgow coma scores when available.
There were no other laboratory tests or patient demographics outside of Age and Sex in
predicting patient outcomes. The algorithm examines the patterns in two directions, as
described in Fig 2.
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Figure 2. Conceptual diagram of a bidirectional LSTM algorithm.

The algorithm is, in effect, a screening test designed to identify patients at risk of
mortality based on their last 24 hours of vital signs. Sensitivity and the Positive
Predictive Value (PPV) are metrics for assessing the performance of screening tests
(Fig3). Alternate labels for Sensitivity and PPV are Recall and Precision, respectively.

Gold Standard DD S
Test Results True Positive True Negative Row Sums PPV = Ip F _ (1 4 ﬂ 2 ) p recision reca 11
Test Positive TP FP TP + FP ' IP+FP beta 2 % . .
Test Negative FN N FN + TN — ™ /8 pI’GClSlOD‘|‘I'eCEIH
Column Sums TP + FN FP + TN TP+ FN + FP + TN NPV=TN+FN

Equation 1. The F beta score combines Precision and Recall into a single metric. The
l l more you care about Recall over Precision, then beta should be greater than 1. When
beta is less than 1 (0 < beta < 1), the more we favor Precision.
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Results and discussion

Descriptive statistics for the ICU patient population over the age of 20 are given in Table 1.

Figure 3. The traditional 2x2 screening test table with formulas for Sensitivity, Positive
Predictive Value (PPV), Negative Predictive Value (NPV), and Specificity written in terms
of True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives

(F) Descriptive Statistics for ICU Patients 20 Years and Older

In the context of our problem, Sensitivity is the proportion of patients who are going to Sex N A\’g [CU stay from | ICU stay from | ICU stay from Died
die that are correctly identified as positive by the algorithm. We want to reduce the . - -

number of False Negatives (FN) to maximize Sensitivity. Reducing the number of FNs e 1t03 davs 1t05 davs 1t07da‘.’5

also maximizes the Negative Predictive Value (NPV). In the clinical setting, however, a Male 40,664 | 62.5 68% 829 88% 4,528
different question may be important for the physician: If the test results are positive in

the patient, what is the probability that this patient will die? This is the PPV. We want to Female 32,237 | 64.5 69% 83% 80% 3790

reduce the number of False Positives (FP) to maximize PPV. Reducing the number of

FPs also maximizes the Specificity. Table 1. Summary statistics for BIDMC [ICU patients over the age of 20 with stays

varying from 1 to 7 days.
The PPV is highly susceptible to the prevalence. As the outcome becomes less

common, the PPV's performance declines significantly. The performance of Sensitivity
iIs based on the number of FNs. The cutoff threshold can be adjusted to balance the
number of FNs and FPs generated by the test. This is, in essence, a tradeoff in
performance between Recall and Precision, as depicted in Fig 4. Since we are
screening patients for risk of mortality, a FN is much more damaging than a FP in this

Our implementation of a bidirectional LSTM Al algorithm coupled with highly granular
ICU patient data was predictive of mortality risk. The model could be tuned for a high
Sensitivity or high PPV, as seen in Table 2. Since the algorithm functions as a population
screening tool, higher Sensitivity is preferred over a higher PPV. A Sensitivity of 99%
was achieved for ICUpatients with stays of 1 to 7 days.

scenario. Therefore, we tune.d our m(_)del f(_)r high Recall at the expense of F_’reC|S|or_1. Six Models Tuned for High Precision or Recall
The F beta score described in Equation 1 is a performance metric that considers this - —
tradeoff. Models Tuned for High Precision
1-3 Day ICU 1-5 Day ICU 1-7 Day ICU
- - Bi r Ac 7 7
Precision Recall Curve S 0-9987 s =
e Recall (Sensitivity) 0.3262 0.4153 0.4089
Precision (PPV) 0.9302 0.8016 0.9080
0.90 F(1/100) 0.9300 0.8915 0.9079
Models Tuned for High Recall
0.80 | 1-3DayICU 1-5 Day ICU 1-7 Day ICU
Binary Accuracy 0.9790 0.9682 0.9781
0.70 Recall (SeIISitiVity) 0.9757 0.9935 0.9901
Precision (PPV) 0.0776 0.0491 0.0671
= ©0.60 Fi00 0.9746 0.9916 0.9887
o
E re Table 2. Performance metrics for six different models tuned for high Precision and high
3 Recall involving BIDMC patients with varying ICU stays.
=
o Conclusi
0.30
The results confirm that there is potential in predicting mortality risk within ICU patients
0.20 utilizing routinely collected vital signs. An Al algorithm tuned for high Sensitivity
offers the opportunity of an early warning to health care providers concerning
540 patient mortality risk.
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Figure 4. The Precision-Recall curve for patients who spent 1 to 7 days in the ICU in a

model tuned for high Precision (PPV).
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