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• Carcinogenicity of 7, 176 
compounds were evaluated. 

• 1220 (17%) compounds were 
indicated with carcinogenic risk 
probability>= 0.5. 
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Predicted Probabilities 

• 82 (1.14%) compounds were 
indicated with high carcinogenic 
risk probability>= 0.9. 

Factors 

• Data availabi lity 

• Data 
preprocess1 ng 

• Data usage 
(training, test, 
validation) 

Factors 

• Code availabi lity 

• Hyperparameters 

• Random seeds 

Reproducible? 

• N/A 

Reproducible? 

• N/A 

Solutions 

• Share data (GitHub 
(<2G), 
Zenodo(<50G), 
Dryad(>50G)) 

• We ll document in 
data preprocessing 

• Record data usage 
(Avoid sharing data 
usage by sharing 
random seeds) 

Solutions 

• Share code (e.g., 
GitHub) 

• Well document in 
Methods 

• Save classifiers 
with random 
seeds (e.g., .pkl 
file ) 

Factor 

• Packages version 
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(python , numpy, 

pandas, keras, 

scikit-learn, etc.) 

Factor 

• Computing 

system (e.g., 

Linux, Windows) 

Reproducible? 

• Performance 
metri cs values 
matched on the test 
set 

• Tox21 :1168/7176 
match in probabil ity 
prediction with 3 
decimals (max 
difference: 0.110) 

• Tox21 :7124 
(52)/7176 match in 
binary classification 
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• Performance 
metrics values 
matched on the test 
set 

• Tox21 :2757/7176 
match in probability 
prediction with 3 
decimals (max 
difference: 0.043) 

• Tox21 :7169 
(7)/7176 match in 
binary classification 

Solution 

• Provide code 
along with the 
coding 
environment (e.g. , 
Docker) 

Solutions 

• Provide computing 
system 
parameters as 
specific as 
possibl e (System, 
GPU/CPU, etc.) 

• Can we accept 
this difference? 
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Introduction 
 Reproducibility is essential in AI applications as it ensures consistent and reliable 

results. In regulatory contexts, reproducible AI models foster trust by allowing 
stakeholders to verify and validate outcomes. In this study, we used DeepCarc as 
a case study to evaluate factors influencing reproducibility. 

 DeepCarc is a QSAR model designed to predict the carcinogenicity risk of 
chemical compounds, a critical factor in triggering regulatory actions for both new 
and existing substances. 

 Traditional animal studies for carcinogenicity assessment are costly, time-
consuming, labor-intensive, and raise ethical concerns. Additionally, it is 
impractical to conduct carcinogenicity tests on all compounds. 

 In response, 21st-century toxicology has shifted towards alternative approaches, 
such as the 3Rs Principle (Replace, Reduce, Refine animal use) and the FDA's
Predictive Toxicology Roadmap. 

While various QSAR models have been developed for carcinogenicity prediction,
some are limited to specific chemical classes (e.g., aromatic amines, food-related 
phytochemicals), and others predict across broader classes but rely on 
carcinogenicity annotations from single species, such as rats. DeepCarc 
overcomes address these limitations. 

Objectives
We quantitatively evaluated the reproducibility of DeepCarc through
the following four components: 

 Data: including dataset versions/sources, features, labels(output/target), training, 
validation and test set information. 

 Code: including data preprocessing, model training, evaluation, algorithm 
hyperparameters, random seeds 

 Software environment: the machine learning libraries (e.g., TensorFlow, 
PyTorch, Scikit-learn), python version, and package versions 

 System environment: The hardware setup (e.g., GPU/CPU, memory) and 
operating system can impact the reproducibility of machine learning experiments, 
especially in cases where parallelization or random seed generation affects 
results. 

Materials and methods 
To develop the DeepCarc model, we utilized the NCTRlcdb, which consolidates 
multiple records—spanning gender, species, route of administration, and organ-
specific toxicity—into a single carcinogenicity classification per compound, based on 
data from the Carcinogenic Potency Database. The DeepCarc model was then 
applied as a screening tool to assess carcinogenicity risk for 7,176 compounds from 
Tox21. Below is the study design for the DeepCarc model. 

Figure 1. Overall workflow for the DeepCarc model including: 
(1) Data preparation. 863 compounds were split into training (454 compounds), 
development (138 compounds), and test (171 compounds) sets based on the 
Kennard-stone algorithm.
(2) Base classifiers development. Five algorithms were used to develop the base 
classifiers from three different chemical representations, including Mol2vec, Mold2, 
and MACCS. Two base classifiers selection strategies were employed to select the 
optimized classifiers for meta classifier development. 
(3) Meta classifier development. With three chemical representations and two 
selection methods, six groups of base classifiers, including Mol2vec_supervised, 
Mol2vec_original, Mold2_supervised, were used Mold2_original,
MACCS_supervised, and MACCS_original. The probability prediction from selected 
base classifiers was used to train the neural network. 
(4) Model evaluation. The DeepCarc model was evaluated on the test set. 

Results and discussion 
We evaluated the performance of the DeepCarc model using a test set consisting of
111 carcinogens and 60 non-carcinogens. The model achieved an accuracy of
0.754, an AUC of 0.776, and an MCC of 0.432. Additionally, DeepCarc was 
employed to screen the carcinogenicity potential of compounds from the Tox21 
dataset, as shown in the following figure. 

Figure 2: The distribution of predicted carcinogenicity risk for Tox21 compounds. 

The reproducibility of DeepCarc was assessed by evaluating its performance on the 
test set and predictions for the Tox21 compounds. We identified and listed the 
contributing factors affecting reproducibility for each component and presented the 
results along with potential solutions to mitigate the impact of these factors. 

1. Without shared data, it is impossible to reproduce the 
DeepCarc results. 

2. Without shared code, it is not able to reproduce the 
DeepCarc results. 

3. Software, like the package versions, could impact the 
reproducibility. 

4. System environment, like the GPU, CPU, could slightly 
impact the reproducibility. 

Conclusion 
 Data and source code form the foundation of reproducibility 

in AI. 
 Consistency in the software environment ensures results

remain within an acceptable range of variation. 

reproducibility. 
 System environment, while less impactful, also contributes to 

To enhance reproducibility in AI methods, we recommend 
including both code and computational system parameters, and 
propose using a Docker strategy to ensure consistent AI-
generated results.

Disclaimer 
This poster reflects the views of the authors and does not necessarily reflect those of 
the Food and Drug Administration. Any mention of commercial products is for 
clarification and is not intended as an endorsement. 
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