

FOOD AND DRUG ADMINISTRATION

CENTER FOR DRUG EVALUATION AND RESEARCH

PEDIATRIC ONCOLOGY SUBCOMMITTEE OF THE
ONCOLOGIC DRUGS ADVISORY COMMITTEE MEETING
(pedsODAC)

(pedSODAC)

(pedsoDAC)

Virtual Meeting

Wednesday, May 22, 2024

10:00 a.m. to 3:31 p.m.

Meeting Roster**ACTING DESIGNATED FEDERAL OFFICER (Non-Voting)****Jessica Seo, PharmD, MPH**

Division of Advisory Committee and

Consultant Management

Office of Executive Programs, CDER, FDA

ONCOLOGIC DRUGS ADVISORY COMMITTEE MEMBERS (Voting)**Alberto S. Pappo, MD***(Chairperson, pedsODAC)*

Member, St. Jude Faculty

Member, Solid Tumor Division

Co-Leader, Developmental Biology & Solid

Tumor Program

Alvin Mauer Endowed Chair

St. Jude Children's Research Hospital

Memphis, Tennessee

1 **ONCOLOGIC DRUGS ADVISORY COMMITTEE MEMBER**2 **(Non-Voting)**3 **Tara L. Frenkl, MD, MPH**4 *(Industry Representative)*

5 Senior Vice President, Head of Oncology Development

6 Bayer Pharmaceuticals

7 Whippany, New Jersey

8

9 **TEMPORARY MEMBERS (Voting)**10 **Ami V. Desai, MD, MSCE**

11 Associate Professor of Pediatrics

12 Section of Hematology/Oncology &

13 Stem Cell Transplantation

14 The University of Chicago

15 Comer Children's Hospital

16 Chicago, Illinois

17

18

19

20

21

22

1 **Lia Gore, MD**

2 Professor, Pediatrics, Medical Oncology, and
3 Hematology
4 Section Head, Pediatric Hematology/Oncology/Bone
5 Marrow Transplant-Cellular Therapeutics
6 University of Colorado School of Medicine and
7 Children's Hospital Colorado
8 Vice Chair, Children's Oncology Group
9 Aurora, Colorado

10

11 **Richard Gorlick, MD**

12 Professor of Pediatrics
13 H. Grant Taylor, M.D., W.W. Sutow, M.D. and
14 Margaret P. Sullivan, M.D. Distinguished Chair in
15 Pediatrics
16 Division Head and Department Chair, Pediatrics
17 University of Texas MD Anderson Cancer Center
18 Houston, Texas

19

20

21

22

1 **Theodore W. Laetsch, MD**

2 Associate Professor, Pediatrics - Oncology

3 Children's Hospital of Philadelphia

4 University of Pennsylvania

5 Philadelphia, Pennsylvania

6

7 **Donna Ludwinski, BSChE**8 *(Patient Representative)*

9 New York, New York

10

11 **Rajen Mody, MD, MS**

12 Ruth Heyn Endowed Chair in Pediatric Oncology

13 Professor and Director, Division of Pediatric

14 Hematology/Oncology/Bone Marrow Transplant

15 Michigan Medicine

16 Ann Arbor, Michigan

17

18

19

20

21

22

1 **Donald (Will) Parsons, MD, PhD**
2 Deputy Director
3 Texas Children's Cancer and Hematology Center
4 Professor, Department of Pediatrics
5 Baylor College of Medicine
6 Houston, Texas
7
8

9 **Elizabeth A. Raetz, MD**
10 KiDS of New York University (NYU) Foundation
11 Professor of Pediatrics
12 NYU Grossman School of Medicine
13 New York, New York
14

15 **Nita Seibel, MD**
16 Head, Pediatrics Solid Tumor Therapeutics
17 Clinical Investigations Branch
18 Cancer Therapy Evaluation Program
19 Division of Cancer Treatment and Diagnosis
20 National Cancer Institute (NCI)
21 National Institutes of Health (NIH)
22 Bethesda, Maryland

1 Nirali N. Shah, MD, MHSc

2 Head, Hematologic Malignancies Section

3 Lasker Clinical Research Scholar

4 NIH Distinguished Scholar

5 Pediatric Oncology Branch, Center for

6 Cancer Research

7 NCI, NIH

8 Bethesda, Maryland

9

10 Malcolm A. Smith, MD, PhD

11 Associate Branch Chief, Pediatrics

12 Cancer Therapy Evaluation Program

13 National Cancer Institute

14 Rockville, Maryland

15

16

17

18

19

20

21

22

1 **Yoram Unguru, MD, MS, MA, HEC-C**

2 Attending Physician

3 Division of Pediatric Hematology/Oncology

4 The Herman & Walter Samuelson

5 Children's Hospital at Sinai

6 Chairman, Sinai Hospital Ethics Committee

7 Core Faculty, Johns Hopkins Berman Institute of

8 Bioethics

9 Associate Professor, Johns Hopkins University

10 School of Medicine

11 Baltimore, Maryland

12

13 **FDA PARTICIPANTS (Non-Voting)**

14 **Richard Pazdur, MD**

15 Director, Oncology Center of Excellence (OCE)

16 Office of the Commissioner (OC)

17 Director (Acting)

18 Office of Oncologic Diseases (OOD)

19 Office of New Drugs (OND), CDER, FDA

20

21

22

1 Martha Donoghue, MD

2 Associate Director for Pediatric Oncology and
3 Rare Cancers

4 OCE, OC

5 Associate Director, Pediatric Oncology (Acting)
6 OOD, OND, CDER, FDA

7

8 Nicole Drezner, MD

9 Deputy Director
10 Division of Oncology 2 (DO2)

11 OOD, OND, CDER, FDA

12

13 Marjilla Seddiq, MD

14 Medical Officer
15 DO2, OOD, OND, CDER, FDA

16

17 Ramjay Vatsan, PhD

18 Associate Director for Policy
19 Office of Gene Therapy (OGT)
20 Office of Therapeutic Products (OTP)
21 Center for Biologics Evaluation and Research
22 (CBER), FDA

	C O N T E N T S	
	AGENDA ITEM	PAGE
1		
2	Call to Order	
3	Alberto S. Pappo, MD	13
4		
5	Introduction of Subcommittee	
6	Jessica Seo, PharmD, MPH	13
7		
8	Conflict of Interest Statement	
9	Jessica Seo, PharmD, MPH	20
10		
11	Introductory Remarks	
12	Nicole Drezner, MD	24
13		
14	FDA Presentations	
15	FDA Reauthorization Act (FDARA)	
16		
17	Amendments to the Pediatric Research	
18	Equity Act: FDA Perspectives and	
19		
20	Updates on Implementation	
21	Marjilla Seddiq, MD	30
22		
23	Ramjay Vatsan, PhD	39
24		
25	Marjilla Seddiq, MD	47
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		
66		
67		
68		
69		
70		
71		
72		
73		
74		
75		
76		
77		
78		
79		
80		
81		
82		
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		
95		
96		
97		
98		
99		
100		
101		
102		
103		
104		
105		
106		
107		
108		
109		
110		
111		
112		
113		
114		
115		
116		
117		
118		
119		
120		
121		
122		
123		
124		
125		
126		
127		
128		
129		
130		
131		
132		
133		
134		
135		
136		
137		
138		
139		
140		
141		
142		
143		
144		
145		
146		
147		
148		
149		
150		
151		
152		
153		
154		
155		
156		
157		
158		
159		
160		
161		
162		
163		
164		
165		
166		
167		
168		
169		
170		
171		
172		
173		
174		
175		
176		
177		
178		
179		
180		
181		
182		
183		
184		
185		
186		
187		
188		
189		
190		
191		
192		
193		
194		
195		
196		
197		
198		
199		
200		
201		
202		
203		
204		
205		
206		
207		
208		
209		
210		
211		
212		
213		
214		
215		
216		
217		
218		
219		
220		
221		
222		
223		
224		
225		
226		
227		
228		
229		
230		
231		
232		
233		
234		
235		
236		
237		
238		
239		
240		
241		
242		
243		
244		
245		
246		
247		
248		
249		
250		
251		
252		
253		
254		
255		
256		
257		
258		
259		
260		
261		
262		
263		
264		
265		
266		
267		
268		
269		
270		
271		
272		
273		
274		
275		
276		
277		
278		
279		
280		
281		
282		
283		
284		
285		
286		
287		
288		
289		
290		
291		
292		
293		
294		
295		
296		
297		
298		
299		
300		
301		
302		
303		
304		
305		
306		
307		
308		
309		
310		
311		
312		
313		
314		
315		
316		
317		
318		
319		
320		
321		
322		
323		
324		
325		
326		
327		
328		
329		
330		
331		
332		
333		
334		
335		
336		
337		
338		
339		
340		
341		
342		
343		
344		
345		
346		
347		
348		
349		
350		
351		
352		
353		
354		
355		
356		
357		
358		
359		
360		
361		
362		
363		
364		
365		
366		
367		
368		
369		
370		
371		
372		
373		
374		
375		
376		
377		
378		
379		
380		
381		
382		
383		
384		
385		
386		
387		
388		
389		
390		
391		
392		
393		
394		
395		
396		
397		
398		
399		
400		
401		
402		
403		
404		
405		
406		
407		
408		
409		
410		
411		
412		
413		
414		
415		
416		
417		
418		
419		
420		
421		
422		
423		
424		
425		
426		
427		
428		
429		
430		
431		
432		
433		
434		
435		
436		
437		
438		
439		
440		
441		
442		
443		
444		
445		
446		
447		
448		
449		
450		
451		
452		
453		
454		
455		
456		
457		
458		
459		
460		
461		
462		
463		
464		
465		
466		
467		
468		
469		
470		
471		
472		
473		
474		
475		
476		
477		
478		
479		
480		
481		
482		
483		
484		
485		
486		
487		
488		
489		
490		
491		
492		
493		
494		
495		
496		
497		
498		
499		
500		
501		
502		
503		
504		
505		
506		
507		
508		
509		
510		
511		
512		
513		
514		
515		
516		
517		
518		
519		
520		
521		
522		
523		
524		
525		
526		
527		
528		
529		
530		
531		
532		
533		
534		
535		
536		
537		
538		
539		
540		
541		
542		
543		
544		
545		
546		
547		
548		
549		
550		
551		
552		
553		
554		
555		
556		
557		
558		</

	C O N T E N T S (continued)	
	AGENDA ITEM	PAGE
3	Guest Speaker Presentations	
4	European Perspective on Complementary	
5	US and EU Regulations in Support of	
6	Global Development	
7	Dominik Karres, MD	66
8	Maria Sheean, PhD	75
9	Clarifying Questions	85
10	Guest Speaker Presentations (continued)	
11	Impact of RACE Act: COG Perspective	
12	Brenda J. Weigel, MSc, MD	107
13	Research to Accelerate Cures and Equity	
14	(RACE) for Children Act	
15	Implementation and Impact	
16	Industry Perspective	
17	Ruchi Gupta, MS	123
18	European Academic Perspectives on	
19	International Trial Collaboration in	
20	Paediatric Oncology	
21	Pamela Kearns, MBChB, BSc (Hons), PhD	
22	FRCPCH	134

1	C O N T E N T S (continued)	
2	AGENDA ITEM	PAGE
3	Clarifying Questions	158
4	Questions to the Subcommittee and Discussion	208
5	Closing Remarks	
6	Martha Donoghue, MD	250
7	Adjournment	257
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		

1 P R O C E E D I N G S

2 (10:00 a.m.)

3 **Call to Order**

4 DR. PAPPO: Good morning, and welcome. It's
5 hard to believe that it's been a year since we last
6 met, and it's great to see all of you. I would
7 first like to remind everyone to please mute your
8 line when you are not speaking. For media and
9 press, the FDA press contact is Lauren-Jei
10 McCarthy. Her e-mail is currently displayed.

11 My name is Dr. Alberto Pappo, and I will be
12 chairing this meeting. I will now call the May 22,
13 2024 Pediatric Oncology Subcommittee of the
14 Oncologic Drugs Advisory Committee meeting to
15 order. Dr. Jessica Seo is the acting designated
16 federal officer for this meeting and will begin
17 with introductions.

18 **Introduction of Subcommittee**

19 DR. SEO: Thank you, Dr. Pappo.

20 Good morning. My name is Jessica Seo, and I
21 am the acting designated federal officer for this
22 meeting. When I call your name, please introduce

1 yourself by stating your name and affiliation.
2 We'll first begin with the standing members of the
3 ODAC, starting with Dr. Pappo.

4 DR. PAPPO: Good morning. I'm Alberto
5 Pappo. I'm a pediatric oncologist, and I'm the
6 chair of the Pediatric Oncology Subcommittee of the
7 Oncologic Drug Advisory Committee.

8 DR. SEO: Thank you.

11 DR. FRENKL: Hello. Tara Frenkl. I'm the
12 Head of Oncology Development at Bayer.

13 DR. SEO: Thank you. We'll now move to
14 introduce our temporary voting members, starting
15 with Dr. Desai.

16 DR. DESAI: Hello. My name is Ami Desai,
17 and I'm a pediatric oncologist at the University of
18 Chicago.

19 DR. SEO: Thank you.

20 Next is Dr. Gore. Dr. Gore, please unmute.

21 DR. GORE: Good morning. I'm Lia Gore. I'm
22 a pediatric oncologist at University of Colorado

1 and Children's Hospital in Denver.

2 DR. SEO: Thank you.

3 Next, we have Dr. Gorlick.

4 DR. GORLICK: Hello. I'm Rich Gorlick. I'm
5 a pediatric oncologist. I'm at MD Anderson Cancer
6 Center in Houston, Texas.

7 DR. SEO: Thank you.

8 And we have Dr. Laetsch.

9 DR. LAETSCH: Hi. Good morning. I'm Ted
10 Laetsch, a pediatric oncologist at the Children's
11 Hospital of Philadelphia and University of
12 Pennsylvania.

13 DR. SEO: Thank you.

14 Next is Ms. Ludwinski.

15 MS. LUDWINSKI: Hi. I'm Donna Ludwinski.
16 I'm a patient representative with Solving Kids'
17 Cancer in New York and London.

18 DR. SEO: Thank you.

19 Next is Dr. Mody.

20 DR. MODY: Good morning, everybody. My name
21 is Rajen Mody. I'm a pediatric oncologist at Mott
22 Children's Hospital and University of Michigan.

1 DR. SEO: Thank you.

2 And we have Dr. Parsons.

3 DR. PARSONS: Good morning. My name is
4 Donald Will Parsons. I'm a pediatric oncologist at
5 Texas Children's Hospital and Baylor College of
6 Medicine in Houston, Texas.

7 DR. SEO: Thank you.

8 Next is Dr. Raetz.

9 DR. RAETZ: Good morning. I'm Elizabeth
10 Raetz, a pediatric oncologist at NYU.

11 DR. SEO: Thank you.

12 We also have Dr. Seibel.

13 DR. SEIBEL: Good morning. I'm Nita Seibel,
14 a pediatric oncologist here at the Clinical
15 Investigations Branch of the NCI.

16 DR. SEO: Thank you.

17 Next is Dr. Shah.

18 DR. SHAH: Hi. I'm Nirali Shah, a pediatric
19 oncologist in the Pediatric Oncology Branch of the
20 National Cancer Institute.

21 DR. SEO: Thank you.

22 And Dr. Smith?

1 DR. SMITH: Yes. Good morning. Good
2 afternoon to those participating from Europe. I'm
3 Malcolm Smith. I'm a pediatric oncologist in the
4 Clinical Investigations Branch, Cancer Therapy
5 Evaluation Program of the National Cancer
6 Institute.

7 DR. SEO: Thank you.

8 And we have Dr. Unguru.

9 DR. UNGURU: Good morning. Yoram Unguru.
10 I'm a pediatric oncologist at Sinai Hospital in
11 Baltimore and also Bioethics.

12 DR. SEO: Thank you.

13 We'll now move to introduce our FDA
14 participants, beginning with Dr. Pazdur.

15 DR. PAZDUR: Hi. Rick Pazdur. I am a
16 medical oncologist, and I am the Director of the
17 Oncology Center of Excellence at the FDA.

18 DR. SEO: Thank you.

19 We also have Dr. Donoghue.

20 DR. DONOGHUE: Good morning, and good
21 afternoon, everyone. My name is Martha Donoghue.
22 I'm a pediatric oncologist, and I am the Associate

1 Director for Pediatric Oncology and Rare Cancers in
2 the Oncology Center of Excellence at the FDA.

3 DR. SEO: Thank you.

4 Next is Dr. Drezner.

5 DR. DREZNER: Good morning. I'm Nicole
6 Drezner. I am a pediatric oncologist and the
7 Deputy Director of the Division of Oncology 2 at
8 the FDA.

9 DR. SEO: Thank you.

10 And Dr. Seddiq.

11 DR. SEDDIQ: Good morning, everyone. My
12 name is Marjilla Seddiq. I'm a pediatric
13 oncologist and clinical reviewer in the Division of
14 Oncology 2 at the FDA.

15 DR. SEO: Thank you.

16 And finally, Dr. Vatsan.

17 DR. VATSAN: Good morning. I'm Ramjay
18 Vatsan. I'm an associate director in the CMC
19 Office of Gene Therapy in CBER.

20 DR. SEO: Thank you, all, and I'll return
21 the floor to you, Dr. Pappo.

22 DR. PAPPO: Thank you very much, Jessica.

1 For topics such as those being discussed at
2 this meeting, there are often a variety of
3 opinions, some of which are quite strongly held.
4 Our goal is that this meeting will be a fair and
5 open forum for discussion of those issues and that
6 individuals can express their views without
7 interruption. Thus, a gentle reminder, individuals
8 will be allowed to speak into the record only if
9 recognized by the chairperson. We look forward to
10 a productive meeting.

11 In the spirit of the Federal Advisory
12 Committee Act and the Government in the Sunshine
13 Act, we ask that the advisory committee members
14 take care that their conversations about the topic
15 at hand take place in the open forum of the
16 meetings. We are aware that members of the media
17 are anxious to speak with FDA about these
18 proceedings; however, FDA will refrain from
19 discussing the details of this meeting with media
20 until its conclusion. Also, the committee is
21 reminded to please refrain from discussing the
22 meeting topic during breaks or lunch. Thank you

1 very much.

2 Dr. Seo will read the Conflict of Interest
3 Statement for this meeting.

4 **Conflict of Interest Statement**

5 DR. SEO: Thank you, Dr. Pappo.

6 The Food and Drug Administration is
7 convening today's meeting of the Pediatric Oncology
8 Subcommittee of the Oncologic Drugs Advisory
9 Committee under the authority of the Federal
10 Advisory Committee Act of 1972. With the exception
11 of the industry representative, all members and
12 temporary voting members of the subcommittee are
13 special government employees or regular federal
14 employees from other agencies and are subject to
15 federal conflict of interest laws and regulations.

16 The following information on the status of
17 this subcommittee's compliance with federal ethics
18 and conflict of interest laws, covered by but not
19 limited to those found at 18 U.S.C. Section 208, is
20 being provided to participants in today's meeting
21 and to the public.

22 FDA has determined that members and

1 temporary voting members of this subcommittee are
2 in compliance with federal ethics and conflict of
3 interest laws. Under 18 U.S.C. Section 208,
4 Congress has authorized FDA to grant waivers to
5 special government employees and regular federal
6 employees who have potential financial conflicts
7 when it is determined that the agency's need for a
8 special government employee's services outweighs
9 their potential financial conflict of interest, or
10 when the interest of a regular federal employee is
11 not so substantial as to be deemed likely to affect
12 the integrity of the services which the government
13 may expect from the employee.

14 Related to the discussions of today's
15 meeting, members and temporary voting members of
16 this subcommittee have been screened for potential
17 financial conflicts of interests of their own as
18 well as those imputed to them, including those of
19 their spouses or minor children and, for purposes
20 of 18 U.S.C. Section 208, their employers. These
21 interests may include investments; consulting;
22 expert witness testimony; contracts, grants,

1 CRADAs; teaching, speaking, writing; patents and
2 royalties; and primary employment.

3 Today's agenda involves amendments made by
4 Section 504 of the 2017 FDA Reauthorization Act to
5 Section 505B of the Federal Food, Drug, and
6 Cosmetics Act, 21 U.S.C. Section 355c, which
7 required, for original applications submitted on or
8 after August 18, 2020, pediatric investigations of
9 certain targeted cancer drugs with new active
10 ingredients, based on molecular mechanism of action
11 rather than clinical indication. The subcommittee
12 will discuss perspectives relating to
13 implementation of this legislation and its impact
14 on pediatric cancer drug development to date. This
15 is a particular matters meeting during which
16 general issues will be discussed.

17 Based on the agenda for today's meeting and
18 all financial interests reported by the
19 subcommittee members and temporary voting numbers,
20 no conflict of interest waivers have been issued in
21 connection with this meeting. To ensure
22 transparency, we encourage all standing

1 subcommittee members and temporary voting members
2 to disclose any public statements that they have
3 made concerning the topic at issue.

4 With respect to FDA's invited industry
5 representative, we would like to disclose that
6 Dr. Tara Frenkl is participating in this meeting as
7 a non-voting industry representative, acting on
8 behalf of regulated industry. Dr. Frenkl's role at
9 this meeting is to represent industry in general
10 and not any particular company. Dr. Frenkl is
11 employed by Bayer Pharmaceuticals.

12 With regard to FDA's guest speakers, the
13 agency has determined that the information to be
14 provided by these speakers is essential. The
15 following guest speaker has reported an interest,
16 which is being made public to allow the audience to
17 objectively evaluate any presentation and/or
18 comments made by the speaker. Ms. Ruchi Gupta has
19 acknowledged that as a full-time employee of
20 Roche-Genentech, she has Roche stocks. As guest
21 speakers, Ms. Gupta and Drs. Dominik Karres; Pamela
22 Kearns; Maria Sheean; and Brenda Weigel will not

1 participate in subcommittee deliberations, nor will
2 they vote.

3 We would like to remind members and
4 temporary voting members that if the discussions
5 involve any other topics not already on the agenda
6 for which an FDA participant has a personal or
7 imputed financial interest, the participants need
8 to exclude themselves from such involvement, and
9 their exclusion will be noted for the record. FDA
10 encourages all other participants to advise the
11 subcommittee of any financial relationships that
12 they may have regarding the topic that could be
13 affected by the subcommittee's discussion.

14 Thank you, and I'll return the floor to you,
15 Dr. Pappo.

16 DR. PAPPO: Thank you very much, Dr. Seo.

17 We will now proceed with FDA introductory
18 remarks from Dr. Nicole Drezner.

19 **Introductory Remarks - Nicole Drezner**

20 DR. DREZNER: Thank you, and good morning.
21 My name is Nicole Drezner. I'm a pediatric
22 oncologist and the Deputy Director of the Division

1 of Oncology 2 at the FDA. I would like to welcome
2 you and thank you for your participation in today's
3 discussion of the impact of the 2017 FDA
4 Reauthorization Act, or FDARA, amendments to the
5 Pediatric Research Equity Act, or PREA, on the
6 field of pediatric oncology to date. I would like
7 to especially acknowledge and welcome our guest
8 speakers, including our colleagues at the
9 Paediatric Medicines Office at the European
10 Medicines Agency, as well as pediatric oncology
11 representative from academic medicine and industry,
12 whom you will hear from later this morning.

13 We are eager to hear discussion on the
14 impact of the 2017 FDARA legislation to date for
15 new molecularly targeted drugs and biological
16 products for pediatric patients; the role of
17 proof-of-concept studies using relevant pediatric
18 preclinical models; the role of international
19 collaboration; and how coordinated approaches to
20 the design and conduct of molecularly targeted
21 pediatric cancer investigations can be best
22 achieved.

1 You will first hear from my FDA colleagues
2 Dr. Seddiq and Vatsan, followed by presentations
3 from the EMA's Dr. Karres and Dr. Sheean. After
4 you have the opportunity to ask clarifying
5 questions, Dr. Weigel, Ms. Gupta, and Dr. Kearns
6 will provide their assessments of FDARA's impact
7 from the perspectives of U.S. cooperative groups,
8 industry, and European academic pediatric oncology,
9 respectively. These speakers will answer
10 clarifying questions, and then you will have the
11 opportunity to discuss the topics as a committee.

12 The intent of the pediatric study plan as
13 required under PREA is to identify necessary
14 pediatric studies early in drug development and to
15 begin planning for these studies. Under the 2017
16 FDARA amendments to PREA, the FDA can require
17 evaluation of certain novel targeted therapies that
18 may potentially address an unmet medical need in
19 pediatric patients with cancer.

20 Specifically, as you will hear about in
21 greater detail in the main FDA presentation, if an
22 initial NDA or BLA is for a new active ingredient

1 that is intended for the treatment of an adult
2 cancer and directed at a molecular target FDA
3 determines to be substantially relevant to the
4 growth or progression of a pediatric cancer,
5 reports on the molecularly targeted pediatric
6 cancer investigation must be submitted with the
7 marketing application, unless the required
8 investigations are waived or deferred.

9 Given this mandate, initial pediatric study
10 plans, or IPSPs, preparation often requires
11 collaboration between the FDA and drug sponsors, as
12 well as with relevant stakeholders, to ensure that
13 the pediatric studies outlined in IPSPs are
14 feasible with respect to patient selection, and
15 dose, and trial design. Early consideration should
16 be given to preclinical proof-of-concept studies in
17 pediatric nonclinical investigations for new
18 molecularly targeted drugs.

19 When evaluating the sponsor's proposed
20 pediatric study plan, the FDA considers all the
21 presented scientific support for the specific
22 pediatric investigations, including applicable

1 adult clinical and nonclinical data and nonclinical
2 proof-of-concept data in relevant pediatric models
3 that should be described within the IPSP.

4 Information provided by sponsors on input they have
5 received from thought leaders is also valuable.
6 FDA reviewers make an independent assessment of the
7 potential for benefit of the targeted drug in the
8 context of the pediatric oncology drug development
9 landscape.

10 Through pediatric study plan development,
11 discussions and input from all stakeholders are
12 vital to optimize the use of existing resources and
13 to promote efficient, timely development of new
14 drugs for pediatric patients with cancer. This
15 slide lists several means through which regulators,
16 industry and academia, and patient advocates
17 regularly interact to ensure that FDA decisions for
18 drug development, for rare molecularly defined
19 subgroups of pediatric patients with cancer,
20 reflects community input and the available science.
21 Your participation in this pediatric oncology
22 subcommittee of the ODAC provides one valuable

1 opportunity for collaboration through today's
2 discussion and conclusions.

3 Today, we will ask you to focus your
4 discussion on three main questions: the first,
5 describing your perspectives on how the 2017 FDARA
6 amendments to PREA are impacting the pediatric
7 oncology ecosystem to date; the second on
8 considerations related to conduct of nonclinical
9 proof-of-concept studies prior to initiating a
10 molecularly targeted pediatric cancer
11 investigation; and the third, on the role of
12 international collaboration in the efficient
13 development of new therapies for pediatric patients
14 with cancer.

15 As you will hear in the FDA presentation to
16 follow my remarks, early indicators suggest that
17 FDARA is making a positive impact on pediatric
18 oncology drug development; however, we are still
19 faced with challenges to optimally leverage this
20 legislation to enhance efficiency and reduce
21 duplication of studies. To achieve this end,
22 effective and consistent communication among

1 stakeholders is critical. Thank you, and I look
2 forward to the discussion.

3 DR. PAPPO: Thank you very much,
4 Dr. Drezner.

5 Now, we will proceed with the FDA
6 presentation, starting with Dr. Marjilla Seddiq.

7 **FDA Presentation - Marjilla Seddiq**

8 DR. SEDDIQ: Good morning. My name is
9 Marjilla Seddiq, and I'm a pediatric oncologist and
10 clinical reviewer in the Division of Oncology 2.
11 Today, my colleague, Dr. Ramjay Vatsan, and I will
12 be discussing perspectives on implementation of the
13 2017 FDARA amendments to the Pediatric Research
14 Equity Act.

15 I will lead off with the high-level overview
16 of the legislative and regulatory landscape
17 impacting pediatric drug development. Next, I will
18 discuss which drug and biological products are
19 subject to FDARA amended PREA requirements, which I
20 will refer to as FDARA for brevity during much of
21 the talk. Dr. Vatsan will then present our current
22 thinking with respect to identifying which cellular

1 and gene therapy products are considered targeted
2 therapies, and therefore potentially subject to
3 FDARA requirements.

4 I will describe the factors we consider when
5 determining whether to require pediatric studies of
6 targeted therapies under FDARA and the information
7 and stakeholder interactions that are crucial to
8 our decision-making process. Lastly, I will
9 present some results of analyses attempting to
10 provide an early assessment of FDARA's impact to
11 date and discuss future steps to better optimize
12 our use of FDARA to promote development of new safe
13 and effective drugs for pediatric patients with
14 cancer.

15 As summarized on the slide, over time, there
16 have been several key legislative acts implemented
17 to encourage and increase investigation of drugs
18 and biological products in children. For brevity,
19 I will refer to drugs and biologics as drugs.

20 Much of the early legislation was passed in
21 response to products that were found to cause harm
22 to children, and therefore were primarily designed

1 to protect children from potential risks of
2 clinical trials. In contrast, later legislation
3 was implemented to encourage or require pediatric
4 investigations to help inform products labeling
5 with the ultimate goal of making more new
6 treatments available to pediatric patients.

7 In this talk, I will primarily focus upon
8 the last two pieces of legislation highlighted in
9 red that are relevant to FDA's authority to require
10 studies to be conducted in pediatric patients, the
11 Pediatric Research Equity Act, or PREA, and the FDA
12 Reauthorization Act or FDARA. I will also briefly
13 discuss the incentive program for pediatric
14 development under the Best Pharmaceuticals for
15 Children Act or BPCA.

16 Our legislation provides two primary
17 mechanisms, a voluntary incentive program under the
18 BPCA and requirements for pediatric studies under
19 PREA, to promote development of drugs that are
20 being developed for treatment of adult cancers in
21 pediatric patients as well.

22 BPCA is a voluntary program that provides

1 financial incentives to sponsors who conduct
2 pediatric studies under a pediatric written
3 request. First, sponsors complete a proposed
4 pediatric study request, or PPSR, which includes a
5 rationale for pediatric studies to be included or
6 conducted, detailed study designs, and a plan for
7 age-appropriate formulation development.

8 The FDA reviews the PPSR and may issue a
9 written request, which formally requests conduct
10 and submission of reports from these pediatric
11 studies, along with proposed changes to product
12 labeling based on these studies. FDA can also
13 issue a written request for pediatric studies
14 without a PPSR. Applicants who fulfill
15 requirements of the written request are eligible to
16 receive an additional six months of exclusivity,
17 which attaches to any outstanding marketing intent
18 and exclusivity for the drug.

19 I will next turn to the provisions under the
20 Pediatric Research Equity Act, or PREA, which was
21 enacted to complement the incentive mechanisms
22 provided by BPCA by requiring sponsors to assess

1 the safety and efficacy of new drugs in pediatric
2 patients prior to the submission of a marketing
3 application seeking a new indication, new active
4 ingredient, new dosage form, new dose regimen, or
5 new route of administration, unless the requirement
6 is waived or deferred.

7 An initial pediatric study plan, or IPSP,
8 must be submitted early in development, in general,
9 no later than 60 days from the end of a phase 2
10 meeting. It should include a description of the
11 planned pediatric studies, pediatric formulations
12 if needed, and a timeline for development. The
13 intent of the pediatric study plan is to encourage
14 sponsors to identify pediatric studies as early as
15 possible in product development.

16 Although both BPCA and PREA initiatives have
17 promoted drug development for pediatric patients
18 overall, PREA had little to no effect in pediatric
19 oncology because the mandate was linked to the
20 adult indication being sought, and pediatrics are
21 largely distinct from adult cancers. Additionally,
22 the original legislation provided for exemption of

1 the requirement for drugs that received orphan
2 designation.

3 However, in 2017, the FDA Reauthorization
4 Act, or FDARA, amendments to PREA, also commonly
5 referred to as the Research to Accelerate Cures and
6 Equity Act, also known as the RACE Act, was passed.
7 This gave FDA the authority to require evaluation
8 of new molecularly targeted drugs and biologics
9 intended for the treatment of adult cancers and
10 directed at a molecular target substantially
11 relevant to the growth or progression of a
12 pediatric cancer.

13 After August 18, 2022, sponsors submitting
14 an original NDA or BLA containing a new active
15 ingredient that is directed against a target, that
16 is substantially relevant to one or more pediatric
17 cancers, need to have an agreed IPSP that addresses
18 the requirement for an investigation in pediatric
19 patients.

20 To summarize, FDARA created a mechanism to
21 require evaluation of certain novel targeted
22 therapies in pediatric patients with cancer and to

1 submit the reports of these investigations to the
2 FDA. The FDARA requirements for cancer drugs
3 directed at relevant molecular targets apply even
4 if the drug is for an adult indication that has
5 received orphan designation. Additionally, FDARA
6 mandated the FDA to establish, publish, and
7 regularly update a list of molecular targets
8 considered to be relevant and a separate list of
9 molecular targets that are considered non-relevant
10 to pediatric cancers.

11 Next, I will give an overview of how we
12 determine which products are subject to FDARA
13 requirements and how the FDARA provisions of PREA
14 are applied to molecularly targeted drugs and
15 biologics. Dr. Vatsan will also describe the more
16 complex considerations for cell and gene therapy
17 products.

18 If an initial NDA or BLA is for a new active
19 ingredient, and the product that is the subject of
20 the application is intended for treatment of an
21 adult cancer and directed at a molecular target FDA
22 determines to be substantially relevant to the

1 growth or progression of the pediatric cancer,
2 reports on the molecularly targeted pediatric
3 cancer investigation must be submitted with the
4 marketing application, unless the required
5 investigations are waived or deferred.

6 FDA in consultation with the National Cancer
7 Institute and members of the Pediatric Oncology
8 Subcommittee of the Oncologic Drugs Advisory
9 Committee maintains a publicly accessible list of
10 molecular targets that are considered substantially
11 relevant to the growth or progression of a
12 pediatric cancer and that may trigger the
13 requirements for pediatric investigations. Of
14 note, a molecular target to which a specific drug
15 is directed is not required to be on the relevant
16 molecular target list in order for FDA to require a
17 clinical evaluation of the drug in the pediatric
18 population.

19 There is also a separate list of molecular
20 targets that are considered non-relevant to the
21 growth or progression of pediatric cancers, such as
22 androgen and estrogen receptors. You may recall

1 from the last slide that one of the criteria that
2 are used to determine whether an application is
3 subject to FDARA amendments to PREA is that the
4 product has to be directed at a molecular target
5 that FDA has determined is substantially relevant
6 to the growth or progression of pediatric cancers.

7 Therefore, therapies directed against
8 molecular targets that are on the non-relevant list
9 are not subject to FDARA and would, therefore,
10 either be exempt from PREA requirements due to
11 orphan designation or would qualify for a full
12 waiver of the requirement for a pediatric
13 assessment. As part of the requirements of FDARA,
14 FDA periodically updates the list of relevant and
15 non-relevant molecular targets and encourages
16 public comments on the published list.

17 So what exactly is the molecular target?
18 FDA generally interprets a molecular target in
19 cancer drug development as a molecule in human
20 cells, either normal or cancer cells, that is
21 intrinsically associated with a particular
22 malignant disease process such as etiology,

1 progression, and/or drug resistance. For a
2 molecule to be considered a molecular target, there
3 should be evidence that addressing the molecule
4 with a drug produces a measurable effect on a
5 cancer *in vivo* or *in vitro*, which may translate
6 clinically to a favorable objective change in the
7 disease process.

8 Some examples of oncology products regulated
9 by the Center for Drug Evaluation and Research, or
10 CDER, include small molecules such as kinase
11 inhibitors and biological products, including
12 monoclonal antibodies. Generally, molecularly
13 targeted therapy determinations for these types of
14 products are relatively straightforward; however,
15 products regulated by the Center for Biologics
16 Evaluation and Research, or CBER, can be more
17 complex. To provide a better understanding on the
18 considerations related to the implementation of
19 FDARA for cell and gene therapy products, I will
20 now turn the presentation over to Dr. Vatsan.

21 **FDA Presentation - Ramjay Vatsan**

22 DR. VATSAN: Thank you, Dr. Seddiq.

1 Good morning. I'm Jay Vatsan. I'm a
2 biologist-immunologist with expertise in antigen
3 and gene delivery systems. I serve as an associate
4 director in the CMC Office of Gene Therapy in CBER.
5 We will now discuss the implications of molecularly
6 targeted therapy determinations for cell and gene
7 therapy, or CGT, products.

8 Determining which cell and gene therapy
9 products address a molecular target -- that is,
10 determining which products can be considered
11 molecularly targeted therapies that may be subject
12 to FDARA requirements -- can be more difficult than
13 it is for a small molecule and antibody-based
14 therapies.

15 As you can see from this slide, there is a
16 wide array of cell and gene therapy products under
17 development in oncology, and these products are
18 often quite complex in terms of their composition
19 and mode of action. The products range from
20 nucleic acid-based therapies, to adeno-associated,
21 virus-based therapies used in in vivo genome
22 editing, to complex patient-specific new

1 antigen-based vector therapeutics, to cell and gene
2 therapy-based therapies such as tumor-infiltrating
3 lymphocyte therapies.

4 As Dr. Seddiq discussed, part of the
5 decision-making process in determining which FDARA
6 applies to a specific product development program
7 is whether the product exerts its effect due to
8 interaction with the molecular target. The
9 complexity of determining which cell and gene
10 therapy products are directed against molecular
11 targets stems from the complexity of mechanism of
12 action for many cellular and gene therapy products.
13 In some cases, there may be incomplete knowledge of
14 targets responsible for their anticancer activity
15 or anticancer activity may result from multiple
16 different pathways that are not well elucidated.

17 For example, oncolytic viruses can also
18 induce immune responses through antigen spreading.
19 Additionally, unlike a small molecule or monoclonal
20 antibodies more direct interaction with the target
21 that results in tumor cell killing, cell and gene
22 therapy products may not directly interact with a

1 specific target or group of targets on a cancer
2 cell, or on components of cancer microenvironment.
3 As an example, some cancer vaccines work through
4 generalized stimulation of host immune system, and
5 tumor-infiltrating lymphocyte products, or TILs,
6 may work through targets that have yet to be
7 identified. Thus, decisions regarding cell and
8 gene therapy products, molecular targeted therapies
9 designation are often made on a case-by-case basis.

10 This slide provides examples of two cell and
11 gene therapy products, one which is clearly a
12 molecular targeted therapy, and therefore subject
13 to FDARA provisions of PREA, and one which is not.
14 The CAR T cell product depicted on the left has a
15 clear target on cancer cell CD19, in this case, and
16 the interaction between CAR T cell product, and the
17 CD19 target is directly responsible for the
18 anticancer effect of the product.

19 In contrast, the oncolytic viral product on
20 the right side of the screen is not a molecularly
21 targeted therapy because it may enter a cell
22 through multiple pathways and cause tumor cell

1 lysis through a non-specific process of viral
2 replication.

3 In the next few slides, I will provide some
4 examples of cell and gene therapy products that are
5 either, one, generally considered to be molecularly
6 targeted therapies, or MTTs, generally not
7 considered to be MTTs, and some cell and gene
8 therapy products for which decisions regarding
9 whether they are molecularly targeted therapies
10 need to be made on a case-by-case basis.

11 Some cell and gene therapy products have a
12 mechanism of action that involves binding to or
13 interaction with one or more specific known or
14 identifiable targets, and this specific interaction
15 correlates with the product's activity or
16 measurable effect on the cancer cell. Therefore,
17 these types of cell and gene therapy products are
18 generally considered molecularly targeted
19 therapies.

20 Examples of such products are CAR T cells,
21 or chimeric antigen receptor T cells; genome edited
22 cells where specific genetic deletions in vivo or

1 in vitro can be introduced into tumor cells or
2 cell-based products to induce a therapeutic effect;
3 cancer vaccines against specific targets such as
4 tumor-associated antigens, or TAAs, where the
5 presence of a TAA is sufficient to infer potential
6 therapeutic effect; and T cells that are directed
7 at specific targeted antigens such as
8 tumor-associated antigens.

9 Some cellular and gene therapy products are
10 generally not considered to be molecular targeted
11 therapies. Examples of such products include
12 mesenchymal stromal cells, or MSCs; induced
13 pluripotent stem cells; tissue engineered products,
14 et cetera. These products, the postulated activity
15 is not mediated through a specific molecular
16 target, or targets, in either cancer or normal
17 cells. New antigen vaccines also fall under this
18 category, as they are patient specific and not an
19 homogeneous product.

20 Tumor-associated, antigen-based vaccines are
21 considered to be molecular targeted therapies
22 because their mechanism of action relies on a fixed

1 set of antigens and the vaccine's antitumor
2 activity results from the induction of immune
3 responses to these TAAs that would be expected to
4 have an antitumor effect on a population of
5 patients with a targeted antigen on the tumor
6 cells. On the other hand, new antigen-based cancer
7 vaccines are not generally considered molecular
8 targeted therapies because new antigens are
9 produced by individual patient tumor cells, which
10 are typically identified through extensive genomic
11 analysis using bioinformatic computation.

12 Since the new antigen targets are different
13 in each patient and the immunity induced to
14 different new antigens are governed by the
15 patient's immune system, the presence or absence of
16 a new antigen identified in one patient's tumor and
17 targeted by one vaccine may not be active in
18 another patient. However, it's important to
19 acknowledge that this field of science is still in
20 its infancy, and as additional information is
21 gathered, we may need to reevaluate our approach.

22 Some cell and gene therapy products whose

1 mechanism of action may depend on the manufacturing
2 process or the proteins they express will require a
3 case-by-case determination on whether the
4 particular product is a molecularly targeted
5 therapy. Examples of this category of products
6 include oncolytics, tumor infiltrating lymphocytes,
7 or TILS, new antigen-specific T cells.

8 In summary, determining which cell and gene
9 therapy products are MTTs is not always
10 straightforward. CGTs may work through mechanisms
11 of action that are independent of specific targets
12 on tumor cells. The mechanism of action may vary
13 depending on the manufacturing process.

14 Importantly, when the MOA is not dependent
15 on a specified target on cancer cells, the
16 molecularly targeted therapy determinations are
17 made on a case-by-case basis. When the mechanism
18 of action is well understood and the function is
19 attributable to specific target molecules on cancer
20 cells, the MTT determination and assessment of
21 potential relevance to pediatric cancers is less
22 complicated. Early interactions with FDA can help

1 sponsors design their IPSPs for cellular and gene
2 therapy products.

3 Now, Dr. Seddiq will give the rest of FDA's
4 presentation. Thank you.

5 **FDA Presentation - Marjilla Seddiq**

6 DR. SEDDIQ: Thank you, Dr. Vatsan.

7 I will now move on to discuss implementation
8 of FDARA requirements for new drugs with targets
9 that are substantially relevant to pediatric
10 cancers and how this process occurs through FDA's
11 review of IPSPs.

12 Typically, pediatric cancer investigations,
13 described in IPSPs for a new drug or combination,
14 with a substantially relevant target are
15 non-hypothesis testing, single-arm studies. These
16 studies should evaluate dosing in all relevant
17 pediatric age groups based on the pharmacokinetics,
18 safety, and provide an assessment of preliminary
19 efficacy. If the required study, or studies,
20 demonstrate sufficient early evidence of anticancer
21 activity, the FDA may consider issuing a pediatric
22 written request under the Best Pharmaceuticals for

1 Children Act, or BPCA, for more definitive
2 evaluation.

3 There are circumstances when a plan for
4 deferral of a molecularly targeted pediatric cancer
5 investigation may be appropriate. FDA may agree to
6 a sponsor's planned request for deferral if the
7 product is ready for approval for use in adults
8 before pediatric studies are completed, or if the
9 pediatric study, or studies, should be delayed
10 until additional safety or effectiveness data have
11 been collected; for example, until sufficient
12 preclinical data is generated to support proof of
13 concept and the design of the pediatric study.

14 Just as there are certain circumstances
15 where a deferral may be appropriate, it is also
16 possible for FDA to grant a full or partial waiver,
17 as appropriate, of the requirement to submit
18 reports on the pediatric investigation of a
19 molecularly targeted therapy even when the drug is
20 directed against a relevant target.

21 Waivers may be requested if there is
22 evidence that strongly suggests that necessary

1 studies are impossible or highly impracticable if
2 the product would be ineffective or unsafe in
3 children; if the product does not represent a
4 meaningful benefit over existing therapies for
5 pediatric patients and is not likely to be used by
6 a substantial number of patients in that age group;
7 or if reasonable attempts to make a pediatric
8 formulation for that age group have failed. It is
9 important to note that final decisions and
10 agreement to plans for waiver and deferrals are
11 made at the time of the NDA or BLA approval.

12 In adult oncology drug development, it is
13 not uncommon for there to be multiple drugs
14 belonging to the same class and directed against
15 the same molecular target. This often happens in a
16 pattern where after the innovator product shows
17 success in the treatment of a particular adult
18 cancer, subsequent products follow that often have
19 activity that is comparable to the innovator
20 product.

21 Recognizing that the rarity of pediatric
22 cancers may preclude the feasibility of

1 investigation of multiple same-in-class products,
2 FDA may consider granting a waiver for a
3 same-in-class product under specific circumstances
4 as outlined on this slide. Examples of
5 same-in-class products for which we have typically
6 agreed to plans for waivers include PD1 and PD-L1
7 axis inhibitors, EGFR inhibitors, and anti-CD20
8 antibody directed agents.

9 In May 2022, a pediatric ODAC meeting was
10 held in which the subcommittee discussed the
11 development of a conceptual framework that would
12 inform FDA decision making regarding FDARA
13 requirements for pediatric investigations of
14 molecularly targeted cancer drugs and biologics,
15 when multiple same-in-class products are approved
16 and/or in development.

17 Members of the subcommittee opined that
18 studies of additional same-in-class agents may be
19 warranted under certain circumstances and that
20 several factors should be considered by FDA when
21 deciding whether to require studies or waive the
22 requirement. These factors include comparative

1 nonclinical and clinical data assessing safety and
2 efficacy, cancer rarity and feasibility of
3 investigations, the ability to address an unmet
4 medical need, and other considerations such as
5 availability of age-appropriate dosage
6 formulations. The committee agreed that pediatric
7 investigation of more than one product in the same
8 class may be appropriate when specific product
9 characteristics predict an improved benefit-risk
10 profile over previously investigated drugs in that
11 class.

12 Next, I will discuss the information FDA
13 considers when making decisions regarding whether
14 or not to require studies of molecularly targeted
15 drugs and describe the FDA IPSP review process. As
16 recommended in the FDA guidance on FDARA
17 implementation, sponsors should make efforts to
18 initiate planning and engage with pediatric
19 oncology stakeholders early in the development
20 timeline of a new molecularly targeted drug. Part
21 of this planning is investigating proof of concept
22 using appropriate pediatric nonclinical models

1 whenever possible.

2 Sponsors are encouraged to collaborate with
3 academic and other investigators in pediatric
4 nonclinical testing consortia such as the
5 NCI-supported pediatric preclinical in vivo testing
6 program, or PIVOT, and related activities and
7 groups. Additionally, early advice meetings known
8 as Type F meetings are a method for sponsors to
9 receive FDA advice on the development of an IPSP
10 for CDER products.

11 FDA also recommends collaboration with
12 recognized subject matter experts, including those
13 involved in clinical trial networks, academic
14 investigators, and patient advocates early in the
15 development of the IPSP, to develop an appropriate
16 clinical rationale and scientifically rigorous
17 study design.

18 Given the rarity of pediatric cancers, it is
19 imperative that FDA's decisions on whether to
20 require pediatric cancer investigations reflect the
21 needs and interests of the stakeholder community as
22 much as possible and that required studies be

1 supported by sufficient scientific rationale. FDA
2 carefully considers the totality of information
3 submitted by the sponsor, and examples of the types
4 of information that FDA considers important for
5 decision making are listed on the slide.

6 These include a systematic review of
7 available evidence supporting target relevance to
8 pediatric cancers, such as through public genomic
9 databases or literature; clinical and nonclinical
10 data for the drug in adults; available
11 proof-of-concept information in relevant pediatric
12 cell lines and in vivo models; a summary of the
13 current landscape of clinical development pertinent
14 to the drug class or proposed pediatric patient
15 population for investigation; and last but not
16 least, a summary of stakeholder perspectives
17 regarding potential development of their drug,
18 based on sponsor interactions with pediatric
19 oncology thought leaders.

20 FDA review of IPSPs is a collaborative
21 effort. The Oncology Center of Excellence, or OCE,
22 has a subcommittee of the FDA Pediatric Review

1 Committee, which makes decisions on the plans
2 described in IPSPs in conjunction with the Oncology
3 Review Division that oversees development of the
4 oncology product under review. This
5 multidisciplinary committee consists of experts in
6 pediatric oncology and general pediatrics; clinical
7 pharmacology; genomics; nonclinical pharmacology/
8 toxicology; legal, ethics, and pediatric
9 regulations.

10 The IPSP review process also includes
11 discussion with representatives of the EMA and
12 other health authorities during cluster calls if
13 requested by the sponsor or at the initiative of
14 either agency. In communication with the sponsor,
15 FDA can amend agreed IPSPs based on evolving
16 scientific, nonclinical, and clinical information.

17 FDA recognizes the importance of an
18 international approach to pediatric cancer drug
19 development. The next few slides will highlight
20 some of FDA's international multi-stakeholder
21 collaborative efforts as they relate to FDARA
22 implementation. A multipronged approach is needed

1 to successfully address the challenges associated
2 with drug development for pediatric cancers.

3 Because of the limited number of patients
4 diagnosed with pediatric malignancies who may be
5 eligible to enroll in clinical trials, particularly
6 with the subdivision of pediatric cancers into
7 smaller subsets based on tumor molecular
8 characteristics, international multi-stakeholder
9 collaboration, including with patient advocates, to
10 facilitate the conduct of global pediatric clinical
11 trials has become increasingly important.

12 Prioritization of drugs of interest, in general,
13 especially for drugs of the same class, requires
14 global collaboration to prevent duplication of
15 studies and competition for scarce patients.

16 EMA and FDA collaborate in many ways to
17 facilitate alignment, whenever possible, in
18 pediatric programs in oncology. With FDARA,
19 timelines for IPSPs and pediatric investigation
20 plans, or PIPs, from the EMA are more closely
21 aligned. To the extent possible, new PIPs and
22 IPSPs should be submitted simultaneously, or at

1 least as contemporaneously as possible, in order to
2 facilitate alignment, and approaches, and advice
3 between the two agencies.

4 Pediatric cluster meetings are conducted
5 under a confidentiality agreement and generally
6 involve information exchange and discussion of
7 pediatric clinical development of specific
8 products, safety concerns, or general scientific
9 issues with participating countries. Following a
10 cluster call regarding a specific product, FDA
11 often issues a common commentary to the sponsor for
12 that product, which summarizes the discussion.

13 The FDA also hosts mini symposia with
14 external constituents, often including
15 international regulators to discuss
16 disease-specific research strategies without
17 discussing individual drug development programs.
18 Lastly, representatives of the FDA and EMA are
19 often included in pediatric oncology-related
20 discussions coordinated by the other agency, with
21 permission of the participating sponsor.

22 In addition to the efforts already

1 mentioned, FDA encourages participation in
2 international multi-stakeholder meetings such as
3 the pediatric strategy forums organized by the
4 ACCELERATE platform, where academic investigators,
5 industry, patient advocates, and regulatory
6 agencies share and discuss non-proprietary
7 information and to inform pediatric drug
8 development strategies. FDA also hosts listening
9 sessions with patient advocates and
10 representatives.

11 Project Community is a public health
12 outreach initiative established by the FDA Oncology
13 Center of Excellence for patients living with
14 cancer, survivors, advocates, families, and people
15 living in underserved urban and rural communities
16 who are at greater cancer risk.

17 Additionally, over the past few years, the
18 Foundation for the National Institutes of Health,
19 FNIH, has organized and hosted quarterly
20 international multi-stakeholder meetings comprising
21 of patient advocates, investigator scientists,
22 pharmaceutical representatives, and members of the

1 FDA and EMA to identify pediatric oncology targets
2 that should be prioritized for additional
3 comprehensive preclinical testing. FNIH publishes
4 publicly accessible summaries of that analysis that
5 provided the foundation for discussion at these
6 meetings and the level of stakeholder interest in
7 dedicating resources to conducting additional
8 preclinical studies of drugs directed at each
9 target discussed.

10 In the final portion of the presentation, I
11 will provide an early assessment of the impact of
12 FDARA implementation to date, and then provide some
13 final thoughts regarding how we can continue to
14 work together to maximize the positive impacts of
15 the FDARA legislation in pediatric oncology.

16 In 2023, the U.S. Government Accountability
17 Office, or GAO, published a review of data provided
18 by FDA, based on an analysis of 85 IPSPs for new
19 molecularly targeted adult cancer drugs that FDA
20 received, reviewed, and agreed to during the period
21 from August 18, 2020, when FDARA was first
22 implemented, through August 18, 2022. These data

1 were largely used to determine the number of
2 pediatric cancer studies sponsors plan to conduct
3 and the number expected to receive waivers, and how
4 these would have compared with the number of
5 pediatric studies required prior to FDARA
6 implementation.

7 Of the 85 IPSPs that FDA agreed to during
8 this time period, there were 32 agreed IPSPs that
9 contained a plan for pediatric cancer
10 investigation. As depicted on the left-hand side
11 of the slide in pink, of the 32 agreed IPSPs during
12 that time period that contained a plan for a
13 pediatric cancer investigation, 25 would likely not
14 have had a plan for pediatric study if FDARA had
15 not been implemented due to orphan status or
16 because the development program would have
17 qualified for a waiver because the adult cancer for
18 which the targeted drug was being developed occurs
19 rarely, if ever, in pediatric patients. As seen on
20 the right-hand side of the screen in green, only
21 seven of the 32 IPSPs, or a little over 20 percent,
22 would have contained a plan for a pediatric study

1 in the absence of FDARA amendments to PREA.

2 Based on the data analyzed in stakeholder
3 interviews, the GAO concluded that early results
4 indicate that the FDARA amendments to PREA under
5 the RACE Act have contributed to an increase in the
6 number of planned studies to test certain
7 molecularly targeted drugs in pediatric patients,
8 but that it was too soon to determine whether the
9 RACE Act will increase the number of drugs approved
10 to treat pediatric cancers.

11 In an updated FDA analysis, spanning from
12 August 2020 to April 18th of this year, there were
13 a total of 96 agreed IPSPs for new drugs that were
14 directed at a substantially relevant target. FDA
15 agreed to a planned request for a full waiver for
16 44 percent of these agreed IPSPs, and 56 percent
17 contained a plan to conduct a new molecularly
18 targeted pediatric cancer investigation.

19 Among the 54 agreed IPSPs that included a
20 plan for a pediatric cancer investigation, the
21 majority included a plan to request a partial
22 waiver of the requirement to conduct a study in one

1 or more pediatric age groups, or a deferral
2 submission of the reports of the molecularly
3 targeted pediatric cancer investigation until after
4 the adult marketing application was submitted, or
5 both.

6 In the cases in which FDA agreed to a plan
7 to request a partial waiver, it was generally
8 because the pediatric cancer proposed for
9 investigation did not occur in the very youngest
10 subset of the population; for example, because the
11 study would be conducted in a refractory
12 population. In the cases in which a plan for
13 deferral was agreed upon, the primary reasons were
14 because data from the planned pediatric
15 investigation would not be available when the adult
16 application would be submitted or because
17 additional clinical or nonclinical proof-of-concept
18 information was needed to inform the future
19 pediatric development program.

20 In summary, although FDA frequently agreed
21 to initial pediatric study plans, that included a
22 plan to request a partial waiver in one or more

1 pediatric age groups or deferral of submission of
2 reports of a molecularly targeted pediatric
3 investigation, over half of the agreed IPSPs for
4 new drugs directed at a relevant target since FDARA
5 implementation included plans to study the drug in
6 pediatric patients.

7 Another way to assess the early impact of
8 FDARA is by looking at the number of targeted drugs
9 in oncology that were approved during the same time
10 period and contained a requirement for conduct of a
11 pediatric clinical trial. You will recall that
12 prior to FDARA, there were very few PREA required
13 studies. Between August 18, 2020 and April 18,
14 2024, the Office of Oncological Diseases approved
15 17 molecularly targeted therapies that included
16 requirements for conduct of a clinical trial in
17 pediatric patients with cancer. The majority of
18 these 17 approved applications, or a little over
19 80 percent, had requirements for pediatric studies
20 under FDARA. In most cases, FDA would not have had
21 the authority to require a pediatric investigation
22 in the absence of FDARA.

1 In contrast, three of the drug approvals
2 were for applications that were subject to the
3 original PREA provisions. Molecularly targeted
4 pediatric cancer investigations are deferred
5 pending availability of additional clinical data or
6 data from proof-of-concept studies in relevant
7 pediatric models for three targeted drugs that have
8 postmarketing requirements, and 11 of the 17
9 targeted drugs have a partial waiver for the
10 required study in one or more pediatric age group.

11 This figure provides additional details on
12 the molecular targets and cancer types that
13 postmarketing requirements, or PMRs, shown on the
14 prior slide, have been issued for. As shown on the
15 slide, PMRs for studies have been issued for both
16 pediatric hematologic and solid tumor malignancies,
17 and for drugs directed against a variety of
18 targets. Of the pediatric studies required by a
19 PMR to date, the majority have been in pediatric
20 solid tumors or lymphomas.

21 Based on the FDA and GAO's analysis
22 examining very early measures of the impact of

1 FDARA in pediatric oncology, it appears that since
2 the implementation of FDARA in August 2020, there
3 has been an increase in the number of planned
4 studies to test certain molecularly targeted drugs
5 in pediatric patients with cancer compared to what
6 would have been expected prior to FDARA. However,
7 given the amount of time needed to design and
8 conduct clinical trials evaluating new drugs for
9 the treatment of pediatric cancers, it is too early
10 to determine the extent to which implementation of
11 the FDARA provisions of PREA will advance the
12 development of new treatments for pediatric
13 cancers.

14 Continued focus on multi-stakeholder
15 engagement and international collaboration is
16 necessary to thoughtfully and fully leverage the
17 potential of this legislation and facilitate timely
18 investigation of the molecular targeted drugs that
19 hold the most potential to result in a meaningful
20 improvement over current standard of care for
21 pediatric patients with cancer. FDA is committed
22 to monitoring progress at pediatric investigations

1 required under FDARA.

2 Continued early and frequent stakeholder
3 engagement and international collaboration is
4 needed to maximize the positive impact of FDARA by
5 ensuring the investigation of drugs that hold the
6 most promise to improve the outcomes of pediatric
7 patients with cancer is prioritized and to ensure
8 that these drugs are studied in a timely and
9 efficient manner. Additionally, as we gain more
10 experience with FDARA and as scientific knowledge
11 evolves, decision making should be continually
12 reassessed to refine the implementation of FDARA
13 and maximize the benefit of this legislation to
14 pediatric patients with cancer.

15 This slide contains various links to
16 resources such as the Oncology Center of
17 Excellence; Pediatric Oncology Program webpage; FDA
18 guidances; a database of approved drugs for
19 pediatric cancers; molecular target list; and a
20 database listing pediatric requests that have been
21 issued. This slide contains important contact
22 information for CBER.

1 Thank you for your attention today, and I
2 would like to acknowledge all individuals on this
3 slide who have contributed to this pediatric
4 subcommittee of ODAC meeting. We are especially
5 grateful to all the patients, family members, and
6 caregivers for their participation in clinical
7 trials and to all patient advocates and other
8 stakeholders who work to improve care for pediatric
9 patients with cancer.

10 DR. PAPPO: Thank you very much, Dr. Seddiq
11 and Dr. Vatsan, for your excellent presentations.

12 We will now proceed with the first guest
13 speaker presentation from Dr. Dominik Karres and
14 Dr. Maria Sheean.

15 **Guest Speaker Presentation - Dominik Karres**

16 DR. KARRES: Thank you very much, Chair.

17 Good morning. Good afternoon. Thank you
18 very much to FDA for the very kind invitation,
19 giving us the opportunity to provide a European
20 perspective on the complementary nature of U.S. and
21 European regulations facilitating global pediatric
22 drug development. This is a joint presentation

1 together with my colleague, Dr. Sheean, who will
2 introduce herself later. My name is Dominik
3 Karres, and I'm a scientific officer at the
4 Pediatric Medicines Office in the evidence
5 generation department at the EMA.

6 This is our usual disclaimer. Our
7 presentation will have three parts. I will start
8 with some background and general considerations and
9 also looking into the future, then handing over to
10 my colleague who will present additional
11 reflections on approaches initiated at EMA towards
12 more action development and anticipation of
13 potential legislative changes in Europe before
14 concluding.

15 I'm sure many of you are aware and familiar
16 with the EU pediatric regulation, but to briefly
17 recap, it's a system of obligations and rewards
18 with the pediatric investigation plan being the
19 research and development program consisting of the
20 necessary quality, nonclinical -- including proof
21 of concept as necessary -- and clinical development
22 outlines needed to ensure evidence generation

1 sufficient for a marketing authorization.

2 The PIP is framed around the concept of the
3 condition, taking the adult indication under
4 development as the starting point; however, and
5 Dr. Sheean will touch on that later, there's a
6 proposal under the new pharmaceutical legislation
7 currently under discussion in the European Union to
8 take the product's modern mechanism of action into
9 account.

10 Tools like deferrals, modifications, and
11 waivers are in place, ensuring that those
12 treatments that offer clinically meaningful
13 benefits are developed and authorized for the right
14 patients without unnecessary delay, with a PIP
15 life-cycle approach to evidence supporting our
16 decision making using our regulatory toolbox,
17 allowing to refocus development efforts, based on
18 emerging evidence and potential changing needs over
19 time; and requiring context-specific discussions in
20 an international multi-stakeholder setting, and we
21 heard about that from our FDA colleagues, and I
22 will come to that later tool.

1 The schematic circular overview on the left
2 side of the slide really shows the challenges and
3 context of an ecosystem with the requirement to
4 develop addressing the clearly identified public
5 health need, and addressing these challenges
6 requires international regulatory collaboration
7 between EMA and FDA, and other regulatory agencies.
8 We continue to have this as a clear objective in
9 mind to further strengthen these collaborations,
10 also with the focus on the potential regulatory
11 changes to come in Europe.

12 As mentioned on the previous slide, to allow
13 refocusing development efforts based on emerging
14 evidence over time, it needs international
15 multi-stakeholder interactions, but also without
16 regulators being part of such discussions. With
17 what are now important cornerstones moving
18 successfully through research and development to
19 pivotal evidence, it's an enabling regulatory
20 framework, appreciating the additional challenges
21 when it comes to development discussions based on
22 mode of actions, particularly related to what

1 constitutes sufficient proof of concept, but also
2 in terms of moving forward certain products if
3 there are other competing development efforts
4 ongoing within the same population.

5 This requires an ability to use all
6 evidence generated independent of who the sponsor
7 is or was, and that is preclinical proof of
8 concept, but also clinical trial data so that these
9 data can inform regulatory decision making and
10 serve regulatory requirements without the need to
11 repeat certain studies; but that requires
12 continuous exchange, and relevant capacities, and
13 capabilities being in place, which is the case
14 across all stakeholders, including regulators, and
15 my colleague, Dr. Sheean, will touch on that part
16 later.

17 The pediatric oncology drug development is
18 and has to be conducted globally. This is widely
19 acknowledged. It requires strong international
20 regulatory collaboration also relating to what
21 constitutes a relevant mode or mechanism of action.
22 And despite the differences in regulations between

1 the U.S. and the European Union, given the grown
2 and well-established regulatory collaboration
3 between EMA and FDA -- and we heard from the FDA
4 colleagues on that -- since implementation of the
5 new U.S. legislation, we have observed an increase
6 in voluntary PIPs, and that is indeed PIPs that
7 take the molecular mechanism of action rather than
8 the adult clinical indication as a starting point
9 into account. We see this really as a very
10 positive impact, indicating the complementary
11 nature of both regulatory systems to build on.

12 From a European perspective, now and in the
13 future, a regulatory framework should be
14 predictable by fostering a research and development
15 environment, allowing for evolution of scientific
16 knowledge, and also in the context of the relevance
17 of a product's mode and mechanism of action, a
18 situation which most likely leads to growing a
19 pipeline of products for consideration.

20 In order to identify and support completion
21 of development efforts towards an indication for
22 products likely to address existing unmet medical

1 needs and offering significant therapeutic benefit,
2 there's the need to move from product to
3 population-focused discussions, which is of
4 particular relevance for multi-stakeholder
5 interactions, and such population-focused
6 discussions could be guided and framed by the
7 following question, which is in line with wordings
8 in the current European pediatric regulation, and
9 that is, based on a product's mode of action, what
10 is the target population for which the product is
11 able to offer significant therapeutic benefits in
12 the context of existing treatments and the wider
13 research and development landscape such that
14 development is feasible and generates meaningful
15 evidence timely?

16 Such focus is important, particularly in
17 context of modern mechanism of action based
18 developments, as it really supports and underpins
19 the understanding that choices must be made within
20 the drug development ecosystem based on evidence,
21 choices which we have mandated to facilitate, for
22 example, which product, based on adequate

1 preclinical proof of concept, to move into an early
2 phase development, but also which product in a
3 given population to move forward into pivotal
4 evidence generation, appreciating that all products
5 with an identified mode of action will conclude
6 successfully, leading to an indication, and
7 emphasizing, really, the need for international
8 cooperation and collaboration across all
9 stakeholders, towards generating the necessary
10 evidence to support adequate go/no-go decisions
11 such that resources can be preserved, but mostly
12 patients only enrolled in clinical trials with a
13 high possibility of success.

14 I would like to conclude my part by
15 emphasizing, again, the importance of
16 multi-stakeholder interactions and internationally
17 supporting facilitating meaningful development
18 efforts now and in the future regulatory framework
19 in Europe, potentially focused on mode of action
20 based development, which needs moving from product
21 to population-based and population-focused
22 discussions, to really facilitating and enabling

1 choices to prioritize, supported by evidence with
2 early regulatory interactions remaining key.

3 Also, to highlight in this context the
4 importance of being able to utilize all the data
5 evidence generated by academia -- that is
6 preclinical data and data from academic-sponsored
7 clinical trials -- such that these data can inform
8 regulatory decision making and serve fulfilling
9 regulatory requirements equally as possible,
10 avoiding necessitating to repeat certain studies or
11 not being able to conclude on benefit-risk at all;
12 and challenging implementation of an authorized
13 product into clinical care such that all patients,
14 now and future ones, can benefit, but pointing also
15 towards the need to establish regular transparent
16 mechanisms of interaction between academia and
17 regulators to be able to exchange; and sharing
18 relevant information, something which we have
19 started to initiate and are keen to further develop
20 from our side, including and involving also FDA,
21 while clearly acknowledging the necessary
22 capacities and capabilities needing to be in place

1 here, too, as mentioned earlier.

2 With that said, I'm handing over to my
3 colleague, Dr. Sheean, who will talk now about
4 regulatory preparedness, including capacity and
5 capability building in the context of potential
6 upcoming European regulatory changes. Thank you
7 very much.

8 **Guest Speaker Presentation - Maria Sheean**

9 DR. SHEEAN: Thank you very much,
10 Dr. Karres.

11 My name is Maria Sheean. I'm a pediatric
12 officer at the Pediatric Medicines Office at EMA,
13 and I would like to add to what has been said, to
14 our reflections, reflecting on future developments
15 in the EU and to share our perspective, and also as
16 scientific support to the nonclinical working party
17 at EMA, and experts, delegates, from all over the
18 EU and national competent authorities, dedicated to
19 facilitating the assessment of nonclinical safety
20 and efficacy of novel pediatric drugs, among other
21 classes.

22 As mentioned before, we began reflecting on

1 the mode of action developments because of
2 voluntary mode of action driven VIP applications
3 that we have seen, but also in anticipation of the
4 new pharmaceutical legislation in the EU, which is
5 currently in preparation. The final wording of the
6 legislation is not yet known, but as you can see
7 from this excerpt from the explanatory memorandum
8 of the EC legislative proposal, we anticipate that
9 mode of action driven assessments will become more
10 common, and that this will affect primarily the
11 oncology space.

12 Although this was maybe not necessarily
13 intentional, the regulatory landscape in Europe
14 will mirror and complements the current situation
15 in the U.S. In this more favorable regulatory
16 landscape, the European regulators will be in a
17 position to guide data generation, including
18 proof-of-concept data and the overall development
19 plan, which would be necessary to support marketing
20 authorization applications.

21 The impact of these legislative changes is
22 already felt, and we hope that it will result in an

1 increase in science-driven pediatric development
2 and [indiscernible - 1:39:56] drugs. There is
3 correspondingly a heightened need for thorough
4 preclinical data, using better predictive models to
5 develop drugs targeting mechanisms specific to
6 pediatric malignancies.

7 Standard methodologies for the development
8 of preclinical data packages necessary to inform
9 clinical decisions do not exist, so discussions
10 around the methodology are needed to allow for
11 informed go/no-go decisions, and in pediatric
12 oncology, they may be needed based largely on
13 nonclinical data; hence, the need for better
14 understanding of target relevance and proper
15 proof-of-concept data. However, for the decision
16 about the progression into clinical development and
17 interdisciplinary discussion involving clinicians'
18 insights into the disease in children, the unmet
19 needs, and the flexibility of studies will be
20 necessary.

21 In view of this need for nonclinical
22 expertise, we began horizon scanning the space of

1 proof-of-concept research, and it's clear that the
2 economic community already started building this
3 capacity to address the need for nonclinical
4 proof-of-concept data. For example, ITCC-P4
5 project, which was previously mentioned in one of
6 FDA slides, was initiated as a public-private
7 partnership in 2017 as part of the EU IMI2, with
8 the goal to develop patient-specific clinical
9 laboratory models for the most common high-risk
10 childhood cancers that are currently undertreated.

11 Upon request, academic institutions,
12 biotech, and pharmaceutical companies can access
13 the comprehensive repertoire of over 400
14 fully-characterized pediatric tumor models for
15 systematic efficacy testing, and we have recently
16 engaged in discussions with P4 in order to exchange
17 information on the actionability and relevance of
18 molecular targets, and to help regulate and stay up
19 to date with the current developments in the field.
20 We are also pursuing other avenues and have
21 involved other academics groups in our discussions.

22 So although there's a lack of standardized

1 methodology or development of nonclinical data
2 packages necessary to evolve clinical development,
3 the academic community has started building such
4 standards, and this is one of the examples. The
5 publication from 2021 shows an interest in the
6 guidance on the minimal preclinical testing
7 requirements, and we received such signals from
8 industry asking for similar guidance. However, it
9 is not our intention to come up with guideline
10 documents and running the risk of becoming too
11 rigid or quickly outdated in this fast-paced,
12 scientific field, but to build our capacity and to
13 reflect on the methodology necessary for a
14 case-by-case, weight-of-evidence assessment and
15 considering existing proof-of-concept data.

16 We also take note and observe the academic
17 activities overseas. The NCI-supported Pediatric
18 Preclinical In Vivo Testing program evaluates novel
19 agents as well against genomically characterized
20 childhood cancer models and builds upon more than
21 15 years of experience with the Pediatric
22 Preclinical Testing program and the Pediatric

1 Preclinical Testing consortium, and has shown over
2 the years that many agents that are effective for
3 adult cancers have limited activity against
4 pediatric preclinical models. To draw from this
5 wealth of information, we are currently also making
6 efforts to initiate interaction with pivotal
7 programs, as well as to exchange learnings and
8 involve them in the future, as needed.

9 So from this horizon scanning exercise, we
10 have moved into our first steps to build the
11 regulatory capacity in preparation for the mode of
12 action driven PIP assessments, which will become
13 more common in the future within the pharmaceutical
14 legislation. Therefore, we organized a session
15 during the nonclinical working party monthly
16 meetings dedicated to proof-of-concept discussions,
17 with a presence of a multidisciplinary group of
18 colleagues, including also FDA observers, and we
19 are hoping that we can use this opportunity of
20 having observers to exchange and harmonize our
21 approaches, given the global nature of these drug
22 developments.

1 Our activities involving mode of action
2 assessments will be also included in the
3 nonclinical working party plan for 2025-2027, and
4 this workplan will be sent for consultation with
5 our stakeholders in the summer [indiscernible -
6 1:44:56] of this year. We have reached out to the
7 industry on this topic, and we had initial
8 discussion during the preclinical assessor meeting
9 with FDA in February of this year, and it was met
10 with interest, but also with scientific expectation
11 for guidance documents.

12 Instead, we tried to encourage early
13 interactions and cooperation on this, and what
14 needs to be multi-stakeholder dialect, since
15 everybody seems to be developing their own strategy
16 for handling their go/no-go decisions, so we would
17 like to converge here. We are therefore expecting
18 that mode of action driven developments will be
19 included as a topic in our future meetings for the
20 stakeholders.

21 We have also initiated a dialogue with
22 academics in dedicated meetings, and would

1 encourage any interested parties to get in touch
2 with us directly or through an innovation task
3 force meeting. Innovation task force, or ITF for
4 short, is a very good platform to make your
5 activities visible across the EU regulatory network
6 and to engage in discussions about meeting
7 scientific development with regulatory needs.

8 Finally, but not least, we have started
9 attracting nonclinical and clinical experts from
10 the European assessors network to create a drafting
11 group of the nonclinical working party. The group
12 has just been proposed and will be in charge of
13 drafting a reflection paper on the mode of action
14 driven assessments of pediatric oncology. We would
15 like to work out a model for an improved process by
16 which routine multi-stakeholder engagement and
17 discussion will be encouraged. We would hope to
18 include FDA and academics, as appropriate, in the
19 preparation of this paper, and we would also cover
20 in the same publication the methodology necessary
21 for the mode of action driven assessments, which
22 would likely utilize a weight-of-evidence approach

1 and involve nonclinical and clinical perspectives.

2 So with this, I've arrived at the conclusion
3 in which I would like to reiterate that we've
4 already seen cases of mode of action based
5 developments in the EU, and we are also used to
6 seeing interactions with the FDA, which inform us
7 about what is happening overseas in this field, and
8 we are highly motivated to build regulatory
9 capacity to achieve consistency and high scientific
10 value of our go and no-go decisions with regards to
11 new pediatric drugs.

12 We are aware that the relative weight of
13 nonclinical proof-of-concept data will be of
14 greater importance, where extrapolation from adult
15 data may be impossible because of distinct features
16 of pediatric cancers or where we're typically
17 dealing with very small populations. And hence,
18 we're interested in building a network with
19 academics who seem to be ahead of us in building
20 capacity at the moment. We receive messages
21 indicating an expectation of some form of guidance
22 or minimum data requirement statements, but we see

1 this rather more as collaborative efforts in
2 building weight-of-evidence methodology.

3 So we are intending to build capacity, and
4 develop a dialogue, and retain dialogue with
5 stakeholders, industry, regulators, academia, or
6 partnerships such as ITCC-P4, so we are starting to
7 routinely also involve colleagues with diverse
8 expertise in our assessment meetings, colleagues
9 with nonclinical and clinical expertise. And to
10 reiterate, we have no plans for guidelines or
11 minimum nonclinical requirements, but we do intend
12 to work on a reflection paper to explain our
13 collaborative approach further.

14 We also are looking forward to further our
15 collaboration with FDA in view of the global nature
16 of the developments in this space. And with these
17 notes, I will end this presentation, and maybe we
18 can go back to the next slide here that lists our
19 acknowledgements.

20 We'd like to thank Karen van Malderen, who
21 is the nonclinical working party vice-chair and the
22 Belgian delegate to the pediatric committee; to

1 Ralph Bax, who's our head of the Pediatric
2 Medicines Office; and to Franca Ligas and Giovanni
3 Lesa, our colleagues and pediatric team who are
4 involved in oncology product assessment and also
5 facilitating FDA interactions to date. Thank you
6 very much.

Clarifying Questions

8 DR. PAPPO: Thank you very much, Dr. Karres
9 and Dr. Sheean, for your excellent presentation.

10 We will now take clarifying questions for
11 the FDA and guest speakers who have presented thus
12 far. Please use the raise-hand icon to indicate
13 that you have a question, and remember to lower
14 your hand by clicking the raise-hand icon again
15 after you have asked your question.

When acknowledged, please remember to state your name for the record before you speak and direct your question to a specific presenter, if you can. If you wish for a specific slide to be displayed, please let us know the slide number, if possible. Finally, it would be helpful to acknowledge the end of your question with a thank

1 you and end of your follow-up question with, "That
2 is all for my questions," so we can move on for the
3 next panel member.

4 We will start with questions, and so far, we
5 will start with Dr. Seibel.

6 DR. SEIBEL: Hi. This is Nita Seibel from
7 NCI, and I have a question directed at Dr. Seddiq.
8 I was hoping that you could give us further
9 information for follow-up on deferrals, and if
10 there's a standard approach to how you follow up on
11 those that have been granted a deferral, those
12 drugs that have been granted a deferral.

13 DR. SEDDIQ: Thank you, Dr. Seibel, for that
14 question. So plans for deferral, generally we
15 follow up with the sponsors after the initial
16 deferral was granted. I'm not sure if Dr. Donoghue
17 or Dr. Drezner would like to add any additional
18 information that's more specific to follow-up time
19 period when a deferral is granted.

20 DR. DREZNER: Yes, sure. This is Nicole
21 Drezner, the Deputy Director of Division of
22 Oncology 2. Just to build on that, as you know,

1 there are a substantial number of plans for
2 deferrals within the agreed IPSPs for molecularly
3 targeted pediatric investigations, and generally,
4 probably the most common reason or justification
5 for many of the deferrals is that the design of the
6 pediatric studies needs to be informed by
7 additional proof-of-concept data from clinical
8 trials in adults, or proof-of-concept data that may
9 be taken from additional pediatric nonclinical
10 studies in relevant pediatric cancer models. So
11 that information is often needed to help to further
12 refine the approach to the pediatric studies, such
13 as which tumor types, which patient populations are
14 going to benefit from the investigational targeted
15 drug.

16 That's the most common reason that we issue
17 or that we agree to a plan for a deferral. The
18 intent of FDARA is not to delay the adult
19 development, so often companies will be ready to
20 indicate the application for the adult indication
21 before they have completed the required
22 proof-of-concept studies to determine which tumor

1 type or which pediatric tumor type they're going to
2 be studying. So in that case, we issue a deferral
3 and a postmarketing requirement.

4 DR. SEIBEL: So is there a follow-up, like a
5 year later you go back to the company, or it's
6 deferred, and you just wait for them to come back
7 and respond? Is there any follow-up at a period of
8 time later as to what's happening?

9 DR. DREZNER: Yes. So through postmarketing
10 requirements, there's a mechanism for us to
11 follow up on the status of the studies. And as
12 part of IPSP, we have a timeline for when the
13 studies are going to be completed. And I see that
14 Dr. Donoghue also has her hand raised, so I will
15 let you take that part of the question, but that is
16 one of the ways that we follow up on postmarketing
17 requirements.

18 DR. PAPPO: Dr. Donoghue, please go ahead.

19 DR. DONOGHUE: Hi, Dr. Seibel. Thank you so
20 much for the question because it's actually a
21 really important question that I think should be on
22 the back of many of our minds, and is.

1 There are two parts to this question, I
2 think. One part is thinking about plans for
3 deferral that are in the IPSPs that we've agreed
4 to, that we know contain a plan for pediatric
5 study, but we've agreed with the planned request
6 for a deferral of submission of the reports, of the
7 pediatric study, to a certain time. So I think
8 it's important to know that during the IPSP review
9 and agreement process, these are the ultimate plans
10 to request a deferral, but that actual request for
11 deferral doesn't come in until the marketing
12 application is submitted. So that's the first
13 point.

14 I want to emphasize that -- although it's
15 related to your question but not directly answering
16 your question, which I'll get to -- during part of
17 our IPSP review process, part of that is looking at
18 a standard section of the IPSP that outlines the
19 timeline, the estimated timeline, that it's going
20 to take a sponsor to submit their protocol,
21 initiate their study, complete the study, and
22 submit a report for that molecularly targeted

1 investigation outlined in their IPSP. When we're
2 reviewing IPSPs, we're looking at those timelines,
3 and we're thinking carefully and conferring with
4 the sponsor about what we think is a reasonable
5 time frame for each of those milestones. So that
6 even happens before the adult marketing
7 application.

8 Switching gears, once the application is
9 submitted, we agree upon a postmarketing
10 requirement if the applicant hasn't submitted the
11 reports of their pediatric investigation with that
12 first marketing application in adults. So at that
13 point in time, we have more definitive discussions
14 if they haven't yet completed the study as to where
15 that study is, and then following, we establish
16 milestones for when they have to submit those study
17 results. And then after that PMR is established,
18 or the postmarketing requirement is established, we
19 have a yearly review of the status of every single
20 postmarketing requirement, not just the pediatric
21 one, but part of our review includes the review of
22 the progress of that PMR.

1 Having said that, I think you might be also
2 asking about, if we agree upon an IPSP and the
3 application hasn't been yet submitted for an adult
4 program, what are we doing to monitor the progress
5 of the pediatric studies if they're planned to
6 start before the adult application? And I have to
7 say that at this point in time, we don't have a
8 standardized approach to that. That is something
9 we're actively working on, however. We're creating
10 a database that hopefully will be done by the end
11 of this summer that will enable us to track these
12 milestone dates so that we can, on a quarterly or
13 six-month basis, review for all of the agreed
14 IPSPs, have we hit upon a milestone date that
15 should have already taken place; has that taken
16 place; and if not, it will give us a mechanism to
17 reach out to sponsors and track in more real time
18 how the progress of that plan study is going.

19 So that's where things stand, and we're
20 working on it, and I hope we can implement it
21 before the end of the fiscal year.

22 DR. SEIBEL: Thank you.

1 DR. PAPPO: Thank you.
2 I'm going to allow three more questions.
3 That will be Dr. Gorlick, myself, and Dr. Smith, in
4 an attempt to try to keep us on time. And remember
5 that we're going to have time to come back and
6 circle back and ask additional questions after the
7 open public hearing session before beginning the
8 committee discussions.

9 Dr. Gorlick, you're next.

10 DR. GORLICK: Richard Gorlick at MD Anderson
11 Cancer Center. I'm not sure who my question is
12 directed to. It's whoever has the data.

13 The question I have is, is there any data
14 that can be brought to bear on the extent to which
15 harmonization between the EMA and the FDA is
16 working thus far? And what I'm getting at
17 specifically is, is there a sense that
18 first-in-pediatric oncology trials are happening
19 predominantly in Europe, or predominantly in North
20 America, or predominantly as international studies?
21 Thank you.

22 DR. DONOGHUE: Is it ok, Dr. Pappo, if I

1 start off with this?

2 DR. PAPPO: Yes, please do. Please do.

3 DR. DONOGHUE: Another excellent question.

4 Thank you, Dr. Gorlick, for that.

5 I think the short answer to your question is
6 that we don't have a formal established mechanism
7 to do all of this tracking of clinical trials, and
8 I think that is a very big, I hate to say the word
9 "problem," but I think it's an issue, and I think
10 we need to work on that.

11 We are working on it, through a variety of
12 mechanisms, to try to make sure, at least when
13 we're talking about our approach to pediatric
14 studies that are under the PIP or IPSP process. We
15 are actively working on a monthly basis, if not
16 more often, with EMA to discuss individual
17 development programs and make sure that we're
18 aligning and promoting an international approach,
19 frankly, to conducting studies intended to fulfill
20 a requirement, because we should be thinking about
21 pediatric patients with cancer throughout the
22 world, not just in the U.S., not just in the EMA.

1 We've had some interesting discussions with other
2 stakeholders outside of those two areas to try to
3 figure out how we can leverage and help address the
4 needs of all patients with cancer as we're thinking
5 about these studies.

6 Having said that, we do have an obligation
7 to be sure that the results are applicable to our
8 patients in the U.S. as well, being a U.S.
9 regulatory agency, so you're touching upon a very
10 important topic. We get thinking about these
11 issues and try to work more toward a better
12 understanding of what's happening through a lot of
13 these multi-stakeholder meetings, such as the ones
14 that take place in ACCELERATE, but I think when we
15 go back and think about the past, I don't think we
16 as a community have done a great job at knowing
17 what everybody's doing, thinking about it from a
18 20,000-foot view instead of our own individual
19 country basis.

20 So that is something that I think we will be
21 tracking as we're thinking about pediatric
22 requirements here. And often, I will say, that

1 when we confer with sponsors about their programs,
2 we are often asking, well, is this an international
3 trial; is this going to be primarily in the U.S.?
4 And encouraging whenever possible, opening up and
5 casting a wide net because we have a very rare
6 population that's getting even more rare, and
7 equally important, though, is that we're not doing
8 redundant trials and that we understand.

9 So I think we're certainly open to ideas and
10 opinions, and I think that we'll get to that
11 hopefully in the discussion section, things that
12 you think that we, FDA, could do differently or
13 better to work with the community and ways to try
14 to track this better. Part of it's just too much
15 information coming from different sources, and it's
16 hard to figure out how to best aggregate it.

17 Sorry for the long-winded answer that didn't
18 really answer your question totally,
19 satisfactorily, probably, but that's my view of
20 things at this point.

21 DR. PAPPO: We'll discuss it further.

22 DR. GORLICK: It did. Thank you, very

1 responsive.

2 DR. PAPPO: I had a question for Dr. Seddiq
3 and a question for Dr. Sheean.

4 For Dr. Seddiq, is there any preliminary
5 data from the RACE Act on the timeline for
6 initiating a pediatric clinical trial when compared
7 with when the first clinical trial was initiating
8 adults? I mean, is there any data to suggest that
9 we're shortening that time frame that Dr. Steve
10 DuBois published several years ago; that it takes
11 6 and a half years for a first-in-pediatric
12 clinical trial to open after the first adult trial,
13 or is it too early to know?

14 DR. SEDDIQ: Thank you, Dr. Pappo, for that
15 question. At this time, it's too early for us to
16 be able to have that data, but it is also something
17 that we'll start tracking with the database that
18 we're working on, but it's too early at this time.

19 DR. PAPPO: Thank you very much.

20 And the question for Dr. Sheean is, can you
21 give us a little more clarity on the interactions
22 between the ITCC and the PIVOT? Do you all have

1 something similar to like cluster calls to know
2 which agents are being investigated by each of the
3 groups to be sure that there's not a lot of
4 duplicative efforts, or this is just starting to
5 happen?

6 DR. SHEEAN: Yes. Thank you very much for
7 the question. It is indeed first steps we are
8 taking at the moment in establishing the context.
9 We are going to have an ITF meeting with P4 very
10 shortly, so there we will discuss the first set of
11 questions and discuss how to enhance our
12 relationship. But indeed, we don't want to
13 duplicate effort. It's more about establishing
14 good channels of communication and access to
15 information that may be helpful for both parties.

16 DR. PAPPO: Thank you very much.

17 Dr. Smith, you're next.

18 DR. SMITH: Okay. Thank you.

19 My question is for FDA. The question is,
20 part of the task today is how do we think the IPSP
21 process is going and the FDARA implementation? The
22 kind of questions that I would want to know to say

1 it's going really well or has some issues are
2 looking at IPSPs and what are the agents? What are
3 the patient populations targeted? For IPSPs, are
4 there competing agents being studied for that
5 population? And then making assessments for, well,
6 the trial that's requested can probably enroll
7 well, and then being able to look at what trials
8 have already been started based on IPSPs. How many
9 are there? How are they enrolling? For the ones
10 that aren't enrolling well, are they ever likely to
11 succeed part of the issues?

12 And my question is, are we going to be able
13 to get access to these types of data to evaluate
14 how the IPSP process is being implemented and how
15 it's going.

16 DR. DREZNER: Thanks, Dr. Smith. I can
17 start off with that. I think that's a very
18 important point, that it is important to know, when
19 studies get off the ground, how they're enrolling
20 and whether they are ultimately even bearing out.
21 And I don't know that we have that type of
22 information yet, but I think that that is certainly

1 something that we can begin to capture as pediatric
2 studies move beyond preclinical data into the
3 clinic and begin enrolling.

4 I think we provided some granularity in
5 terms of the cancer types that have postmarketing
6 requirements associated with them. In some cases,
7 it's a little bit difficult to make that sort of
8 determination because a lot of the early studies
9 are for general solid tumors or something like
10 that. But I do think that you've asked an
11 important question, and one that we will think
12 about.

13 Dr. Donoghue, did you want to address this
14 as well?

15 DR. DONOGHUE: Sure. I'll attempt. I
16 think, Dr. Smith, you are bringing up a lot of
17 pieces of information that I think we would like to
18 have as well. We won't have some of those pieces
19 of information, I think, for a little bit more
20 time, at least in a meaningful way, given the
21 relatively small number of, I think, trials that
22 have been initiated. At this point in time, it's

1 probably certainly fewer than 30 or 40, I think
2 right now, as a result of FDARA; although I won't
3 know for sure what those numbers are until we track
4 this database that I mentioned in a more granular
5 way.

6 To give a little bit more flavor for
7 things -- and, again, it won't be as specific as I
8 think we'd all like, and part of this is because,
9 as you know, the initial pediatric study planned
10 agreements are not public information. So, in many
11 cases, these IPSPs are for targeted therapies,
12 where there may only be a few, one or two, maybe
13 even three, in a space that it's a little bit more
14 difficult to get to that level without risking
15 divulging some proprietary information. I think
16 maybe in a different forum, we might be able to get
17 to more granularity with the permission of
18 sponsors, so that's something that we'll certainly
19 be able to look into.

20 But I will mention, just to kind of give a
21 little bit more granularity compared to what we've
22 already given you, when thinking about our agreed

1 planned requests for full waivers, I would say over
2 a quarter of them are for the PD-1- or
3 PD-L1-directed agents, given the number of agents
4 in that space. So a good proportion of those full
5 waivers are for drugs for which we've seen an
6 explosion of drugs in the same class, maybe not to
7 the same extent, but at least more than one or two
8 full waivers have been given to EGFR, HER2, VEGF,
9 AKT, PI3K, c-MET directed agents, partly because of
10 the discussions that we've had in the ACCELERATE
11 platform, partly because of the data that has been
12 accumulated over time, and partly due to maybe the
13 extreme rarity of some pediatric patients that
14 could benefit from certain of these classes of
15 drugs.

16 I will say that in terms of the IPSPs that
17 we've agreed to, roughly there's been a pretty even
18 split between hematological cancers and solid
19 tumors, and in general, as one would expect, the
20 cancer types that are being studied in the
21 hematological realm are more closely resembling the
22 adult cancers under study, as one might expect.

1 For the solid tumors, there's much more
2 heterogeneity in that looking at the targets for
3 which there are planned studies, there's a lot of
4 heterogeneity in those targets. There are like
5 54-ish agreed IPSPs that contain a plan for a
6 study. They reflect about 50, or maybe even a
7 little bit more than 50, different targets or
8 target combinations.

9 So there is some redundancy among the
10 targets that are being studied, but not a lot. And
11 I do think that we'll over time be able to track,
12 and I think it's very important for us to track,
13 actually, the progress of the studies that we're
14 requiring or planning, or the studies for which
15 there are firm plans under IPSP so that we can
16 monitor the progress of the studies if we're having
17 accrual problems; because the last thing I think we
18 would really want to do is have an unintended
19 consequence of spurring too much activity in an
20 inefficient way that ultimately might result in the
21 abandoning of clinical trials and wasted resources.

22 I hope a little bit of what I've said has

1 provided a little bit more granularity. But we,
2 again, would be interested in the types of
3 information that the community's interested in
4 hearing about in a future meeting, and we can think
5 about maybe in the next couple years, when we have
6 a little bit more experience, revisiting and
7 thinking about that.

8 DR. SMITH: Thank you for that explanation.
9 Can you clarify if we would ever know when a
10 particular trial was done as a result of an
11 IPSP --

12 DR. DONOGHUE: Yes. Yes.

13 DR. SMITH: -- or if it's forever
14 confidential?

15 DR. DONOGHUE: Yes. Well, once an
16 application is submitted, then the approval letter
17 will contain a postmarketing requirement, or not,
18 or acknowledgement of a waiver exemption from the
19 pediatric requirement. Those are public. Those
20 letters are public. The postmarketing required
21 studies are public. And once the information comes
22 in as a result of the postmarketing study, then

1 part of the requirement is to include the
2 information from that study and product labeling.

3 So there is a very clear mechanism for that
4 kind of information to be provided. Given the
5 nature of pediatric oncology and, again, based upon
6 the importance of trying to make sure that we're
7 making decisions that really are reflective of
8 community needs and that are appropriate, thinking
9 about rare resources and wanting to be sure we're
10 dedicating and only requiring, or agreeing to
11 require, a study in those cases that we think
12 there's a real potential for pediatrics and not
13 have too many redundant studies, I do think, even
14 before the adult application comes in and the
15 postmarketing requirement is set, that we have a
16 way of tracking what's happening more
17 contemporaneously with the plan itself, because
18 there are plans in place where the studies are
19 already well underway in pediatrics, and that's
20 well before you would get the approval and the
21 postmarketing requirement.

22 So yes, there are ways that will be tracked.

1 I'd like to try to track things a little bit more
2 closely before the adult marketing application
3 comes in.

4 Did that help, a little?

5 DR. SMITH: It helps. Not having access to
6 what agents have IPSPPs, it makes it harder to plan
7 for clinical trials when there could be one or two
8 IPSPPs that aren't yet public and another group is
9 trying to develop a clinical trial.

10 DR. DONOGHUE: I agree. I agree.

11 DR. SMITH: So that is a concern.

12 My last follow-up question is --

13 DR. PAPPO: We're going to have to -- okay.

14 DR. SMITH: -- there could be IPSPPs for
15 which agents don't go on to approval, correct?

16 DR. DONOGHUE: Correct. Yes, because these
17 are plans for studies during end of phase 2
18 development in adults, generally speaking, post end
19 of phase.

20 DR. SMITH: Do those become public or is
21 that forever confidential?

22 DR. DONOGHUE: At this point in time, the

1 IPSP status is not public, no, up until then.
2 That's something that I think is maybe outside of
3 our purview, out of our area of control at this
4 point, but it is acknowledging that you're in a
5 situation where there's a bit of a blinder
6 happening --

7 DR. SMITH: That's correct.

8 DR. DONOGHUE: -- but that's not unique
9 necessarily, even to these regulations. I think
10 there are many instances where there are ongoing
11 studies happening that others are not aware of
12 until a publication occurs or something like that.
13 So I do think it goes beyond this issue, but it's
14 still an important --

15 DR. PAPPO: We can come back --

16 DR. DONOGHUE: -- I acknowledge that for
17 FDARA as well, yes.

18 DR. PAPPO: We can come back and circle back
19 on this. We're a little bit behind on schedule,
20 but thank you.

21 So now we will proceed to our next speaker
22 presentation, Dr. Brenda Weigel, and sorry for the

1 delay, Dr. Weigel.

2 **Guest Speaker Presentation - Brenda Weigel**

3 DR. WEIGEL: Thank you very much, Dr. Pappo,
4 and it is my pleasure to present the COG
5 perspective. And I wish to thank the FDA and all
6 participants for the opportunity to really, I
7 think, raise more questions and reflections; that
8 anything data-driven, as we've just heard from the
9 perspectives of the questions, is that we really
10 are looking at collecting data to really understand
11 the impact moving forward. I hope to give you some
12 of the things that we consider in the COG, and some
13 of the questions I think at the end will lend
14 themselves to further discussion later today.

15 We really, over the last several decades,
16 have seen a real explosion in the number and types
17 of agents that are targeting cancers, and this
18 evolution has really been accelerated in the last
19 decade with the advent of targeted therapies. As
20 was alluded to this morning, the legislation has
21 been implemented to try to increase and shorten the
22 time frames for studying potentially effective

1 targeted agents in pediatric cancers.

2 As exemplified in this slide with the
3 development of crizotinib, the ALK-targeted agent
4 was really, if you think about it, in 1994
5 discovered, ALK in anaplastic large-cell lymphoma,
6 and that if you put in today's context, that would
7 potentially have been something that was of
8 pediatric relevance. But it really was 12 years
9 later when it was discovered in connection with
10 lung carcinoma that it really developed into an
11 anti-cancer therapy, and then further than that,
12 the discovery that it was associated with
13 neuroblastoma and the development of this in the
14 pediatric oncology space.

15 So the time frames were incredibly long, but
16 one would suggest that once it was actually
17 recognized that ALK was of relevance in pediatric
18 cancer, even before FDARA, there was a movement
19 into the pediatric oncology space that was really
20 driven from pediatric academic investigators.

21 As Dr. Pappo mentioned, Dr. DuBois and
22 colleagues really provided the benchmark for us for

1 pediatric cancer drug development, with the median
2 being 6.5 years from the time of first in human to
3 first in pediatrics, and this benchmark, one would
4 suggest, gives us a comparator for what hopefully
5 will be data collected, as has been already
6 mentioned, to say that we really are making a
7 difference with the current RACE for Children Act
8 in shortening this time frame. So historically,
9 there is really this delay in moving into pediatric
10 drug development, and one would hope that the RACE
11 for Children Act is moving that bar.

12 We have heard the requirements of the RACE
13 for Children Act, and we really have seen that, as
14 was mentioned earlier, there has been an increase
15 in the number of IPSPs, but we still are unclear as
16 to whether that is changing the bar for moving
17 trials and/or approvals in pediatric oncology
18 forward.

19 Some of the things that we really consider,
20 and I think a lot of the discussions that we have
21 with our pharma partners and within pediatric
22 academics, are really the factors related to

1 relevance, and the molecular targets list has
2 helped with this, and there are very few exceptions
3 on the molecular targets list. So this really does
4 become a big topic of conversation of how do we
5 define relevance, and I think this continues to
6 evolve, as we also heard this morning, with other
7 types of targets and biologic effects.

8 We also heard that there really needs to be
9 that preclinical data to help determine relevance.
10 We heard reference to the NCI-supported PIVOT
11 program and the ITCC-P4 programs, all of which are
12 contributing information into the preclinical
13 space. We also know that, historically, many
14 targets have been evaluated late, as exemplified by
15 ALK, even though the initial findings were in a
16 pediatric relevant tumor, and we do have limited
17 human tumor data in pediatric oncology to help
18 define some of the most interesting and most
19 promising data. So really, the access to the
20 preclinical data, the data coming out of these
21 assessments, is critical to our understanding of
22 relevance and in advising what moves into the

1 pediatric clinical trial space.

2 Drug formulation is really part of the RACE
3 Act, and I would say that formulation, by and
4 large, in IV is easy. Oral, we really have seen,
5 so far, that what is coming into the pediatric
6 space is really what is currently in the adult
7 space with plans to develop pediatric formulations,
8 but not necessarily a clear movement to actually
9 move into formulations at the time of starting a
10 pediatric trial that are pediatric relevant and
11 friendly.

12 Some of the key considerations, especially
13 in the formulation area, are the timing of the
14 development of these formulations. We saw, as
15 exemplified by larotrectinib in the rare NTRK
16 fusion-positive infantile fibrosarcomas that
17 Dr. Laetsch led and published, that knowing that
18 this patient population was in the pediatric space
19 and in very young children, a pediatric friendly
20 formulation was developed very early, and these
21 types of considerations really make a difference in
22 moving an agent that is effective forward in the

1 pediatric space.

2 We do not delay moving into the pediatric
3 space and try to move into the smallest children
4 possible with existing formulations, recognizing
5 that that may limit the lower age limit and size of
6 individual that can be enrolled on a pediatric
7 trial, and try to move forward as data emerges into
8 a pediatric friendly formulation.

9 Key considerations, I think when we look at
10 safety and toxicity, is really balancing risk and
11 benefit, and really, a lot of this toxicity data is
12 coming out of the adult experience. How do we move
13 that so that we can have a better idea of the
14 safety profile and not have to delay for
15 significant amounts of data in adults in an agent
16 that we feel may be of real potential benefit for
17 children?

18 So key considerations I think play into some
19 of the meetings of the requests to move trials into
20 pediatrics that we have to recognize, really, in
21 dealing with rare patient populations. And as will
22 be discussed later, and has already been mentioned,

1 international trial collaboration is critical and
2 key as we move into rarer and rarer populations.

3 It has been mentioned, the coordination of
4 regulatory requirements. I think we heard earlier
5 today, from representatives of the FDA and the EMA,
6 several efforts, intangible steps, to try to
7 coordinate regulatory requirements on a more
8 international scale. This is really going to be
9 required as we move into more and more defined
10 subpopulations of pediatric patients.

11 Adequate safety and dosing in children and
12 adolescents, I've mentioned the formulations. We
13 also have seen many, many trials now following the
14 FDA recommendations for adolescent cohorts, and it
15 is really unclear what is the enrollment of the
16 adolescent patient population and how is that
17 impacting some of the decisions for moving into
18 younger patients.

19 Another issue that I think really needs to
20 be considered is how do we implement novel trial
21 designs that both minimize patient numbers needed
22 for trials, and are there ways that we can more

1 effectively utilize master or platform protocols
2 such has occurred with the pediatric NCI-supported
3 MATCH protocol and efforts, or the European e-SMART
4 efforts, or similar types of platforms where
5 potentially multiple companies and multiple sponsor
6 entities could utilize a more centralized platform?
7 Minimizing patient numbers I think is really key,
8 especially as we're moving into rare diseases, and
9 minimizing dose finding in the pediatric space to
10 try to, as quickly as possible, move agents forward
11 into combination strategies.

12 The Children's Oncology Group really can
13 partner in three different ways with sponsors to
14 study drugs in the pediatric space. One is through
15 the NCI-sponsored trials mechanisms, and that would
16 be an NCI-held IND. We function in what we call a
17 hybrid model, which is that we utilize our
18 NCI-funded mechanism and really look to the pharma
19 partner or industry partner to supply drug and
20 additional potential resources to conduct the
21 trial, and the IND is held by the company or by the
22 Children's Oncology Group.

1 Some industry-sponsored trials also look to
2 cooperative groups, including the Children's
3 Oncology Group, to do what is traditionally an
4 industry-sponsored study, and this is a
5 fully-funded study without utilizing NCI resources
6 to conduct the trial, typically at selected sites,
7 and the company holds the IND.

8 So how do we as a consortium begin
9 discussions with an industry partner? It is
10 bidirectional. It can come from an investigator,
11 an academic investigator who has an idea, who has
12 generated preliminary data in their academic lab,
13 or we can be approached by an industry partner for
14 collaboration in developing a clinical trial. This
15 is typically driven out of discussions and
16 recognition of the RACE for Children Act and the
17 need, potentially, for a pediatric study plan.

18 Key considerations in these initial
19 conversations include what is the business and
20 regulatory strategy for that pharma partner, and
21 this gets to where they are in their development
22 stages for the entity. Are they very early? Have

1 they dosed in adults or are they in the preclinical
2 space, and what is their strategy? And sometimes
3 that strategy includes the discussion, as has been
4 brought up earlier, with regards to waivers or
5 deferrals as part of that strategy.

6 What do we know about the drug's mechanism
7 of action? Formulations, again, is part of that
8 discussion. And importantly, what studies are
9 underway in the adult and/or pediatric populations
10 that inform some of our thinking about how to move
11 this entity into the pediatric space, and what are
12 any drug safety concerns?

13 One of the things that increasingly comes up
14 and is not addressed, really, by FDARA or by the
15 discussions today, but is for us I think a really
16 critically important thing to consider is, where do
17 we go in combination, and how do we look at
18 single-agent information and data when we may be
19 wanting to move into a combination strategy as
20 quickly as possible? Several things should be
21 considered in the selection of combination
22 regimens, including the activity in advanced

1 disease, cross-resistance, the mechanism of action,
2 be it additive or synergistic, and toxicities.

3 As was mentioned, ACCELERATE is a
4 multi-stakeholder group that holds as part of their
5 annual meeting stakeholder working groups, and one
6 of the working groups was addressing combination
7 strategies. This was published in the Journal of
8 Clinical Oncology last year, really looking at
9 recommendations to how do we move some of these
10 combination strategies forward, and can we look at
11 this in the context of more platform type
12 approaches as well? These can include combinations
13 with novel drugs and standard chemotherapy, novel
14 drugs and novel agents that are novel-novel within
15 a single sponsor, or potentially and more
16 complicated is across entities.

17 So it's hard to make conclusions to date. I
18 think it's too soon to truly understand the impact
19 of the RACE Act, and this point has been brought up
20 a few times today, and I think what is going to be
21 critical is what data do we need to collect to
22 really make that decision. We certainly have

1 noticed a shift in the industry pendulum to earlier
2 discussions regarding potential pediatric trials
3 for targeted therapies, but it's not clear that
4 this has yet translated into more clinical trials
5 or ultimately more approvals.

6 As we heard earlier, the RACE for Children
7 Act is really focused on molecular targets, and it
8 doesn't take into account, really, cellular therapy
9 or combination therapy, and we really need to think
10 about how do some of these requirements affect our
11 ability to move some of the most promising agents
12 forward.

13 I think also that was mentioned and really
14 needs, I think, to be emphasized is a no-go
15 decision in the pediatric oncology space, and that
16 we then can utilize our most precious resources,
17 that being our patients, for the most promising
18 agents or do as minimal assessment as possible in
19 the pediatric space if we really feel that it is
20 not an agent or a target to move forward.

21 I think in my last few slides, raising some
22 points of things to consider and I think things for

1 further discussion moving forward is how to engage
2 the pediatric oncology experts as early as possible
3 in the regulatory process. We heard many comments
4 made earlier about wanting early engagement, and we
5 also heard that the IPSP is required at the end of
6 phase 2 testing in adults. Is there a way to move
7 that earlier, and is there a way to not only
8 encourage, but facilitate the involvement of
9 multi-stakeholders in these earlier conversations?

10 As we heard, the Type F meetings typically
11 are occurring prior to the engagement of the
12 pediatric oncology experts and multi-stakeholder
13 meetings, and they are being very encouraged, but I
14 would suggest, is there a way that there could be a
15 process implemented to encourage and codify
16 involvement? We did hear a little bit earlier
17 about addressing cellular therapy, and I think this
18 is something that we will need to consider moving
19 forward; and as we heard, some of that is still on
20 a case-by-case basis.

21 How do we move forward agents that are not
22 molecularly targeted but may have relevance in

1 pediatric oncology space? We heard a little bit
2 about that earlier today, but I think this is
3 something that we really need to consider moving
4 forward, and then how do we address combinations I
5 think is key.

6 We really need to think about impacts on
7 trial design, and the vast majority of the data
8 required for regulatory approval is single-agent
9 data for single-agent safety and pharmacokinetics,
10 and how much do we need before moving into
11 combination strategies? It's very difficult to set
12 preclinical data requirements. A lot of
13 combinations in the adult space are not
14 combinations that would be of interest in the
15 pediatric oncology space, and how do we generate
16 that data to move forward in pediatrics?

17 The real challenges of novel-novel
18 combinations versus standard or more classic
19 chemotherapy combinations with a novel agent,
20 again, are things that need to be thought about as
21 we're developing the pediatric study plans and what
22 circumstances require demonstration of a single

1 agent prior to incorporation into a clinical
2 trial -- i.e., adult data versus preclinical
3 data -- and how do we set that bar of what needs to
4 be learned prior to moving into a pediatric
5 clinical trial.

6 It was brought up earlier as to how do we
7 address multiple agents in class in a limited
8 patient population. The example of PD-1/PD-L1, and
9 then the number of waivers given in class, is an
10 example of multiple agents in class, to use
11 Dr. Donoghue's words, of an area that has exploded.
12 But in the ACCELERATE forum dedicated to PD-1/PD-L1
13 targeting, that was at a time in that decision when
14 over 1,000 children had been enrolled on clinical
15 trials looking at that agent, and how do we look at
16 when there's maybe two, three agents, and how do we
17 coordinate that and make those decisions?

18 As was mentioned, the pediatric ODAC made
19 recommendations with regards to how to strategize
20 in that context, but it does get to the issue of
21 what is publicly available information when there
22 are multiple agents in class. How do we minimize

1 the number of patients in looking at multiple
2 agents in class, and is there a way to ensure that
3 we are not having redundancy in this area?

4 Another key, and we will talk more about
5 this in this session, is international
6 collaboration is key. I think we've heard that,
7 and I think we really need to think about how can
8 we utilize some of the requirements that FDARA puts
9 forward in the RACE for Children Act to
10 strategically look at meeting these needs through
11 international collaboration.

12 So as I stated at the beginning, we do not
13 have a lot of data to bear. We definitely, I
14 think, are engaged in a lot of conversations, and I
15 think there's a lot of opportunity for us to, as a
16 community, try to build a more efficient way of
17 moving drugs forward in pediatric oncology. So I
18 thank you, and I look forward to the discussion
19 later today, as I think there are many, many
20 important questions. Thank you very much.

21 DR. PAPPO: Thank you very much, Dr. Weigel,
22 for your excellent presentation.

1 We will now proceed with the next speaker
2 presentation, Ms. Ruchi Gupta.

3 MS. GUPTA: Thank you, Dr. Pappo. Can you
4 hear me clearly?

5 DR. PAPPO: Yes, we can.

6 **Guest Speaker Presentation - Ruchi Gupta**

7 MS. GUPTA: Thank you.

8 Good morning. Good afternoon, everybody.

9 My name is Ruchi Gupta. I am a program director in
10 Regulatory Affairs at Genentech. I've been working
11 in the field of pediatric oncology drug development
12 within the industry for the last 10 years, and I'm
13 here today to provide an industry, especially Roche
14 and Genentech, perspective towards pediatric drug
15 development and the impact of Research to
16 Accelerate Cures and Equity for Children Act, also
17 known as the RACE Act under the FDA Reauthorization
18 Act 2017.

19 Before I start with my presentation, I would
20 like to thank the FDA for inviting Genentech to
21 this forum to share our views. This is the
22 disclosure slide. As mentioned earlier, I'm an

1 employee of Genentech, Inc. and a stockholder of
2 Hoffman-La Roche, Inc.

3 A quick look at the agenda, I'll be briefly
4 discussing the PREA requirements pre-implementation
5 of FDARA 2017 and challenges associated with it. I
6 will then go over the various aspects of the RACE
7 Act under FDARA 2017, including how it changed the
8 landscape and how it shifted the paradigm of
9 pediatric oncology drug development; how it
10 impacted the industry and what are the challenges
11 associated with it; what we are doing at Roche and
12 Genentech to address requirements and challenges
13 associated with FDARA 2017; and what's the industry
14 perspective on how FDARA 2017 can be made more
15 effective, ultimately concluding with key messages.

16 I will not go into the details of the first
17 few slides, as they have already been covered by
18 other presenters but would like to reiterate that
19 PREA, as pre-enactment of FDARA 2017, provides
20 exemption for drugs and biologics for adult
21 indications not found in pediatrics, and so is the
22 case with indications granted orphan drug

1 designations. As alluded earlier, PREA was not
2 really impactful in the oncology therapeutic area
3 due to various factors, including the fact that
4 adult oncology indications do not occur in children
5 and oncology indications with orphan designation by
6 default exempt sponsors of any pediatric
7 obligations. It is also not perceived as an
8 exciting opportunity to the limited patient pool,
9 waiting for the challenges, and limited commercial
10 drivers.

11 So moving forward to 2020 post-
12 implementation of FDARA 2017, introduction of this
13 revision was applicable to both drugs and biologics
14 in oncology. Revision to PREA tried to address the
15 two big challenges in pediatric drug development.
16 Firstly, it required a mechanism of action based
17 pediatric cancer investigation for drugs intended
18 for adult cancer treatment, but it also aims
19 towards molecular targets for relevance in growth
20 and progression of pediatric tumors. Secondly, the
21 revision took away the default PREA exemption
22 granted based on orphan drug designations.

1 So what does it mean for industry? Sponsors
2 of new marketing applications for new molecular
3 entities were required now to submit initial
4 pediatric study plans based on the mechanism of
5 action of the drug if the drug aimed towards the
6 molecular target relevant to pediatric cancers.

7 Sponsors were required to provide a
8 high-level study design to evaluate dose, safety,
9 and preliminary efficacy of the drug; and in order
10 to work on the details of the clinical study, they
11 are now required to understand the overall profile
12 of the molecule based on adult data addressing
13 pediatric formulation issues, starting dose, and
14 more importantly, the selection of pediatric
15 patient population.

16 So as alluded earlier in various
17 presentations, FDARA 2017 definitely shifted the
18 paradigm on how pediatric drug development is now
19 done and thought about. Here, I would also like to
20 refer to the Government Accountability Office
21 report issued in January 2023, which reviewed the
22 effectiveness of the pediatric study requirements

1 enacted by the RACE Act and in one of the
2 provisions of FDARA 2017. This report included the
3 views of FDA, industry sponsors, patient advocacy
4 groups, industry groups, researchers, et cetera.

5 According to this report, there has
6 potentially been an increased interest in pediatric
7 cancer drug development with large academic
8 institutions and consortiums now that the drug
9 development for most oncology drugs became
10 mandatory. The Act has increased visibility to
11 unmet medical needs in pediatric cancer, as it
12 pushed the companies to look into ways to develop
13 studies in pediatrics. This ultimately led to
14 potential for increased treatment options for the
15 pediatric population due to the increase in
16 pediatric oncology clinical trials being initiated
17 across the United States, although the GAO report
18 indicates that since the implementation of FDARA
19 2017, between 2020 and 2022, there have been 32
20 initial pediatric study plans submitted to FDA with
21 intentions to conduct a pediatric study.

22 However, it is too soon to know if this

1 increase in the number of pediatric studies will
2 lead to an increase in the number of drugs approved
3 to treat pediatric cancers. This is because these
4 planned studies are still in the only phases or
5 have not yet begun, and will take years to complete
6 given the long timelines associated with pediatric
7 drug development. Given the changes were
8 implemented approximately four years back, it is
9 also too soon to say how it impacts adult drug
10 development, and it is yet to be assessing to
11 account the totality of the data.

12 Now, I'll be speaking to the common
13 challenges across industry with obligatory
14 pediatric drug development. One of the biggest
15 challenges, what we have acknowledged or what we
16 have observed so far, is for global alignment
17 discrepancies, feedback, and expectations between
18 various health authorities, including FDA, EMA,
19 MHRA, and various others. Through the RACE Act,
20 the common commentary process was introduced as a
21 way for sponsors to request that their pediatric
22 programs can be evaluated at these health

1 authorities' cluster calls. Unfortunately, the
2 common commentary process is not very well defined,
3 and across programs, we have had different
4 experiences with feedback received, or the process
5 outright denied, or received cluster call feedback
6 ad hoc without requesting the aligned health
7 authority feedback. It would be very helpful if
8 there was clearer guidance available on the common
9 commentary process and how we can streamline the
10 feedback on critical aspects of the pediatric
11 programs.

12 Coming to the study design challenges,
13 oftentimes agreeing on the study design, including
14 the proposed cancer types, the starting dose and
15 the overall sample size of number of patients to be
16 evaluated in the proposed pediatric studies have
17 been challenging. In most cases, we have
18 experienced, as we expressed, that the pediatric
19 studies are statistically robust to demonstrate
20 benefit-risk with requests for fully powered,
21 randomized studies for registration purposes.

22 This point, it can be extremely difficult to

1 create large randomized confirmatory studies when
2 the population is extremely rare, or when they are
3 completing trials for this rare pediatric
4 population, or when randomization is not feasible
5 given there is no standard of care to control or
6 compare the investigation drug to. Again, as it
7 was also mentioned earlier, it would be helpful if
8 the FDA could provide more guidance for pediatric
9 requirements for drugs studied in combinations.

10 Coming to the operational challenges, one of
11 the major challenges with the implementation of the
12 RACE Act is the prioritization of molecules, either
13 same in class with the same or similar mechanism of
14 action or prioritization of molecules with
15 different mechanism of actions but within the same
16 disease area. Oftentimes, the areas of unmet
17 medical need in pediatric cancers are quite rare.
18 With limited patient numbers, with multiple
19 industry partners investigating same-in-class
20 molecules with similar mechanisms of action, it is
21 not always feasible to conduct comprehensive
22 pediatric studies due to competition. Even

1 internally, Genentech-Roche has prioritized
2 molecules for pediatric development and deferred
3 molecules of the same class and MoA, which has led
4 to complex scientific discussions.

5 Aligning on this rationale and the timing of
6 when it may be feasible to investigate the deferred
7 molecules have been very time consuming and
8 challenging, and ultimately, in an ideal world, it
9 would be helpful to have a streamlined process and
10 timelines for review for various pediatric
11 documents, and it is burdensome for the industry
12 sponsors to manage all at once.

13 Now, I'll be speaking about the Roche best
14 practices and what Roche does to implement and
15 direct requirements and challenges that are under
16 revised legislation. As a sponsor, Genentech-Roche
17 evaluates the therapeutic areas that could derive
18 the most benefit of an investigational drug based
19 not only on the mechanism of action, but also on
20 the availability of preclinical data, literature
21 review of relevant and feasible pediatric cancers,
22 any available safety, pharmacokinetic, and efficacy

1 data in adult trials, along with the consideration
2 around unmet medical need. But obviously,
3 reference is also made to these published list of
4 molecular targets for the growth and development of
5 pediatric cancers, as it plays an important role in
6 defining the clinical and regulatory strategy to
7 move forward.

8 Some of the considerations on how FDARA 2017
9 can be made more effective, overall, when a drug's
10 MoA is brought in adults and pediatrics,
11 development is a multifactorial company decision
12 that may lead to developing a specific molecule in
13 a specific disease area to avoid competition. It
14 would be helpful for FDA to develop a process for
15 prioritization across industry either through
16 multi-stakeholder meetings, and more transparency
17 and flexibility when engaging with sponsors.

18 In addition, it would be helpful to have
19 specific PSP procedures that will streamline the
20 review of PSPs that are competing with
21 same-in-class molecules and a more defined approach
22 and timelines for different processes. Similarly,

1 it would be helpful to take the holistic approach
2 to set realistic targets for the minimum patient
3 numbers required for conducting pediatric studies
4 and number of pediatric indications to be studied.

5 What could also help is to understand FDA's
6 expectations around evidence collection or
7 willingness to accept alternatives in lieu of
8 appropriate animal models to establish safety,
9 efficacy, and dose in rare pediatric indications.

10 This is my last slide. In conclusion, I
11 would just like to say that, nevertheless, the
12 requirement of mechanism of action based pediatric
13 development under FDARA 2017 has enforced the
14 proactive and early consideration of integrating
15 pediatric development as part of the overall
16 clinical development plan for the molecule. It has
17 encouraged collaboration among regulators,
18 sponsors, and academic partners to share best
19 practices and has presented the opportunity for
20 additional global harmonization of study designs.
21 However, we still need more guidance on
22 implementation of innovative trial designs like

1 extrapolation, basket trials, et cetera.

2 I understand that the FDA guidance from 2021
3 briefly speaks about six such approaches, but they
4 come with their own set of challenges, and there is
5 very little information on the successful
6 implementation of these approaches. Overall, we
7 need to shift mindsets across to take a portfolio
8 approach internally and externally and find the
9 path for prioritization to address some of the
10 major challenges posed by the changes in
11 regulation, and benefit the children in need.

12 With that, I conclude my presentation, and
13 in the end, I would like to acknowledge my
14 colleagues at Genentech who helped prepare me for
15 this presentation. Thank you.

16 DR. PAPPO: Thank you very much, Ms. Gupta,
17 for your excellent presentation.

18 We will now proceed with the last guest
19 speaker presentation from Dr. Pamela Kearns.

20 **Guest Speaker Presentation - Pamela Kearns**

21 DR. KEARNS: Thank you very much. My name
22 is Pam Kearns. I'm a pediatric oncologist from

1 Birmingham in the UK, and I'm the current President
2 of ITCC, and I'd like to say a big thank you to the
3 FDA for inviting me to participate in what has been
4 a really interesting meeting, and I look forward to
5 the discussions. I'm going to perhaps shift gear
6 and move a little bit away from some of the direct
7 discussions about FDARA, but talk more specifically
8 about the international collaborations, and what
9 that means in reality, and really get down to the
10 nitty-gritty of what works and what doesn't work.

11 I think the first thing to say is that, in
12 Europe, we are very familiar with international
13 collaboration because unlike North America, we
14 don't have enough patients in any one country to
15 run pediatric oncology trials, so we always have
16 collaborated across Europe. And what I want to do
17 is outline how this works in Europe, and then some
18 of the challenges we've had in trying to
19 collaborate transatlantically, and how we might
20 move that forward in the future.

21 So just to set the scene, in Europe, we have
22 the European Society for Paediatric Oncology, which

1 brings together all the European clinical trial
2 groups, but they are independent groups. SIOP
3 Europe is not like the Children's Oncology Group.
4 It doesn't have independent funding. It's a member
5 society. Each of the European clinical trial
6 groups is disease based and has multiple academics
7 and patient representatives from different
8 countries working on particular disease areas, and
9 we all come together under what's called the SIOP
10 Europe Clinical Research Council. The particular
11 clinical trial group I'm going to focus on, which
12 is most relevant to the discussions today, is ITCC,
13 because this is concerned with the early-phase
14 trials and drug development.

15 The ITCC comprises 62 pediatric centers
16 across 17 countries in Europe. All have been
17 accredited to have the expertise to conduct
18 early-phase trials in children and adolescents, and
19 we're also recognized by EMA as part of EnprEMA,
20 which is a European Medicines Agency network for
21 pediatric research. The ITCC is not just a
22 deliverer of clinical trials; we bring together

1 expertise across both the preclinical and the
2 clinical aspects of clinical trial development.

3 In the green box in the center here, you'll
4 see we have an academic sponsors network because
5 within Europe, we don't have a single sponsor like
6 the NCI running our clinical trials in partnership
7 with the Children's Oncology Group. We have
8 academic institutions of which there are only a
9 handful in Europe that have the expertise to run
10 international early-phase trials, who do this on
11 behalf of ITCC. ITCC-P4 has been mentioned several
12 times today, and ITCC-P4 started as a project
13 within ITCC and is now spun out as an independent
14 company, obviously retaining the ITCC name to show
15 its origins.

16 Moving on to the next slide, please, within
17 ITCC, we deliver everything from academic through
18 to industry trials, and the academic trials are
19 slightly typical of academic-sponsored trials,
20 where they're entirely government or charity funded
21 by grants, and the output of that would be
22 publications and maybe a clinical practice guidance

1 change, and there's no industry involvement. They
2 are becoming less so now in drug development as we
3 move into partnerships with industry, and some of
4 the trials delivered within ITCC are
5 fully-sponsored industry studies, where the
6 industry takes complete responsibility for the
7 trial, and ITCC's role is in recommending the sites
8 that would have the right expertise and patients to
9 deliver the study, and we review the studies to
10 make sure that they're designed and relevant to our
11 patient population.

12 Then there was a lot of what were called
13 IITs or ISTs, where there's a mixed model of an
14 academically-sponsored study, where the company
15 might give the drug and a little bit of funding,
16 but they weren't desperately different from the
17 traditional academic trial. But what I want to
18 focus on is our new paradigm, which is the Academic
19 Industry Collaborative Study.

20 This is the type of trial where it's
21 sponsored by an academic organization, but the
22 purpose of the trial is very much towards providing

1 a package of data that, if it's a positive trial,
2 could influence a label of a drug so it would be
3 used for filing. But there's been a lot, I think,
4 described from industry to say that academic
5 consortia can't deliver these sorts of trials; we
6 don't have the right expertise to do it.

7 So within ACCELERATE, we set up a working
8 group with contributions from both FDA and EMA, the
9 pharmaceutical industry and academia, and patient
10 representation to say what's the delta between an
11 academic study and an industry study if we're both
12 trying to do it for filing? It was a very
13 interesting discussion which resulted in a paper,
14 but we came up with this phrase, "fit for filing."
15 What this encompasses is a paradigm shift in how we
16 can deliver academic and industry collaborative
17 trials, and I'm going to give you an example of
18 this.

19 After one of the ACCELERATE forums, the
20 Pediatric Strategy Forum for B-non-Hodgkin's
21 lymphoma -- which is a disease which, as you all
22 know, has really good outcomes at frontline, but

1 when children relapse, the outcomes are
2 devastating. In the adult hematology malignancy
3 world, there are a plethora of new drugs, but we
4 don't have the patient group to investigate which
5 ones are good for children if we did it
6 sequentially in individual industry-sponsored
7 studies.

8 The recommendation for the strategy forum
9 was it would be good to evaluate these drugs and
10 academic-sponsored studies, with industry support,
11 with compounds and different companies being
12 investigated in a platform forum with an adaptive
13 design, but the academic study would have to be
14 conducted so at the end of the study, the data
15 could be used for filing.

16 Out of this was born Glo-BNHL, which is
17 exactly what was described on the previous slide.
18 It's an academic platform trial intended to be run
19 internationally, with a design that is based on the
20 Bayesian statistical approach to get the answer
21 from the smallest number of patients possible. I
22 put these boxes on because it's too small to really

1 read it properly, but the principle of the study is
2 that any child that's relapsed or is refractory
3 being on Hodgkin's lymphoma can enter the trial,
4 and then be allocated, depending on where they are
5 in their disease pathway, to one of three arms,
6 looking at the three classes of drugs that were
7 identified in the strategy forum as most relevant
8 for children being on Hodgkin's lymphoma, and
9 that's the bi-specific antibodies, the ADCs and the
10 CAR T cells.

11 The platform is funded by charity. We've
12 got charity funding from Fight Kids Cancer and
13 Cancer Research UK, but each arm, when a company
14 comes on board to have their drug evaluated, is
15 fully funded by industry. How do we select the
16 drugs to take into this? Well, we have a steering
17 committee that looks at the assets put forward by
18 the company, and they present an entire package
19 under a confidentiality agreement. And we've got a
20 very systematic scoring system to say, is this drug
21 relevant to our patient population; is the evidence
22 already available sufficient; and where does it sit

1 in the priority list? And we now have two
2 companies fully signed up and on board, and the
3 trial has just opened in the UK, and we're just
4 signing the contract for the third one.

5 What was really important about this study
6 is we took the design of the platform and the
7 statistical design to EMA for qualification advice,
8 and we had a long and very detailed discussion with
9 them to make sure that our design was of sufficient
10 robustness for the risk assessment, that should it
11 be a positive result, the data could be used for
12 filing. Because this is a global study, we also
13 wanted to take this to the FDA, and it's been
14 through a pre-IND support evaluation, and we're now
15 in the full IND process. So this will be an
16 academic study with a fit-for-filing capability.

17 As mentioned by the previous speaker, the
18 importance of statistical design being efficient
19 and what has been really important about this study
20 is that we do not evaluate the drug to the point of
21 a fixed number where we're treating children with a
22 useless drug. So each arm is based on the priors

1 of what we know about the patients going into the
2 arm and the clinically relevant target response
3 rate, which we've determined using a panel of
4 experts.

5 Each arm has its own statistical design, and
6 there's a rapid no-go decision after 15 or
7 30 patients, but the complex base in statistical
8 modeling means it's being continuously evaluated,
9 and we can stop the trial at any time if it's
10 futile, so we're not putting patients onto the
11 study or wasting the time to recruit patients with
12 what is already known to be a futile drug.

13 Now, although it's an efficient study, we
14 still need global collaboration to get enough
15 patients onto this study. And obviously, we're
16 running in Europe and Australasia, but the big
17 challenge is being able to run it in America, and
18 this is being co-developed with our colleagues in
19 America, but we've run into a big challenge. The
20 challenges are the operational challenges of
21 running trials, academic trials, transatlantically.
22 So the second part of my presentation, I want to

1 just go through what those challenges are.

2 Working with ITCC, and the Children's
3 Oncology Group, and the NCI, we realized that one
4 of the biggest frustrations we had was the delays
5 in achieving these collaborations, and we have
6 trials that have been trying to be set up
7 transatlantically for well over a year, if not
8 longer, because of these obstacles. One of the
9 biggest problems is we really don't understand each
10 other's processes, but there are also some
11 regulatory challenges.

12 So we brought together experts from all
13 three groups to say, can we understand each other's
14 differences in how we run international trials?
15 Can we compare the systems, and can we develop a
16 framework that we're not reinventing the wheel each
17 time we try to do one of these trials so that
18 anybody in the Children's Oncology Group or in
19 Europe could say this is how we run a transatlantic
20 study? This is a high aspiration.

21 Just to put this in context first, the way
22 we run studies in Europe is that the academic

1 sponsor identifies national coordinating centers in
2 each of the participating countries, and the
3 academic sponsor takes all the responsibility for
4 the trial, the legal responsibility for the trial,
5 but delegates certain activities to the national
6 coordinating center, who is then responsible for
7 the sites in their own country.

8 Just to put a bit more granularity on this,
9 the sponsor deals with all the design aspects of
10 the trial, the database, pharmacovigilance, and
11 monitoring, et cetera, et cetera, and delegates
12 some very specific tasks to the national
13 coordinating center around patient information and
14 consent, which in different countries have slightly
15 different regulations, the regulatory submissions
16 in their own country, but specifically the set-up
17 and oversight of the the sites in their own
18 hospital, in their own country. And as an academic
19 sponsor, we audit the national coordinating center.
20 So that's how we run all our studies in ITCC, and
21 indeed in most European clinical collaborative
22 groups.

1 We thought, naively, we could just apply
2 this in America. We'd take the Children's Oncology
3 Group, make it a national coordinating center and
4 run our studies in the U.S., and that's where we
5 were unbelievably naive because that just doesn't
6 work in the simplistic way that it sounds.
7 Equally, we thought, well, we can participate in
8 U.S. studies by simply having the Children's
9 Oncology Group or the NCI designating one of our
10 ITCC sponsors as the international or the European
11 delegated sponsor, and we would be responsible for
12 running the trial in Europe; and in principle, both
13 of those models could work, but we hit barriers.

14 So what we did, we took three case studies
15 of different scenarios, two of which were run from
16 the U.S. but we wanted to participate in Europe,
17 and one where we were running it in Europe and we
18 wanted the U.S. to participate. What we identified
19 were four main roadblocks. One was just a complete
20 transatlantic misunderstanding about each other's
21 processes; and although we speak the common
22 language as in English or American, we were using

1 different words to describe what we were doing, and
2 we really hadn't understood how each other's
3 regulatory processes worked. The other problem we
4 had was database access, and when we dug down into
5 it, it was more than that. It was access to the
6 clinical trial infrastructure on both sides of the
7 Atlantic.

8 There were two regulatory problems. One was
9 around data protection and one was around
10 pharmacovigilance. So we set up four working
11 groups to propose solutions, and from it, the
12 Einstein principle that we have to think outside
13 the box. We have to have creative thinking to find
14 out how we can solve these problems. I'm going to
15 go through four slides for each of the working
16 groups, what we did and what we found out.

17 The lack of understanding of each other's
18 processes, that was relatively simple. We've done
19 some process mapping in a huge amount of detail of
20 everything that happens, from the idea coming into
21 the Children's Oncology Group, to having a trial
22 ready to set up, and we've done the same on the

1 European side. And now we're writing a document
2 which is a complete guidance document so that it
3 would be transparent to anybody who's going to run
4 the trials transatlantically and this is how the
5 two processes work across the Atlantic. So that
6 was one of the easier problems.

7 The second one was the databases. One of
8 the trials of the three that we had to look at, the
9 solution, which had been a workaround, was to have
10 two databases, one based in Europe and one based in
11 the U.S. on a single trial. And on every look at
12 that, there were too many flaws and risks to
13 running two separate databases, that we felt that
14 the ideal scenario was to have a single database
15 where there is a European study or a U.S. study,
16 and it would be one database, one or other
17 continent, and we would work out how to access that
18 database on either side of the continent.

19 So if we take it from the point of view that
20 COG is running the study and we want to participate
21 from Europe, there were two barriers. I'll go from
22 the bottom of the slide first, because that was the

1 one that was solvable; that just the whole logging
2 into the NCI RCR system from Europe and registering
3 our trials and our patients was really challenging,
4 and it was simply a matter of terminology. Working
5 with some really fantastic people at the NCI, we
6 identified what those blocks were, and that has
7 been largely resolved.

8 Just to give you an example of the sort of
9 problem, when you went into the database, you had
10 to put down your IRB. European centers don't have
11 IRBs; we have national research ethics committees,
12 but the way we designate those just didn't fit into
13 the database. That has been relaxed, it's much
14 easier now, so that problem has been solved simply
15 by collaboration.

16 The bigger problem we have is federal-wide
17 assurance, and we deep dived this as to why this is
18 a problem. In Europe, we don't have to have
19 federal-wide assurance, obviously, but the way we
20 assess a site is able to deliver clinical trials to
21 GCP with total compliance is the responsibility of
22 the sponsor, and it's all part of the documentation

1 that we collect about the investigators and the
2 site, and that's kind of what federal-wide
3 assurance is looking for in a nutshell.

4 So we proposed, well, given that it's the
5 coordinating center that has that responsibility, a
6 workable model would be if it was just the
7 coordinating center that had to have federal-wide
8 assurance, and they dealt with the rest of the site
9 responsibility. That was not rejected as a bad
10 idea, but that takes quite a lot of changes within
11 U.S. legislation within the NIH, that we haven't
12 quite cracked it yet. So at the moment, we're
13 still waiting to see if we can overcome the problem
14 of federal-wide assurance, but it is impractical to
15 ask lots of sites in Europe with different
16 countries to get federal-wide assurance to run the
17 trial in Europe.

18 The other way around in terms of accessing
19 databases is actually considerably easier. There's
20 no problem; we've got a database in our university
21 in Birmingham for our clinical trials unit, and any
22 U.S. site can put data into it if they've been

1 set up and activated as a site in the trial.

2 There's no issue. We don't need any particular
3 special permissions.

4 However, the challenge we had was being able
5 to activate sites in the U.S., which we needed the
6 Children's Oncology Group to act as our national
7 coordinating center. But because we've moved into
8 these new collaborative industry studies, they
9 don't quite fit into the lovely slide that Brenda
10 showed of any of the models that are run at the
11 moment within the Children's Oncology Group.
12 They're not really hybrid studies, they're not
13 completely industry studies, and they're not
14 completely academic studies.

15 So there needs to be an almost reinvention
16 of how this can be done within the Children's
17 Oncology Group and working with the leadership of
18 the Children's Oncology Group -- hugely grateful to
19 Doug Hawkins and Lia Gore in this -- and we're
20 looking to actually set up that capacity and
21 expertise within the Children's Oncology Group;
22 that these types of studies would have the capacity

1 to have that oversight that we need them to have to
2 be a national coordinating center in the U.S., and
3 we're going to pilot this with Glo-BNHL.

4 The next two problems were regulatory, and I
5 think anybody who's been dealing with clinical
6 research in Europe knows that we are bound by
7 something called GDPR, which is our data protection
8 legislation. Unfortunately, the U.S. doesn't come
9 under what is referred to as "adequacy status"
10 under GDPR, which means that we cannot transfer any
11 identifiable data -- and that includes
12 pseudo-anonymized data or data like dates of
13 birth -- over to the U.S. under GDPR, except
14 without very specific permissions. And of course,
15 a clinical trial cannot be anonymized. It has to
16 be identifiable data in some way or another, so we
17 had to find a way around it, and one route was
18 Article 49 of the GDPR, which is called the
19 Derogations for Specific Situations.

20 So we thought we found this as a potential
21 way around how we could be able to set up a trial
22 with a contract arrangement with the Children's

1 Oncology Group to be able to send the data over;
2 however, GDPR is not implemented equally across
3 Europe, and every country and almost every
4 institution has its own interpretation of GDPR. At
5 the moment, we're going through a process of
6 assessing whether, within the ITCC network, the
7 sites will accept the concept of Article 49
8 exemption language, in which case, problem solved.

9 If it isn't, there are a couple of other
10 workarounds that the NCI identified, having worked
11 with other cooperative groups, which we are
12 exploring, so there should be a way around this.
13 But what we really need, and it's already ongoing,
14 is the NCI talking to the European Commission to
15 see if there can be a policy change, particularly
16 in the clinical research arena, to make the ability
17 to send data to the U.S. when it is
18 pseudo-anonymized, if not completely anonymized,
19 permissible under data protection regulations.

20 The final problem, which is again
21 regulatory, is pharmacovigilance. We had a working
22 group that did a fantastic job of analyzing the

1 pharmacovigilance legislation in the UK, in the EU,
2 and in the U.S., to see what the differences were,
3 specifically looking around phase 2-plus types of
4 trials. To summarize this on the next slide, we
5 had the key differences, and the key problem is
6 that we don't even name the investigational
7 products in trials in the same way in the U.S., and
8 UK, and Europe. You have what's called an IND, an
9 investigational new drug definition. We have a
10 definition for an investigational medicinal
11 product, and they don't map onto each other.

12 Just to put it simply, if we're doing a
13 trial, for example, of vincristine and carbaplatin
14 versus vincristine and carbaplatin and X new drug,
15 the IND is the X new drug. In Europe, they are all
16 IMPs, and that has implications on the safety data
17 that we collect and the reporting requirements.
18 And it's that discrepancy which is causing us our
19 biggest problems in terms of compliance because, as
20 you know, most academic trials are not of a single
21 agent, but they have combination drugs, so we often
22 have normal cytotoxic drugs or other combination

1 drugs alongside which wouldn't be considered INDs.

2 So we've gone around in all sorts of circles
3 around this workaround. We've talked to our
4 competent authority to see what minimum requirement
5 reporting we could get from the U.S., based on the
6 data that you normally collect. We've been talking
7 to our U.S. colleagues, going into more granularity
8 about the data you collect to see if there's some
9 way that we could marry the two processes, even the
10 discrepancy in what we use as our reference safety
11 information and what protocol exclusions are
12 allowed in the U.S. compared to Europe; so even
13 writing the protocol pharmacovigilance sections is
14 really challenging. So this is not yet resolved,
15 and the outcome is something that we need to
16 understand how we can be compliant with the
17 reporting requirements on both sides of the
18 Atlantic.

19 This slide just summarizes where we got to
20 with the four roadblocks that we identified and the
21 solutions we proposed. I think the three things we
22 need to focus on now is overcoming the issues of

1 federal-wide assurance, overcoming some of the data
2 protection issues, and finding a solution for
3 pharmacovigilance. Then on my final slide, we've
4 said the academic international collaboration is
5 important and it is possible. And I hope I've
6 convinced you that it is possible for academic
7 consortia to design trials and deliver data to the
8 quality that is required by filing, but if we're
9 going to do it transatlantically, we do need to
10 take into account some of these obstacles that
11 we've hit.

12 It is resource intensive. We need some very
13 specific guidance documents to develop, which we
14 need to develop, and we're going to use some of
15 these exemplars of trials that are ongoing at the
16 moment to try and run through these solutions and
17 see if they work. We've talked about the alignment
18 between the FDA and EMA, but they're actually some
19 more fundamental alignments between the actual
20 things, like pharmacovigilance transatlantically,
21 that would make life a lot easier for us.

22 My final slide is just an acknowledgement of

1 all the people, and some of them who are on this
2 call, who helped in the piece of work to understand
3 the differences between Europe, the UK, and the
4 U.S., to deliver international trials. Thank you
5 very much.

6 DR. PAPPO: Thank you very much, Dr. Kearns.
7 That was amazing, and thank you for your hard work
8 trying to bridge this big gap.

9 We're going to change the schedule a little
10 bit because of the time, so we will now break for
11 lunch, and we will reconvene at 1:30 pm Eastern
12 Time. Panel members, please remember that there
13 should be no chatting or discussion of the meeting
14 topics with other panel members during the lunch
15 break. Additionally, you should plan to reconvene
16 at around 1:20 Eastern Time to ensure you are
17 connected before we restart at 1:30 pm. At that
18 time, we will go back to clarifying questions both
19 from our guest speakers and also from the FDA and
20 the EMA. Enjoy your lunch. Thank you.

21 (Whereupon, at 12:48 p.m., a lunch recess was
22 taken, and meeting resumed at 1:30 p.m.)

A F T E R N O O N S E S S S I O N

(1:31 p.m.)

Clarifying Questions (continued)

4 DR. PAPPO: Welcome back, and I hope you all
5 enjoyed your lunch.

6 Next on the agenda was the open public
7 hearing session; however, I would like to state
8 into the record that there are no speakers
9 registered for this open public hearing session, so
10 we will now go back to clarifying questions for our
11 guest speakers, Ms. Gupta, Dr. Kearns, and
12 Dr. Weigel.

13 Please use the raise-hand icon to indicate
14 that you have a question, and remember to lower
15 your hand by clicking the raise-hand icon again
16 after you have asked your questions. When
17 acknowledged, please remember to state your name
18 for the record before you speak and direct your
19 question to a specific presenter, if you can. If
20 you wish for a specific slide to be displayed,
21 please let us know the slide number, if possible.
22 Finally, it would be helpful to acknowledge the end

1 of your question with a thank you and end of your
2 follow-up questions with, "That is all for my
3 questions," so that we can move on to the next
4 panel member.

5 We will now start the clarifying question
6 portion, first for guest speakers, and then we can
7 always go back to our FDA and EMA representatives.
8 So the first question is from the FDA from Haleh
9 Saber.

10 DR. SABER: Hi. This is Haleh Saber. I'm
11 the Acting Director in the Pharmacology and
12 Toxicology Division in the Office of Oncologic
13 Diseases at CDER, FDA. I have a question for
14 Ms. Gupta. There was no numbering on this slide,
15 so I'm just going to mention it.

16 Thank you, Ms. Gupta, for your presentation.
17 You mentioned the requirements for nonclinical
18 data, pointing to juvenile animal toxicology
19 studies. We generally don't ask for juvenile tox
20 studies. We'd rather rely on other data for safety
21 evaluation in children. We rely on the clinical
22 data in adults and on any clinical experience in

1 related products, as well as data from animal
2 toxicology studies that were conducted previously
3 in support of adult indications, as well as
4 pharmacology data, and these have been sufficient
5 to inform safety of the product for pediatric
6 development.

7 So could you please explain and elaborate,
8 do you believe that juvenile animal toxicology
9 studies are needed or did the FDA ask you to
10 conduct a study in support of an IPSP?

11 MS. GUPTA: Thank you, Dr. Saber, for your
12 question. Can you hear me?

13 DR. SABER: Yes, I can.

14 MS. GUPTA: Thank you for your question,
15 again. It's been, I think, a long standard
16 practice to include the juvenile data, the
17 preclinical data for the PSPs in the past. With
18 the RACE Act, definitely that has been diminishing
19 a little bit in our perspective. I think the
20 biggest challenge that I wanted to allude to was
21 the fact that there are no real preclinical animal
22 models for pediatrics to mimic, and thereby, it was

1 asked if we can look for alternate solutions, which
2 I believe in your question you have indicated that
3 there are other aspects from the data that can be
4 translated to design a pediatric study. So if
5 that's the understanding, that moving forward, this
6 is not like a critical requirement in designing the
7 pediatric studies, that's very helpful.

8 Does that help clarify?

9 DR. SABER: Thank you, Ms. Gupta. I want to
10 also clarify that the animal toxicology studies are
11 for safety evaluation, and proof-of-concept studies
12 are separate. They are pharmacology studies and
13 they're different. My question was on juvenile
14 animal toxicology studies, and we have not been
15 asking these studies for IPSP, in support of IPSPs.

16 That's all from me. Thank you very much.

17 MS. GUPTA: Thank you so much.

18 DR. PAPPO: Thank you.

19 Next, Dr. Tara Frenkl.

20 DR. FRENKL: Hi. Thanks, Dr. Pappo.

21 I actually have two questions. One is left
22 over from this morning, and the second one is for

1 Dr. Kearns. Sorry, everybody. I'm Tara Frenkl. I
2 am the industry rep. So maybe I'll start with
3 Dr. Kearns, if possible.

4 I'd just like to start saying, I'm super
5 impressed with what ITCC has established in the
6 international collaboration and the real
7 problem-solving approach to make the studies fit
8 for filing, and then of course the medicines
9 available to children, so congratulations on that
10 impactful work that you're doing.

11 From an industry perspective, one of the
12 common problems that we face when we're working
13 with cooperative groups or academic sponsors is
14 really the degree and the frequency of data
15 monitoring for quality of data, not looking at the
16 results, but actually looking at missing data where
17 the question's answered as intended and that kind
18 of stuff. And we as industry usually have no
19 access to that data quality monitoring as the study
20 goes on. We only get access to the data after the
21 study has been unblinded and the results are
22 available, and then that quality aspect is really

1 not addressable. Then of course, if there are
2 quality issues, then it's really not fileable, and
3 we haven't reached the outcome that we wanted.

4 So I'm wondering if you could share whether
5 this came up in your discussions in the gap
6 assessment between industry and academic sponsors,
7 and how ITCC has addressed this so we could all
8 learn and maybe use it with other groups.

9 DR. KEARNS: Thank you very much for your
10 kind words. It's a lot of work in progress, and I
11 think that the point that you raise about data
12 quality was a major part of our discussion, and the
13 fact that personal experience of initial
14 collaborations with industry on these types of
15 studies was the lack of academic understanding of
16 what you would call a data management plan and
17 everything that you put in place in terms of
18 quality and monitoring.

19 We detailed that as one of the critical
20 areas that need to be addressed, that if an
21 academic sponsor is taking on a fit-for-filing
22 study, then there should be a co-development of

1 that data management plan so it's completely
2 understood by the academic group what they need to
3 do, but importantly, that the industry partner is
4 comfortable that what's being put in place is what
5 they would expect as well.

6 I genuinely believe that we've learned a lot
7 in academia in terms of how you do this type of
8 study. I think the difficulty sometimes is
9 industry doesn't quite trust us yet because you've
10 had the bad experience previously. But I think
11 that with co-development, it shouldn't be halfway
12 through the study going, "Oh, we've got to give the
13 data to industry," and that's retrofitted. It
14 should be from day one when you're planning the
15 study to put everything in place; that from the
16 industry side, you're comfortable with the way the
17 study is going to be run, but then it's the
18 academic sponsor's legal responsibility. So it
19 isn't a matter of the industry dipping in and out
20 to see what's going as the study is being run, but
21 that it's planned that way.

22 What we've done in our studies is we don't

1 let the industry partners be part of our
2 independent committee, such as our steering
3 committee or the data monitoring committee, but we
4 have a separate oversight committee, and that we
5 just touch base as the study's going on to see if
6 there are any concerns as the study's going on. So
7 I think working properly in partnership makes the
8 difference.

9 The other thing is, one of the reasons that
10 I would say academia, in our non-collaborative
11 studies, doesn't do the level of quality control is
12 about resources. When we do these collaborative
13 studies, because industry is investing in the
14 study, they're paying for it, it allows us to up
15 our game and be able to do much more source data
16 verification and much more on-site monitoring, as
17 well as checking of the data as it comes in because
18 we get a bigger team around it.

19 DR. FRENKL: Yes, that's great. I think
20 that proactive attitude and ability to flex for we
21 need is super important. Thanks so much.

22 Dr. Pappo, I had another question for

1 Dr. Seddiq. Would you like me to ask it now or --

2 DR. PAPPO: Let's just wait until we're done
3 with our guest speakers, and then I'll bring you
4 back on.

5 DR. FRENKL: Okay. Thank you.

6 DR. PAPPO: You've been waiting for a long
7 time. I'm sorry.

8 DR. FRENKL: No worries. No worries.

9 DR. PAPPO: Okay. Dr. Laetsch, you're next.

10 DR. LAETSCH: Thank you, Dr. Pappo, and
11 thank you to the speakers. I think excellent
12 presentations for everyone.

13 I had a question to follow up what was just
14 raised by Dr. Frenkl, maybe for Dr. Weigel to
15 comment, and really that is the impact of RACE on
16 how early-phase clinical trials in children are
17 conducted, and whether this has resulted in more
18 industry-sponsored trials, and potentially
19 challenges with cooperative trials due to what was
20 raised by Dr. Frenkl around industry feeling the
21 need to have more control over the data for
22 fit-for-filing studies or studies that are intended

1 for FDA submission, given the requirements of RACE.

2 I don't know, Dr. Weigel, if you have
3 thoughts on that.

4 DR. WEIGEL: Thank you, Dr. Laetsch, and I
5 appreciate the kind comments as well. Again, this
6 is my experiential anecdotal opinion. I do think
7 that over the last couple years, as Dr. Kearns
8 indicated, we certainly have, I think, a greater
9 perception of the concept of fit for filing and the
10 need for regulatory submission for these pediatric
11 studies much more so than certainly if you go back
12 5-10 years. I think there's a real recognition
13 that from the get-go, we in the academic and
14 consortium side need to have a mindset that any and
15 all data that we are generating could be used, and
16 potentially should be used, for regulatory
17 purposes.

18 So I do think it has changed some of those
19 initial conversations. As I presented on the one
20 slide, it's that business and regulatory strategy
21 that I think we enter into discussions much
22 earlier. I do think what I have seen is that

1 companies and industry are being very thoughtful of
2 how they are thinking of conducting that pediatric
3 trial, and as Dr. Kearns so beautifully
4 demonstrated, I think we have to be able to provide
5 fit-for-filing data through consortia. I think we
6 have to, and we have to be able to do it in any of
7 the three mechanisms.

8 My perception is that our industry
9 partners -- and, Dr. Laetsch, to use your words,
10 from a control, and I think using Dr. Kearns words
11 of trust -- I think we still have to really
12 convince our industry partners, for that true
13 regulatory filing trial, that the data and the lens
14 on the data is what they actually need. And I
15 think key, as exactly as Dr. Kearns said, is you
16 have those conversations from the minute-go of what
17 data do you need, what are your expectations, and
18 how can we best partner to bring that forward.

19 I think we have to be able to do it on the
20 COG side and any of the three mechanisms that we
21 can conduct a trial, but to your point, I think
22 there's a lot more discussion about that now, and I

1 think there's a lot more thought put into how to
2 execute that on the pharma-partner side.

3 DR. LAETSCH: Thank you.

4 DR. PAPPO: Dr. Smith?

5 DR. SMITH: Yes. Thank you. This is a
6 question and a bit of a comment for Dr. Kearns.
7 And first, I thank Dr. Kearns for really an
8 excellent presentation in outlining the challenges
9 in international trials for academic teams and how
10 teams on both sides of the Atlantic are trying to
11 address them.

12 This was slide 59 in the PDF file that was
13 circulated to us, but it's the slide about
14 different types of clinical trials in academic
15 versus industry, and there were four types shown.
16 The implication from the slide was that academic
17 trials would seldom be used for regulatory purposes
18 unless they were fully industry funded. The
19 comment is it doesn't really incorporate the way
20 COG works, and Dr. Weigel described the hybrid
21 model where COG or the PEP-CTN are using NCI funds
22 to support the trials that are getting additional

1 industry funds to collect additional data or do
2 other things, and those kind of trials are
3 submitted for regulatory filing.

4 Dr. Gore and Dr. Hawkins published a paper
5 last year, 2023, that listed the 12 agents that
6 have been approved by FDA, based on COG clinical
7 trials, NCI-supported COG clinical trials, since
8 2003 from imatinib, crizotinib, nelarabine, all the
9 way up through brentuximab vedotin for first-line
10 Hodgkin's lymphoma. So I just wanted to clarify
11 that in that slide that Dr. Kearns showed, COG is
12 kind of an additional model with a hybrid industry
13 NCI support, where clinical trials have been used
14 successfully for regulatory filing.

15 DR. KEARNS: Thank you, Malcolm. I agree
16 with your point. I think I still would say that
17 that would fall under the industry collaborative
18 study. It may be a different model because you've
19 got NCI holding the IND, but I still think that it
20 would be more under that than the traditional IST,
21 but I take your point. It does also emphasize the
22 differences that we don't recognize sometimes.

1 When we were talking with COG, the concept of a
2 hybrid trial came up in how does that fit in with
3 what we're doing, because that's one of your
4 models, and it wasn't a language and understanding
5 that we even have in Europe because we don't have
6 the NCI in Europe, unfortunately. I wish we did,
7 but we don't.

8 DR. SMITH: Yes, and it does get to the
9 language because when we see full funded, that
10 means that it's not a COG trial sponsored by NCI
11 per se, it's a COG independent trial that is being
12 done strictly with industry without use of NCI
13 resources, so there is that difference in language.

14 DR. KEARNS: Yes.

15 DR. PAPPO: The next question is me, and
16 it's for Dr. Weigel. You mentioned in one of your
17 slides that the COG has three different models for
18 industry collaborations, NCI, versus hybrid, versus
19 industry. Do you have an idea of what is the
20 breakdown of each of those, and if there is obvious
21 differences in the activation timeline, the
22 completion of those protocols, accruals, and how

1 many of those in each of those categories are for
2 fit for filing?

3 DR. WEIGEL: Yes. Thank you, Dr. Pappo, for
4 your question. I will frame this in the context of
5 early-phase trials and not for all COG trials.

6 For early-phase trials, over the last decade
7 or so, the greatest number of studies are in the
8 hybrid model, where -- as Dr. Smith and Dr. Kearns
9 were just saying -- really we look at it as a
10 collaborative partnership between an industry
11 partner, and COG, and the pediatric Early Phase
12 Clinical Trials Network utilizing NCI support and
13 NCI infrastructure to conduct those trials. That
14 is definitely our most common model to work in.

15 To answer your next question on timelines,
16 over the NCI held ones that are done under a
17 creative mechanism and then the hybrid ones, our
18 goal for our early-phase trials from concept
19 approval to study activation, our goal timeline is
20 roughly around nine months. So I would say,
21 typically, we're in the 9-to-12-month ballpark for
22 an early-phase trial.

1 The fully-funded industry trials, where that
2 is done independent of the NCI resources, those
3 timelines are really controlled by the industry
4 partner because it is their trial. They write the
5 trial. The databases, the company's trial, it is
6 really a pharma study in collaboration with COG
7 because they'll utilize COG sites and a single
8 contract. So the timelines are really theirs, and
9 those are highly variable because it goes through
10 their processes.

11 I would also say every hybrid contract is
12 different, depending on what the pharma partner
13 wants in addition to what would be standard of
14 care. And also getting to some of the things that
15 have been mentioned, for some fit-for-filing
16 studies, pharma partners may want additional
17 monitoring because we do auditing and central
18 monitoring, which has been utilized for regulatory
19 purposes. Having said that, every contract is a
20 little different in that regard, depending on what
21 the [inaudible - 4:20:05].

22 As far as -- [inaudible], I would say --

1 DR. PAPPO: Brenda, you're breaking up.
2 DR. WEIGEL: -- we've seen the shift is to
3 more hybrid models.

4 DR. PAPPO: Thank you very much.

5 Then it's Dr. Shah.

6 DR. SHAH: Thank you so much. This might be
7 a more general question and maybe not so much for
8 our specific guests, but I can see if they have an
9 opinion on it. I wanted to go back to the issue
10 for the fit for filing.

11 For the adult registration studies, what is
12 the guidance provided on the IPSPs, and does that
13 typically include a mindset that it's going to be a
14 path towards registration or simply just to have a
15 pediatric plan to facilitate the testing in
16 children? Because I think where some of the
17 pediatric development has halted is that that
18 larger goal of accessibility commercialization is
19 not there, and that's why I think some of these
20 hybrid model discussions have to be taken into
21 account because there's such a heavy reliance on
22 investigational-only use.

1 So the specific question is, is there
2 specific guidance on the IPSPs for pediatric
3 registration?

4 DR. PAPPO: Is this directed to our FDA and
5 EMA speakers or to our guest speakers?

6 DR. SHAH: I think it might be more the
7 FDA-EMA, if that's ok.

8 DR. PAPPO: Let's go for it. Martha?

9 DR. DONOGHUE: Dr. Pappo, is it ok? Okay.
10 Thank you so much.

11 Dr. Shah, thanks for the question, and if
12 I'm hearing you correctly, I think you're asking
13 whether we provide advice during the IPSP review
14 process with respect to registrational trials. In
15 general, the answer to that is no because the scope
16 of the IPSP, the initial pediatric study plan, is
17 really limited under FDARA to an early dose-finding
18 PK and preliminary efficacy and safety evaluating
19 trial, in general, in pediatric patients. So at
20 that point, it's a little premature to start
21 thinking about registration, most of the time,
22 although not always, because sometimes in certain

1 populations and for certain drugs, and depending
2 upon other factors, sometimes those very early
3 studies can actually result in a registrational
4 potential study.

5 So, in general, that's not part of the
6 formal advice we're providing during the IPSP
7 process, but if we do know that there is a
8 potential for that initial trial to result in a
9 potential indication, then we will provide advice
10 and also would more than welcome, actually,
11 industry and others seeking a meeting with us to
12 talk specifics related to that. But due to the
13 nature of the document itself, it tends to be
14 relatively high level. It doesn't generally get
15 into the weeds in the same degree as you might want
16 when we're really thinking about the nuts and bolts
17 of fit for filing.

18 Having said that, of course, because the
19 data arising from an IPSP requires a study we are
20 going to require, it has to be of sufficient
21 quality to submit to us once the study is conducted
22 so that it can inform labeling. There's a balance

1 there, and I think it's incumbent upon us to try to
2 figure out ways together to have those discussions
3 so that we're not expending undue resources to
4 ensure that the quality is sufficient for the
5 purposes of an early phase 1-2 trial, so certainly
6 we'd be agreeable to those discussions.

7 DR. SHAH: Great. Thank you.

8 May I ask one more question of our Genentech
9 representative?

10 DR. PAPPO: Sure, of course.

11 DR. SHAH: The specific question there, as
12 you know, we talk a lot about the pediatric plan,
13 and my question is how can pediatric development be
14 introduced early; and can any of your ad boards,
15 especially if it may cover a disease that does
16 include pediatric patients -- could you find a path
17 forward that would have pediatric oncologists at
18 the ad board providing additional opinions or
19 inputs so that that notion can be introduced
20 earlier as opposed to at a later phase?

21 MS. GUPTA: Thank you, Dr. Shah. This is
22 Ruchi Gupta. Yes, you raise a very important

1 point, and I think this is one of the visions that
2 we go with within Roche-Genentech with regards to
3 our pediatric group, and how we try to integrate
4 pediatric drug development early on within this
5 clinical development plan of the molecule.

6 I cannot speak for the broader industry in
7 terms of what practices there are, but I can tell
8 you that within Roche-Genentech, we try to look
9 from the portfolio perspective and see when the
10 molecules are coming in from the pipeline, how
11 early we can assess in terms of the available data,
12 or what studies need to be performed based on the
13 mechanism of action of the drug, and to then start
14 those conversations either through ad boards or we
15 have in the past conducted the portfolio meetings
16 with FDA to get that early feedback, not just for
17 one molecule but molecules that are coming through
18 the portfolio.

19 And just to add to that, yes, we do have a
20 requirement in the legislation that the pediatric
21 study plan should be filed within 60 days of end of
22 phase 2 meeting, but you cannot actually develop

1 the pediatric study plan in those 60 days. So the
2 conversations and the discussions around what that
3 clinical study design might look like, or what that
4 strategy might look like, happens much earlier than
5 the end of phase 2 meeting for the adults. So this
6 is just to give a little bit of flavor in terms of
7 how early those discussions usually get started.

8 Does that answer your question?

9 DR. SHAH: Yes. Thank you.

10 MS. GUPTA: Thanks.

11 DR. PAPPO: Dr. Raetz?

12 DR. RAETZ: Thank you to all the speakers
13 for, really, the excellent presentations. I had a
14 question or just was wondering if I could ask
15 Dr. Weigel to share her experience and her
16 perspective on an issue.

17 I really enjoyed your slide where you were
18 talking at the very beginning when there are
19 investigators that have ideas for trials or
20 industry members who are looking for potential
21 trial partners, and that bidirectionality of that
22 exchange in the very beginning. I've found

1 sometimes that can be challenging. I just wondered
2 in those very early phases, from your perspective,
3 are there things that you've seen that have worked
4 well or any comments on that?

5 DR. WEIGEL: Thank you, Dr. Raetz, for your
6 kind comments and for your question. I really do
7 appreciate it. I think one of the challenges is
8 essentially knowing what is out there and knowing
9 when to engage in the conversation. I think a
10 couple lessons learned -- and I think it gets back
11 to engaging early and often -- is the challenge for
12 us if there's been a lot of conversations and
13 actually planning and even designing of pediatric
14 trials. And this is particularly true on the
15 industry side, and then they come and say, "So,
16 this is where we are," and myself and colleagues
17 will be like, "Oh, I'm not sure that's feasible or
18 doable." I think it's that piece that is a bit
19 challenging, is when we have to level set, and
20 that's challenging.

21 I also feel, as well -- and we've been
22 really working, I think, hard with academic

1 colleagues to say include people with disease
2 expertise, or whatever it is, as early as you can
3 to bring something forward; and something that
4 people do want to bring through the cooperative
5 group mechanism is ensuring that we have buy-in and
6 transparency. The other thing that I think we have
7 really worked hard on is having confidentiality
8 agreements so that we can have a lens on data to be
9 able to best advise as well.

10 I also think one thing that has been
11 challenging is I think on the other side when we
12 have felt that it really wasn't something that we
13 wanted to bring forward in pediatrics, or we felt
14 that there really just wasn't enough data, and then
15 how best to advise moving forward. And at times,
16 that has been in the lens of the company feeling
17 they have a regulatory requirement, and potentially
18 even additional discussions with regulatory
19 authorities that they should go into pediatrics.
20 Some of those discussions I think have been
21 challenging of how best to do next steps.

22 I also think, Dr. Raetz, that one of those

1 challenges, as well, is the timing of when you
2 enter those discussions, and a lot of that is
3 knowing what's on the landscape. It gets back to
4 that communication, and how do we track, and how do
5 we know what's out there. So yes, I still think
6 there are a lot of challenges in those
7 bidirectional discussions, but I actually do feel
8 that over the last several years -- and I do think
9 that a direct impact of RACE and FDARA is that
10 awareness and more of, I think, a
11 willingness -- especially industry -- to recognize
12 that there needs to be discussion about pediatrics.

13 So I do think that has changed, and I do
14 think that has increased the number of
15 conversations we're having, which I think is a good
16 thing. I still am not convinced they're early
17 enough, but I do think that is a direct change.

18 DR. RAETZ: Thank you so much.

19 DR. PAPPO: Thank you.

20 Dr. Laetsch?

21 DR. LAETSCH: Thank you, Dr. Pappo. I had a
22 related question to what Dr. Weigel was just

1 commenting on for Dr. Gupta. I noticed in her
2 slides, and agree completely, that she talked about
3 the need to prioritize across different
4 pharmaceutical companies within an industry, and
5 wondered if she had additional thoughts on how to
6 do that, because I personally agree that that's a
7 critical need, but of course it's challenging.

8 Sometimes those discussions are, as have
9 been highlighted, happening fairly early within the
10 company before there may be much public data that
11 could be shared, those challenges about deciding
12 which companies are going to have the regulatory
13 obligation to conduct the pediatric study and what
14 happens if that chosen agent then doesn't proceed
15 to regulatory approval for adults, but others in
16 the class do, for example.

17 So I wondered if she had additional thoughts
18 about how to bridge some of those gaps. I think it
19 was also highlighted by Dr. Weigel just a minute
20 ago; that we think it's really important to have
21 early involvement in these discussions, but how do
22 we do that and make sure that there's awareness of

1 these different efforts across companies in the
2 setting of confidential disclosure agreements and
3 other things?

4 MS. GUPTA: Thank you, Dr. Theodore. I
5 personally don't have any insights or ideas around
6 how the prioritization can be made more effective.
7 I know that internally we do practice
8 prioritization, obviously because we have more
9 transparency and visibility among our own data and
10 pipelines coming through the portfolio. As I
11 mentioned also in my slides, sometimes even going
12 through the exercise of privatization for those
13 molecules which are internal can be very time
14 consuming, and it takes a lot of effort to not just
15 get internal agreement but also external agreements
16 in terms of which molecules to be prioritized.

17 So all I can ask for is that I think it's a
18 more collaborative effort that we need externally,
19 not just between the industry partners, but also
20 from the health authorities, to increase more
21 transparency and flexibility around some of these
22 discussions moving forward. I know that this

1 doesn't answer, really, your question, but this is
2 the best I can do at this time.

3 DR. LAETSCH: Thank you.

4 And if it's ok, Dr. Pappo, I also had a
5 question for Dr. Kearns.

6 DR. PAPPO: Of course.

7 DR. LAETSCH: Dr. Kearns, I really
8 appreciated your talk. I noticed one thing you
9 didn't mention was alignment around funding. And
10 we've discussed NCI funding for COG trials and
11 industry-sponsored models run through cooperative
12 groups, but I didn't know if that was also a
13 barrier to some of these international trials that
14 may not have a pharmaceutical partner that could
15 fund the trial on both sides of the Atlantic, and
16 how you think about overcoming those barriers.

17 DR. KEARNS: And that's a really important
18 point, and thanks for your question. If it's just
19 an academic study, we struggle with getting
20 international funding, and most funding is on a
21 national level. So even in Europe, if I were to
22 run a trial from the UK, I could get funding from

1 Cancer Research UK to do the central administration
2 and the per-patient cost within the UK, but I can't
3 get a per-patient cost in any other country. So
4 each country is going through a review process in
5 their own country, and that just delays the set-up
6 because all the different usually charitable
7 funders do not recognize review of another country
8 or another organization, so the same protocol gets
9 reviewed over and over again.

10 We've not tried to do a pure academic study
11 in ITCC with the U.S., but I suspect it would be
12 the same issue. We'd have to wait for it to go
13 through the NCI-NC type approval and whether it
14 would be taken onto the portfolio, and aligning
15 that in terms of timing is really challenging.
16 It's not without challenges even if it's a fully
17 industry-funded study because the costs of
18 delivering a study to industry level is different
19 in every country.

20 So whilst I could do a complex spreadsheet
21 on all the research costs in my country within the
22 healthcare system, I need that from every country

1 because the cost of MRIs, for example, or other
2 investigations and what gets charged to research is
3 different in every country, so you're right to
4 raise the funding issue. It's slightly easier with
5 industry because we have a little bit more flex in
6 being able to run the study, but I think it would
7 be fair to say that they are very rarely completely
8 economically funded.

9 I think we subsidize a lot of research even
10 when it's industry funded within our healthcare
11 service. However much, we try to put the budgets
12 out there because it's surprising that funders
13 don't understand how much clinical trials cost to
14 deliver. They push back on the cost. And when
15 you're working in the rare disease space, when you
16 calculate the total cost of the trial and divide it
17 by the number of patients that are going into the
18 trial, they say, "Well that's a lot of money for a
19 small number of patients," but the set-up, and the
20 organization, and the quality control all cost
21 money whether it's one patient or a thousand
22 patients.

1 DR. LAETSCH: Thank you.

2 DR. PAPPO: I believe Dr. Drezner had some
3 clarifying statements or to answer some of the
4 comments of Dr. Saber.

5 Dr. Drezner?

6 DR. DREZNER: Yes. Thanks. It was really
7 great to hear the presentations and so important
8 for us to hear the perspectives from the people
9 whose opinions we really value when we're making
10 decisions, particularly around IPSP structure and
11 content.

12 I thought that there may have at one point
13 been implication that through the IPSP process, we
14 require randomized trials in pediatrics with
15 statistical analysis plans, and I just wanted to
16 clarify that the FDARA amendments to PREA are
17 really with respect to the conduct of earlier
18 studies within the IPSP. The intent of the IPSP
19 study plan is to layout early dosing, PK, safety
20 information, and preliminary antitumor activity
21 information, but are not required to be an entire
22 development plan or certainly to culminate in a

1 randomized trial.

2 As the committee knows, there have been many
3 drug approvals of pediatric therapies based on
4 single-arm data, so that's what they're evaluated
5 on, sort of a case-by-case basis, depending on the
6 tumor type and the specific development program.
7 So I just wanted to clarify if there were any
8 questions around a requirement for randomized
9 trials within the IPSP, which is not the case.

10 Thanks.

11 DR. PAPPO: Thank you very much.

12 Any comments around Dr. Drezner's statement?

13 (No response.)

14 DR. PAPPO: We have still 20 minutes left if
15 you want to have additional questions, and this can
16 go back either to our FDA and EMA representatives
17 or to our guest speakers. I had a question for
18 Dr. Drezner, and perhaps to Dr. Seddiq also,
19 regarding the issuing of waivers.

20 If you have several IPSPs of a same-in-class
21 product, and there are still ongoing trials in
22 adults where you do not have all of the

1 information, how do you prioritize or how do you
2 say this drug will get a partial waiver or a waiver
3 will proceed with your investigational plan to
4 further explore this in pediatrics?

5 DR. DREZNER: Sure. I can take that. Some
6 of it has to do with -- because, generally, the
7 studies when we're evaluating IPSPs, generally the
8 adult studies, as you say, are ongoing, not
9 complete, and typically, usually, we're discussing
10 an IPSP before a marketing application has been
11 submitted, or is close to being submitted, for the
12 adult indication.

13 So typically, when we're looking at
14 same-in-class products, our decision will largely
15 revolve around whether or not the company has made
16 an argument, whether the product could meet a
17 specific need in pediatrics that is unique to that
18 particular product versus another same-in-class
19 product, or if there's a particular pediatric
20 cancer that, for some reason, that product would
21 address better than other in-class agents. But
22 typically, if the new product is considered to be

1 the same with no benefit to formulation,
2 administration, that would be something that we
3 would grant a waiver to because, as you know,
4 sometimes these are fifth, sixth, even more,
5 in-class products, particularly in one of the
6 examples we gave for the PD-L1 class.

7 If there is consideration that perhaps the
8 particular product could provide a benefit to
9 pediatric patients, we will sometimes consider
10 issuing a deferral rather than a waiver while
11 additional work is being done to determine whether
12 or not there may be a benefit.

13 DR. PAPPO: Thank you very much.

14 Donna Ludwinski?

15 (No response.)

16 DR. PAPPO: I think you're muted, Donna.

17 MS. LUDWINSKI: Sorry. This actually has to
18 do with what Dr. Drezner was just talking about. I
19 was wondering about the reverse situation. What if
20 there's an agreed pediatric study plan, and then
21 six months later, something that seems to be
22 superior comes along. Is it possible to go back to

1 the first one -- I'm making this up, but maybe this
2 never happens. But say it's a similar indication.
3 Can you go back and tell the first one maybe not
4 because this new molecule seems to be more
5 effective or there's something better? How would
6 that work?

7 DR. DREZNER: Thanks. That's a great
8 question. Dr. Donoghue will know better if that's
9 ever happened before. I can't remember that
10 happening but, certainly, amendments can be made to
11 IPSPs. And we would hope that the sponsors who are
12 conducting the studies and drafting the IPSPs would
13 be collaborating with key opinion leaders, and thus
14 have a general sense of the environment. If there
15 is another product that was in class, but for some
16 reason had substantially more promise in pediatric
17 patients, and the feeling is to direct development
18 in that way, we can certainly amend an IPSP if a
19 sponsor requests an amendment.

20 But I don't know if, Dr. Donoghue, you want
21 to add anything because I can't remember an example
22 where that has happened, but it probably will

1 happen at some point.

2 DR. DONOGHUE: Thanks, Dr. Drezner, and
3 thank you, Dr. Ludwinski, for your question. I
4 think it's an important one because it does go both
5 ways; right? We should be able to, of course,
6 correct, if we need to, following agreement for an
7 initial pediatric study plan. And I think that
8 speaks to the need for us to try to track what's
9 going on a little bit more systematically than we
10 currently are and while we're working on that so
11 that we can monitor not only the number -- which we
12 already are monitoring the number of IPSPs for a
13 given target, and to some extent in those specific
14 disease spaces, but also to be able to reassess and
15 look at how those studies are being conducted, and
16 keeping in mind the various information streams
17 that we have access to, whether they be from EMA,
18 from stakeholder groups, through programs like
19 ACCELERATE, through published literature,
20 et cetera, to either take the initiative ourselves
21 to reach out to companies and have a discussion
22 about course correction, or if the companies have

1 this knowledge before we do, they can always come
2 to us.

3 Essentially, our decision making heavily
4 relies on the package that we're given primarily
5 from the company, and we've received some really
6 well thought-out IPSPs that look not only at their
7 product but at the overall landscape of development
8 in pediatrics to try to help assist us with that
9 decision making. And when that occurs, we very
10 much appreciate it because the more people that are
11 thinking about this, I think the better off we are.

12 MS. LUDWINSKI: Thank you very much. No
13 more questions.

14 DR. PAPPO: Okay. We have Dr. Frenkl.

15 DR. FRENKL: Thanks. I have a question for
16 the FDA, and then just first a comment. I really
17 thank you very much for holding this ODAC on this
18 important topic, and it's been so helpful to hear
19 also about the international coordination of
20 requirements and the clinical trial collaborations
21 that are going on, and great to see the progress.

22 I think it's truly a clarifying question,

1 slide 28 of Dr. Seddiq's presentation, where you
2 say that early nonclinical investigation is
3 encouraged. And it's really not a hundred percent
4 clear to me in the supporting guidances and
5 documents whether FDA could actually require a
6 sponsor to generate this preclinical data,
7 especially if it's a mechanism that's not yet on
8 the relevant or not relevant list. And if yes,
9 will there be some framework to help guide the
10 sponsor in generating this data?

11 DR. DONOGHUE: Thank you --

12 DR. SEDDIQ: Thank you -- oh, go ahead.

13 DR. DONOGHUE: Go ahead, Dr. Seddiq.

14 DR. SEDDIQ: No. That's ok, Dr. Donoghue.

15 DR. DONOGHUE: I think I can take it, maybe.
16 I'm looking at this slide, which I think
17 essentially does emphasize the importance of early
18 consideration of nonclinical work.

19 In general, when we are thinking about
20 whether or not to apply FDARA to a specific adult
21 product development program, one of our decision
22 points is whether or not the target is a

1 substantially relevant target to pediatric cancers,
2 and we generally make that decision before even
3 thinking about going in depth to the review of the
4 IPSP. And there are cases where we receive IPSPs
5 for pediatric development programs for which we
6 don't consider the target substantially relevant,
7 and in those cases, we generally inform the
8 sponsor.

9 It is not always clear, if a certain target
10 is not on either list, where that target falls in.
11 So in those cases, we make use of all available
12 public information, including the public genomic
13 databases that are out there, published literature,
14 and other information provided by the sponsor to
15 make that determination as to whether or not we
16 consider a target substantially relevant to
17 pediatric cancers, and hence, subject to FDARA
18 requirements.

19 So as far as we have been implementing, as
20 far as my knowledge, we have not required companies
21 to conduct preclinical studies to determine
22 relevance; however, I do think it's very important

1 in some cases, just as is done in adult development
2 programs for cancer products, that when we know the
3 target is substantially relevant, when we know that
4 there's a high unmet medical need, that part of the
5 investigational plan for pediatrics includes
6 thoughtful nonclinical development to help inform
7 the design of the pediatric trial.

8 So that is our current thinking and advice
9 we're providing sponsors. I'm not saying that we
10 also need in all cases to have proof-of-concept
11 nonclinical work done. There are cases where
12 there's enough existing information to support a
13 well thought-out pediatric investigation without
14 that, but there are times when I do think it's
15 necessary. I hope I've answered your question.

16 DR. FRENKL: Yes, you have. Thanks so much.

17 DR. PAPPO: Okay. Dr. Smith?

18 DR. SMITH: Yes. This is a question for
19 FDA, and it reflects back on Dr. Weigel's comment
20 about the importance of no-go decisions. It has to
21 do with waivers not only when there are multiple
22 agents in class, but just the general priority of a

1 particular agent. I'd first acknowledge that there
2 is a tension between casting wide net and studying
3 agents, and accepting that many of the agents may
4 actually not be effective and children won't
5 benefit, versus taking an approach of focusing on
6 agents with stronger rationale, but you may miss
7 something by narrowing the net.

8 So the question is, in terms of waivers, how
9 you approach that tension, and if there's any
10 perceived need to reduce the number of waivers? Is
11 there a perception that a waiver might be a bad
12 thing, so you need to minimize the number of
13 waivers that are actually agreed to?

14 DR. DONOGHUE: Thanks, Dr. -- oh, I see
15 Dr. Drezner came on. I'll let you go first.
16 Sorry.

17 DR. DREZNER: I was going to start out with
18 the easier part of the question, which is the last
19 part. No, I don't think that there's a sense, at
20 least among us, that a waiver is a bad thing.
21 Typically, these are applied in cases where there
22 has been general agreement that there's a

1 same-in-class product that would represent a
2 benefit to pediatric patients or there's a partial
3 waiver for a specific age group in which the
4 disease rarely or never occurs.

5 But Martha, I'll let you go ahead. I was
6 just going to address that part of the question.

7 DR. DONOGHUE: Sure. Thank you for the
8 question. This is Martha Donoghue again. We, I
9 think overall in our committee discussions, and
10 ultimately our decisions about IPSPs, do think long
11 and hard about is this going to be feasible and is
12 this going to help the community. There's a part
13 of me that worries we're not waiving enough
14 requirements at this point -- I'll be completely
15 frank -- and I think that goes to what Dr. Seddiq
16 was saying towards the latter part of her
17 presentation, that I think there is a need for us
18 to continually refine our decision-making process,
19 and tweak it, and improve it; and, yes, even make
20 amendments to agreed IPSPs when needed, based upon
21 emerging data.

22 That emerging data can come in several

1 forms, either data in the form of information for
2 that particular drug development program that
3 indicates a new safety signal or maybe less
4 potential for important activity in pediatric
5 patients; data from other drugs in the same class;
6 information that we get from other members of the
7 community that may signal that we need to shift
8 gears.

9 So the question in my mind is how best to
10 aggregate the information that's out there in a
11 timely way so that we can do course corrections
12 when needed, so I think we need to refine our
13 process; but I do think more work needs to be done
14 on that. We're certainly receptive to ideas from
15 the community about how better to accomplish that.
16 I think the ACCELERATE meetings are helpful when we
17 talk about multiple drugs in class. Sometimes
18 those discussions are happening in some ways later
19 than they need to be and maybe not frequently
20 enough, so I think we need to establish some other
21 processes.

22 I think, as Dr. Karres mentioned in his

1 presentation, we need to think not only about the
2 landscape of what's going on in drug development
3 within a particular drug target. Also, the types
4 of products that are directed against that target
5 differ, and therefore the potential may differ for
6 pediatric patients, and also looking at, in
7 addition, what's happening in a particular disease
8 subset so that we are cognizant of all the other
9 clinical trials that are ongoing in subsets of
10 populations with neuroblastoma, for example.

11 Does that answer your question?

12 DR. SMITH: Yes. Thank you. Sometimes I
13 think there's a perception that a waiver is
14 benefiting the company, they don't have to do a
15 pediatric trial, but when a waiver is appropriately
16 applied, it's benefiting the children who aren't
17 exposed to an agent that's unlikely to help them.
18 So I think they are difficult decisions, but I was
19 just asking if there's a perceived judgmental
20 aspect, and I'm glad to hear that there's not.

21 DR. DONOGHUE: Well, it's always a difficult
22 decision either way. The decision to expose

1 pediatric patients to, potentially, an ineffective
2 drug shouldn't be taken lightly by anybody. I
3 think we all feel that we should have confidence,
4 or at least a fairly high degree of confidence,
5 that there's a good prospect for clinical benefit
6 before we do that. But sometimes it is harder to
7 make a no-decision, to grant a waiver than it is to
8 grant a study. I understand that.

9 DR. SMITH: Thank you.

10 DR. PAPPO: Does that answer your question,
11 Malcolm?

12 DR. SMITH: Yes. That's very good. Thank
13 you.

14 DR. PAPPO: Okay. I had a question probably
15 for Dr. Seddiq and perhaps for Dr. Drezner.

16 In the initial presentation, you said that
17 the molecular targets are updated on a regular
18 basis or updated regularly. I just wanted to know
19 what the process for that is, and if there is also
20 a process to eliminate or get rid of some of the
21 targets that have already been known to be tested
22 in pediatrics, for example, PD-1 inhibitors or mTOR

1 inhibitors. I just wanted to know a little bit
2 more clarity about what the process of that is and
3 who makes those decisions.

4 DR. DREZNER: I think they're pretty
5 collaborative decisions amongst all of the decision
6 makers within the FDA throughout the committee of
7 people who make the decisions. We update the lists
8 about every 4 to 6 months, and it's really a
9 constant discussion of topics, a constant
10 discussion of targets, that occurs in our weekly
11 meetings, and then comes together at a larger
12 meeting every 4 to 6 months to officially update
13 the lists that are on the website. There is also a
14 non-relevant list there, too, and targets will get
15 added to that as well. As you know, the lists
16 aren't meant to be the be-all/end-all of what is or
17 is not substantially relevant.

18 So quick answer, 4 to 6 months, but we have
19 meetings every week where there is certainly
20 discussion about different targets and whether
21 there's something that we're seeing where there's
22 been a lot of IPSPs that have come in and we're

1 considering, and we've now read a lot about it and
2 heard from key opinion leaders, and have decided
3 that that's not relevant; those discussions happen
4 frequently.

5 DR. PAPPO: Thank you very much.

6 DR. DREZNER: And I think Martha raised her
7 hand also.

8 DR. PAPPO: Martha?

9 DR. DONOGHUE: Thank you for the question,
10 Dr. Pappo. Just so people know, I am thinking
11 about having another public forum where we can get
12 input beyond our multi-discipline committee and
13 ongoing discussions about this, and I'm trying to
14 think of the best forum for those to take place. I
15 know we've used subcommittee of ODAC meetings to do
16 that in the past.

17 I just also wanted to acknowledge, though,
18 and clarify that in my thought, you can still have
19 targets that are substantially relevant to
20 pediatric cancers for which you have studies, and
21 sometimes multiple studies, of drugs against that
22 target that have not been effective. It's hard to

1 know sometimes is that the fault of a drug, or the
2 approach that the drug is taking to direct against
3 that target, or the fault of there not being the
4 appropriate combination.

5 So in my mind, one of the criteria should be
6 what do we understand about that target based upon
7 the accumulated knowledge, but I don't think
8 necessarily that lack of activity for some, say
9 mTOR agents -- that those targets may still be
10 relevant, but maybe not at this time warrant
11 additional studies unless something changes. And
12 that's one reason why the target lists are guides
13 but not directly used in isolation for decision
14 making, with the exception of the non-relevant
15 lists, which is pretty firm that if the target is
16 non-relevant, then the application is not subject
17 to FDARA to begin with.

18 DR. PAPPO: You got to the root of my
19 question. Thank you very much.

20 Okay. We have time for one final question,
21 and Dr. Frenkl will do that.

22 DR. FRENKL: Thanks very much. This is, I

1 think, just an add-on, and maybe Dr. Drezner or who
2 was just speaking.

3 When you're deciding on the relevant list,
4 are there specifics like standardization of the
5 criteria or the evidence that's required for it to
6 come on that list? I recognize that it's very
7 difficult to do across all the different
8 mechanisms, but just wondering if there is a
9 standardized framework for that that, that could
10 eventually be shared with industry and academia.

11 DR. DREZNER: Sorry. Yes. I would say
12 there's a framework that's standardized, although
13 there is obviously discussion that occurs on a
14 case-by-case basis. There needs to be some
15 evidence or biologic rationale, which can be
16 obtained from a multitude of data sources -- gene
17 expression, genetic alterations,
18 nonclinical/clinical data in adult patients from
19 either publications or peer-reviewed data or
20 databases -- that suggest the target's relevant to
21 the growth or progression of one or more pediatric
22 cancers.

1 So I think the decisions that we make when
2 we are deciding whether a target is relevant is
3 based on the totality of that information. And
4 it's hard to assign a specific threshold as to
5 whether something's relevant or not relevant, but
6 we would be open if there are ideas that people
7 have about what should tip something over into
8 being relevant versus not relevant. For now, I
9 think we have that baseline standard that is in the
10 guidance, and then the rest of it is based on a
11 preponderance of the data that is provided through
12 multiple sources provided both by the sponsor,
13 opinion leaders, as well as our own searches in
14 terms of whether we consider it substantially
15 relevant; so kind of a blurry answer, but yes.

16 DR. FRENKL: Yes, kind of like an expert
17 consensus still at this time --

18 DR. DREZNER: Exactly, expert consensus.

19 DR. FRENKL: -- but perhaps we can work
20 towards having something that's like a minimum
21 threshold or whatever.

22 DR. DREZNER: Yes. I think we would be

1 happy if people had ideas or if there's something
2 that people with the expertise thought was of
3 particular importance when we make these
4 determinations.

5 DR. FRENKL: Thanks so much.

6 **Questions to the Subcommittee and Discussion**

7 DR. PAPPO: Great discussion, and now the
8 committee will turn its attention to address the
9 task at hand, the careful consideration of the data
10 before the subcommittee, as well as the public
11 comments.

12 We will now proceed with the questions to
13 the subcommittee and panel discussions. I would
14 like to remind public observers that while this
15 meeting is open for public observation, public
16 attendees may not participate, except at the
17 specific request of the panel. After I read each
18 question, we will pause for any questions or
19 comments concerning its wording. We will proceed
20 with the first question, which is a discussion
21 question.

22 Question number 1. Please discuss your

1 perspectives on how the 2017 FDA Reauthorization
2 Act, FDARA, is impacting pediatric oncology and
3 development of new molecularly targeted therapies
4 for pediatric patients with cancer. Describe
5 positive effects or challenges associated with this
6 legislation, and thoughts regarding how to improve
7 its implementation.

8 If there are no further questions or
9 comments concerning the wording of this question,
10 we will now open this question for discussion.

11 Dr. Laetsch?

12 DR. LAETSCH: Thank you, Dr. Pappo.

13 My sense of the data from the presentations
14 and also my anecdotal experience is that FDARA has
15 certainly increased the attention being paid to
16 developing these agents for pediatric patients, and
17 my anecdotal sense, and I think some of the early
18 data, might suggest may be increasing the number of
19 clinical trials that are available, so I think
20 those are clearly both positive.

21 I think a couple of the challenges that have
22 been mentioned would include the need for

1 additional mechanisms of early collaboration across
2 all of the stakeholders -- academia, industry,
3 multiple industry partners, potentially, in the
4 case of multiple drugs in the same class, and
5 regulators -- about how to prioritize these agents
6 for pediatric cancer, and then while not directly
7 the subject of FDARA, how to ensure that promising
8 agents that are identified through these early
9 trials proceed towards regulatory-intent trials or
10 confirmatory phase 3 trials to potentially
11 establish a new standard of care. Thank you.

12 DR. PAPPO: Thank you very much,
13 Dr. Laetsch.

14 Dr. Shah?

15 DR. SHAH: Hi. My comments are quite
16 similar. I would say that I think it absolutely
17 serves the purpose of raising awareness and
18 attention to the need for pediatric studies. I
19 think that the FDA's plan to follow these up, track
20 these, and understanding what happens with the
21 initial IPSPs is great. I think that that will
22 provide additional data that's needed to see how

1 these are being truly implemented, as well as
2 having additional back and forth, especially when
3 something is deferred and there's an opportunity to
4 do more there. I do think that understanding what
5 happens beyond this early stage, especially if some
6 of these targeted therapies are quite promising
7 early on, and establishing that path forward for
8 fit for filing will be a good next step.

9 I would just finally say -- and this was
10 raised earlier -- I do think the term "molecularly
11 targeted therapies" can be a little bit confusing.
12 I'm not sure if there's anything that actually can
13 be done about it, but recognizing that the umbrella
14 of molecularly targeted therapies is a little bit
15 different, especially as we think about these
16 antigen-targeted therapies, and it was really
17 beautifully presented earlier.

18 DR. PAPPO: Thank you very much.

19 I had a comment. I think that one of the
20 issues that I think some people have raised before
21 is how do you measure this impact or if there is
22 success or not, and I think that doing a very

1 thorough evaluation of all of the IPSPPs; what
2 agents have been tested; like Malcolm was saying,
3 what protocols have been activated, the accrual of
4 these protocols, and how many of those eventually
5 led to a regulatory approval. In my opinion, also,
6 the time to start a clinical trial -- if this has
7 helped a little bit to start first-in-child
8 clinical trials earlier, based on the fact that now
9 we're paying particular attention to drug
10 development in pediatrics -- is going to be
11 important.

12 The next person is Dr. Gore.

13 DR. GORE: Yes. Thank you so much, and
14 thanks to all of the speakers and certainly the
15 panel members. One of the things that continues to
16 strike me about the significance of this is that I
17 feel like we're just starting to get a feel for the
18 impact now. Part of that is how long it takes to
19 get a trial up and running, how long it takes to
20 accrue to a trial, the number of starts and stops
21 that trials have; and particularly, as we run into
22 amendments and things that can slow trial data, I

1 guess one of my biggest fears around this is that
2 we would rush to make a decision too quickly about
3 the impact without really having that depth and
4 breadth of measurements, as many people have just
5 commented on.

6 So I think I guess the challenge associated
7 with this question is I'm not sure that we've had
8 enough time to really assess the impact, and as
9 several people have just also said, we haven't
10 agreed on a set of metrics that will really help us
11 determine that impact, and I think that's key.

12 Speaking a bit to what Dr. Shah also just
13 mentioned, I think ensuring that we continue to
14 understand what is being called a molecularly
15 targeted agent is in line with the current practice
16 and that we continue to evolve that definition to
17 meet the intent of the impact of FDARA. Thanks.

18 DR. PAPPO: Thank you very much, Dr. Gore.

19 Dr. Seibel?

20 DR. SEIBEL: Yes. I want to agree with
21 Dr. Shah, to a certain extent, because I think one
22 of the things that was brought up earlier was about

1 transparency, and I think a perfect example was the
2 recent ACCELERATE meeting last fall, looking at
3 CDK4/6 inhibitors and the number of trials that
4 were very similar that were being done throughout
5 both internationally as well as in the U.S.

6 So getting a better feel for the number of
7 trials or the trials that are being done in such a
8 small pediatric population I think is important.

9 Dr. Donoghue touched on some of the issues,
10 particularly not having the ability to track this
11 necessarily, but this is one area that I think
12 could really be improved upon. Thank you.

13 DR. PAPPO: Thank you very much, Dr. Seibel.

14 Any comments on the effects or challenges
15 associated with this legislation and thoughts
16 regarding how to improve this? Dr. Seibel
17 mentioned that, as well as Dr. Gore. Any other
18 comments from from the panel?

19 Dr. Smith?

20 DR. SMITH: Yes. I would just emphasize
21 what Dr. Seibel and others have said about the need
22 for more transparency, and one issue is we're

1 talking about childhood cancers, we're talking
2 about small patient populations, we're talking
3 about where a decision made in secret by one
4 company to study childhood cancer, in collaboration
5 with a regulatory agency, then has an impact on the
6 ability of everyone else, all other childhood
7 cancer researchers, potentially to study that same
8 population. And this is so different from the
9 adult cancer world, where for most adult cancers,
10 there are so many patients that a decision made
11 like that for an adult cancer doesn't have the same
12 impact that it does for childhood cancers.

13 So I understand that right now a childhood
14 cancer IPSP is a trade secret and it can't be
15 discussed. But it would be so beneficial to the
16 childhood cancer research community if IPSPs like
17 PIPs could be viewed, could be understood, what the
18 requirements were and what was already committed
19 to, so that plans could be made in a more rational
20 way. That's my comment. Thank you.

21 DR. PAPPO: Thank you, Dr. Smith.

22 Dr. Frenkl?

1 DR. FRENKL: Yes. Thank you. Tara Frenkl
2 from industry. I'll start in with the challenges.
3 I think we already covered how it's progressed and
4 what the positive effects are. The biggest
5 challenge from an industry perspective is I think
6 recruiting the studies because they are rare
7 diseases that we're working with. So I think that
8 the international harmonization of EMA and FDA is
9 fantastic and will really help us in the
10 transparency of all of the communication, as you
11 guys are already doing.

12 And it's great to see that we're building
13 the infrastructure with ITCC and COG so that these
14 studies can actually be conducted, because it's
15 very difficult to do in isolation because it's so
16 rare. And we need to work on all of those things
17 that we were talking about before, with the data
18 reconciliation and how can the databases be
19 reconciled.

20 The other thing that's been on my mind since
21 it came up, I think, in this conversation has been
22 the prioritization of mechanisms. To me, it's a

1 very important concept so that we can enable
2 studies with the highest possibility of success to
3 move forward and to actually be able to recruit so
4 we get robust, intangible data and avoid
5 duplications, and save resources across. But it
6 seemed to me -- and maybe I got it wrong -- like
7 the conversation was a little bit like it was
8 industry that needed to do this internally, but we
9 can only prioritize our internal pipeline, and we
10 do do that, but the PREA is a requirement for
11 whatever we move forward, so we can't really
12 prioritize beyond that.

13 So I think the first step in that would be
14 deciding actually who is accountable for a broad
15 landscape prioritization, and to me, it would have
16 to be regulators like FDA, and perhaps some other
17 groups that have great expertise like the ones that
18 are here. Thank you very much.

19 DR. PAPPO: Thank you very much.

20 I'm going to try to summarize our discussion
21 for question number 1. The panel feels that,
22 indeed, the RACE Act has raised the attention about

1 developing specific drugs for pediatric cancer and
2 increasing the number of clinical trials available
3 for these patients. That was the first point. The
4 second point is that we apparently need a little
5 bit more transparency and a little bit more depth
6 to measure the impact of this initiative in
7 pediatric cancer.

8 There are several challenges. One of them
9 is recruiting patients, and therefore it would be
10 very important to focus our attention also on the
11 prioritization of agents so we can identify the
12 most likely leads that will lead to higher success,
13 and therefore we could accrue patients in that
14 specific area.

15 We also need to develop better metrics to
16 assess the impact of the RACE Act, and that could
17 also include measures such as making more available
18 or transparent the IPSPs that are submitted to the
19 FDA, and also look at time to completion of
20 clinical trials, the time of initiation of a
21 clinical trial in the pediatric population. The
22 overall consensus of the panel was also that

1 perhaps it was a little bit too early to assess the
2 full impact of the RACE Act, but I think that these
3 are some considerations that need to be taken into
4 the future to try to determine its impact in the
5 coming years.

6 I wanted to know if anybody has any
7 additional comments, or any suggestions, or if I
8 missed anything, or if I summarized everything.

9 Dr. Laetsch?

10 DR. LAETSCH: A very nice summary,
11 Dr. Pappo. The only comment I would add is I think
12 that in addition to the IPSPs, potentially, making
13 them public, I think finding a way to collaborate
14 earlier before those are agreed will be important
15 because my sense is that companies will be hesitant
16 to renegotiate pediatric study plans with the FDA
17 or EMA after they're established, and some of these
18 prioritizations across different companies will
19 have to happen before those are established if
20 there's a way to increase multi-stakeholder
21 involvement earlier in that process. The
22 ACCELERATE meetings have been mentioned, but I

1 agree with Dr. Donoghue. I think sometimes those
2 are occurring long after the PSP or the IPSC have
3 been established, so if there's a way to accelerate
4 that collaboration, I think that will be really
5 helpful.

6 DR. PAPPO: Thank you.

7 Dr. Shah, you had your hand raised. Not
8 anymore? You're good?

9 DR. SHAH: Yes. I just wanted to be sure
10 you got the point about the term "molecularly
11 targeted."

12 DR. PAPPO: Yes. I had it twice, and I
13 missed it, yes, to better define the term
14 "molecularly targeted therapy," yes.

15 DR. SHAH: Thank you.

16 DR. PAPPO: Thank you for bringing that up.

17 Okay. We will now move on to the next
18 question, which is also a discussion question.
19 Please discuss factors that should be considered
20 when determining whether nonclinical
21 proof-of-concept studies should be conducted prior
22 to initiating a molecularly targeted pediatric

1 cancer investigation in pediatric patients with
2 cancer. Also discuss the degree of preclinical
3 antitumor activity that would be considered
4 sufficient to warrant clinical development.

5 If there are no further questions or
6 comments concerning the wording of the question, we
7 will now open the question to discussion.

8 Dr. Gorlick?

9 DR. GORLICK: I'm Richard Gorlick at
10 MD Anderson Cancer Center. Thank you for the
11 opportunity to comment. Really, what I wanted to
12 bring up is the whole topic of adolescent and young
13 adult oncology in the context of nonclinical
14 studies. And I know this is a topic that many are
15 aware of, but the adolescents and young adults are
16 a group that the needs aren't entirely met by the
17 peds or the adult community, and the challenge is
18 nonclinical studies usually means, in my view,
19 toxicology studies. Adolescents and young adults,
20 in contrast to children, children have unique
21 toxicities related to growth, whereas that doesn't
22 apply to adolescents. And if you looked at

adolescents and young adults, they tolerate chemotherapy generally better than older adults or younger children, with the only real question being the adequacy of dose.

5 So I think in that particular population,
6 nonclinical toxicity studies are really not needed
7 as a general principle, and I would hope that could
8 be codified to a greater extent. Thank you.

9 DR. PAPPO: Thank you, Dr. Gorlick.

10 I was going to call on you, Malcolm, based
11 on the paper that you published, the requirements
12 for preclinical testing. I was wondering if you
13 were going to be able to comment on that, and I'm
14 glad that you raised your hand. Thank you.

15 DR. SMITH: Yes. I can comment on the
16 preclinical testing, and first thank the EMA
17 presentation for highlighting. Both the ITCC-P4
18 and PIVOT program are doing preclinical testing and
19 collaborating with many different companies to do
20 preclinical testing.

21 In terms to address some of the questions
22 about preclinical testing, one is, in terms of what

1 you consider in success, what's the degree of
2 activity, and we've consistently considered, in
3 looking for activity, that we should be looking for
4 robust regressions for the agents that we test.
5 This is a criteria that we usually use to claim
6 success in clinical trials both for children and
7 adults and, of course, it's rare that a drug can be
8 more active in patients than it is in the mice. So
9 to claim less than what we would consider success
10 in humans and patients doesn't seem a reasonable
11 approach, so we use regressions.

12 The other part of that is when we consider
13 what agents should we use in combinations, we also
14 look for those agents that have been effective as
15 single agents, both because of the history of
16 pediatric cancer research and what have been
17 effective successful combination therapies for
18 pediatric cancers, and also because of the work of
19 Adam Palmer from Chapel Hill and others recently,
20 and looking at successful combinations, ones that
21 have achieved FDA approval, and finding that most
22 of these combinations depend on additivity of the

1 agents; that is both agents need to be active
2 rather than synergy.

3 A point just to make about how reliable is
4 the preclinical work, is it just noise or does it
5 actually indicate some likelihood for success,
6 we've looked back over our first 20 years of
7 preclinical testing, and first, just to get rid of
8 the myth that everything works in mind, when we
9 look at our solid tumor models, only about
10 15 percent of the models tested against all the
11 agents actually had an objective response. The
12 vast majority of things don't work.

13 When we looked at the things that worked in
14 the mice, they generally aligned with how they
15 behaved in the clinic. The standard agents were
16 active pretty much as expected. Agents like
17 HDAC inhibitors, proteasome inhibitors,
18 hsp90 inhibitors for solid tumors, showed little or
19 no activity. The VEGF pathway-targeted agents
20 slowed growth but rarely caused progressions. The
21 molecularly targeted agents rarely caused
22 regression, except if the genomic alteration was

1 there, BCR-ABL1 for dasatinib, BRAF V600E for
2 selumetinib, KMT2A rearrangement for menin
3 inhibitors.

4 Then one last example, the IGF-1
5 receptor-targeted antibodies, our response rates
6 were in the 10 percent range for Ewing sarcoma and
7 other sarcomas, and that was very similar to what
8 was observed in the clinic, so we do think that the
9 models can provide useful information. ADCs now
10 are an area that we're intensely interested in, as
11 are many companies, and we think that the
12 preclinical testing can help with the ADCs, more in
13 confirming what's expected, that the targets there
14 in rhabdomyosarcoma or osteosarcoma and the ADC is,
15 in fact, effective with whatever payload that it's
16 using. The PDX models also provide an opportunity
17 to look for surface antigen expression across a
18 wide range of models and get some data about that,
19 and you would want to confirm with clinical
20 specimens.

21 So I think we -- obviously a conflict of
22 interest here -- are supportive of preclinical

1 testing. We think that it can inform
2 prioritization decisions and go/no-go decisions,
3 that when an agent is tested preclinically and
4 doesn't show objective responses -- and I think one
5 needs to think very hard about whether that's an
6 agent that you want to bring forward for testing in
7 children -- there needs to be some really
8 compelling biological reason to negate the lack of
9 preclinical activity and the ability to induce
10 regressions. So thank you, and those are my
11 comments.

12 DR. PAPPO: Thank you, Dr. Smith.

13 Any thoughts as to who should be conducting
14 these preclinical studies? Should it be through
15 PIVOT, through ITCC, through independent
16 investigators? Should the company be getting some
17 of these PDXs and testing their own agent, and then
18 submitting this to the FDA, and say, "Look, it's
19 active?" And how do you validate that compared to
20 the standards that you have with ITCC or PIVOT, for
21 example?

22 DR. SMITH: Yes. I think the benefit of

1 centralizing testing is that you can have 100 ALL
2 models or 50 or 60 osteosarcoma models, so there's
3 a benefit in doing that. And it's not to say that
4 PIVOT and ITCC-P4 are the only places that are
5 doing testing. There are additional CROs that are
6 doing testing. There are academic researchers that
7 are doing high-quality testing. And I do believe
8 that it's hard, if not impossible, to have too much
9 preclinical testing, so we're glad to collaborate
10 with companies when there's an interest, but we
11 really encourage others to do preclinical testing
12 as well and I think enhance the robustness of the
13 results.

14 DR. PAPPO: Thank you very much, Dr. Smith.

15 Dr. Frenkl?

16 DR. FRENKL: Yes. I was wondering if
17 Dr. Smith could maybe comment from his expertise as
18 well. My understanding is that there is a dearth
19 of available clinical models that are applicable
20 for the pediatric cancers. So if those models
21 don't exist, are in vitro, or xenograft, or other
22 kinds of models enough to then take it into the

1 clinic, from your perspective?

2 DR. SMITH: Yes. I think that's probably
3 historically true, but it's not true now. The
4 ITCC-P4, as was presented, has over 400 models. I
5 think between the seven research teams that make up
6 PIVOT, we're well into the 600s or 700s. There are
7 a wide range of models. Just about any molecular
8 aberration or alteration in a pediatric cancer, the
9 vast majority of them, there are PDX models that
10 could be tested; not all, but the vast majority.

11 So I think at this point, again, Richard
12 Lock, with 100 different PDX models for ALL, you
13 can look at all the different subtypes that he has,
14 and maybe not everything, but there are many of the
15 different subtypes for which one might consider a
16 molecularly targeted treatment. They are within
17 the group of models that he has, and the same would
18 apply for the sarcoma models and the brain tumor
19 models.

20 DR. FRENKL: Great to hear. Thanks so much.

21 DR. PAPPO: Dr. Shah?

22 DR. SHAH: Great. So in terms of the first

1 part of the question, which is discuss the factors,
2 I broke it down into three key considerations. I
3 think the first would be, is the indicated disease
4 in pediatrics the same? So if you're simply trying
5 to use something like inotuzumab, which is
6 established and has preclinical data in adults and
7 has clinical testing, I don't think that you would
8 need to do nonclinical proof-of-concept studies in
9 pediatric patients. Recognizing that, of course,
10 there are some biologic differences between
11 pediatric cancers and adult cancers, I think that
12 the applicability would be there, so that would
13 help to at least establish a threshold in terms of
14 what nonclinical testing would be needed if the
15 disease is the same.

16 I think the second would be if the indicated
17 or proposed indication of the disease is similar.
18 A good example there is are you doing the testing
19 in B-cell non-Hodgkin's lymphoma, and would the
20 preclinical data that supported those adult studies
21 be comparably able to be applied in pediatric
22 lymphoma studies, and potentially be applicable to

1 a leukemia study? So I think that would help to
2 support whether the nonclinical studies that were
3 already done are sufficient for use and to see if
4 there's any unmet need or a gap that needed to be
5 filled.

6 Then lastly, in terms of factors, I think
7 the question is, is the proposed mechanism of
8 action identical to what's being proposed? Do you
9 plan to use the drug in the same way that it would
10 be intended to be used? Because that, I think,
11 would really help to establish whether additional
12 studies would be needed to account for differences
13 in the mechanism of action.

14 In terms of the degree of preclinical
15 activity, I think that probably what Dr. Smith said
16 in terms of objective response, you'd want to see
17 that there is some activity. It does become
18 challenging because there are clearly limitations,
19 but I think that could set the bar to objective
20 response.

21 DR. PAPPO: Thank you, Dr. Shah.

22 Dr. Gorlick?

1 DR. GORLICK: Richard Gorlick, MD Anderson.
2 I wanted to provide an additional comment in the
3 context of what Dr. Smith shared. I totally agree
4 with what he stated, but I wanted to add the
5 addition that one can envision in the future that
6 there would be targeted therapies that may exist
7 that require an intact immune system in order to
8 evaluate the activity.

9 A flaw of the PDX system is, obviously, it's
10 an immunocompromised animal, but there may be cases
11 where there are specific therapies that can't be
12 evaluated through preclinical systems, and I think
13 those agents may still remain relevant, and
14 alternative pathways would need to exist for those
15 kind of agents. Thank you.

16 DR. PAPPO: Thank you, Dr. Gorlick.

17 Dr. Laetsch?

18 DR. LAETSCH: I just wanted to agree with
19 both Dr. Smith and Dr. Shah and say that I think
20 this really depends on the data that's been
21 generated already in adults, as I think Dr. Shah
22 highlighted. I think the best model of a pediatric

1 patient is an adult patient if they have the same
2 tumor.

3 So if you have a histology agnostic drug
4 that's active against adults with the same
5 alteration occurring in pediatric cancer, my
6 argument would be that is sufficient data to study
7 the drug in pediatric patients without any
8 additional nonclinical studies; but then also agree
9 completely with Dr. Smith that for tumors where
10 we're talking about similar targets but different
11 potential biological effects of those targets, for
12 which the data in adults don't necessarily support
13 that there's a histology agnostic level of activity
14 of the molecularly targeted therapy, I think very
15 robust preclinical studies are really critical to
16 help with what we talked about in response to
17 question 1 in terms of prioritization of these
18 agents for studies in patients, and preserving and
19 maximizing the potential benefit for the children
20 who enroll in these trials. Thank you.

21 DR. PAPPO: Thank you.

22 So I'm going to try to summarize our

1 discussion. Overall, the panel believes that
2 preclinical testing and using the methods that we
3 currently have, including PDXs, might be a reliable
4 method for identifying potentially active agents in
5 the pediatric cancer population. We would define
6 success as robust tumor regression.

7 We also know that, for example, when you
8 give certain agents in the PDX model, sometimes
9 they mimic the same responses that you're going to
10 see. One of the examples that Dr. Malcolm Smith
11 gave was the IGF-1 inhibitor with a 10 percent
12 response rate in preclinical models and 10 percent
13 in Ewing sarcoma, for example, and rhabdomyosarcoma
14 sarcoma.

15 It is also important to start thinking about
16 how we're going to be testing newer
17 chemotherapeutics or newer molecules such as ADCs
18 and what amount of preclinical testing we're going
19 to require. It's also important to know that by
20 doing analysis of the PDXs, you can detect surface
21 antigen expression that can guide you to a new
22 potential therapeutic opportunity. We talked about

1 centralizing testing, but it is not exclusively
2 required that PIVOT or ITCC will have to do all the
3 preclinical testing for new and upcoming agents.

4 There was a lot of discussion as to what's
5 the extent of preclinical testing or the
6 proof-of-concept studies that you need to move on a
7 therapy to pediatrics, and there are three possible
8 scenarios. The first one is that there's the same
9 disease in adults and pediatrics, and there's this
10 agent that appears to be active, and you have
11 enough toxicology data that in those specific
12 events, you may not need to have continuing
13 proof-of-concept nonclinical studies, and then you
14 could have a similar indication in adults and in
15 pediatrics; for example, I would like to think like
16 a B-rhab mutant tumor. For those, you probably
17 would not need nonclinical proof of concept, but
18 then when you get to the mechanism of action,
19 that's when you should dig in a little bit deeper
20 to figure out what you're going to do further and
21 what models you're going to use.

22 Also, Dr. Gorlick brought up the issue that

1 most of the preclinical testing that we're doing is
2 in immunocompromised mice, and that in certain
3 agents, we may have to start considering doing
4 testing in mice that have intact immune systems to
5 better define the activity of some agents.

6 The final issue that was brought up by
7 Dr. Gorlick was also the AYA oncology population,
8 which is usually neglected, and I agree with him;
9 they don't belong to the adults and they don't
10 belong to the pediatrics. Perhaps in that
11 population there is no need for nonclinical studies
12 since they can tolerate doses better than
13 pediatrics and better than adults.

14 I would like to know if I missed anything or
15 if anybody wants to add anything.

16 (No response.)

17 DR. PAPPO: Alright. We're all getting a
18 little tired here, so let's keep going. We have
19 one more question.

20 We will now move to the last question, which
21 is also a discussion question. Please discuss the
22 role of pediatric clinical trial networks and

1 international collaboration in efficient
2 development of new medical products for pediatric
3 patients with cancer, including identification of
4 relevant molecular targets, specific efforts that
5 have been most valuable, and ideas for improved
6 collaboration. Additionally, please discuss
7 barriers to the conduct of international trials in
8 pediatric oncology and potential ways to address
9 these barriers.

10 If there are no comments regarding the
11 wording of this question, we will now open the
12 question for discussion.

13 (No response.)

14 DR. PAPPO: Dr. Gorlick?

15 DR. GORLICK: Richard Gorlick, MD Anderson.
16 I'm going to start off by saying this is a
17 clinically important topic. If we take rare
18 diseases and now start breaking them down into
19 molecularly defined subgroups, the sizes of the
20 population, as has been articulated previously,
21 become prohibitively small, and large
22 collaborations are necessary to make it happen.

1 I don't want to reiterate what was said by
2 so many speakers during this call. Whether the
3 barrier is the sharing of information, whether
4 differences in the rules, and whether differences
5 in the ability to share and monitor data, there are
6 a lot of issues to be overcome in order for this to
7 work more effectively. All of those things are
8 critical to address in order to move pediatric
9 oncology forward. Thank you.

10 DR. PAPPO: Thank you, Dr. Gorlick.

11 Dr. Gore?

12 DR. GORE: Yes. Thank you. Lia Gore,
13 University of Colorado, Children's Hospital of
14 Colorado. I need to agree with that, and I would
15 actually go out a little bit farther and say that
16 this is probably our most critical challenge and
17 our most important problem that we have to solve.
18 We are going to get into the N of 1 situation very
19 soon the more we molecularly define different
20 diseases in both pediatric and AYA patients, and
21 until we figure out how to cross oceans and be able
22 to do effective quick, efficient trials, we're not

1 going to get those trials done.

2 So I'm hearing from Dr. Karres, from
3 Dr. Kearns, and I know that FDA and EMA have spent
4 quite a bit of time trying to collaborate and break
5 down some of those silos. I think Dr. Kearns
6 highlighted very importantly the barriers that
7 still exist, and this is going to have to be a
8 critical area of our investment. We're going to
9 have to figure out how to get through privacy
10 rules. We're going to have to get through the
11 challenges that we have, because otherwise, we are
12 not going to be able to conduct clinical trials.
13 And the standard of the burden of proof around
14 superiority or noninferiority, this can't be done
15 by decentralized clinical trials, real-world data,
16 all of those kinds of things. We're going to have
17 to get better at this, and I think that that has to
18 be a key priority for us in the next five years;
19 otherwise, we're really in trouble.

20 DR. PAPPO: Yes, and I wanted to add also,
21 the work that Dr. Kearns is crucial for this, and I
22 really want to congratulate her again for what

1 she's doing.

2 Dr. Shah, you're next.

3 DR. SHAH: I just wanted to say, the
4 advances that have been made thus far in pediatric
5 oncology have only been through collaborative
6 efforts and networks, and we really need to take it
7 to the next stage and be able to overcome this to
8 be able to make improvements that are needed in
9 this next era of these molecularly cell- and gene
10 therapy-targeted therapies. I think that the
11 barriers were really nicely presented, and trying
12 to address those one by one really is the path
13 forward.

14 DR. PAPPO: Thank you, Dr. Shah.

15 I think I have Dr. Mody next.

16 DR. MODY: Hi. I'm Rajen Mody from the
17 University of Michigan. Thank you, Dr. Pappo. I
18 would say the role of pediatric clinical trial
19 networks and international collaboration in
20 pediatric drug development is invaluable. As
21 Dr. Shah said, all of our previous advances have
22 been done through national multi-institutional

1 trials. Especially when we are trying to do trials
2 with industry partners and specific very
3 substratified molecular subgroups, it is very hard
4 to do institutional trials. The structure that is
5 required and the cost that is required is untenable
6 for most single centers, so I would say national
7 efforts are necessary.

8 At the same time, crossing the Atlantic and
9 doing trials internationally with our European
10 collaboratives is also exceedingly important, as
11 the neuroblastoma community, and as a neuroblastoma
12 researcher, they have shown certain variances and
13 certain nuances that needs to be kept in mind. One
14 is how you define responses. Neuroblastoma is one
15 of those diseases where overall response is more
16 important than [indiscernible - 5:41:34] responses.

17 So some of those nuances are important to
18 have the same page and on both sides of the
19 Atlantic, and what is the prior therapy that
20 patients receive before coming on to trials because
21 sometimes the induction and other previous
22 therapies are different. So all those things are

1 very important before you define somebody
2 deflecting, so I think the international trials are
3 exceedingly important, but attention does need to
4 be paid for those nuances.

5 One final point is, across various countries
6 of Europe and in America, minority populations dose
7 differ and their genetics are different, so I think
8 there needs to be balance. And when we extrapolate
9 the data and responses within this subpopulation,
10 care needs to be paid and careful attention needs
11 to be paid to really understand are there any
12 racially or ethnic differences in responses. Thank
13 you. No more questions.

14 DR. PAPPO: Thank you, Dr. Mody.

15 Dr. Frenkl?

16 DR. FRENKL: Hi. Tara Frenkl, industry rep.
17 I do want to reiterate just a couple of things that
18 we talked about because I think they're so
19 important, and also Dr. Gorlick's comment that we
20 need these large collaborations in order to run
21 these sites. And I think that industry recognizes
22 that and actually really appreciates that the

1 infrastructure is being built so that we can meet
2 the requirements as well, and we want drugs to be
3 available for pediatric patients where it's
4 applicable.

5 But I think to get there -- and I think
6 Dr. Weigel was saying -- it's really going to be
7 based on that mutual trust and us sharing the
8 objective, which is to get the drug registered
9 eventually, should the data support, so it's
10 available to everyone, and then to do that, there
11 is the quality of the data, as we've discussed, and
12 that trust. Dr. Laetsch said that you're trying to
13 control the data. It's not that we're trying to
14 control it; it's just that we're trying to ensure,
15 again, the best quality so that we can actually use
16 the data in the end to make the right decision.

17 Then the second part of it is recruitment
18 timelines. When we're doing an IFT-SP [ph], we
19 have timelines that we have agreed to with the
20 agencies, and sometimes when it's done by a
21 cooperative group, the objectives I think are
22 different, and resourcing is different, and we're

1 not able to meet it, and then we're constantly
2 needing to readjust the timelines by a lot; so if
3 we can work together to somehow increase
4 recruitment and maybe use additional resources in
5 AI to help us find those patients, but to address
6 it together because it needs to be a mutual
7 objective.

8 Then the third is I think we are having
9 issues with data protection. Even if sometimes we
10 try, and we have sites that are interested that are
11 part of a not-for-profit group, they're unable to
12 actually share the data with us because we are for
13 profit and they are not for profit, and through
14 their policies, they can't share the data with us.
15 So these are things, again, that we need to
16 overcome for the common good and objective of
17 getting drugs registered for pediatric patients.
18 Thank you.

19 DR. PAPPO: Thank you very much, Dr. Frenkl.

20 Dr. Desai?

21 DR. DESAI: Hi. Ami Desai, University of
22 Chicago. I'm probably not introducing anything too

1 new, but just wanted to reiterate how critical
2 international collaboration is. And there really
3 needs to be significant efforts for data governance
4 and harmonization, but also alignment of the
5 regulatory needs on both sides. And I just wanted
6 to applaud Dr. Kearns on her presentation, not just
7 identifying the problems, but also trying to find a
8 path with certain solutions. This will be critical
9 to expedite some of our timelines as well.

10 DR. PAPPO: Thank you very much.

11 Dr. Smith?

12 DR. SMITH: Yes. Malcolm Smith, NCI. I'll
13 reiterate the importance of international trials.
14 As Dr. Kearns outlined, it's just really
15 challenging for academic researchers to have the
16 resources, to pull together the infrastructure, to
17 do this on a regular basis. It's very challenging,
18 but it is absolutely critical. And I think trying
19 to work within our individual entities to get the
20 resources to complete the task will really be
21 important in the coming year for the studies that
22 Dr. Kearns identified, and others, to be planned.

1 A second point is I would encourage us to
2 say, yes, international trials are critical, but
3 that not every trial has to be an international
4 trial. If there's a drug and we need a phase 2
5 study in neuroblastoma, it could be an
6 international trial, but the ITCC could do it
7 without participation from North America and vice
8 versa; COG could do it without participation from
9 Europe. So I hope there's not a penalty, when the
10 goal is to do a trial that can be done within one
11 hemisphere, that there's a requirement that it must
12 be done internationally.

13 The final point is just to make the point
14 that we are breaking down diseases into smaller and
15 smaller categories, and every brain cancer type
16 seems to have four or eight or more subtypes. ALL
17 now has 23 subtypes at least, and AML similarly.
18 So I think the one point about that is that doesn't
19 mean we need 23 different treatments for ALL, and
20 just because they're biologically distinct, we need
21 to keep in mind that the treatments may be very
22 similar. CD19 may be present on all of them, and

1 that's all they need.

2 It was George Sledge that I give credit to
3 here in pointing out and making the comparison that
4 every snowflake is unique, and yet they all melt;
5 and likewise, a cancer may have 20 different
6 subtypes, but 15 of them may all be treated
7 successfully with the same approach, and a smaller
8 number require different approaches. Thank you.

9 That's all.

10 DR. PAPPO: So I think you highlight a
11 couple of the points that Dr. Gore and Dr. Gorlick
12 brought up, and that is that numbers are important
13 in very rare subtypes of cancers. On the other
14 hand, as you mentioned, it's going to be very
15 important to identify those populations that could
16 potentially benefit from this ultra rare
17 intervention. For example, a MYOD mutant
18 rhabdomyosarcoma, you don't want to do a randomized
19 trial or explore a new therapeutic possibility on a
20 patient with low-risk rhabdomyosarcoma who has a
21 95 percent survival rate, so thank you for bringing
22 that up, Malcolm.

1 Dr. Raetz?

2 DR. RAETZ: I certainly agree with
3 everything that's been said and the critical
4 importance. Just a comment that I had about some
5 of the forums that bring people together
6 internationally have been really positive in those
7 that I've participated in. I think one
8 consideration that was brought up by Dr. Laetsch is
9 just the timing, and could that be a little bit
10 earlier in the trial developmental stage to maybe
11 have more harmony and more synergy in terms of
12 thinking about those things earlier on.

13 DR. PAPPO: Thank you.

14 So if I can summarize this, everybody agreed
15 that collaboration is critical for the success for
16 moving the needle forward in pediatric cancer. I
17 agree with some of the comments that were made,
18 that not all of the studies have to be
19 international, especially when it all boils down to
20 the numbers, I think. I also agree with Dr. Smith
21 that not all subsets of tumors need to be treated
22 on an individual protocol because they have a

1 unique genomic abnormality. Many of them are going
2 to respond to the same therapies. It's just those
3 outliers that have a very poor outcome that behave
4 very poorly that perhaps we should be focusing on,
5 or the ones that do extremely well in which we
6 could cut back a little bit of therapy. That's my
7 own view. If you all disagree with this at the
8 end, you can say, "No, please don't put that on the
9 minutes."

10 Another important point that was brought up
11 was recruitment timelines and how to work together
12 to get to that final path and finally breaking down
13 the barriers -- basically what Dr. Kearns is
14 doing -- is a recurrent theme, and I think
15 everybody agreed with that.

16 Another point that was brought up by
17 Dr. Mody also is that international collaboration
18 could also help identify subtle differences in
19 minorities because of the way they metabolize some
20 of the agents or because of the unique genomic
21 abnormalities that they may have. And finally, it
22 is going to be important to have mutual trust,

1 share data, and have good quality data in order to
2 move this forward. So let me know if I missed
3 anything or if anybody wants to say something
4 different.

5 Richard?

6 DR. GORLICK: Richard Gorlick, MD Anderson.
7 Sorry. I always have to start with my name. While
8 I agree with a modification that not every clinical
9 trial has to go through a large group, nor is every
10 malignancy that's a favorable prognosis
11 necessitating these large definitive studies, I
12 think, generally, in the context of this meeting,
13 unless I misunderstood it, we're talking about
14 regulatory approval and the path to FDA approval.

15 I think if you add in the caveat that the
16 file has to be robust enough to lead to FDA
17 approval, I think more often than not, that's going
18 to be a novel agent for a poor prognosis
19 malignancy, which is either if it's common, going
20 to have to be a large enough group to define
21 statistical significance, or if it's a rare enough
22 subset to accrue enough folks. I think that's

1 driving some of the sentiment towards needed
2 collaboration. I don't know if you can encompass a
3 concept of FDA approval frequently requiring
4 cooperation as a modifier.

5 DR. PAPPO: Any additional comments on that
6 from Dr. Gorlick's statement?

7 (No response.)

8 DR. PAPPO: Okay. We will now proceed with
9 the FDA closing remarks from Dr. Martha Donoghue.

10 | Closing Remarks - Martha Donoghue

11 DR. DONOGHUE: Thank you so much, Dr. Pappo.
12 I would like to extend my sincere thanks to the
13 members of the Pediatric Oncology Subcommittee of
14 the ODAC; the speakers from EMA, Dr. Karres and Dr.
15 Sheean; the speaker from Genentech-Roche,
16 Ms. Gupta; as well as to Drs. Weigel and Dr. Kearns
17 from the COG and ITCC, respectively, for their
18 time, expertise, candor, and engaging discussion
19 during this meeting. I'd like to assure all of you
20 that we at the FDA will take back what we have
21 learned and heard today, and I'll probably actually
22 relisten to the discussion again soon, and we'll

1 use the discussion to help inform our processes,
2 efforts, and future decision making.

3 I'll take just a few moments to reflect on
4 some of what I have heard and taken away from
5 today's meeting, with the note that I'm not going
6 to be able to capture everything, but so many
7 important points were made.

8 First, it appears that the overall consensus
9 is that, so far, FDARA has resulted in an increase
10 in dialogue among all stakeholders regarding
11 development of new targeted therapies in pediatric
12 patients and that there are early indicators that
13 FDARA is likely to help address the need for
14 earlier development of new targeted drugs in
15 pediatric patients with cancer, based on early
16 measures such as the number of IPSPs containing a
17 plan for pediatric studies and the increased number
18 of postmarketing requirements for conduct of
19 molecularly targeted pediatric cancer
20 investigations in the U.S.

21 We've also heard from our EMA colleagues
22 that there's been an increase in voluntary

1 pediatric investigational plans, or PIPs, for
2 molecularly targeted therapies since FDARA was
3 implemented; however, we do not yet have the full
4 picture because the implementation phase of FDARA
5 is in its infancy, or maybe in its toddler phase,
6 and it's incumbent upon FDA, with stakeholder
7 input, to continually reassess its impacts and
8 refine decision making based upon experience, and
9 the first part of this process is agreeing on which
10 metrics to assess and how to assess them.

11 Second, I heard that there's a real desire
12 and need for more information sharing both in terms
13 of information about studies that are required by
14 FDA and the progress of those studies, as well as
15 efforts by the entire community, including
16 preclinical work and planned and ongoing clinical
17 trials that are related to the development of new
18 targeted therapies in pediatric cancers. There are
19 information gaps that need continued work to fill,
20 and perhaps to borrow a term brought up by
21 Dr. Kearns in her talk, there's a need for "process
22 mapping" to better understand the best way to fill

1 these gaps.

2 There is a need for improved transparency
3 regarding molecularly targeted pediatric cancer
4 investigations required to IPSPS, as well as a
5 better understanding of trials that are being
6 conducted independent of a regulatory requirement.
7 Decision making regarding pediatric trials, which
8 drugs should be studied and in which patient
9 populations shouldn't be made in isolation, and the
10 process for this should not rest solely on any one
11 stakeholder. Industry, regulators, investigators,
12 and the advocacy community all need to be involved,
13 but a more structured process would be helpful.

14 Third, many have voiced the importance of
15 considering the approach to pediatric development
16 early, even prior to an end of phase 2 meeting
17 time frame, for the adult indication being
18 developed. And to loosely paraphrase Dr. Weigel,
19 we need to think a bit more like Einstein and think
20 of creative processes and solutions to ensure that
21 there's a more consistent approach to this,
22 including early consideration of obtaining the

1 necessary preclinical proof-of-concept data when
2 needed and pediatric formulations. I think she
3 also mentioned the importance of having
4 conversations early and often between the
5 investigator, community, pharma, and other
6 stakeholders.

7 Fourth, I also heard that although early
8 consideration should be given to conducting
9 nonclinical proof-of-concept studies early in
10 development, that toxicology studies are generally
11 not needed because the adult experience is more
12 predictive, except in unusual circumstances, and
13 that several factors should be considered when
14 deciding whether nonclinical proof of concept
15 should be conducted, including the availability of
16 data in adults, the similarity between the adult
17 and pediatric cancers proposed for a study, the
18 availability of relevant pediatric preclinical
19 models, among other factors. We've also heard that
20 proof-of-concept studies may not be necessary prior
21 to investigating a targeted drug in adolescent
22 patients, particularly if the cancer type is

1 similar to or the same as the adult cancer for
2 which the product is being developed.

3 And finally, there was a consensus regarding
4 the importance of international collaboration both
5 in terms of decision making regarding regulatory
6 requirements, as well as prioritization of which
7 drugs to study in which patient populations among
8 the entire stakeholder community. There are
9 logistical barriers that need to be addressed to
10 increase the level of international collaboration,
11 particularly with respect to promoting more
12 international clinical trials, both those run by
13 industry as well as cooperative groups.

14 The good news is that there are several
15 ongoing efforts to promote this, and in particular,
16 important work is being done by the Children's
17 Oncology Group and the ITCC to tackle and solve the
18 logistical impediments to conducting coordinated
19 studies. There are also important efforts underway
20 by EMA, FDA, and other multi-stakeholder groups
21 such as ACCELERATE. Dr. Smith made a very
22 important point that not all trials need to be

1 international and that EMA and FDA need to be
2 receptive to the use of data that may not be
3 acquired in Europe or U.S., respectively.

4 I'd again like to thank everyone who
5 participated in and logged into this meeting and to
6 all of the FDA staff who contributed to the
7 organization, content, and smooth conduct of this
8 meeting. And I'd like to give a shout out to the
9 advisory committee management team who helped make
10 this whole process go very smoothly. I'd also like
11 to especially thank Dr. Pappo for chairing this
12 meeting and guiding the discussion so expertly, and
13 keeping us on track.

14 My final thought is I'd like to emphasize
15 that the discussion won't end here. I'd like to
16 really emphasize that we at FDA have an open-door
17 policy, so if you have suggestions or have other
18 ideas about ways to improve our processes or forums
19 in which we could have additional discussions to
20 discuss potential workstreams to move things
21 forward, we are very open to that and encourage you
22 to reach out to us. And with that, I will turn it

1 back to you, Dr. Pappo.

2 DR. PAPPO: Thank you very much.

3 Dr. Donoghue.

4 Before we adjourn, are there any last
5 comments from the FDA?

6 (No response.)

7 **Adjournment**

8 DR. PAPPO: If not, I would like to echo Dr.
9 Donoghue's comments. I would like to thank all of
10 our presenters. I would like to thank all of our
11 panel members. I would like to specifically thank
12 Jessica and Yvette for guiding me through this
13 process so I wouldn't look too bad in front of you,
14 and I also would like to thank all of the FDA staff
15 AV for making this conference -- I'm sorry, this
16 meeting, I'm very tired; you have to listen very
17 carefully for 5 and a half hours -- this meeting a
18 success. We will now adjourn the meeting, and
19 thank you very much, and hope to see some of you at
20 ASCO. Thank you.

21 (Whereupon, at 3:31 p.m., the meeting was
22 adjourned.)