

Multidrug-resistant Gram-negative Bacilli - Epidemiology & Decolonization Considerations

Maroya Walters, PhD, ScM
Centers for Disease Control and Prevention

Drug Development Considerations for the Prevention of Healthcare-Associated
Infections—Virtual Public Workshop
August 30, 2022

No Financial Disclosures

The findings and conclusions in this presentation are those of the author and do not necessarily represent the official position of the Centers for Disease Control and Prevention

Overview

- Epidemiology
- Asymptomatic colonization
 - Risk factors and duration
 - Risk of infection and role in transmission
- Decolonization and pathogen reduction approaches

Drug development needs for MDR-gram-negative bacteria prevention:

- Novel approaches for decolonization and pathogen reduction
 - Of the gastrointestinal tract
 - Of other body sites (e.g., respiratory tract, wounds) in certain high-risk populations
- Systematic evaluation of these approaches to understand their impact on colonization, infection, and transmission
 - Including dosing, duration, pre-treatments, and target populations
 - Informed end points for defining and measuring decolonization
 - Evaluation with control groups, especially randomized controlled trials

THE PROBLEM

Gram-negative bacilli

- Cause diverse array of infections including pneumonia, bloodstream, urinary tract, wounds and surgical sites
- Responsible for >30% of healthcare-associated infections
 - Most infections caused by Enterobacteriales and the lactose non-fermenters, *Pseudomonas* spp. and *Acinetobacter* spp.

Gram stain of gram-negative bacilli under microscope

Healthcare-associated MDR gram-negative bacilli: Urgent and serious threats

**Carbapenem-
Resistant
Enterobacteriales (CRE)**

**Extended-Spectrum β-
Lactamase producing
Enterobacteriales (ESBL)**

**Multidrug-Resistant
Pseudomonas
*aeruginosa***

**Carbapenem-Resistant
Acinetobacter (CRA)**

Enteric Organisms

- Enterobacteriales has >70 genera, including
 - *Klebsiella* spp.
 - *Escherichia coli*
 - *Enterobacter cloacae*
 - *Citrobacter* spp.
 - *Proteus mirabilis*

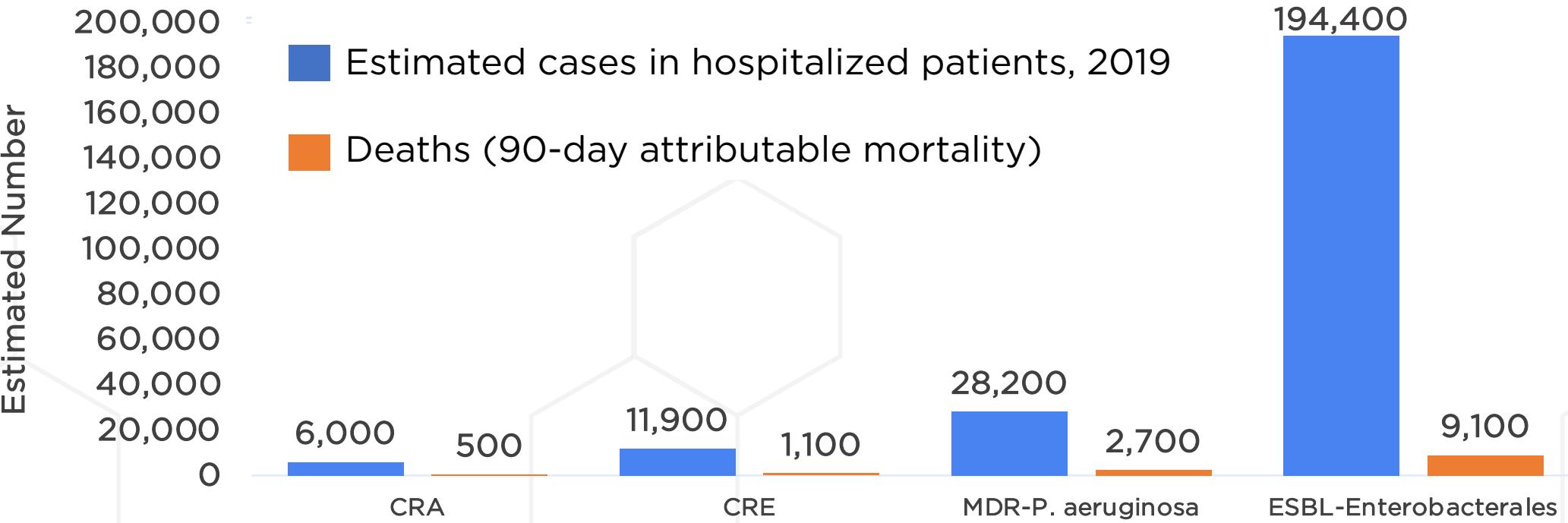
Non-Enteric Organisms

Common features of healthcare-associated MDR-gram-negative bacilli threats

**Carbapenem-
Resistant
Enterobacteriales (CRE)**

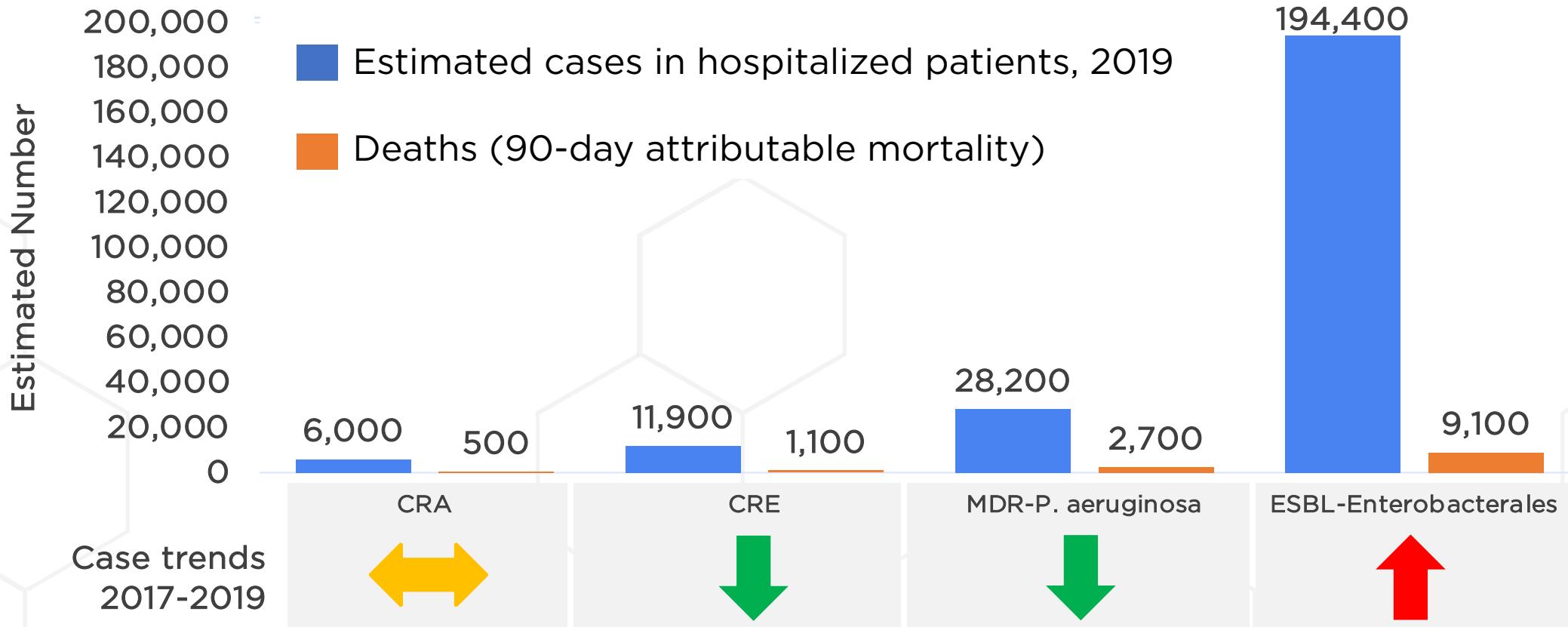
**Extended-Spectrum β-
Lactamase producing
Enterobacteriales (ESBL)**

**Multidrug-Resistant
Pseudomonas
*aeruginosa***

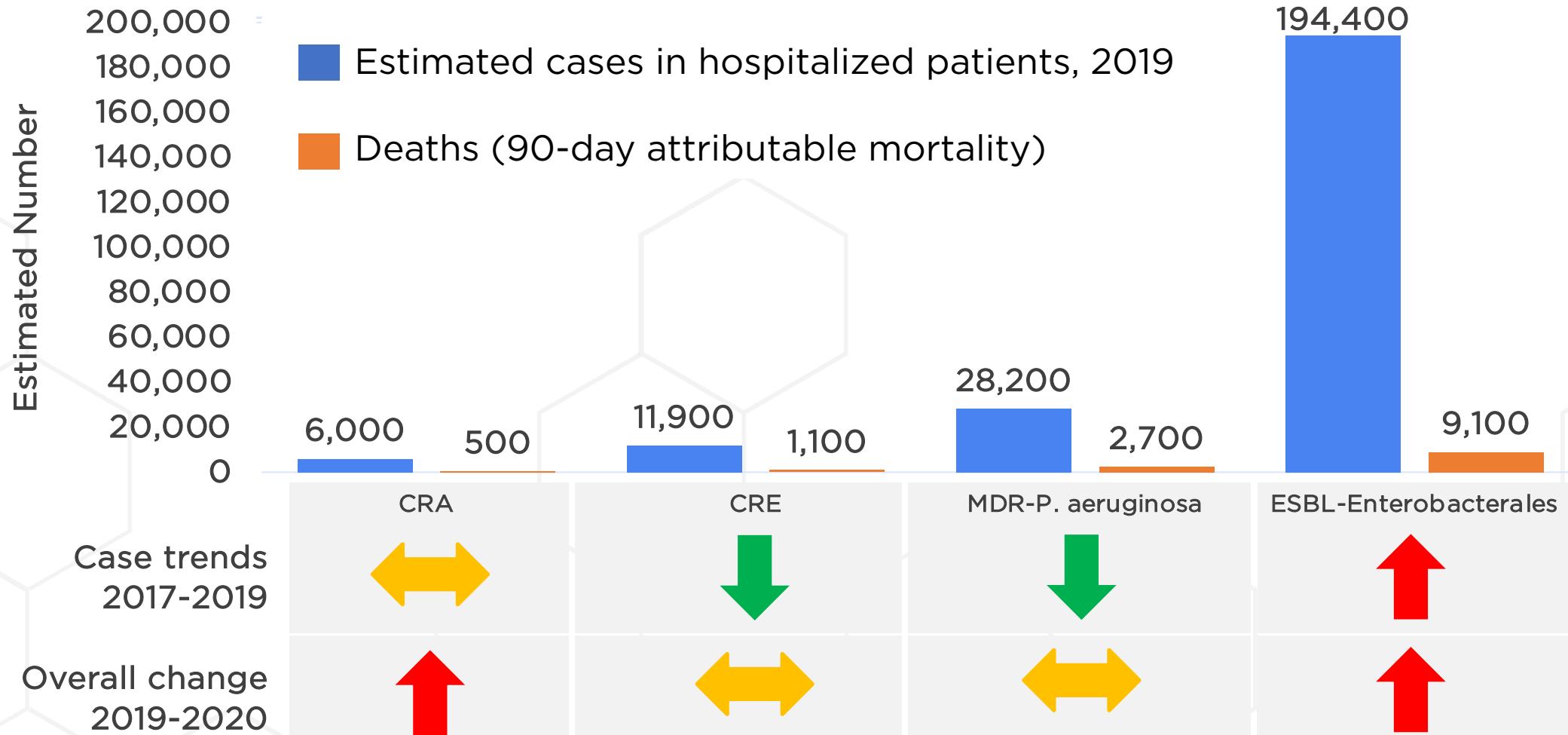

**Carbapenem-Resistant
Acinetobacter (CRA)**

Enteric Organisms

- Opportunistic pathogens that can colonize multiple mucosal surfaces
- Cause a variety of infections, most commonly urinary tract, wound, and bloodstream infections, and pneumonia
- In healthcare settings, transmitted via direct and indirect contact with infected or colonized individuals or contaminated healthcare environment


Non-Enteric Organisms

Estimated cases and deaths in hospitalized patients, 2019


CRA: Carbapenem-resistant *Acinetobacter*; CRE: Carbapenem-resistant Enterobacteriales (*E. coli*, *Klebsiella* spp., *Enterobacter* spp.); MDR: multidrug-resistant; ESBL: Extended-spectrum β -lactamase-producing Enterobacteriales (*E. coli* and *Klebsiella* spp. excluding *K. aerogenes*)
<https://www.cdc.gov/drugresistance/pdf/covid19-impact-report-508.pdf>

Estimated cases and deaths in hospitalized patients, 2019 (case trends)

CRA: Carbapenem-resistant *Acinetobacter*; CRE: Carbapenem-resistant Enterobacteriales (*E. coli*, *Klebsiella* spp., *Enterobacter* spp.); MDR: multidrug-resistant; ESBL: Extended-spectrum β -lactamase-producing Enterobacteriaceae (*E. coli* and *Klebsiella* spp. excluding *K. aerogenes*)
<https://www.cdc.gov/drugresistance/pdf/covid19-impact-report-508.pdf>

Estimated cases and deaths in hospitalized patients, 2019 (overall)

Epidemiology of ESBL-Enterobacteriales and CRE infections differs

ESBL

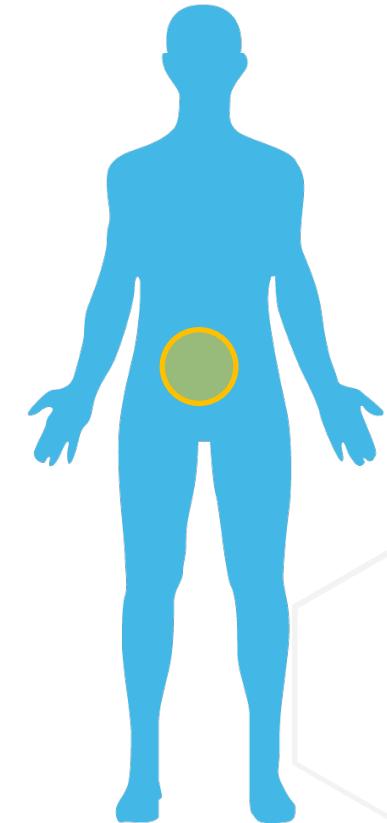
- Endemic
- ~Half occur in people who have not had recent inpatient exposures or invasive procedures
- Risk factors in community include recent antibiotic therapy, international travel
 - Food and water are increasingly recognized reservoirs in community

CRE

- Emerging
- Primarily occur in patients with extensive healthcare exposures
 - Risk factors for acquisition include indwelling devices, severe underlying illness, long-term care facility admission, antibiotic exposure
- Patient-to-patient transmission accounts for majority of cases
 - Wastewater plumbing recognized reservoir in healthcare facilities

Epidemiology of MDR-*P. aeruginosa* and *A. baumannii*

- **Biofilm formation important attribute**
 - Colonization of indwelling medical devices
 - Persistent wound and respiratory tract colonization
 - Can contribute to persistent contamination of shared medical equipment
- **Risk factors:** antibiotic exposure, mechanical ventilation, indwelling medical devices, longer duration of hospitalization
- **Occur almost exclusively in patients with substantial healthcare exposure**
 - Including patients with chronic underlying conditions resulting in dysbiosis, such as cystic fibrosis
- **Very limited treatment options**, particularly for carbapenem-resistant *A. baumannii*



WHAT WE KNOW About Gram-Negative Colonization

Asymptomatic colonization with MDR-Enterobacterales

- **Gastrointestinal tract is primary colonization site**
- **Duration of colonization is prolonged**, exact estimates vary
 - 35% remained colonized with ESBL-Enterobacterales/CRE at 1 year¹
 - Median time to decolonization: 144 days², 295 days³, 265 days⁴
 - Community dwellers decolonize at higher rates and more rapidly¹
 - Some strains associated with increased duration of colonization
 - ESBL-producing ST 131 E. coli

¹Bar-Yoseph H, et al. J Antimicrob Chemother. 2016;71(10):2729-2739.

²O'Fallon, E, et al. Clinical Infectious Diseases. 2009;48(10):1375-1381.

³Zimmerman, FS, et al. American Journal of Infection Control. 2009;41(3):190-194.

⁴Haverkate, MR, et al. Open forum infectious diseases. 2016;3(4):ofw178.

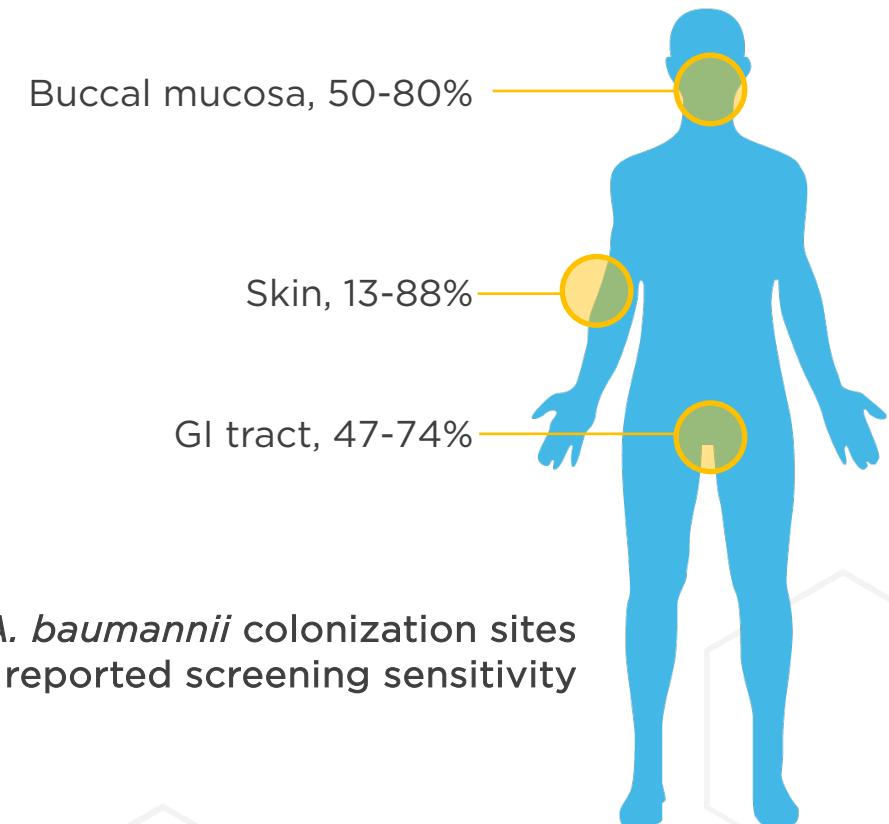
⁵Overdevest, I, et al. Euro Surveill. 2016;21(42):pii=30376.

Risk of infection after colonization with MDR-Enterobacterales

- **Colonization associated with higher risk of infection**
 - Colonized ICU patients: 2-10-fold increased risk of CRE infection^{1,2}
 - 95% of ESBL-Enterobacterales infections in ICU patients occur in those with history of colonization³
- **CRE risk of infection among colonized, hospitalized patients**
 - Estimated 16.5% in meta-analysis (typical range: 7.6%-44%)⁴
 - Mortality in patients with infection: 30-75%
 - Higher abundance of KPC-*K. pneumoniae* in gut associated with increased risk of KPC-*K. pneumoniae* bacteremia⁵

¹McConville TH, et al. PLoS ONE. 2017;12(10):e0186195.

²Dickstein, Y, et al. Journal of Hospital Infection. 2016;94(1):54-59.


³Detsis, M, et al. Critical Care Medicine. 2017;45(4):705-714.

⁴Tischendorf, J, et al. American Journal of Infection Control. 2016; 44(5):539-543

⁵Shimasaki T, et al. Clin Infect Dis. 2019;68(12):2053-2059.

Asymptomatic colonization with MDR-*P. aeruginosa* or *A. baumannii*

- **No gold standard screening site**
 - Colonize skin, upper and lower respiratory tract, wounds, and digestive tract
- **Prolonged carriage, estimates vary**
 - Carbapenem-resistant *A. baumannii*: 17% colonized after ≥ 6 months
 - Carbapenem-resistant *P. aeruginosa*: median persistence of 42 days in hospitalized kidney transplant patients

Nutman, A, et. al. Clinical Microbiology and Infection. 2016;22 949.e5e949.e7
Nutman A, et al. Infection Control & Hospital Epidemiology. 2020;41: 965-967.
Doi Y, et al.. J Clin Microbiol. 2011;49:154e8.
Freire, MP, et al. Journal of Hospital Infection. 2021;115:83-92.
Marchaim, D, et. al. Journal of Clinical Microbiology. 2007;45:1551-1555.

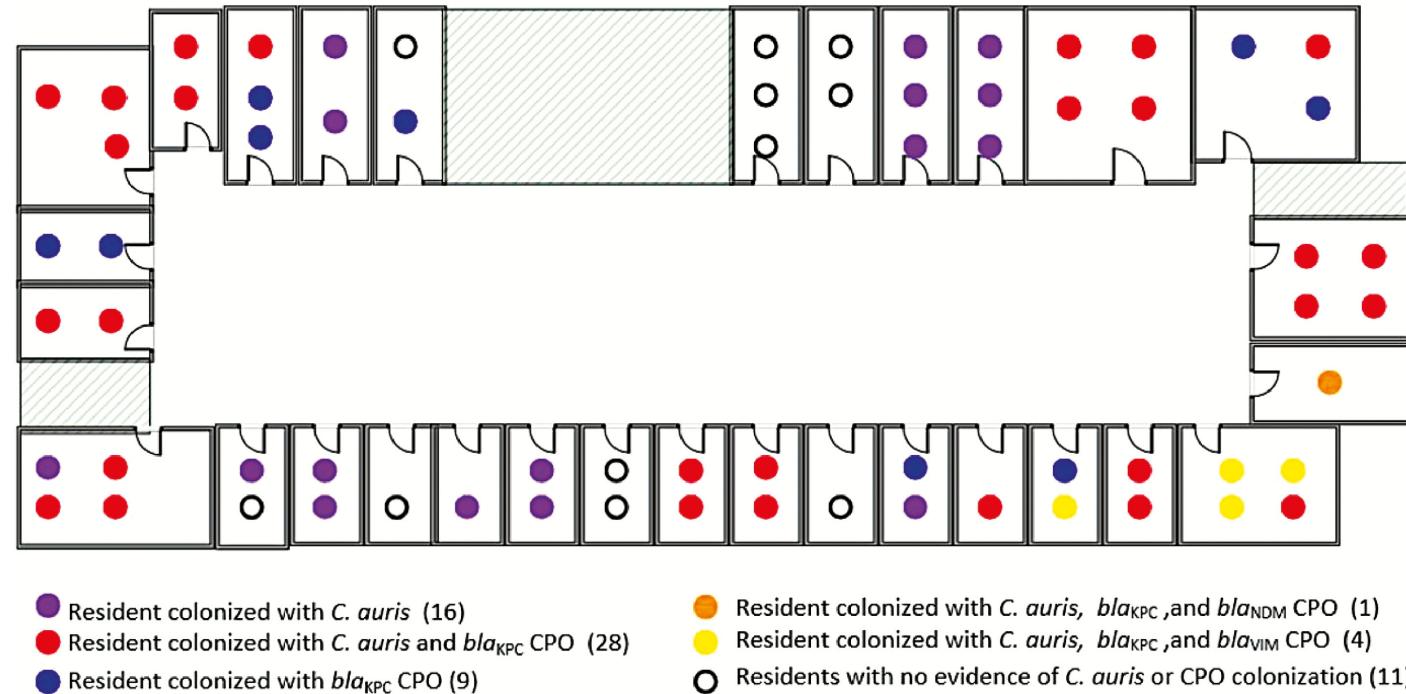
Risk of infection after colonization with MDR-*P. aeruginosa* or *A. baumannii*

- Colonization precedes infection with same strains
 - Patients with CR-*A. baumannii* bloodstream infections colonized with same strain in gut¹
 - Among patients colonized with *P. aeruginosa* at ICU admission
 - 23%²-43%³ developed infection during their hospitalization
 - Risk of clinical culture >6-times higher than those not colonized²

¹Thom, K, et al. American Journal of Infection Control. 2010;38(9):751-753.
²Harris, A, et al. Infection Control & Hospital Epidemiology. 2016;37(5):544-548.
³Hoang S, et al. PLoS ONE. 2018;13(3):e0193300.

Transmission from colonized individuals

- Risk of acquisition increases with higher colonization prevalence, even when multiple interventions¹ in place
 - Long-term acute care hospitals: 1% increase in colonization pressure associated with 2% increase in acquisition risk for KPC-*K. pneumoniae*



¹Interventions:

- active surveillance,
- daily chlorhexidine bathing,
- contact isolation and geographic separation of KPC-carriers,
- healthcare personnel education

Transmission from colonized individuals (continued)

- High-acuity, long-term care settings associated with high prevalence of patients colonized with ≥ 1 resistant gram-negative

Candida auris, carbapenemase-producing-CRE, and carbapenemase-producing-*P. aeruginosa* colonization among residents at a ventilator-capable skilled nursing facility

Addressing MDR-Enterobacterales colonization

Approaches	Findings
Skin antiseptics	<ul style="list-style-type: none">CHG bathing reduces skin concentrations of CRE,¹ may reduce CRA skin burden²Higher CHG MICs for CRE than for gram-positive bacteria
Non-absorbable oral antibiotics for selective digestive decontamination	<ul style="list-style-type: none">Multiple RCTs: SDD reduced GI carriage rate of ESBLs, CRE, and CRAB during high-risk periods²Temporary effectRisk of increased resistance
Probiotics	<ul style="list-style-type: none">In 2 RCTs probiotic administration did not alter MDR-Enterobacterales acquisition or loss^{3,4}
Fecal microbiota transplant	<ul style="list-style-type: none">Case studies and uncontrolled studiesMeta-analysis of 3 studies estimated 46% (95% CI: 20%-74%) patients decolonized antibiotic resistant organisms 1-month post-FMT⁵
Bacteriophage therapy	<ul style="list-style-type: none">Case reports of successful treatment of <i>Acinetobacter</i>, <i>P. aeruginosa</i>, and Enterobacterales infections at multiple anatomic sites, including CF patient populations⁶

¹Lin, M.Y. Infection Control & Hospital Epidemiology. 2014;35(04):440-442; ²Tacconelli, E, et al., Clinical Microbiology and Infection. 2019; 25:807-817;.

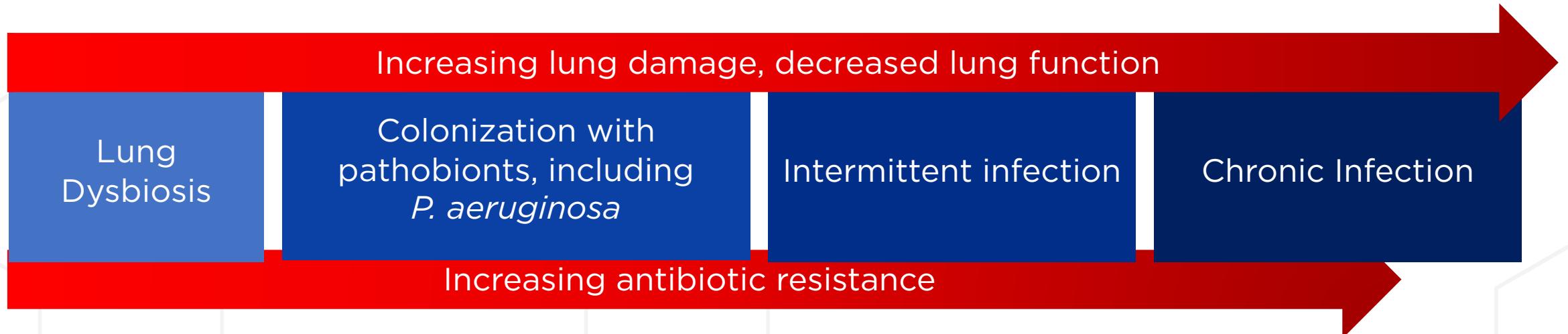
³Kwon, J, et al. Infection Control & Hospital Epidemiology. 2015;36(12):1451-1454.; ⁴Rauseo, A, et al. Infection Control & Hospital Epidemiology. 2022;43:167-173.;

⁵Tavoukjian, V, Journal of Hospital Infection. 2019;102:174e188.; ⁶Abedon, ST, et al., Pharmaceuticals 2021, 14, 1157.

WHAT WE NEED

Summary of MDR-gram-negative bacilli

- **Highly antibiotic resistant organisms** with limited treatment options
- **Colonization increases risk of infection**, transmission, opportunities to develop new, higher risk resistant strains, and potential for healthcare pathogens to move into the community
- Current methods to prevent transmission can **slow but do not stop spread** of these organisms
- **MDR-GNB decolonization can positively impact patient outcomes and public health** by reducing infections, days under infection control isolation, and emergence of new strains that are more virulent or more transmissible
 - **Currently no FDA-approved decolonization agents**


Critical Needs

- **Novel approaches for decolonization and pathogen reduction**
- **Systematic evaluation of decolonization approaches**
 - Including dosing, duration, pre-treatments, and target populations
 - Informed end points for defining and measuring decolonization
 - Evaluation with control groups, especially randomized controlled trials
 - Inform impact on colonization, infection, and transmission of clinically relevant multidrug-resistant gram-negative bacilli

Supplementary Slides

P. aeruginosa colonization in Cystic Fibrosis patients

- 90% of deaths in CF patients are attributed to pulmonary dysfunction directly associated with chronic infection

