Evaluating Minimal Residual Disease as an Intermediate Clinical Endpoint for Multiple Myeloma: The EVIDENCE Meta-Analysis

PIND 137517: ODAC Meeting 12 Apr 24

Lead Principal Investigator
C. Ola Landgren, M.D., Ph.D.
Professor of Medicine
Chief, Division of Myeloma, Department of Medicine
Director, Sylvester Myeloma Institute
Co-Leader, Translational and Clinical Oncology Program
Paul J. DiMare Endowed Chair in Immunotherapy
Sylvester Comprehensive Cancer Center
University of Miami

Lead Study Statistician
Sean Devlin, Ph.D.
Associate Attending Biostatistician
Department of Biostatistics
Memorial Sloan Kettering Cancer Center
Study Leadership

C. Ola Landgren, M.D., Ph.D
Lead Principal Investigator
Professor, Medicine

Expertise: Multiple Myeloma, Early Drug Development, Biomarker Development, MRD Assays

Sean Devlin, Ph.D
Lead Study Statistician
Associate Attending, Biostatistics

Expertise: Clinical Trial Design, Evaluation of Prognostic Models
Evaluating Minimal Residual Disease as an Intermediate Clinical Endpoint for Multiple Myeloma: The EVIDENCE Meta-Analysis
Focus for Today

• For multiple myeloma, no established curative therapy is yet available

• The most effective treatment is in the first line

• With current endpoints (PFS and OS), studies for patients with newly diagnosed multiple myeloma are taking a long time to mature. **New effective therapies are unavailable to patients for more than 10 years, while waiting for studies to mature**

Can MRD serve as an objective and reliable early endpoint for accelerated approval in multiple myeloma, to facilitate patients’ access to new drugs?
History of This MRD Initiative

NCI-NHLBI-FDA Interagency Myeloma MRD Initiative started

- Roundtable on MRD in Myeloma at FDA¹
- PIN137517 filed; academic leadership partnered with pharma companies and academia
- Start of transfer of dataset from pharma and academia partners
- Submission of results and discussion with the FDA
- Statistical Analysis Plan approved by the FDA
- Development of SAP in collaboration with FDA
- Launch of “Annual MRD in Myeloma” meeting, incl FDA participation
- ODAC meeting April 12, 2024

Multiple Myeloma, Unmet Medical Need, and Role of MRD

C. Ola Landgren, M.D., Ph.D
Lead Principal Investigator
Professor, Medicine

Expertise: Multiple Myeloma, Early Drug Development, Biomarker Development, MRD Assays
Multiple Myeloma Background

- In the U.S. more than 35,700 new multiple myeloma cases are diagnosed annually; over 170,000 individuals are living with the disease
- Blacks have a 2-fold higher incidence of multiple myeloma, and ~10 years earlier age of onset (compared to Caucasians)
- New therapeutic approaches have resulted in substantial improvements in PFS for patients with newly diagnosed and relapsed/refractory multiple myeloma
- Despite numerous new drug approvals in recent years, there is no established curative therapy, reflected in over 12,500 deaths in the U.S. in 2023
There remains a significant and critical unmet need for new therapeutic options to better control the disease, provide deep and sustained responses, safely deliver long-term clinical benefits, and to seek curative treatments.
Large Numbers of Patients are Lost at Each Line

Discontinuation with disease progression, toxicities, and death

15% to 35% of patients are lost at each line

The most effective treatment happens in the first line of therapy

- Currently, clinical trials in newly diagnosed multiple myeloma use PFS as the endpoint to demonstrate clinical benefit of a new treatment regimen for full approval.

- FDA decision to endorse PFS as a regulatory endpoint has facilitated the development of several new, effective multiple myeloma drugs over the past 15 years, and the success is reflected in the improvement of PFS rates and quality of life for patients over this time.
Current Multiple Myeloma Drug Development Dilemma

• Demonstrating a treatment effect on PFS entails waiting for enough PFS events to occur

• Based on PFS results in recent clinical trials, after all patients have been enrolled, comparative studies may now require over 8 years to show a statistically significant effect of a new therapy
Many Years to Show Significant Effect of New Therapy on PFS

Experimental arm

Control arm

Recruitment and enrollment

Randomization

At least 2 years of recruitment and enrollment

8 or more years to show statistically significant effect of new therapy on PFS

© Ola Landgren, ODAC April 12, 2024
FDA Initiatives to Help Multiple Myeloma Drug Development

- **Implementation of Accelerated Approval pathway** whereby approval may be granted based on intermediate endpoints reasonably likely to predict clinical benefit and can be measured earlier than disease progression or death.

- **Launching of Project FrontRunner** to encourage development of treatments that may benefit patients in an earlier stage of their disease, rather than the usual sequential approach of first seeking approval for patients in the relapsed/refractory setting who have received numerous prior lines of therapy.

- For multiple myeloma, overall response rate (ORR) has been identified as an intermediate endpoint reasonably likely to predict clinical benefit and the basis for accelerated approval. However, in newly diagnosed multiple myeloma ORR is challenging to use as an endpoint.
Treatment Responses in Newly Diagnosed Multiple Myeloma

Abbreviations:
- VAD: vincristine, doxorubicin, dexamethasone
- Rd: lenalidomide, dexamethasone
- CyBorD: cyclophosphamide, bortezomib, dexamethasone
- RVd: bortezomib, lenalidomide, dexamethasone
- D-RVd: daratumumab, bortezomib, lenalidomide, dexamethasone

Graph:*
- ORR
- \geqVGPR
- MRD negative (10^{-5})

Percent

© Ola Landgren, ODAC April 12, 2024
Multiple Myeloma Drug Development: Current Needs

- To accelerate the availability of new and effective treatments for patients with multiple myeloma, an objective and reliably measured early endpoint that is reasonably likely to predict long-term outcomes and clinical benefit is urgently needed.

- Several studies have demonstrated that minimal residual disease (MRD) negativity is associated with improved PFS and suggest that depth of response, as demonstrated by MRD negativity, may potentially be used to reliably predict both PFS and OS in patients with multiple myeloma.

- MRD is a measure of the number of multiple myeloma cells in the patient’s bone marrow, and it is often used in patients with complete response (CR) to further quantify depth of response to treatment beyond CR. MRD negativity indicates that the MRD measurement is below a given threshold.
In January 2020, FDA published industry guidance on regulatory considerations for use of MRD in development of drug and biologic products for treatment.

The final FDA guidance described two potential uses of MRD: as a validated surrogate endpoint for traditional approval, or as a surrogate endpoint reasonably likely to predict clinical benefit for accelerated approval.

In both cases, the guidance explained that the strength of evidence required for a surrogate endpoint is:

A. Based on the biological plausibility of the relationship
B. Demonstration of the prognostic value of the surrogate endpoint for the clinical outcome, and
C. Evidence from clinical trials that treatment effects on the surrogate endpoint correspond to effects on the long-term clinical outcome.
Design of Meta-Analysis Based on FDA Guidance

• We were motivated to design and conduct an analysis based on FDA guidance for a meta-analysis of MRD as a clinical endpoint and potential basis for accelerated approval, with the aim to assess the prognostic value of bone marrow MRD negativity and prediction of the treatment effects for PFS and OS in clinical trials of patients with newly diagnosed multiple myeloma.

• Our results support the consideration of MRD as an early clinical endpoint reasonably likely to predict clinical benefit in multiple myeloma that may be used to support accelerated approval and thereby expedite approval and adoption of novel therapeutic agents for treatment of patients with newly diagnosed multiple myeloma.
Evaluating Minimal Residual Disease as an Intermediate Clinical Endpoint for Multiple Myeloma: The EVIDENCE Meta-Analysis

C. Ola Landgren, M.D., Ph.D1 & Sean M. Devlin, Ph.D2

and pharma companies and academia

1University of Miami, Miami, FL; 2Memorial Sloan Kettering Cancer Center, New York, NY
Approaches and Considerations Regarding Study Design

<table>
<thead>
<tr>
<th>Variable</th>
<th>EVIDENCE Study (Landgren/Devlin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient population</td>
<td>Newly diagnosed multiple myeloma</td>
</tr>
<tr>
<td>Time-point to evaluate MRD status</td>
<td>Driven by available datasets*</td>
</tr>
<tr>
<td>Patients in CR w/o MRD evaluation</td>
<td>ITT approach MRD+</td>
</tr>
<tr>
<td>Sensitivity cut-off for MRD assays</td>
<td>10^{-5} or better</td>
</tr>
</tbody>
</table>

A pre-specified time point (window) jointly agreed upon by lead principal investigator, lead study statistician, collaborating agencies, and the FDA before the meta-analysis: 12 months with a window of ± 3 months for an MRD assessment to have taken place
The EVIDENCE Study: EVAluating mlnimal residual DiseasE as an iNtermediate Clinical Endpoint for Multiple Myeloma

Patient-level data from randomized, controlled clinical trials that met the following criteria:

A. Phase 2 or 3 randomized, controlled clinical trials that enrolled patients with newly diagnosed multiple myeloma (transplant eligible or transplant-ineligible)

B. Performed validated MRD assays by either NGS and/or MFC in accordance with guidelines from the FDA, National Cancer Institute, and IMWG, as well as institutional standards of care for the treatment of patients with multiple myeloma
 - NGS analyses were conducted using the FDA-cleared Adaptive clonoSEQ 2.0 diagnostic test
 - MFC analyses were conducted using a multicolor method, with a sensitivity of 10^{-5} or better

C. MRD negativity was specified as a primary, secondary, or exploratory endpoint in the trial protocol

D. Had a median follow-up of at least 6 months following the end of the time chosen to be the a priori defined time point of 12 months after randomization for the assessment of MRD negativity, determined by a Kaplan-Meier estimate of the censoring distribution
Primary Objectives of Our Study

• To evaluate whether MRD negativity while in a CR at an *a priori* defined time point* is a reasonably likely endpoint for clinical benefit as measured by PFS in newly diagnosed, transplant-eligible patients with multiple myeloma

• To evaluate whether MRD negativity while in a CR at an *a priori* defined time point* is a reasonably likely endpoint for clinical benefit as measured by PFS in newly diagnosed, transplant-ineligible patients with multiple myeloma

Jointly agreed upon by lead principal investigator, lead study statistician, collaborating agencies, and the FDA before the meta-analysis: 12 months with a window of ± 3 months for an MRD assessment to have taken place
Key Secondary Objectives of Our Study

- To evaluate whether MRD negativity at an *a priori* defined time point* is a reasonably likely endpoint for clinical benefit as measured by PFS in patients with NDMM, regardless of transplant eligibility (i.e., combined population of transplant-eligible and transplant-ineligible)

- To evaluate whether MRD negativity is reasonably likely to predict clinical benefit as measured by OS

Jointly agreed upon by lead principal investigator, lead study statistician, collaborating agencies, and the FDA before the meta-analysis: 12 months with a window of ± 3 months for an MRD assessment to have taken place
Data, Methodology, and Results

Sean Devlin, Ph.D
Lead Study Statistician
Associate Attending, Biostatistics

Expertise: Clinical Trial Design, Evaluation of Prognostic Models
Data

16 high-quality datasets were identified with MRD data from assays, which were validated to a sensitivity level of at least 10^{-5}

- **NDMM** (5130 subjects randomized)
- **RRMM** (2948 subjects randomized)

5 studies excluded
- NDMM: 1 study excluded due to >20% of subjects being assigned a value of missing
- RRMM: 4 studies excluded due to <10 subjects MRD- or MRD- observed only in one arm

7 NDMM: Eight 2-arm comparisons (4907 subjects)
- **TE**: Three 2-arm comparisons (1686 subjects)
- **TIE**: Five 2-arm comparisons (3221 subjects)

RRMM: Four 2-arm comparisons (1835 subjects)

Current analysis: newly diagnosed multiple myeloma

Clinical trial data was provided by Janssen, Sanofi, Amgen, Takeda, AbbVie, Heidelberg University Hospital, and Paracelsus Medical University
Methodology

The analytic framework for evaluating MRD as a reasonably likely endpoint for clinical benefit followed FDA’s 2020 guidance for evaluating MRD using a meta-analysis:

Trial-Level Association
- Across randomized trials, is the treatment effect on the MRD endpoint correlated with the treatment effect on the long-term endpoint(s)?

Individual-Level Association
- Is the attainment of MRD negativity prognostic for the long-term endpoint(s)?
Methodology: Trial-Level Association

1. R^2_{WLS}: separately estimate the treatment effect on the MRD and on the long-term endpoint using logistic and proportional hazard regression within each trial. Using weighted least squares, estimate the correlation between the log odds ratio and log hazard ratio across all studies. Weights are based on each study’s sample size or the standard error estimates for the log odds ratio treatment effect.

2. R^2_{Copula}: a bivariate Placket copula estimates the treatment effect on MRD and the long-term endpoint while accounting for patient-level correlation. The methodology was developed by Burzykowski, Molenberghs, and Buyse (2004).
 - Widely used in oncology when estimating a binary or ordinal surrogate endpoint, e.g., Burzykowski et al. (2008); Halabi et al. (2013); Shi et al. (2017); Shi et al. (2018); Blumenthal et al. (2015); Dixon et al. (2022)
Methodology: Individual-Level Association

1. The association parameter for the Plackett copula corresponds to a global odds ratio, which is interpreted as the ratio of the odds of the long-term endpoint’s being greater than a fixed time point (e.g., 4 years) for MRD-negative patients compared to MRD-positive patients. Example of calculation and interpretation:
 • Probability that an MRD-negative patient has PFS >4 years: 75% (odds 3:1)
 • Probability that an MRD-positive patient has PFS >4 years: 33% (odds 0.5:1)
 • Odds ratio: 6 (=3/0.5)

2. Supplementary analyses examined the association between MRD status at 12 months and subsequent PFS among the patients who were alive and progression-free at the landmark time (12-month landmark) to quantify, with the commonly used hazard ratio, the PFS in MRD-negative patients vs PFS in MRD-positive patients
Methodology: Approach

• The analysis followed the intent-to-treat (ITT) principle; all randomized patients were included

• Patients with missing MRD evaluations were considered as not achieving an MRD negative response (i.e., classified as MRD+)

• Primary analysis only included studies with <20% missing a 12-month (± 3) MRD evaluation
Individual Patients’ MRD Testing: Classifications of MRD

MRD positive

Randomization

12 ± 3 months

CR

MRD neg

POD

No MRD testing

Randomization

12 ± 3 months

CR

MRD neg

POD

MRD negative

Randomization

12 ± 3 months

CR

MRD neg

POD

MRD positive

Randomization

12 ± 3 months

CR

No MRD testing

POD

MRD positive
Individual Patients’ MRD Testing: Classifications of MRD (cont.)

- Randomization
 - VGPR
 - MRD neg
 - 12 ± 3 months
 - CR
 - POD
 - POD
- Randomization
 - POD
 - MRD positive
 - 12 ± 3 months
 - MRD positive
Results: Individual-Level Association

Copula: MRD and progression-free survival

<table>
<thead>
<tr>
<th>Population</th>
<th>Total Sample Size</th>
<th>Copula Global Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All newly diagnosed multiple myeloma patients (NDMM)</td>
<td>4907</td>
<td>4.72 (3.53-5.90)</td>
</tr>
<tr>
<td>Transplant eligible NDMM patients</td>
<td>1686</td>
<td>2.45 (1.40-3.51)</td>
</tr>
<tr>
<td>Transplant ineligible NDMM patients</td>
<td>3221</td>
<td>6.15 (4.27-8.03)</td>
</tr>
</tbody>
</table>
Results: Individual-Level Association

Copula: MRD and overall survival

<table>
<thead>
<tr>
<th>Population</th>
<th>Total Sample Size</th>
<th>Copula Global Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All newly diagnosed multiple myeloma patients (NDMM)</td>
<td>4907</td>
<td>4.02 (2.57-5.46)</td>
</tr>
<tr>
<td>Transplant eligible NDMM patients</td>
<td>1686</td>
<td>3.78 (0.78-6.78)</td>
</tr>
<tr>
<td>Transplant ineligible NDMM patients</td>
<td>3221</td>
<td>4.08 (2.44-5.72)</td>
</tr>
</tbody>
</table>
Results: Individual-Level Association

Association between MRD at 12 months and long-term endpoints

Progression-free survival

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>MRD-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>486</td>
<td>37</td>
</tr>
<tr>
<td>1.3</td>
<td>855</td>
<td>182</td>
</tr>
<tr>
<td>1.2</td>
<td>445</td>
<td>21</td>
</tr>
<tr>
<td>1.4</td>
<td>576</td>
<td>45</td>
</tr>
<tr>
<td>1.5</td>
<td>538</td>
<td>79</td>
</tr>
<tr>
<td>1.6</td>
<td>564</td>
<td>62</td>
</tr>
<tr>
<td>1.7</td>
<td>155</td>
<td>48</td>
</tr>
</tbody>
</table>

Meta Analysis (Ineligible + Eligible) 0.4 (0.24–0.68)

Overall survival

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>MRD-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>551</td>
<td>37</td>
</tr>
<tr>
<td>1.3</td>
<td>965</td>
<td>182</td>
</tr>
<tr>
<td>1.2</td>
<td>606</td>
<td>21</td>
</tr>
<tr>
<td>1.4</td>
<td>731</td>
<td>45</td>
</tr>
<tr>
<td>1.5</td>
<td>630</td>
<td>80</td>
</tr>
<tr>
<td>1.6</td>
<td>662</td>
<td>63</td>
</tr>
<tr>
<td>1.7</td>
<td>187</td>
<td>48</td>
</tr>
</tbody>
</table>

Meta Analysis (Ineligible + Eligible) 0.4 (0.28–0.56)

Landmark analysis at 12 months
Results: Trial-Level Association for Progression-Free Survival

Newly diagnosed multiple myeloma, all patients

\[R^2_{\text{WLS (Inv.-Variance)}} = 0.67 \text{ (95\% CI: 0.43-0.91)} \]

\[R^2_{\text{WLS (Sample Size)}} = 0.72 \text{ (95\% CI: 0.51-0.93)} \]

\[R^2_{\text{Copula}} = 0.84 \text{ (95\% CI: 0.64-0.99)} \]

Study 2.1 is included as a sensitivity analysis.
Results: Trial-Level Association for Progression-Free Survival

Newly diagnosed multiple myeloma, transplant ineligible

$R^2_{\text{WLS (Inv.-Variance)}}$
0.83 (95% CI: 0.71-0.96)

$R^2_{\text{WLS (Sample Size)}}$
0.84 (95% CI: 0.72-0.97)

R^2_{Copula}
0.85 (95% CI: 0.62-0.99)
Results: Trial-level Association for Progression-Free Survival

Treatment effect on each endpoint

MRD negativity

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>P-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1A</td>
<td>300</td>
<td>0.98</td>
</tr>
<tr>
<td>1.1B</td>
<td>301</td>
<td>0.131</td>
</tr>
<tr>
<td>1.3</td>
<td>1085</td>
<td><0.001</td>
</tr>
<tr>
<td>1.2</td>
<td>706</td>
<td>0.264</td>
</tr>
<tr>
<td>1.4</td>
<td>853</td>
<td>0.629</td>
</tr>
<tr>
<td>1.5</td>
<td>706</td>
<td><0.001</td>
</tr>
<tr>
<td>1.6</td>
<td>737</td>
<td><0.001</td>
</tr>
<tr>
<td>1.7</td>
<td>220</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Progression-free survival

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>P-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1A</td>
<td>300</td>
<td>0.385</td>
</tr>
<tr>
<td>1.1B</td>
<td>301</td>
<td>0.605</td>
</tr>
<tr>
<td>1.3</td>
<td>1085</td>
<td><0.001</td>
</tr>
<tr>
<td>1.2</td>
<td>705</td>
<td>0.038</td>
</tr>
<tr>
<td>1.4</td>
<td>853</td>
<td>0.399</td>
</tr>
<tr>
<td>1.5</td>
<td>706</td>
<td><0.001</td>
</tr>
<tr>
<td>1.6</td>
<td>737</td>
<td><0.001</td>
</tr>
<tr>
<td>1.7</td>
<td>220</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Results: Trial-Level Association for Overall Survival

Newly diagnosed multiple myeloma, all patients

<table>
<thead>
<tr>
<th></th>
<th>R^2_{WLS} (Inv.-Variance)</th>
<th>R^2_{WLS} (Sample Size)</th>
<th>R^2_{Copula}</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>0.21 (95% CI: <0.01-0.53)</td>
<td>0.33 (95% CI: <0.01-0.67)</td>
<td>0.32 (95% CI: <0.01-0.86)</td>
</tr>
</tbody>
</table>

Newly diagnosed multiple myeloma, transplant ineligible

<table>
<thead>
<tr>
<th></th>
<th>R^2_{WLS} (Inv.-Variance)</th>
<th>R^2_{WLS} (Sample Size)</th>
<th>R^2_{Copula}</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>0.79 (95% CI: 0.63-0.95)</td>
<td>0.83 (95% CI: 0.69-0.96)</td>
<td>0.63 (95% CI: 0.12-0.99)</td>
</tr>
</tbody>
</table>

Study 2.1 is included as a sensitivity analysis.
Results: Concordance of Significance

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment Effect on MRD (2-sided test)</th>
<th>Treatment Effect on PFS (2-sided test)</th>
<th>Treatment Effect on OS (2-sided test)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p-value</td>
<td>p-value</td>
<td>p-value</td>
</tr>
<tr>
<td>1.1A</td>
<td>0.98</td>
<td>0.385</td>
<td>0.686</td>
</tr>
<tr>
<td>1.1B</td>
<td>0.131</td>
<td>0.605</td>
<td>0.901</td>
</tr>
<tr>
<td>1.3</td>
<td><0.001</td>
<td><0.001</td>
<td>0.008</td>
</tr>
<tr>
<td>1.4</td>
<td>0.629</td>
<td>0.399</td>
<td>0.232</td>
</tr>
<tr>
<td>1.2</td>
<td>0.264</td>
<td>0.038</td>
<td>0.806</td>
</tr>
<tr>
<td>1.5</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>1.6</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>1.7</td>
<td><0.001</td>
<td><0.001</td>
<td>0.377</td>
</tr>
</tbody>
</table>

Transplant eligible newly diagnosed multiple myeloma

Transplant ineligible newly diagnosed multiple myeloma
Summary and Clinical Conclusion

C. Ola Landgren, M.D., Ph.D
Lead Principal Investigator
Professor, Medicine

Expertise: Multiple Myeloma, Early Drug Development, Biomarker Development, MRD Assays
Summary

• The most effective treatment is in the first line

• With current endpoints, it takes over 10 years to show statistically significant effect of a new therapy on PFS in the newly diagnosed multiple myeloma patient population

• This delays timely drug approval and availability of new highly efficacious treatments for patients diagnosed with multiple myeloma

Our results support the consideration of MRD as an early clinical endpoint reasonably likely to predict clinical benefit in multiple myeloma that may be used to support accelerated approval
Approaches and Considerations Regarding Study Designs

<table>
<thead>
<tr>
<th>Variable</th>
<th>EVIDENCE Study (Landgren/Devlin)</th>
<th>I² Study (IMF/Mayo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient population</td>
<td>Newly diagnosed multiple myeloma</td>
<td>Newly diagnosed and relapsed/refractory multiple myeloma</td>
</tr>
<tr>
<td>Time-point to evaluate MRD status</td>
<td>Driven by available datasets*</td>
<td>Data driven</td>
</tr>
<tr>
<td>Patients in CR w/o MRD evaluation</td>
<td>ITT approach MRD+</td>
<td>Removed from Analysis</td>
</tr>
<tr>
<td>Sensitivity cut-off for MRD assays</td>
<td>10⁻⁵ or better</td>
<td>Any sensitivity</td>
</tr>
</tbody>
</table>

A pre-specified time point (window) jointly agreed upon by lead principal investigator, lead study statistician, collaborating agencies, and the FDA before the meta-analysis: 12 months with a window of ± 3 months for an MRD assessment to have taken place
MRD is an objective and reliably measured early endpoint that is reasonably likely to predict long-term outcomes and clinical benefit in multiple myeloma. Approval of this endpoint will accelerate the availability of new and effective treatments for patients.
Thank you for your attention!

C. Ola Landgren, M.D, Ph.D.
Professor of Medicine
Chief, Division of Myeloma, Department of Medicine
Director, Sylvester Myeloma Institute
Co-Leader, Translational and Clinical Oncology Program
Paul J. DiMare Endowed Chair in Immunotherapy
Sylvester Comprehensive Cancer Center
University of Miami

X (Twitter): @DrOlaLandgren
References

