1	FOOD AND DRUG ADMINISTRATION
2	CENTER FOR DRUG EVALUATION AND RESEARCH
3	
4	
5	MEDICAL IMAGING DRUGS ADVISORY COMMITTEE MEETING
6	(MIDAC)
7	
8	
9	
10	
11	
12	Virtual Meeting
13	
14	
15	Tuesday, August 1, 2023
16	12:00 p.m. to 4:10 p.m.
17 18	
18	
20	
20	
22	

Meeting Roster 1 ACTING DESIGNATED FEDERAL OFFICER (Non-Voting) 2 Rhea Bhatt 3 4 Division of Advisory Committee and Consultant Management 5 Office of Executive Programs, CDER, FDA 6 7 MEDICAL IMAGING DRUG PRODUCTS ADVISORY COMMITTEE 8 MEMBERS (Voting) 9 Wesley E. Bolch, PhD 10 Director of Advanced Laboratory for Radiation 11 Dosimetry Studies 12 Distinguished Professor of Biomedical Engineering/ 13 Medical Physics 14 15 J. Crayton Pruitt Family Department of Biomedical Engineering 16 University of Florida 17 18 Gainesville, Florida 19 20 21 22

```
FDA MIDAC
```

David B. Hackney, MD 1 Professor of Radiology, Harvard Medical School 2 Chief, Neuroradiology 3 4 Department of Radiology Beth Israel Deaconess Medical Center 5 Boston, Massachusetts 6 7 Peter Herscovitch, MD, FACP, FSNMMI 8 Chief, Positron Emission Tomography (PET) 9 Department 10 National Institutes of Health (NIH) Clinical Center 11 Bethesda, Maryland 12 13 Paula M. Jacobs, PhD 14 15 Expert Advisor Division of Cancer Treatment and Diagnosis 16 National Cancer Institute, NIH 17 18 Bethesda, Maryland 19 20 21 22

```
FDA MIDAC
```

M. Elizabeth Oates, MD, FAAWR, FACR 1 Professor of Radiology and Medicine 2 Department of Radiology 3 4 University of Kentucky Lexington, Kentucky 5 6 Rupa Sanghani, MD, FACC, FASNC 7 Professor of Medicine 8 Section of Cardiology 9 Director of Nuclear Cardiology 10 Rush University Medical Center 11 Chicago, Illinois 12 13 MEDICAL IMAGING DRUGS ADVISORY COMMITTEE MEMBER 14 15 (Non-Voting) Mark Mintun, M.D. 16 (Industry Representative) 17 18 President, Avid Radiopharmaceuticals Inc, a wholly owned subsidiary of Eli Lilly and Company 19 Group Vice President, Neuroscience R&D 20 21 Eli Lilly and Company 22 Philadelphia, Pennsylvania

```
FDA MIDAC
```

1	TEMPORARY MEMBERS (Voting)
2	Kimberly E. Applegate, MD, MS, FACR
3	Professor of Radiology and Pediatrics (retired)
4	Zionsville, Indiana
5	
6	<u>Yuni Dewaraja, PhD</u>
7	Professor
8	Division of Nuclear Medicine
9	Department of Radiology
10	University of Michigan
11	Ann Arbor, Michigan
12	
13	<u>Terry Gillespie</u>
14	(Patient Representative)
15	Plainfield, Illinois
16	
17	<u>Steven M. Larson, MD</u>
18	Professor Emeritus of Radiology
19	Weill Cornell Medical College
20	New York, New York
21	
22	

```
FDA MIDAC
```

Jessie R. Nedrow, PhD 1 Co-Director, In vivo Imaging Facilities 2 Assistant Professor of Radiology 3 4 University of Pittsburgh Pittsburgh, Pennsylvania 5 6 7 Henry D. Royal, MD (Chairperson) 8 Professor of Radiology 9 Division of Nuclear Medicine 10 Mallinckrodt Institute of Radiology 11 Saint Louis, Missouri 12 13 Chengjie Xiong, PhD 14 15 Professor of Biostatistics and Neurology Division of Biostatistics & Department of Neurology 16 Washington University 17 St. Louis, Missouri 18 19 20 21 22

```
FDA MIDAC
```

FDA PARTICIPANTS (Non-Voting) 1 Charles Ganley, MD 2 Director 3 4 Office of Specialty Medicine (OSM) Office of New Drugs (OND), CDER, FDA 5 6 7 Alex Gorovets, MD Deputy Director 8 OSM, OND, CDER, FDA 9 10 Libero Marzella MD, PhD 11 Director 12 Division of Imaging and Radiation Medicine (DIRM) 13 OSM, OND, CDER, FDA 14 15 Ira Krefting, MD 16 Deputy Director for Safety 17 DIRM, OSM, OND, CDER, FDA 18 19 August (Alex) Hofling, MD, PhD 20 21 Deputy Director 22 DIRM, OSM, OND, CDER, FDA

1	CONTENTS	
2	AGENDA ITEM	PAGE
3	Call to Order	
4	Henry Royal, MD	10
5	Introduction of Committee	
6	Rhea Bhatt	10
7	Conflict of Interest Statement	
8	Rhea Bhatt	16
9	FDA Introductory Comments	
10	Anthony Fotenos, MD, PhD	21
11	Guest Speaker Presentation	
12	PET Dosimetry Preclinical and Human	
13	Experience for Clinical Research	
14	William Hallett, DPhil	30
15	Speaker Presentation	
16	Dosimetry for First-in-Human PET Studies	
17	The NIH Experience	
18	Paolo Zanotti-Fregonara, MD, PhD	45
19	Clarifying Questions to Speakers	56
20		
21		
22		

1	C O N T E N T S (continued)	
2	AGENDA ITEM	PAGE
3	FDA Presentations	
4	Medical Physics Presentation	
5	Donika Plyku, PhD	65
6	Nonclinical Perspective on	
7	Biodistribution and Dosimetry Studies	
8	Jonathan Cohen, PhD	88
9	Pharmacovigilance in CDER	
10	Samantha Cotter, PharmD	95
11	Clarifying Questions to Presenters	103
12	Clarifying Questions (continued)	124
13	Questions to the Committee and Discussion	128
14	Adjournment	166
15		
16		
17		
18		
19		
20		
21		
22		

1	<u>proceedings</u>
2	(12:00 p.m.)
3	Call to Order
4	DR. ROYAL: Good afternoon, and welcome. I
5	would first like to remind everyone to please mute
6	your line when you are not speaking. For media and
7	press, the FDA press contact is Audra Harrison.
8	Her email is currently displayed.
9	My name is Henry Royal, and I will be
10	chairing this meeting. I will now call the
11	August 1, 2023 Medical Imaging Drugs Advisory
12	Committee to order. Rhea Bhatt is the acting
13	designated federal officer for this meeting and
14	will begin with introductions.
15	Introduction of Committee
16	Introduction of Committee
17	MS. BHATT: Good morning. My name is Rhea
18	Bhatt, and I'm the acting designated federal
19	officer for this meeting. When I call your name,
20	please unmute yourself and turn on your camera.
21	Please introduce yourself by stating your name and
22	affiliation for the record.

We'll begin with MIDAC members, starting 1 with Dr. Bolch. 2 DR. BOLCH: Wesley Bolch, University of 3 4 Florida. MS. BHATT: Thank you, Dr. Bolch. 5 Next, we have Dr. Hackney. 6 DR. HACKNEY: David Hackney from Harvard 7 University, Beth Israel Deaconess Medical Center. 8 MS. BHATT: Thank you. 9 Next, we have Dr. Herscovitch. 10 DR. HERSCOVITCH: Peter Herscovitch, 11 National Institutes of Health Clinical Center, 12 Bethesda, Maryland. 13 MS. BHATT: Thank you, Dr. Herscovitch. 14 Next, we have Dr. Jacobs. 15 DR. JACOBS: Paula Jacobs, National Cancer 16 Institute, Bethesda, Maryland. 17 18 MS. BHATT: Thank you. 19 Next, we have Dr. Oates. DR. OATES: Hi. Liz Oates, University of 20 21 Kentucky. 22 MS. BHATT: Thank you, Dr. Oates.

Next, Dr. Sanghani. 1 DR. SANGHANI: Hi. I'm Rupa Sanghani. I'm 2 a nuclear cardiologist at Rush University in 3 4 Chicago. 5 MS. BHATT: Thank you. Next, we have our industry representative, 6 Dr. Mintun. 7 DR. MINTUN: Mark Mintun from Eli Lilly and 8 Company and Avid Radiopharmaceuticals. 9 MS. BHATT: Thank you, Dr. Mintun. 10 Next, we'll move on to our temporary voting 11 members starting with Dr. Applegate. 12 DR. APPLEGATE: Good morning. I'm Kimberly 13 Applegate, a pediatric radiologist retired from the 14 University of Kentucky in Lexington. 15 MS. BHATT: Thank you, Dr. Applegate. 16 Next, we have Dr. Dewaraja. 17 18 DR. DEWARAJA: Hi. I'm Yuni Dewaraja, Department of Radiology at University of Michigan. 19 MS. BHATT: Thank you. 20 21 Next, we have our patient representative, Ms. Gillespie. 22

MS. GILLESPIE: Hi. Terry Gillespie, 1 patient advocate, Chicago, Illinois. 2 MS. BHATT: Thank you. 3 4 Next, we have Dr. Larson. DR. LARSON: Steven Larson, Memorial Sloan 5 Kettering Cancer Center. 6 MS. BHATT: Thank you, Dr. Larson. 7 Next, we have Dr. Nedrow. 8 DR. NEDROW: Hi. Jessie Nedrow, University 9 of Pittsburgh, the Hillman Cancer Center. 10 MS. BHATT: Thank you, Dr. Nedrow. 11 Next, we have our chairperson, Dr. Royal. 12 DR. ROYAL: I'm at Washington University in 13 St. Louis. 14 MS. BHATT: Thank you, Dr. Royal. 15 And Dr. Xiong? 16 DR. XIONG: Chengjie Xiong, Washington 17 18 University School of Medicine, St. Louis, Missouri. 19 MS. BHATT: Thank you, Dr. Xiong. Next, we'll move on to introductions of our 20 21 FDA participants. 22 First, we have Dr. Ganley.

> A Matter of Record (301) 890-4188

13

(No response.) 1 MS. BHATT: Are the FDA participants able to 2 introduce themselves? 3 4 First, we have Dr. Ganley. DR. KREFTING: Ira Krefting, director for 5 safety, Medical Imaging and Radiation Medicine 6 Division. 7 MS. BHATT: Thank you. 8 DR. COTTER: Samantha Cotter, safety 9 evaluator from the Division of Pharmacovigilance in 10 the Office of Surveillance and Epidemiology at FDA. 11 DR. COHEN: Jonathan Cohen, supervisory 12 13 pharmacologist supporting Imaging and Radiation Medicine. 14 DR. PLYKU: Donika Plyku, physicist at the 15 Division of Imaging and Radiation Medicine at CDER. 16 DR. FOTENOS: Anthony Fotenos, clinical team 17 18 leader in the Division of Imaging and Radiation Medicine. 19 DR. HOFLING: Alex Hofling, deputy director, 20 21 Division of Imaging and Radiation Medicine. DR. MARZELLA: Lou Marzella, and I'm the 22

1	
1	director of the Division of Imaging and Radiation
2	Medicine.
3	MS. BHATT: Thank you.
4	That concludes our panel and FDA
5	introductions, and back to you, Dr. Royal.
6	DR. ROYAL: For the topics such as those
7	being discussed at this meeting, there are often a
8	variety of opinions, some of which are strongly
9	held. Our goal is that this meeting will be a fair
10	and open forum for discussion of these issues and
11	that individuals can express their views without
12	interruption. Thus, as a gentle reminder,
13	individuals will be allowed to speak into the
14	record only if recognized by the chairperson. We
15	look forward to a productive meeting.
16	In the spirit of the Federal Advisory
17	Committee Act and the Government in the Sunshine
18	Act, we ask that the advisory committee members
19	take care that their conversations about the topic
20	at hand take place in the open forum of this
21	meeting.
22	We are aware that members of the media are

1	anxious to speak with the FDA about these
2	proceedings; however, the FDA will refrain from
3	discussing the details of this meeting until its
4	conclusion. Also, the committee is reminded to
5	please refrain from discussing the meeting topics
6	during breaks. Thank you.
7	Rhea Bhatt will read the Conflict of
8	Interest Statement for the meeting.
9	Conflict of Interest Statement
10	MS. BHATT: Thank you, Dr. Royal.
11	The Food and Drug Administration is
12	convening today's meeting of the Medical Imaging
13	Drugs Advisory Committee under the authority of the
14	Federal Advisory Committee Act, or FACA, of 1972.
15	With the exception of the industry representative,
16	all members and temporary voting members of the
17	committee are special government employees or
18	regular federal employees from other agencies, and
19	are subject to federal conflict of interest laws
20	and regulations.
21	The following information on the status of
22	this committee's compliance with federal ethics and

r

1	conflict of interest laws, covered by but not
2	limited to those found at 18 U.S.C. Section 208, is
3	being provided to participants in today's meeting
4	and to the public.
5	FDA has determined that members and
6	temporary voting members of this committee are in
7	compliance with federal ethics and conflict of
8	interest laws. Under 18 U.S.C. Section 208,
9	Congress has authorized FDA to grant waivers to
10	special government employees and regular federal
11	employees who have potential financial conflicts
12	when it is determined that that agency's need for a
13	special government employee's services outweighs
14	their potential financial conflict of interest, or
15	when the interest of a regular federal employee is
16	not so substantial as to be deemed likely to affect
17	the integrity of the services which the government
18	may expect from the employee.
19	Related to the discussions of today's
20	meeting, members and temporary voting members of
21	this committee have been screened for potential
22	financial conflicts of interests of their own as

1	well as those imputed to them, including those of
2	their spouses or minor children and, for purposes
3	of 18 U.S.C. Section 208, their employers. These
4	interests may include investments; consulting;
5	expert witness testimony; contracts, grants,
6	CRADAs; teaching, speaking, writing; patents and
7	royalties; and primary employment.
8	Today's agenda involves the discussion of
9	dosimetry data needed to support the initial
10	clinical study in an original IND application for
11	certain new positron emission tomography or PET
12	drugs. FDA would like to obtain the committee's
13	input on the following: 1) the sufficiency of
14	available data from animal or human studies
15	involving certain positron emitting
16	radionuclides for example, carbon-11 and
17	fluorine-18 to allow a reasonable calculation of
18	radiation-absorbed dose to the whole body and
19	critical organs upon administration of a new PET
20	drug containing certain radionuclides to a human
21	subject in first-in-human studies; and 2) the
22	reasonableness of a proposed list of numerical

1	radioactivity thresholds for new PET drugs
2	containing these radionuclides, such that phase 1
3	studies will both a) administer subthreshold
4	activities, and b) obtain sufficient human data so
5	dosimetry calculations may be found safe to proceed
6	in the absence of dosimetry data, based on prior
7	animal administration of the new PET drug under
8	investigation.
9	This is a particular matters meeting during
10	which general issues will be discussed. Based on
11	the agenda for today's meeting and all financial
12	interests reported by the committee members and
13	temporary voting members, no conflict of interest
14	waivers have been issued in connection with this
15	meeting.
16	To ensure transparency, we encourage all
17	standing committee members and temporary voting
18	members to disclose any public statements that they
19	have made concerning the topic at issue. With
20	respect to FDA's invited industry representative,
21	we would like to disclose that Dr. Mark Mintun is
22	participating in this meeting as a non-voting

1	industry representative, acting on behalf of a
2	regulated industry. Dr. Mintun's role at this
3	meeting is to represent industry in general and not
4	any particular company. Dr. Mintun is employed by
5	Eli Lilly and Company.
6	With regard to FDA's guest speaker, the
7	agency has determined that the information to be
8	provided by the speaker is essential. Dr. William
9	Hallett has acknowledged that he is employed by
10	Invicro as head of Imaging Physics. As a guest
11	speaker, Dr. Hallett will not participate in
12	committee deliberations, nor will he vote.
13	We would like to remind members and
14	temporary voting members that if the discussions
15	involve any other topics not already on the agenda
16	for which an FDA participant has a personal or
17	imputed financial interest, the participants need
18	to exclude themselves from such involvement, and
19	their exclusion will be noted for the record. FDA
20	encourages all other participants to advise the
21	committee of any financial relationships that they
22	may have regarding the topic that could be affected

1	
1	by the committee's discussions.
2	Thank you, and back to you, Dr. Royal.
3	DR. ROYAL: We will now proceed with the FDA
4	introductory comments from Dr. Anthony Fotenos.
5	FDA Introductory Comments - Anthony Fotenos
6	DR. FOTENOS: Good afternoon. I'm Anthony
7	Fotenos, nuclear medicine physician and clinical
8	team leader in the Division of Imaging and
9	Radiation Medicine. Welcome to the Medical Imaging
10	Drugs Advisory Committee. The last time this
11	committee met, our division was known as the
12	Division of Medical Imaging Products, or DMIP, but
13	in 2017, our name changed, so now we go by D-I-R-M
14	or DIRM.
15	FDA convened this advisory committee meeting
16	to discuss issues involving pre-IND and phase 1
17	radiation dosimetry data for certain groups of new
18	positron emission tomography or PET drugs. First,
19	a comment regarding scope.
20	Today's meeting is classified as a general
21	matter type meeting. This means that product,
22	sponsor, and/or application specific issues and

1	questions will not be discussed, nor are any thumbs
2	up or down votes planned; rather, the general
3	matter issue we will be discussing reflect
4	stakeholder concern regarding burden of animal
5	dosimetry data collection for certain groups of new
6	PET imaging drugs. The rationale for the meeting
7	is stakeholder and FDA's preliminary position that
8	data already available often allows reasonable
9	calculation of radiation risk for human subjects
10	prior to collection of phase 1 dosimetry data.
11	Where we need your advice is regarding
12	sponsors of new INDs for certain groups of PET
13	drugs, specifically when sponsors would prefer not
14	to submit drug-specific animal dosimetry data. We
15	will be asking you to discuss the sufficiency of
16	reviewed dosimetry data and the reasonableness of
17	the approach under consideration for
18	investigational administration prior to the
19	availability of phase 1 dosimetry data such that
20	for administration less than or equal to X, FDA may
21	generally find administered activity safe to
22	proceed from a radiation safety perspective,

1	whereas for administration greater than X, the
2	status quo will be maintained of case-by-case IND
3	review regarding the reasonableness of available
4	animal or human dosimetry data.
5	As you will learn in greater detail later,
6	the approach under consideration is essentially a
7	leveraging approach where X is derived from dosing
8	and administration FDA has already found to be safe
9	and effective in corresponding prescribing
10	information.
11	You should have a copy of the complete
12	agenda. Here's a brief outline. Dr. Hallett,
13	medical physicist at Invicro, will provide a
14	scientific overview and share his perspective from
15	industry. Then Dr. Zanotti-Fregnoara, staff
16	scientist from the section on PET Neuroimaging
17	Science and Branch of Molecular Imaging at the
18	National Institute of Mental Health NIH, will share
19	his perspective from an active translational
20	laboratory.
21	FDA will speak next. Dr. Plyku, our
22	division's medical physicist, will provide a

summary of FDA's systematic review of publicly
available dosimetry data and discuss the approach
under consideration. Finally, Dr. Cohen, from the
Office of Rare Diseases, Pediatrics, Urology, and
Reproductive Medicine, and Dr. Cotter, from the
Office of Pharmacovigilance and Epidemiology, will
provide brief perspectives on PET drug radiation
safety from their pharmacology/toxicology and
pharmacovigilance disciplines, respectively.
Finally, there will be an open public hearing, and
then the discussion questions will be posed to the
panel.
But first, I'd briefly like to introduce PET
drugs within a broader regulatory and historical
context. This table spans the next two slides and
encapsulates some regulatory milestones at the
intersection of nuclear medicine and FDA's Center
for Drug Evaluation and Research. Highlighted in
yellow for each year is the introduction of a
formal definition within federal act, regulation,
or guidance of terms specifically relevant to the

1	often be used more loosely elsewhere, I hope this
2	regulatory introduction also helps to keep us all
3	on the same page in terms of nomenclature.
4	The table starts in 1975. That's when new
5	drug regulation defined the term "radioactive drug"
6	as a drug or biological product exhibiting
7	spontaneous disintegration of unstable nuclei with
8	the emission of nuclear particles or photons.
9	These 1975 regulations also ended an exception
10	agreed to in 1963 with the Nuclear Regulatory
11	Commission, then called the Atomic Energy
12	Commission, for oversight of investigational use,
13	and provided certain new authority for oversight of
14	basic research to FDA-authorized radioactive drug
15	research committees, or RDRCs, a program that
16	remains in place to this day.
17	The year 1987 saw a rewrite of FDA's IND
18	regulations, including two sentences on radioactive
19	drugs and data on radiation-absorbed dose. We'll
20	come back to these two sentences shortly because
21	they provide an essential framework for today's
22	discussion.

1	Fast forward 10 years to 1997. That's the
2	year Congress passed the FDA Modernization Act or
3	FDAMA. FDAMA defined a new subset of radioactive
4	drugs using the term "PET drugs." FDAMA defined
5	PET drugs as articles exhibiting spontaneous
6	disintegration of unstable nuclei by the emission
7	of positron particles.
8	Emitted positron particles annihilate
9	locally with electrons to release dual 511 keV
10	photons from where they are capable of leaving the
11	body for diagnostic imaging with a PET camera.
12	FDAMA also defined an encompassing group of
13	radioactive drugs using the term
14	"radiopharmaceutical," including single photon
15	emitters and defined by a common intended use of
16	diagnosing or monitoring rather than treating
17	disease.
18	In 1999, Part 315 was added to the Code of
19	Federal Regulations directly after Part 314, the
20	part describing new drug applications. 21 CFR 315
21	further applied the statutory requirements outlined
22	two years earlier under FDAMA for diagnostic

1	radiopharmaceuticals, as did CDER's three-part
2	guidance published in 2004, entitled Developing
3	Medical Imaging Drugs and Biological Products.
4	Most recently in 2017, the FDA
5	Reauthorization Act, or FDARA, introduced a new
6	520(p) pathway for approving certain new uses of
7	approved drugs under 510(k), de novo, or PMA device
8	marketing applications. Notably, under
9	Section 706, FDARA expanded the definition of
10	contrast agents. Under this expanded definition,
11	contrast agents include both diagnostic
12	radiopharmaceuticals and non-radioactive drugs,
13	with both essentially defined by their shared
14	characteristic of serving to increase relative
15	signal intensity for diagnostic or monitoring
16	purposes.
17	Finally, less than a year ago in the Food
18	and Drug Omnibus Reform Act of 2022, Congress again
19	leveraged an expansive definition of "contrast
20	agent" to clarify that all radioactive drugs and
21	all medical imaging agents remain legally defined
22	as drugs.

A Matter of Record (301) 890-4188 27

1	For those who might prefer to see
2	information visually, this slide provides a
3	Venn-like depiction of the terms just highlighted.
4	Again, from a regulatory perspective, this meeting
5	provides an opportunity to discuss pre-IND and
6	phase 1 dosimetry data at the intersection of PET
7	drugs the box at slide center and 21 CFR
8	312.23, the IND dosimetry regulation introduced
9	above and excerpted in full on the slide that
10	follows.
11	Under the heading "Additional Information,"
12	FDA's IND regulations state that in certain
13	applications, as described below, information on
14	special topics may be needed. Such information
15	shall be submitted as follows. If the drug is a
16	radioactive drug, sufficient data from animal or
17	human studies to allow a reasonable calculation of
18	radioactive-absorbed dose to the whole body and
19	critical organs upon administration to a human
20	subject. Phase 1 studies of radioactive drugs must
21	include studies which will obtain sufficient data
22	for dosimetry calculations. With this basic

1	regulatory foundation introduced, I'll conclude by
2	previewing FDA's discussion points to the advisory
3	committee.
4	These will be displayed again after the
5	guest speaker, FDA presentations, and open public
6	hearing at the end of the afternoon. First, we
7	will ask the committee to discuss the sufficiency
8	of reviewed data from animal or human studies
9	involving fluorine-18; carbon-11; gallium-68;
10	copper-64; rubidium-82; and ammonia-13 to allow a
11	reasonable calculation of radiation-absorbed dose
12	to the whole body and critical organs upon
13	first-in-human administration of a new PET drug
14	containing one of radionuclides.
15	Second, we will ask the committee to discuss
16	the reasonableness of the approach under
17	consideration involving administered activities for
18	new PET drugs containing one of these radionuclides
19	such that phase 1 studies that will both initially
20	administer one or more activity levels less than or
21	equal to the value specified, and collect
22	sufficient human data for dosimetry calculations,

1	may generally be found safe to proceed from a
2	radiation safety perspective in the absence of
3	dosimetry data based on prior animal administration
4	of the new PET drug under investigation.
5	I will now turn the podium over to our first
6	guest speaker, Dr. Hallett. Thank you.
7	Guest Speaker Presentation - William Hallett
8	DR. HALLETT: Hello, and thank you for the
9	introduction. I'm going to give you a perspective
10	somewhat from the UK because the imaging center
11	that I work in is based in the UK. This is our
12	facility in London. It was originally built by
13	GlaxoSmithKline to support drug development, and to
14	cut a long story short, it's now part of Invicro.
15	We have imaging centers both in the U.S. and the
16	UK. The UK one is essentially a PET facility, and
17	we mostly work with carbon-11 and fluorine-18 and
18	not some of the longer-lived isotopes that you
19	mentioned there; so I can only really give you a
20	perspective on that aspect.
21	I'm going to set the scene for the
22	discussion today. I realize this is a panel of

1	experts, and much of this will be familiar, but
2	hopefully it's useful for other people dialing in
3	and listening into this.
4	Why do we need radiation dosimetry? The
5	driver for this is that the basic principles of
6	radiation protection that apply to medical
7	exposures are that we should justify and optimize
8	dose exposures. From the European perspective, in
9	the EU, there is the basic safety standards
10	directive. The UK of course has left the EU, but
11	we're still going to follow the same abiding
12	principles, and the relevant legislation in the UK
13	that followed on from the basic safety standards is
14	the Ionising Radiation Medical Exposure
15	Regulations, and that's unlikely to significantly
16	change.
17	So in terms of the radiation dose to
18	clinical subjects, in terms of imaging, we're
19	really considering stochastic risks at relatively
20	low dose, and those risks are, to some extent, a
21	little bit uncertain. We would be working below
22	the threshold for tissue effects, for example, in

1	nearly all cases in PET.
2	For patients, that's implemented using
3	diagnostic reference levels, which are generally
4	agreed guidance levels for particular procedures,
5	and there's no dose limit as such. For research
6	subjects, we need to obtain ethical approval, and
7	we have to provide some estimate of risk from the
8	radiation exposure. We need to put that in some
9	context that can be understood by the subjects and
10	appreciated in terms of other risks; for example,
11	equivalent background exposures, the increased
12	potential risk of cancer induction later in life.
13	The formal framework for that is to use what we
14	call dose constraints, and there are guidelines
15	surrounding those constraints.
16	So just going back to basics and reviewing
17	the framework that we use for radiation dose, we
18	start with the absorbed dose, which is the energy
19	transferred by radiation to the subject per unit
20	mass, and for imaging procedures, we are in the
21	milligray domain, which is millijoules per kilogram
22	of tissue.

1	Radiation risk also depends not only on the
2	administered radiopharmaceutical or drug, but also
3	on where it goes in the body: the tissues, the
4	organs that are exposed. The radiation sensitivity
5	of those tissues is known to differ from one organ
6	to the next, and that's encoded in these
7	tissue-weighting factors. We also have
8	radiation-weighting factors, but in the context of
9	PET or PET/CT, even those factors are all one, so
10	we can more or less ignore that.
11	Then the effective dose is to sum those
12	contributions over all the organs as a weighted
13	sum, and the unit there is the sievert. And just
14	to set that in context, for the UK, the average
15	background radiation dose is something like
16	2.3 millisieverts per year. For employees, there
17	is a dose limit, which is 20 millisieverts a year,
18	but very few radiation workers would get anywhere
19	near those kinds of occupational exposures. And in
20	terms of translating that into a risk, the ICRP
21	recommended risk factor is 1 in 20,000, although,
22	as I've already mentioned, it's somewhat uncertain

1	at low dose.
2	So overall then, we can say that factors
3	affecting PET doses are the PET drug, the
4	radioisotope that's being delivered, and then how
5	the body processes that in terms of biodistribution
6	and excretion. So you can generalize those factors
7	in terms of the subject's age, sex, weight, health,
8	and their current condition. The classic example
9	of that is with FDG, where you get a different
10	uptake pattern if the subject has recently eaten to
11	being fasted, and obviously you want to standardize
12	against that.
13	The standard approach to PET dosimetry is to
14	use a mathematical model that contains a simplified
15	human phantom. We know that a uniform body
16	distribution is simply too inaccurate if we assume
17	that, and in order to obtain the distribution in
18	the body, we need to get some information either
19	from preclinical experiment in, say, rodents, where
20	we can take tissue samples or an imaging study.
21	The results of such a calculation enable us to
22	compare medical exposures of different PET drugs

1	and estimate radiation risk, but they are not
2	accurate enough to individually plan doses. We're
3	not actually measuring the doses to organs. At the
4	bottom there, you can see the difference between a
5	simple uniform estimation and a more sophisticated
6	one taking account by distribution.
7	So the inputs into that model that we need
8	to obtain are the measurements of radioactivity
9	concentration at different time points. We then
10	integrate that over time, and then multiply by
11	standardized organ mass to obtain these time
12	integration activity coefficients. You can think
13	of it as a mean residence time in the organ because
14	it has the units of time.
15	This is the OLINDA code, which is now the
16	widely used code to do these calculations. The
17	beauty of this is that all the complicated physics
18	calculations in terms of absorbed dose within an
19	organ and between organs has already been done.
20	You just need to input the actual activities in
21	each organ. If you just click on, you can see the
22	output of that. You get the organ absorbed in

1	equivalent doses and also the summed effective
2	doses, depending on which weighting factor scheme
3	you want to use.
4	For a preclinical PET dosimetry
5	experiment and I'm talking about rodents here in
6	particular you give the tracer to multiple
7	subjects, one subject per time point. You then
8	harvest the organs at that time point. You weigh
9	samples and count the radioactivity in a gamma
10	counter. Multiple counters are really ideal here
11	because you have quite a lot of samples to count
12	when you have a short half-life to contend with.
13	Then you have to scale that information to
14	in some way adjust it to the human situation, so
15	what you're doing there, really, is adjusting for
16	the relative organ weight and also the total body
17	weight. You can't possibly adjust for differences
18	in metabolism. Then these resulting coefficients
19	are entered into the code, OLINDA in this case.
20	For a clinical study, we give the tracer to
21	multiple human subjects for carbon-11 or
22	fluorine-18. The scans will take anywhere between

A Matter of Record (301) 890-4188 36

1	90 minutes to 4 hours. We do multiple time points,
2	perhaps six or so, increasing the spacing between
3	them post-injection, and then we can generate the
4	same curve. If you press on, you'll see a little
5	movie there. There we go. Then you have to
6	generate your data in terms of drawing regions of
7	interest over the organs, and then that's what's
8	input into OLINDA. And that's our drawing, the
9	regions of interest over the CT that we get as a
10	convenience, an extra bit of data. We need the CT
11	anyway for attenuation correction purposes, and
12	that's just the curves that you generate.
13	Just to summarize the data that we've
14	collected over the years, we've done 24 dosimetry
15	studies since 2012, mostly in the rat but some in
16	human. You can see that the carbon-11 cluster
17	quite tightly around 5, 5 and a half microsieverts
18	per megabecquerel. The fluorine-18 is a bit more
19	of a spread, but again it's clustering around 24-25
20	microsieverts per megabecquerel. So on average, we
21	get a fairly consistent answer.
22	If you look at where we've done both

A Matter of Record (301) 890-4188 37

1	preclinical and human dosimetry, well, clearly
2	there's a difference there in those two cases.
3	Where we've repeated the preclinical study, which
4	is not something we would normally have to do, but
5	where we've done it, even years apart, we get a
6	very similar result. So this suggests that the
7	methodology is repeatable, at least within center,
8	but there is some difference between preclinical
9	and human estimation.
10	In terms of study timelines, for a
11	preclinical study, we've sometimes been asked to do
12	it as quickly as possible, and as long as you have
13	the staff available and equipment is available, the
14	fastest turnaround we've been able to do is about a
15	month. If you click on for comparison for a
16	clinical study, it's a much longer process. You
17	have to make sure that you can produce the
18	radiopharmaceutical to GMP standard; and because
19	it's going into man, you have to get all your
20	regulatory approval done, including ethics, as well
21	as expert opinion on the use of a particular
22	radiopharmaceutical.

1	You have to recruit your subjects; that can
2	take months. It can be harder to get a patient
3	group if that's what you're interested in. Then
4	you've got to do a more complicated analysis
5	involving region drawing over the images and so on.
6	All of this adds time, so we're talking about
7	something like a year, and it's also, at least in
8	order of magnitude, more expensive.
9	So looking at this a slightly different way,
10	in terms of our in-house dosimetry, we've done
11	17 clinical ligands, carbon-11 and fluorine-18
12	only, and another 55 ligands used clinically, where
13	we've got the dosimetry from other sources. You
14	can see from the literature and those other sources
15	that there's variable quality in the data
16	differences in the methodology used.
17	Some of the data has been around for a
18	while, as the scanners have improved considerably
19	since then and a different species used. There are
20	details that are, to some extent, unknown or just
21	aren't mentioned in the source that you're looking
22	at, for example, what's the assumptions made about

1	emptying of the bladder; are they all healthy or
2	some are patients; and so on.
3	Nonetheless, on average, this is consistent
4	between clinical and preclinical. Carbon-11 is
5	coming out around 5, within 2 microsieverts per
6	megabecquerel and F-18 around 25, a bigger range.
7	I guess you don't really know whether it's due to
8	methodology or metabolism, and almost certainly
9	there's contributions from both in there.
10	In terms of translation, I've already
11	mentioned that you can have discordancy between the
12	preclinical and clinical estimate. It can be
13	higher or lower, in fact; so there are examples of
14	both there. But again, within center, within our
15	center, the methodology seems to be repeatable;
16	it's just the translation that's less so.
17	To summarize what those limitations of
18	preclinical dosimetry are, there are differences in
19	metabolism, which you can't really correct for and
20	are expected to be more rapid in smaller species.
21	There are differences in anatomy. Famously, the
22	rat lacks a gallbladder, so that affects the dose

40

1	that you see in the small intestine. You have to
2	extrapolate renal excretion from your preclinical
3	experiment to a human voiding model. So for a
4	particular tracer, it's fair to say it's not
5	reliable, really, for the human dosimetry estimate;
6	and that's even true for non-human primates, which
7	we don't do in the UK, but just looking at the
8	literature, there are still differences.
9	In terms of arguments for and against
10	preclinical dosimetry, while there's always an
11	intention to reduce the number of animals used in
12	research wherever possible, on the other hand, it
13	does give forewarning in the early stage of
14	development of any unusual kinetics or uptake. But
15	it's fair to say that it's not really a reliable
16	predictor for human dosimetry in an individual
17	case.
18	I've been asked to comment on the
19	differences in the radiation protection frameworks
20	between Europe and the U.S. In Europe, including
21	the UK, it's the effective dose that we look at,
22	and the guidance is to keep that below

1	10 millisieverts a year for healthy subjects. You
2	can exceed that in certain situations, for example,
3	with a subject group with reduced life expectancy
4	or more elderly subjects because of the reduction
5	in radiation risk with age. You need more
6	justification for younger healthy subjects. We
7	never scan below 18, for example. Preclinical data
8	is considered acceptable if no human data is
9	available and, in fact, we've even done dosimetry
10	studies where we had no preclinical data at all.
11	That would have to be justified on an individual
12	basis.
13	That limit I shouldn't say limit; it's
14	very much a guidance is also applicable to
15	dosimetry studies. So if you're doing a dosimetry
16	study in healthy volunteers, you've still got to
17	keep within your 10 millisieverts a year, and that
18	includes the CT component, which can be as much as
19	half of the dose for a dosimetry study in man. In
20	the U.S., my understanding is that you're looking
21	at both the effective dose and the critical organ
22	doses, and usually staying within 50 millisieverts

1	
1	a year or 30 millisieverts for more radiosensitive
2	organs, but this leads to typically higher doses in
3	the U.S. than in Europe.
4	This is the guidance from our regulator in
5	the UK, and you can see that for an application to
6	use a novel PET tracer, they would like an estimate
7	of the effective dose, which is based on the best
8	available information at the time. But there is a
9	lot of flexibility in that. They're a panel of
10	experts, and they will take into account other
11	factors such as tracers expected in a very similar
12	profile, for example.
13	In terms of the European guidance for
14	radiodiagnostics, which are radiotracers which may
15	have widespread clinical application, the
16	requirements are in terms of pharmacology,
17	pharmacokinetics, and toxicology, and the
18	pharmacokinetics would include a dosimetry
19	component. The toxicology for these tracers, where
20	there is expected to be no pharmacological effect
21	and it's given a very low dose, can be a reduced
22	tox package.

43

1	In terms of what the impact is on study
2	design within our center, we mostly do brain,
3	although we mostly do whole-body studies as well.
4	You can see that if you're trying to work within a
5	10 millisievert per annum dose constraint, you're
6	talking about something like only up to 4 carbon-11
7	scans. That's usually more than we need. Not many
8	studies need four, and you may have an extended
9	time in which to do those, so that would be relaxed
10	a bit. But for fluorine-18, that really limits you
11	to about 2 scans within a year. But if you're
12	looking at disease progression, you're probably
13	looking over a longer time scale anyway.
14	So thinking a little bit ahead about what
15	might be alternative approaches to performing these
16	dosimetry studies either in preclinical/clinical
17	situations for short-lived tracers, well, one
18	approach would be to consider a conservative
19	default effective dose. I don't wish to propose a
20	particular figure, but most tracers would fall
21	below the figures that I've given there.
22	If you then need to characterize that a bit

1	more in man because you're not sure about that, you
2	could consider a single whole-body human scan to
3	characterize uptake. I know that approach is used
4	in some centers in Europe. The question would be
5	whether that was sufficiently representative of the
6	population you want to study. Then moving on, if
7	that tracer is going to be used more widely for
8	example, if it's going to be used as a clinical
9	radiodiagnostic at that point, you might want to
10	consider actually performing a proper human
11	dosimetry study, but that wouldn't really apply to
12	most carbon-11 labeled PET drugs.
13	Thank you. I think we're at the end. Thank
14	you.
15	DR. ROYAL: Thank you very much,
16	Dr. Hallett. We will now proceed with a speaker
17	presentation from Dr. Paolo Zanotti-Fregonara.
18	Speaker Presentation - Paolo Zanotti-Fregonara
19	DR. ZANOTTI-FREGONARA: Hi. Good morning,
20	and thanks for inviting me to this meeting. My
21	name is Paolo Zanotti-Fregonara, and I work in the
22	lab in the National Institute of Mental Health

1	called the Molecular Imaging Branch. This is a lab
2	whose goal is to create new PET research, so
3	essentially for brain diseases. So therefore, we
4	are often in the situation where we inject new
5	radioligands in humans under INDs. Of course,
6	along the usual safety assessment, we need to have
7	an estimation of the dosimetry. I'm talking only
8	about carbon-11 and F-18 here because these are the
9	isotopes that we use.
10	In the past years, we have tried to simplify
11	and streamline the dosimetry part of the validation
12	of new ligands, and we summarized our approach and
13	proposal in three opinion papers that were
14	published in the journals of our field, and the
15	scope of this talk is to give you an overview of
16	these three papers and explain the rationale behind
17	them.
18	To summarize the main points, animal
19	dosimetry is resource-intensive and poorly predicts
20	human values. Human dosimetry is even more
21	expensive, exposes multiple subjects to radiation,
22	and you may find out at the end that the tracer

1	doesn't work because creating new radioligands is a
2	type of research with a high risk of failure, and
3	it's only when you really explore the organ, like
4	the brain, that you will discover whether the
5	tracer works or not.
6	Finally, the dose for specifically carbon-11
7	tracers we think is very predictable and primarily
8	based on the isotope, so the proper solution would
9	be to abandon animal dosimetry for both F-18 and
10	carbon-11 to postpone dosimetry until the tracer is
11	proven to work, and specifically abandon human
12	carbon-11 dosimetry, even in humans, and use an
13	average dose.
14	Until, let's say, 10 years ago, this was the
15	traditional pathway we used at NIH for new
16	radioligands. We would first perform human
17	dosimetry in monkeys. I am aware that the FDA does
18	not mandate the use of monkeys, but we used monkeys
19	as a model because we have easy access to monkeys,
20	and they are, of course, the best model. Once the
21	dosimetry in monkeys was done, we would do
22	dosimetry in humans, which means acquiring 5 to 10

1	whole-body scans and calculating the dosimetry.
2	Once the dosimetry is known, then we would test the
3	validity of the new tracer, for example, by doing
4	brain studies. The problem with this pathway is
5	immediately evident. By the time you discover that
6	the tracer does not work, you have already done all
7	the animals and human dosimetry, so you have spent
8	a lot of money, you have irradiated subjects, and
9	used the resources for nothing.
10	We first published these two papers about
11	10 years ago in which we argued that, first, animal
12	dosimetry should be abandoned because it poorly
13	predicts the human dose. Then we proposed to
14	validate the new tracers directly in humans by
15	injecting first a single human subject with low
16	activity and do a whole-body scan.
17	The reason was to check whether the
18	biodistribution of the tracer was not unusual. In
19	particular, we wanted to avoid that there was an
20	abnormal disproportionate accumulation in one organ
21	that would give a high organ dose. If that is not
22	the case, then we would proceed with brain scans to

1	determine whether the radioligand is worth
2	pursuing. If it is, then we would go back to the
3	dosimetry part and complete the dosimetry studies.
4	This is the approach that we have been using
5	for the past 10 years because it was submitted to
6	our radiation safety committee, and it was
7	approved. Then more recently, a couple of years
8	ago, we published this other paper in which we
9	argued that carbon-11 dosimetry should be abandoned
10	altogether, even for humans, and instead we would
11	use an average effective dose of 5 microsieverts
12	per megabecquerel. This was the contents of the
13	letter, and now I'm going to give you the data
14	these recommendations are based on.
15	First, for animal studies, monkeys poorly
16	predict human dosimetry. In the literature, there
17	are 16 carbon-11 tracers and 21 F-18 tracers for
18	which the dosimetry of humans and monkeys is
19	available. In terms of effective dose, the monkey
20	scans unpredictably under- or over-estimated the
21	human effective dose with a mean difference of
22	about 30 percent. The organ dose is not

1	
1	surprisingly even less well estimated.
2	In particular, in only one-third of the
3	tracers, the target organ was the same between the
4	two species. So the target organ is the organ that
5	receives the highest dose and is more likely the
6	limiting factor for the amount of dose activity you
7	can give to humans. In terms of the cases, monkeys
8	were not even able to predict which was the target
9	organ, let alone calculate the dose.
10	As I was saying, in the lecture, we spoke
11	only about the monkeys because this is the best
12	model for humans with the understanding that if
13	even monkeys cannot estimate what is the dose to
14	humans, there isn't a chance that mice can, and
15	indeed, I came in contact recently with a German
16	team from Leipzig. They don't have access to
17	monkeys, so they routinely use mice and piglets for
18	human dosimetry, and they have results that are
19	very different from the actual human dosimetry, so
20	they are trying to convince the German FDA to let
21	them abandon human dosimetry as well. So we're not
22	the only ones with this line of thinking, and I

1	suspect that there are more.
2	This graph shows you the doses in humans.
3	These are not extrapolated from monkeys. These are
4	human doses of all tracers published in the
5	literature that I could find. There are
6	77 carbon-11 tracers and 144 F-18 tracers. The
7	average dose for carbon-11 is 5 microsieverts per
8	megabecquerel. The average dose for F-18 is
9	20 microsieverts per megabecquerel, 4 times larger.
10	Even without me giving you the value of
11	these kind of deviations, you can visually see how
12	the carbon-11 doses are most tightly clustered
13	around the mean of 5, so we propose to use an
14	average carbon-11 dose for humans. One may object
15	that if we use an average dose, we may miss some
16	outlying value. So if you click once again, you
17	see there is this very high outlying point for
18	carbon-11, which has a dose of about
19	15 microsieverts per megabecquerel. We are talking
20	something like 7 standard deviations above the
21	mean.
22	There are two things to be said. First,

1	even for such a high value, we are practically
2	still one standard deviation below the mean for
3	F-18. That is because the dose of carbon-11 is so
4	low, that we are always within a safe range. But
5	second, I will say that when you find the value
6	that is so outlying and so unique compared to
7	everything else that you published, you cannot
8	exclude the hypothesis that there were some issues
9	with the data analysis.
10	This is a standard carbon-11 tracer for the
11	brain receptor. There are many, and they all share
12	similar biophysical characteristics, molecular
13	weight, lipophilicity, so you do not expect a dose
14	that is 7 standard deviations away. For these
15	tracers in particular, we have animal dosimetry,
16	which shows a standard of 5 microsieverts per
17	megabecquerel dose. So either animal dosimetry is
18	so bad that it cannot catch something that is
19	7 standard deviations away or the study needs a
20	replication.
21	We have a similar case for F-18. The second
22	arrow, that is this very high data point of about

1	50 microsieverts per megabecquerel. And this 50
2	actually is the average between men and women, and
3	the average between men and women is almost a
4	factor of 2. There can be sex differences also
5	because you use two different anthropomorphic
6	phantoms, but it's never a factor of almost 2.
7	Then for this tracer, we do have a replication
8	study in humans which found a more standard dose of
9	about 30 microsieverts per megabecquerel and no sex
10	differences.
11	Even if we can question these outlying
12	values only on methodological grounds, there is
13	still some variability around the mean of 5
14	microsieverts per megabecquerel, so how important
15	is this variability? I will say not very much
16	because knowing whether the dose is slightly above
17	or slightly below 5 really has no significant
18	biological meaning.
19	It should not be forgotten that the
20	variability is also explained by methodological
21	choices. Whenever you do dosimetry analysis, you
22	determine which are the choices that affect the

1	numbers that you find reported in the paper; for
2	example, how you draw the region of interest around
3	the organs; which organs you use as source organs;
4	and, for example, the settings of the bladder.
5	When you simulate the dose with an anthropomorphic
6	phantom, you can decide whether the bladder voids
7	at 1 hour after injection, or 4 hours, or 1 and
8	4 hours, or never voids. This can change a lot of
9	the dose to the bladder, but also it can change the
10	effective dose because there is more or less
11	radioactivity inside of the body.
12	There are some papers in the literature
12 13	There are some papers in the literature which report two sets of values with different body
13	which report two sets of values with different body
13 14	which report two sets of values with different body types, and the results can be significant or they
13 14 15	which report two sets of values with different body types, and the results can be significant or they can be in the double digits, which means that these
13 14 15 16	which report two sets of values with different body types, and the results can be significant or they can be in the double digits, which means that these could be the values of a completely different
13 14 15 16 17	which report two sets of values with different body types, and the results can be significant or they can be in the double digits, which means that these could be the values of a completely different tracer if you chose a different voiding schedule,
 13 14 15 16 17 18 	which report two sets of values with different body types, and the results can be significant or they can be in the double digits, which means that these could be the values of a completely different tracer if you chose a different voiding schedule, for example.
 13 14 15 16 17 18 19 	which report two sets of values with different body types, and the results can be significant or they can be in the double digits, which means that these could be the values of a completely different tracer if you chose a different voiding schedule, for example. I said before that animal dosimetry is
 13 14 15 16 17 18 19 20 	<pre>which report two sets of values with different body types, and the results can be significant or they can be in the double digits, which means that these could be the values of a completely different tracer if you chose a different voiding schedule, for example. I said before that animal dosimetry is poorly predictive of human dosimetry, but also</pre>

1	18 tracers for which the effective dose was
2	reported by two different teams mainly because
3	there were two different teams working on the same
4	tracers; and often unbeknownst to each other, they
5	were working on the dosimetry paper, and then they
6	published the results. This is a very nice natural
7	experiment to see how reproducible is human
8	dosimetry, and the answer is not very much. The
9	difference can be important, and in only 3 of these
10	18 tracers the dose difference was more than
11	10 percent.
12	If we go to the next slide, this is to
13	remind you that we are not the only ones
14	questioning the utility of the scans because
15	carbon-11 is already being abandoned somewhere.
16	Specifically, at the University Hospital of
17	Amsterdam, they abandoned both animal and human
18	carbon-11 dosimetry for all tracers, except those
19	that are expected to enter routine clinical
20	practice. For F-18 tracers, in Amsterdam they use
21	the protocol we adopted here at the NIH, so
22	directly in humans but with one first whole-body

1	scan, and then validation of the tracer.
2	This is the last slide. Our opinions are
3	that we should abandon animal dosimetry for both
4	F-18 and carbon-11 because the doses are low for
5	these isotopes, and the animals are not a good
6	model. We don't think it's a justifiable use of
7	animal research in this case. For F-18, we can go
8	directly into humans with a single whole-body scan
9	and then do dosimetry after the tracer has been
10	proven valid, and for human carbon-11 dosimetry, we
11	may simply replace with an average dose.
12	Thank you very much, and I would be happy to
12 13	Thank you very much, and I would be happy to take questions.
13	take questions.
13 14	take questions. Clarifying Questions to Speakers
13 14 15	take questions. Clarifying Questions to Speakers DR. ROYAL: Thank you, Dr. Zanotti-
13 14 15 16	take questions. Clarifying Questions to Speakers DR. ROYAL: Thank you, Dr. Zanotti- Fregonara.
13 14 15 16 17	take questions. Clarifying Questions to Speakers DR. ROYAL: Thank you, Dr. Zanotti- Fregonara. We will now take clarifying questions for
 13 14 15 16 17 18 	<pre>take questions. Clarifying Questions to Speakers DR. ROYAL: Thank you, Dr. Zanotti- Fregonara. We will now take clarifying questions for Dr. Hallett and Dr. Zanotti-Fregonara. Please use</pre>
 13 14 15 16 17 18 19 	<pre>take questions. Clarifying Questions to Speakers DR. ROYAL: Thank you, Dr. Zanotti- Fregonara. We will now take clarifying questions for Dr. Hallett and Dr. Zanotti-Fregonara. Please use the raise-hand icon to indicate if you have a</pre>
 13 14 15 16 17 18 19 20 	take questions. Clarifying Questions to Speakers DR. ROYAL: Thank you, Dr. Zanotti- Fregonara. We will now take clarifying questions for Dr. Hallett and Dr. Zanotti-Fregonara. Please use the raise-hand icon to indicate if you have a question, and you'll find that under the reactions

1	
1	you've asked your question. When acknowledged,
2	please remember to state your name for the record
3	before you speak and direct your question to a
4	specific presenter, if you can. If you wish for a
5	specific slide to be displayed, please let us know
6	the slide number, if possible.
7	Finally, it would be helpful to acknowledge
8	the end of your question with a thank you or the
9	end of your follow-up question with, "That is all
10	for my questions," so we can move to the next panel
11	member.
12	Okay. I see we have a question from Terry
13	Gillespie.
14	MS. GILLESPIE: Hi. Thank you. One of my
15	questions is I noticed that they kept saying
16	"healthy patients," and I'm a patient advocate. I
17	don't know. I see that most people that need these
18	types of scans or isotopes are not healthy, so I
19	was wondering what they qualify as a healthy
20	patient. Thank you.
21	DR. ROYAL: Dr. Hallett or Dr. Zanotti-
22	Fregonara, would you like to answer that question?

1	DR. ZANOTTI-FREGONARA: Well, yes. Indeed,
2	dosimetry analyses are usually performed on healthy
3	patients, and then we assume dose is estimated in
4	healthy patients, and active controls can be
5	translatable to patients. I will say, in most
6	cases, this is a reasonable assumption, especially
7	when you study diseases like the brain.
8	Of course, there can be differences if
9	there are significant organ failures with the
10	kidneys or other organs that are supposed to clear
11	the waste away from the body, but generally
12	speaking, yes, this is the standard procedure. We
13	do dosimetry estimated in healthy controls.
14	DR. HALLETT: Yes, it's a very good
15	question. In a few of our dosimetry studies,
16	because the biodistribution and the excretion is
17	likely to be affected by the disease, for example,
18	we have also been asked to do the dosimetry in
19	patients, as well as healthy volunteers. But in
20	any case, the dosimetry number that you get is
21	really only valid as an average over a population.
22	So you don't expect it to be predictive for an

1	
1	individual person, but it's just to give you an
2	average value that you can use to compare different
3	tracers and which tracer you should use if you have
4	a choice.
5	MS. GILLESPIE: My question then is, should
6	the average be adjusted? Because 90 percent of the
7	people using this stuff is not healthy anymore. So
8	that means that the uptake to an organ or something
9	else would be more likely, I would think.
10	DR. HALLETT: Yes, potentially, but it's
11	only one of the variables. I mean, a particularly
12	important factor, for example, is if a tracer is
13	excreted by the kidneys, then patients are
14	encouraged to go to the bathroom to void, get rid
15	of the tracer that's excreted that way; so that can
16	have a really big effect on the dose, actually. A
17	lot of tracers are used only in healthy subjects.
18	If we're using a tracer to investigate a particular
19	pathway in the body a PET tracer which is really
20	only being used for basic fundamental
21	research then it may not be used in patients.
22	MS. GILLESPIE: Okay. That is all. Thank

1 you very much. DR. ROYAL: Okay. That question was from 2 Terry. I'm looking for her last name. 3 4 MS. GILLESPIE: Gillespie. DR. ROYAL: Gillespie. Okay. 5 Dr. Xiong had his hand raised, although you 6 may have put it down. 7 Do you have a question or comment, 8 Dr. Xiong? 9 DR. XIONG: Yes. Thanks. Chengjie Xiong 10 again. My question is to the last speaker. 11 I think maybe your next-to-last slide, when you talk 12 about human dosimetry data are also poorly 13 reproducible, you give the example of, I believe, 14 18 studies of the same tracer, and they came up 15 with different numbers. 16 Can you try to explain what are the reasons 17 18 behind this, when people are using the same tracer 19 and perhaps the same subject population as well? I don't know; that could be a major reason. Can you 20 21 interpret or maybe explain what are the possible reasons people are using different protocols, 22

1	
1	different populations, different statistical
2	approaches? What are the major reasons behind
3	that?
4	DR. ZANOTTI-FREGONARA: Well, I think there
5	are multiple reasons at the same time. First,
6	these are different subjects, which can give
7	different time-activity curves. The way you are
8	drawing the region of interest might be different.
9	The organs that you choose can be different. The
10	bladder, voiding time, and how they are set up,
11	that can be different. The software that you use
12	can be different.
13	There is not one major reason, but these
14	dosimetry studies are not well harmonized, in my
15	opinion. You can find the different approaches in
16	the literature. There are people who collect the
17	urines and measure the urines, and there are people
18	who will just simply draw a time-activity curve
19	around the bladder, and this can give some
20	variation.
21	DR. XIONG: Right. Maybe I'll follow up
22	there. How large are those studies in terms of

1	some percent?
2	DR. ZANOTTI-FREGONARA: Right. They can be
3	quite small. I would say that the vast majority of
4	the studies are less than 10 subjects. Sometimes
5	you have more for tracers like FDG, which are
6	common, but it's not unusual to find dosimetry
7	studies with 2 subjects or 3 subjects, and then
8	also can increase the noise of the numbers.
9	DR. XIONG: Great. Thank you for your
10	answer.
11	DR. ROYAL: Okay. Dr. Mintun has his hand
12	raised.
13	DR. MINTUN: Yes. Mark Mintun, Lilly and
14	Avid Radiopharmaceuticals. My question is to
15	Dr. Zanotti. I found the presentation really
16	compelling and think that it could lead to
17	acceleration of innovation and finding new tracers.
18	But I noticed that well, could you comment on
19	whether the types of data and your arguments for
20	how to simplify doing first-in-man studies with
21	F-18 and carbon-11, could that be used and extended
22	to the questions that we've been given with gallium

1	and copper?
2	I see gallium is also an incredibly
3	important agent for being able to test
4	radiopharmaceuticals. Would there be an obstacle?
5	Is it a matter of not enough data to conclude this,
6	or is there something intrinsic about not being
7	able to extend the arguments you're making for
8	carbon-11 and F-18 to gallium and copper agents on
9	our question? Thank you very much.
10	DR. ZANOTTI-FREGONARA: In principle, the
11	protocol can be applied to other isotopes. I did
12	not consider isotopes other than carbon-11 or F-18
13	because we work only with carbon-11 and F-18. So
14	that is the only reason why I limited my
15	presentation to these two isotopes.
16	DR. MINTUN: Thank you.
17	DR. ZANOTTI-FREGONARA: Yes.
18	DR. ROYAL: Dr. Dewaraja has her hand
19	raised.
20	DR. DEWARAJA: Yuni Dewaraja, University of
21	Michigan. My question is kind of related to the
22	first question about the large variability in the

1	data for effective dose coefficients. My question
2	is, I see in the plot that was shown in one of the
3	slides, there was some extreme outliers. The F-18
4	values seem to be going from 5 to 50 microsieverts
5	per megabecquerel.
6	DR. ZANOTTI-FREGONARA: Yes.
7	DR. DEWARAJA: Was there any attempt to
8	identify, at least for those extreme outliers? I
9	would think it would be relatively easy to try to
10	identify whether there was anything specific in
11	their protocol that would have led to values like
12	50 microsieverts per megabecquerel. I'm assuming
13	many of these studies used OLINDA, and there are
14	things like, as you mentioned, the bladder model,
15	but also things like mass scaling for the different
16	organ masses; so whether there was anything
17	specific that you could identify.
18	DR. ZANOTTI-FREGONARA: Yes, correct. I
19	read carefully the study, but I was not able to
20	find any obvious reason for this dose. I also
21	tried to obtain the original data, but they were
22	not available anymore because this study is a bit

1	older, and I contacted the authors. Yes, so can't
2	explain, but I believe that if we were trying to
3	replicate the study, we may probably find a
4	different dose.
5	DR. DEWARAJA: Thank you. So you think it's
6	reasonable to include those outliers in the
7	discussions?
8	DR. ZANOTTI-FREGONARA: I think that outlier
9	I don't think is reasonable to include.
10	DR. DEWARAJA: Thank you.
11	DR. ROYAL: Okay. If there are no further
12	questions, we will now proceed with the FDA
13	presentations, starting with Dr. Donika Plyku,
14	followed by Dr. Cohen and Dr. Cotter.
15	FDA Presentation - Donika Plyku
15 16	
	FDA Presentation - Donika Plyku
16	FDA Presentation - Donika Plyku DR. PLYKU: Good afternoon. My name is
16 17	FDA Presentation - Donika Plyku DR. PLYKU: Good afternoon. My name is Donika Plyku, and I'm a medical physicist at the
16 17 18	FDA Presentation - Donika Plyku DR. PLYKU: Good afternoon. My name is Donika Plyku, and I'm a medical physicist at the Division of Imaging and Radiation Medicine at CDER.
16 17 18 19	FDA Presentation - Donika Plyku DR. PLYKU: Good afternoon. My name is Donika Plyku, and I'm a medical physicist at the Division of Imaging and Radiation Medicine at CDER. I will start my talk by highlighting interest in
16 17 18 19 20	FDA Presentation - Donika Plyku DR. PLYKU: Good afternoon. My name is Donika Plyku, and I'm a medical physicist at the Division of Imaging and Radiation Medicine at CDER. I will start my talk by highlighting interest in developing PET imaging drugs and discussing a few

1	literature review on radiation dosimetry data for
2	PET drugs, and this includes both investigational
3	and approved ones that were analyzed in order to
4	assess the value of nonclinical dosimetry studies
5	for PET drug development and to evaluate what could
6	be considered as safe administered activity levels
7	for first-in-human studies with certain new PET
8	drugs in the absence of animal-derived
9	human-absorbed dose estimates. I will end by
10	discussing a few radiation dosimetry aspects that
11	may help to put the approach under consideration
12	into perspective.
12 13	into perspective. Positron emitting radionuclides share some
13	Positron emitting radionuclides share some
13 14	Positron emitting radionuclides share some unique characteristics such as a relatively short
13 14 15	Positron emitting radionuclides share some unique characteristics such as a relatively short physical half-life for measurement of fast
13 14 15 16	Positron emitting radionuclides share some unique characteristics such as a relatively short physical half-life for measurement of fast biological processes and also relying on the
13 14 15 16 17	Positron emitting radionuclides share some unique characteristics such as a relatively short physical half-life for measurement of fast biological processes and also relying on the 511 keV annihilation photons to produce detectable
13 14 15 16 17 18	Positron emitting radionuclides share some unique characteristics such as a relatively short physical half-life for measurement of fast biological processes and also relying on the 511 keV annihilation photons to produce detectable signals for imaging. Advancements in cancer
 13 14 15 16 17 18 19 	Positron emitting radionuclides share some unique characteristics such as a relatively short physical half-life for measurement of fast biological processes and also relying on the 511 keV annihilation photons to produce detectable signals for imaging. Advancements in cancer imaging and diagnosis and therapy, as well as

1	
1	and increased research and applications of PET
2	drugs.
3	The table shows various PET radionuclides.
4	These are listed here in increasing physical
5	half-life order, and I have highlighted six
6	radionuclides that are in focus for today and for
7	which FDA-approved PET drugs exist. The graph
8	shows FDA-approved PET drugs over the course of
9	50 years, and please note there's an increased
10	number of approvals in the recent 10 years.
11	Currently, there are 19 FDA approved and also about
12	85 total abbreviated NDAs for PET drugs in the U.S.
13	Earlier today, Dr. Fotenos talked about the
14	Code of Federal Regulations pertinent to
15	radioactive drugs, and this is shown here. This
16	regulation has direct implication on the design of
17	phase 1 studies, which must obtain data for
18	dosimetry calculations, and therefore IND
19	submissions for new products include dose estimates
20	for human organs that are often extrapolated from
21	animal biodistribution data.
22	The extrapolation methods make assumptions

1	about the differences in metabolism, anatomy, and
2	biodistribution between animals and humans, and
3	these assumptions contribute to uncertainties in
4	predicting radiation dose to human organs. Animal
5	dosimetry studies are important, but there is a
6	tendency to underestimate human organ-absorbed dose
7	when extrapolated from animal data, and the
8	differences and associated uncertainties between
9	extrapolated absorbed dose values and those
10	calculated from direct measurements in humans are
11	important to consider.
12	The measured percent injected dose per gram
13	in animal tissue is extrapolated to percent
13 14	in animal tissue is extrapolated to percent injected dose in human organ often using the
14	injected dose in human organ often using the
14 15	injected dose in human organ often using the relative organ mass extrapolation method, and this
14 15 16	injected dose in human organ often using the relative organ mass extrapolation method, and this assumes that the metabolism is similar between
14 15 16 17	injected dose in human organ often using the relative organ mass extrapolation method, and this assumes that the metabolism is similar between animals and humans and varies only as a function of
14 15 16 17 18	injected dose in human organ often using the relative organ mass extrapolation method, and this assumes that the metabolism is similar between animals and humans and varies only as a function of organ mass. Nonclinical studies may provide an
14 15 16 17 18 19	injected dose in human organ often using the relative organ mass extrapolation method, and this assumes that the metabolism is similar between animals and humans and varies only as a function of organ mass. Nonclinical studies may provide an estimate for human organ-absorbed dose and could

1	time-activity curve can be fit and integrated to
2	obtain what we call a reference organ residence
3	time.
4	Once we obtain the residence time in source
5	organs, one can obtain or calculate the absorbed
6	dose to target organs, and following MIRD
7	methodology, this requires employing the reference
8	human phantom. Earlier, Dr. Hallett talked about
9	how this calculation is done. The pictures show a
10	reference human phantom's evolution throughout time
11	that are used for this calculation. This
12	methodology is appropriate in diagnostic nuclear
13	medicine, where we do calculations based on
14	reference representative of a general population
15	and not for a single patient.
16	This slide highlights current FDA
17	recommendations on nonclinical dosimetry studies
18	for new PET drug development. Investigators are
19	encouraged to contact FDA early, and
20	recommendations are generally provided upon review
21	of pre-IND submissions and IND opening protocols
22	when plans to conduct or results of animal

1	biodistribution and dosimetry studies are reviewed.
2	The submissions may also include human organ
3	dose estimates, and I want to highlight here that
4	currently, the review of dosimetry provided in the
5	pre-IND and IND submissions of new PET drugs is
6	performed on a case-by-case basis, as Dr. Fotenos
7	also explained, and review issues generally include
8	limitations on animal-to-human extrapolation and
9	recommendations on planning and design of animal
10	biodistribution studies and on the design of
11	clinical dosimetry studies.
12	Future accommodations will involve an
13	approach to compare planned administered activity
14	for first-in-human studies with new PET drugs or
15	the maximum protocol-specific administered activity
16	covering the pre-phase 1 dosimetry cohort; so
17	basically comparing the planned administered
18	activity in the submission of the IND opening
19	protocol with mean administered activity values
20	that have been derived from approved drugs for each
21	of the six PET radionuclides shown on the slide.
22	This is in the absence of animal-derived radiation

1	
1	dose estimates. In other words, the approach under
2	consideration involves administered activity values
3	for first-in-human studies that may allow foregoing
4	animal biodistribution studies, and I will describe
5	this approach in more detail after I talk about how
6	these values were determined.
7	One of the early and few studies that looked
8	at the value of nonclinical dosimetry studies is
9	the study published by the Oak Ridge symposium by
10	Sparks and Aydogan. In this study, the authors
11	looked at the various extrapolation techniques to
12	predict residence time in humans using both
13	nonclinical and clinical data for several
14	extrapolation methods such as relative organ-mass
15	and physiological time, or a combination of the
16	two. The residence times, or what we actually call
17	time-integrated activity coefficients for source
18	organs, were calculated using animal and human
19	data, and ratios of animal-derived versus human
20	measures were plotted for each extrapolation
21	method.
22	In these histograms, you see distribution of

1	these ratios for each extrapolation method, and one
2	can look at the geometric mean of these
3	distributions being less than 1, basically
4	indicating the tendency to underestimate the
5	residence time in human organs when calculating
6	from animal biodistribution studies or dosimetry
7	studies. Also, in this study, the physiological
8	time extrapolation had an improvement on this
9	ratio; however, the data reviewed in this study
10	were limited, so there is a need to repeat such
11	studies with all available clinical experience with
12	PET drugs that we have now.
13	Studies conducted by colleagues at
14	NIH Dr. Zanotti-Fregonara talked about
15	this that were shown earlier in the previous
16	talk, they performed the review of dosimetry data
17	of carbon-11 and F-18 drugs and the relative
18	radiation profile between them. Dr. Zanotti talked
19	in detail about the observed variability in those
20	estimates and explained what the variabilities
21	could be attributed to.
22	Other studies that we found in literature

1	wrote about strengths and weaknesses of various
2	extrapolation methods for these calculations and
3	factors affecting animal-to-human extrapolation.
4	Specifically for murine species, several factors
5	have been reported to cause discrepancies between
6	mouse- and human-derived, organ-absorbed doses, and
7	there is a need for standardization in dosimetry
8	methodology and reporting in order to ensure
9	reproducibility of results. A more recent study
10	looked at the gallium-68 radiolabeled
11	macromolecules and compared five extrapolation
12	methods, and suggested that the best approximation
13	of the actual human dosimetry was provided by the
14	method which applied a metabolic scaling to the
15	murine data.
16	These considerations prompted FDA to
17	re-evaluate the utility of animal dosimetry studies
18	and come up with recommendations to streamline the
19	assessment of the radiation safety of PET drugs.
20	In order to determine administered activity levels
21	for first-in-human studies that may allow foregoing
22	animal dosimetry studies, we followed this

1	approach.
2	First, we decided to leverage findings for
3	the safety of approved PET drugs when administered
4	at the AA levels specified on the drug label. In
5	the table, you can see all FDA-approved PET drugs,
6	along with indications for adult patients and
7	recommended administered activity on the
8	prescribing information. Secondly, a systematic
9	review of human dosimetry estimates of PET drugs
10	derived from both nonclinical and clinical
11	dosimetry studies was also conducted, and collected
12	dosimetry data were analyzed.
13	In this literature review, articles were
14	selected with reported human organ radiation dose
15	estimates from both animal and human studies, and
16	these were calculated according to MIRD or related
17	methodology. Specifically, we looked at the
18	organ-absorbed dose values and whole-body effective
19	dose coefficients for the radionuclides or drugs
20	radiolabeled with these PET radionuclides. In
21	addition, we looked at the proportion of published
22	studies with administered activity above the mean

1	administered activity from drug labels or
2	prescribing information of approved drugs, and we
3	did this in order to evaluate the range of
4	administered activity values in the available
5	clinical data.
6	Dosimetry data from a total of 322 PET drugs
7	were analyzed, and this includes both
8	investigational and approved ones. The left and
9	right figures show the whole-body effective dose
10	coefficients and organ-absorbed dose coefficients,
11	and actually the maximum organ-absorbed dose
12	coefficients for both animal-derived and
13	human-measured data in these studies, and you can
14	see the gray and black data points, respectively.
15	Overall, we observed that animal studies
16	provided close estimates to values derived from
17	human studies, and also the variability in dose
18	estimates derived from clinical studies was lower
19	for the majority of the studies shown. The organs
20	exhibiting maximum organ absorbed dose coefficients
21	were generally identified as the organs of
22	excretion, such as the kidneys, urinary bladder,

1	and not the more radiosensitive organs such as the
2	blood-forming lens of the eye or the reproductive
3	organs.
4	We calculated the whole-body effective dose
5	and maximum organ-absorbed dose values by using the
6	dose coefficients and the average study AA, so
7	administered activity over all subjects in the
8	study, and this is what is shown on these two
9	figures. You can see that the whole-body effective
10	dose values were less than 20 millisieverts for
11	F-18, gallium-68, and copper-64, and less than
12	10 millisieverts for the short-lived radionuclides
13	such as carbon-11 and the rest. This is well below
14	the generally accepted whole-body dose limit of
15	30 millisieverts.
16	Figure 4 shows the maximum organ-absorbed
17	dose values in milligray, and one can look at the
18	proportion of the studies with maximum
19	organ-absorbed dose above 50 milligray or
20	millisievert, as this is generally accepted as the
21	organ-absorbed dose threshold for the less
22	radiosensitive organs, and this proportion ranges

1	from 1 to 26 percent for the majority of the cases
2	and about 50 percent for copper-64. Overall, drugs
3	labeled with this PET radionuclide have a
4	relatively safe radiation profile.
5	The lower radiation profile of the six
6	radionuclides that are in focus today is clear if
7	we compare effective dose estimates to those
8	reported in zirconium-89 or I-124 studies, and
9	radionuclides are listed in this figure in
10	increasing physical half-life order, starting with
11	rubidium-82, and up to copper-64 are separated
12	here, zirconium-89 and I-124. And you can see that
13	the effective dose estimates are about 10 to
14	15 times higher for the longer-lived radionuclides,
15	and there is less variability in those estimates
16	for the shorter lived ones.
17	I would like to note that FDA does not have
18	defined thresholds that limit the organ-absorbed
19	dose or whole-body effective dose for diagnostic
20	radiopharmaceuticals studied under an IND
21	application; however, the CFR Code Title 21
22	Part 361 outlines upper radiation dose limits to

1	individual organs and the whole body for the
2	radioactive drugs studied under an institutional
3	RDRC protocol for adult subjects, and these
4	organ-absorbed dose limits are shown in this slide
5	for both single-dose administration and annual
6	total dose commitments.
7	In this table, I wanted to compare the mean
8	administered activity values, or actually the
9	statistics of administered activity values, in the
10	available clinical studies published in literature
11	with the mean of the recommended administered
12	activity from the approved drug labels. You can
13	see that this is shown here in the red column,
14	combining the clinical dosimetry experience for
15	both investigational and approved drugs.
16	The approach under consideration for today's
17	meeting is to use the calculated mean AA, or
18	administered activity, of approved drugs for each
19	radionuclide so basically the mean of the
20	recommended AA for first-in-human studies with
21	new investigational PET drugs to generally allow
22	the investigator to forego animal radiation

1	dosimetry studies. I wanted to compare the
2	proportion of studies with reported administered
3	activity that exceed the values in the red column,
4	and this ranges from 30 to 75 percent, with the
5	highest being the copper-64 studies. Here, I
6	excluded nitrogen-13 because there is only one
7	approved drug.
8	Also, what is relevant is to compare,
9	actually, the dose estimates for the approved drugs
10	and the clinical studies, especially the studies
11	with AA that are an administered activity higher
12	than the mean administered activity from the drug
13	labels. You can see that there is a slight
14	difference in effective dose estimates between the
15	two. In the left, this is the mean effective dose
16	for approved drugs, and on the right you have the
17	mean effective dose for other available clinical
18	studies. There is a slight difference between
19	published and approved drugs.
20	A similar comparison can be done in terms of
21	organ-absorbed dose estimate and actually in terms
22	of the maximum organ-absorbed dose values, as this

1	organ is generally the critical organ. The maximum
2	organ-absorbed dose of the approved drugs are lower
3	than the absorbed dose estimates of published
4	studies, with administered activity higher than the
5	mean AA from the approved drug labels. The largest
6	difference here, more than a factor of 2, is for
7	copper-64.
8	So generally, comparing radiation dose
9	estimates for studies with administered activity
10	higher than this mean AA value shows that reducing
11	administered activity at the mean drug label AA
12	level generally serves to reduce radiation dose and
13	may allow for reasonable calculation to ensure the
14	safety of first-in-human subjects, pending
15	availability of required clinical dosimetry data.
16	To put this approach under consideration
17	into perspective, it helps to look at conservative
18	approaches to determine upper administered activity
19	limits for human dosimetry studies. So going back
20	to the biological endpoint of performing radiation
21	dosimetry in diagnostic nuclear medicine, we are
22	talking about risk of cancer induction later in

1	life, which is a stochastic effect. The input data
2	come from measured time-activity in reference
3	source organs. The calculation involves MIRD
4	methodology and reference human phantoms and models
5	that relate dose to risk. In addition, one should
6	consider the added dose from CT scanning when
7	evaluating the radiation safety or the total
8	effective dose.
9	CT dose value is shown here for a typical
10	diagnostic F-18 FDG PET/CT imaging. So the optimal
11	administered activity in diagnostic imaging is the
12	lowest activity to achieve the imaging objective,
13	which is a reliable diagnosis. We try to balance
14	image quality with risk due to radiation exposure.
15	The context of this biological effect is the
16	radiation induced risk, and in order to simulate
17	the worst case radiation dose scenario, we
18	calculate a risk associated with the high absorbed
19	dose delivered to a single organ, and clearance of
20	the activity by physical decay only upon
21	administration of a PET drug. So the target organ
22	cancer risk in this case, the kidneys is

1	calculated or estimated for an 18-year-old female
2	subject using absorbed dose calculated for this
3	hypothetical scenario for each radionuclide, and
4	the calculation used the NCI RadRAT tool for
5	radiation risk.
6	The relative risk is expressed in risk
7	index. This is the ratio of radiation induced risk
8	versus the natural incidence of cancer. The plot
9	in the bottom shows risk index calculated for
10	4 radionuclides listed in increasing physical
11	half-life order. I'm sorry, it's not, because
12	carbon-11 is not after F-18, but 4 radionuclides
13	shown here. The risk index for F-18, gallium-68,
14	and copper-64 were 1.3, 2, and 4 times higher than
15	the risk index for F-18 FDG typical scan,
16	respectively. For carbon-11, this risk index is
17	about 3 times smaller than the risk from F-18 FDG,
18	risk associated with typical administration for an
19	F-18 FDG scan.
20	Other studies in literature performed
21	simulations for carbon-11 labeled compounds to
22	estimate the administered activity level that would

1	not exceed 50 millisieverts to an individual organ.
2	The purpose is to rule out the possibility of
3	radioactivity accumulation in a single organ when
4	the biodistribution is unknown.
5	In this study, Gatley calculated an upper
6	limit of 130 megabecquerels, or 3.5 millicuries,
7	and suggested to be used in performing a
8	preliminary study in humans without risking this
9	organ absorbed dose limit. This approach allows
10	also the assessment of a worst-case scenario, so
11	activity accumulation in a single radiosensitive
12	organ in order to conservatively plan initial human
13	PET studies.
14	Other ways to conservatively determine the
15	maximum AA for human studies with new PET drugs
16	would be to use the maximum reported absorbed dose
17	in the clinical studies and RDRC absorbed dose
18	thresholds, and such calculations are also
19	available in the studies published by Zanotti-
20	Fregonara. It must be noted that in FDA's
21	experience with clinical dosimetry data of PET
22	drugs, such case scenarios have not been observed.

This flowchart helps to understand the
current recommendations for nonclinical and
clinical dosimetry studies and what would change
the future state if the approach under
consideration is implemented in the pre-IND and IND
submission review for new PET drugs. In the
current state, the available dosimetry in the
submitted protocols are reviewed on a case-by-case
basis to decide that the study is safe to proceed
from a radiation safety perspective or to recommend
collection of phase 1 clinical dosimetry data.
In the future, or going forward, if the
approach under consideration of the mean
administered activity values from approved drugs
are utilized, then in the absence of drug-specific
animal dosimetry data, if the maximum
protocol-specified administered activity covering
the pre-phase 1 dosimetry cohort is less than or
equal to the corresponding mean AA values for PET
drugs approved as of today, and will involve a
study population with a similar risk profile, then

1	reasonable calculation of absorbed dose and may
2	generally be sufficient to find the corresponding
3	portions of the protocols safe to proceed from a
4	radiation safety perspective.
5	Conversely, sufficiency of the drug-specific
6	animal dosimetry should continue to be reviewed on
7	a case-by-case basis if the maximum
8	protocol-specified administered activity covering
9	the pre-phase 1 dosimetry cohort exceeds the
10	corresponding AA for PET drugs approved as of
11	today, or if the study population is notably
12	dissimilar in terms of radiation risk.
13	To illustrate this, I included some simple
14	examples for this implementation. If the planned
15	AA for a first-in-human study with a new PET
16	drug for example, a new F-18 drug if the
17	planned AA is about 185 megabecquerels or
18	5 millicuries, which is less than the mean
19	administered activity from all approved F-18 PET
20	drugs, 8 millicuries, then the study may be found
21	generally safe to proceed from a radiation safety
22	perspective without conducting animal

85

1	biodistribution studies. If no; if the planned AA
2	is higher than the mean AA value from approved PET
3	drugs, then the case-by-case IND review will
4	continue, and there may be a potential need to
5	collect animal dosimetry data.
6	Further recommendations for collection of
7	clinical dosimetry data will be to start with an
8	administered activity, which is less than this mean
9	recommended AA; so basically lower administered
10	activities can start by administration in a single
11	human subject, and then activity escalation rules
12	can be considered depending on the imaging and
13	clinical dosimetry results.
14	If the radioligand is worth pursuing, then
15	collection of phase 1 clinical dosimetry data can
16	proceed in a similar way depending on the starting
17	administered activity in the protocol. Activity
18	de-escalation rules can also be considered
19	depending on the imaging and initial clinical
20	dosimetry results.
21	So to summarize, our literature review
22	provided a previously unavailable collection of

1	radiation dosimetry data for PET drugs derived from
2	both nonclinical and clinical studies, which
3	supplements previous reviews for carbon-11 and F-18
4	drugs and provides all published data for other PET
5	radionuclides. The approach under consideration is
6	to use the mean administered activity from
7	prescribing information or drug labels containing
8	the six radionuclides, and in addition, safety
9	review of first-in-human studies. This was
10	developed after analyzing all available clinical
11	dosimetry data from both FDA approved and
12	investigational PET drugs.
13	The issues for discussion are to discuss
14	sufficiency of reviewed dosimetry data and discuss
15	the reasonableness of this approach under
16	consideration. Thank you for your attention, and I
17	
	would like to take this opportunity to thank my FDA
18	would like to take this opportunity to thank my FDA colleagues for the hard work and the invaluable
18 19	
	colleagues for the hard work and the invaluable
19	colleagues for the hard work and the invaluable discussions.
19 20	colleagues for the hard work and the invaluable discussions. DR. ROYAL: Thank you, Dr. Plyku.

1	FDA Presentation - Jonathan Cohen
2	DR. COHEN: Good afternoon. My name is
3	Jonathan Cohen, and as part of the FDA's
4	presentation to this AC, I would like to speak
5	about nonclinical perspective on animal dosimetry
6	studies that support diagnostic
7	radiopharmaceuticals or PET drugs for regulatory
8	submissions. The focus of this presentation is to
9	provide a pharmacology and toxicology assessment on
10	the utility of nonclinical biodistribution and
11	dosimetry studies in animals that support
12	diagnostic radiopharmaceuticals or PET drug IND
13	submissions. So when I refer to PET drugs, my
14	intent is to both include small molecules, as well
15	as biologics. The following points that I'm going
16	to make are not intended to apply to therapeutic
17	radiopharmaceuticals.
18	This assessment is based upon current
19	federal regulations, as well as FDA guidance
20	documents that apply to PET drugs and the
21	principles to reduce, refine, and replace animal
22	use in research. Specifically, there are three

1	questions. What nonclinical and clinical data can
2	be relied upon to support development of PET drugs?
3	Can sponsors optimize their nonclinical studies to
4	ensure the efficiency of clinical development
5	without jeopardizing safety for first-in-human
6	studies? And last, can PET drug safety be
7	predicted by the radionuclide properties?
8	The current regulations allow for a
9	risk-benefit assessment on the nonclinical study
10	requirements. As an example, PET drugs encompass a
11	very diverse set of target patient populations, as
12	well as indications, and our recommendations are
13	based upon the totality of this information. There
14	are several guidance documents that support the
15	development of PET drugs. This includes ICH M3R2,
16	exploratory IND guidance, as well as the more
17	recent microdose guidance. They describe general
18	studies that are recommended to support the safety
19	of first-in-human INDs for these PET drugs.
20	While I mentioned that the guidance
21	documents are recommendations and they're based
22	upon the agency's current thinking, there are

1	federal regulatory requirements that specify that
2	for radiopharmaceuticals, there must be sufficient
3	data from animal or human studies to allow a
4	reasonable calculation of the radiation-absorbed
5	dose. For NDAs and BLAs, it must be an evaluation
6	of the safety for the drugs and biologics, and
7	that's included in the labeling and prescribing
8	information.
9	I want to briefly comment on two nonclinical
10	guidances, ICH M3R2 and the microdose guidance, and
11	how they apply to nonclinical biodistribution and
12	dosimetry studies. The vast majority of these PET
13	drugs are administered at microdose levels, so not
14	more than 100 micrograms for small molecules or
15	30 nanomoles for protein products or biologics.
16	There are a number of recommended studies to
17	support the pharmacology, which generally include
18	in vivo and in vitro characterization, binding
19	studies, off-target profiling, as well as studies
20	to determine the PK properties, and dosimetry
21	studies. The main thrust of these studies is that
22	they demonstrate evidence that the radiolabeling

1	doesn't significantly alter the pharmacology of the
2	ligand.
3	As I mentioned, I want to draw a distinction
4	between current regulatory standards for products
5	that are indicated as diagnostics and
6	radiotherapeutics. Both products, the primary
7	pharmacology studies that mention in vitro and in
8	vivo characterization, recommended to demonstrate
9	evidence that the radiolabeling doesn't alter their
10	pharmacodynamic properties; however, for
11	diagnostics, biodistribution and dosimetry studies
12	are recommended to inform on their target organ
13	uptake. Safety pharmacology studies are generally
14	not needed. For therapeutics, the biodistribution
15	studies are needed to inform human dose selection
16	of the radiotherapeutic, and the safety
17	pharmacology endpoints can generally be included
18	either in the biodistribution, dosimetry, or
19	toxicity studies.
20	Pharmacokinetic information in the test
21	species is important in providing information about
22	the systemic exposure and the half-life of the

1	drug, as well as other information that's relevant
2	to potential drug-drug interactions. Toxicity
3	studies, the requirements of those are based upon
4	the cold mass dose, as well as the frequency of
5	dosing.
6	I want to make a few additional points
7	regarding nonclinical biodistribution studies,
8	particularly the significance of them. These
9	studies demonstrate target organ uptake, for
10	example, uptake into the central nervous system.
11	They can include animal disease models to support
12	the mechanism of action of the PET drug. And more
13	importantly, they also provide information of the
14	PET drug's stability, it's metabolism, as well as
15	it's route of elimination. They can provide
16	information that supports the clinical PET imaging
17	such as the imaging time window post-dose, as well
18	as signal to background noise. The extent of these
19	studies is also dependent upon the marketing
20	intent, as well as the patient numbers.
21	The primary pharmacology and
22	proof-of-concept studies support safety and

1	clinical efficacy of these first-in-human clinical
2	studies. There's value for the pharmacodynamic and
3	biodistribution studies that characterize new
4	radioligands. We also acknowledge that there are
5	differences between animal and human
6	radiation-absorbed dose, and sponsors will
7	frequently consider other data sources in the
8	absence of animal dosimetry studies, and this is on
9	a case-by-case basis.
10	We can consider a weight of evidence
11	approach to evaluate PET drugs and the
12	radiation-absorbed dose. For example, the
13	radionuclide half-life and biological half-life for
14	small molecules and peptides are generally less
15	than 24 hours. This contrasts with monoclonal
16	antibodies that have half-lives of several days and
17	may be labeled with either zirconium-89 or
18	iodine-124. The longer half-life will result in
19	greater exposure and radiation risk. Another
20	consideration is the range of administered
21	activities for short-lived radioisotopes such as
22	C-11, F-18, as well as the effective dose. There

1	
1	should be justification provided for the organ and
2	effective dose levels. And last, the proposed
3	clinical dose should be as low as reasonably
4	achievable.
5	To summarize, animal biodistribution studies
6	are of value for the contribution to understand the
7	PET drug mechanism of action, pharmacokinetics, as
8	well as absorption, distribution, metabolism, and
9	excretion. It's an ongoing evaluation on the need
10	for these animal dosimetry studies to support
11	first-in-human PET drugs, and the weight of
12	evidence approach should be applied on a
13	case-by-case basis and consider the totality of
14	evidence. And last, we're considering this
15	streamlined approach for first-in-human studies of
16	PET drugs.
17	I have here, just for reference, guidance
18	documents that I've referred to in this short
19	presentation. Thank you.
20	DR. ROYAL: Thank you, Dr. Cohen.
21	We'll now proceed with a presentation from
22	Dr. Cotter.

1	FDA Presentation - Samantha Cotter
2	DR. COTTER: Good afternoon. My name is
3	Samantha Cotter, and I'm a safety evaluator in the
4	Division of Pharmacovigilance within the Office of
5	Surveillance and Epidemiology. Today, I'm going to
6	provide a brief overview of postmarketing drug
7	safety and surveillance activities conducted by our
8	division for all marketed products, including, but
9	not limited to, drugs used for PET imaging
10	procedures.
11	To better understand the safety profile of
12	marketed products as used in the real world, FDA
13	relies upon clinicians and the public to report
14	safety concerns. During this presentation, we will
15	review how to report adverse events to FDA; discuss
16	how the agency uses adverse event reporting
17	information to monitor the safety of marketed
18	products; discuss the FDA Adverse Event Reporting
19	System, also known as FAERS; discuss FAERS
20	reporting trends for PET drugs; and provide
21	examples of PET drug safety labeling, changes, and
22	communications.

1	Safety is evaluated throughout the lifecycle
2	of approved products. Prior to drug approval, as
3	noted on the left-hand side of the figure, safety
4	is evaluated during the phase 1 to phase 3 clinical
5	trials in conjunction with dosage and efficacy
6	evaluation. Following drug approval, on the
7	right-hand side of the figure, safety surveillance
8	continues in the postmarketing setting,
9	incorporating a variety of data sources. A
10	critical part of the overall safety evaluation,
11	whether prior to or following product approval, is
12	the implementation of strategies and actions to
13	minimize the risk identified regarding safety
14	concerns.
15	Following completion of the phase 1 through
16	phase 3 trials, if FDA concludes that the
17	risk-benefit balance is positive, as noted in the
18	yellow diamond on the figure, a determination may
19	be made to approve the drug product. Although
20	premarketing clinical trials are the gold standard
21	to determine safety and efficacy at the time of
22	drug approval, all trials have limitations. One

1	important limitation of premarketing clinical
2	trials is the size of the population that is
3	studied. These trials are generally smaller than
4	the size of the population that would be exposed to
5	the product under real-world conditions.
6	These phase 1 through 3 trials are adequate
7	to characterize events that happen frequently;
8	however, rare events may not be observed.
9	Accordingly, FDA continues pharmacovigilance
10	monitoring of drug products through case level
11	review, and in some cases larger post-approval
12	epidemiologic studies.
13	FDA uses several data sources to identify
14	and evaluate safety concerns, one of which is the
15	FDA Adverse Event Reporting System. Other key data
16	sources include but are not limited to the
17	following: periodic adverse drug experience
18	reports from drug manufacturers; case reports and
19	studies in the published medical literature; and
20	outside inquiries such as citizens' petitions or
21	interaction with foreign regulatory agencies. When
22	we identify new safety concerns, FDA works with the

1	applicants to update prescribing information or to
2	communicate directly to healthcare professionals or
3	consumers to share new safety information.
4	Two pathways exist for patients, consumers,
5	and healthcare professionals to report a suspected
6	adverse event to FDA. First, on the left-hand side
7	of the figure, these postmarketing reports can be
8	submitted directly through FDA's MedWatch program.
9	Alternatively, on the right-hand side of the
10	figure, reports can be submitted to the product
11	manufacturer who is then required to submit all
12	such reports to FDA. It is through this route that
13	the vast majority of reports are received and
14	entered into the FAERS database.
15	To directly submit a report to MedWatch, the
16	FDA's Medical Product Safety Reporting program,
17	health professionals, patients and consumers can
18	utilize the FDA MedWatch website and directly
19	submit reports via the internet, or the form can be
20	downloaded, completed, and sent back to the agency
21	by mail, email, or fax.
22	So how does FDA use these FAERS reports?

1	Pharmacovigilance staff review reports in addition
2	to other data sources like the medical literature
3	to identify new safety concerns with a product.
4	Screening of cumulative adverse event reports from
5	multiple sources and of both serious and
6	non-serious outcomes is an approach to better
7	understand the postmarketing safety profile of
8	products. We consult the prescribing information
9	of the product to determine if an event reported is
10	already known or contains new safety information.
11	If a new signal is identified, we work with the
12	appropriate division in this case the Division
13	of Imaging and Radiation Medicine to open a
14	newly identified safety signal, also referred to as
15	NISS. If we determine that a new safety concern
16	should be labeled or communicated to the public,
17	then we work to make that happen.
18	This chart is adapted from the FAERS public
19	dashboard, displaying all report types direct,
20	expedited, and periodic received by FDA for
21	drugs and therapeutic biologic products. Here, we
22	present the adverse event reports in FAERS for all

1	products on the left Y-axis, as noted by the red
2	trend line, and for approved PET drugs on the right
3	Y-axis, as noted by the green trend line. Please
4	note, that the left axis is in millions and the
5	right axis is in hundreds.
6	Data presented in this figure cover the
7	years of 2002, when the first PET drug adverse
8	event report was received by FDA, through the end
9	of 2022. It is important to note that FDA
10	initially began receiving adverse event reports in
11	1968, and although the years 1968 through 2002 are
12	not presented in this chart, the reports from these
13	years are represented in the total number for all
14	products reports in FAERS, tallying approximately
15	26 million through 2022, as noted in the footnote.
16	In contrast to the number for all products
17	reports in the FAERS database, there are only
18	562 reports through the end 2022 for PET drugs. As
19	these products are not being used to induce a
20	clinical effect but rather for diagnostic purposes,
21	it is not surprising that the safety issues might
22	be infrequently reported for these drugs. The

1	first PET drug to be approved by FDA was in the
2	1970s. Additional drugs have been approved over
3	the years, with the most recent being approved
4	earlier this year in 2023.
5	You can see in the chart a rise in the
6	number of reports for PET drugs in 2018 on the
7	green trend line, which, based on a separate
8	analysis of this data, correlates with the time
9	following the 2016 approval of gallium dotatate
10	Ga-68 and fluciclovine F-18. We again see a rise
11	in the number of reports between 2021 and 2022,
12	which also correlates with the 2020 and 2021
13	approvals of five PET drugs. On this slide, we
14	give an overview of some of the more recent
15	safety-related labeling changes, also referred to
16	as SrLCs, that have been communicated to the public
17	by FDA. Of these, the Division of
18	Pharmacovigilance contributed to the
19	hypersensitivity reactions, SrLC, identified with
20	the radiolabeled dotatate PET drugs in 2021.
21	FDA has many pathways to communicate safety
22	information to the public, and this slide only

1	provides a few that may be utilized. First, on the
2	left-hand side, we have an image of the FAERS
3	public dashboard. The dashboard is a highly
4	interactive web table that allows the public to
5	query FAERS data. While the FAERS public dashboard
6	offers opportunity to search adverse event reports
7	received by FDA, there remain limitations to the
8	data. These include duplicate and incomplete
9	reports existing in the system; the fact that the
10	existence of a report does not establish causation;
11	information in reports has not been verified; and
12	an incident rate cannot be established with the
12 13	an incident rate cannot be established with the reports.
13	reports.
13 14	reports. In the center of the slide, we see a
13 14 15	reports. In the center of the slide, we see a snapshot of the web posting potential signals of
13 14 15 16	reports. In the center of the slide, we see a snapshot of the web posting potential signals of serious risks and new safety information identified
13 14 15 16 17	reports. In the center of the slide, we see a snapshot of the web posting potential signals of serious risks and new safety information identified by FAERS. Other forms of communication include
 13 14 15 16 17 18 	reports. In the center of the slide, we see a snapshot of the web posting potential signals of serious risks and new safety information identified by FAERS. Other forms of communication include updates to prescribing information or product
 13 14 15 16 17 18 19 	reports. In the center of the slide, we see a snapshot of the web posting potential signals of serious risks and new safety information identified by FAERS. Other forms of communication include updates to prescribing information or product labeling, as shown in the upper right-hand side,
 13 14 15 16 17 18 19 20 	reports. In the center of the slide, we see a snapshot of the web posting potential signals of serious risks and new safety information identified by FAERS. Other forms of communication include updates to prescribing information or product labeling, as shown in the upper right-hand side, and also drug safety communication to the public

1	In summary, FDA continues to monitor all
2	products, including, but not limited to, PET drugs
3	throughout the life cycle, utilizing various
4	pharmacovigilance and epidemiologic data sources in
5	an attempt to ensure that the benefit-risk balance
6	of a product continues to remain favorable during
7	the postmarketing phase of its life cycle.
8	Voluntary reporting of adverse event data
9	associated with drug products by healthcare
10	professionals and patients is an important activity
11	to support the safe use of FDA-approved drug
12	products. We encourage continued reporting of
13	drug-related adverse events, including adverse
14	events from PET drugs through the MedWatch program.
15	Thank you.
16	Clarifying Questions to Presenters
17	DR. ROYAL: Thank you very much, Dr. Cotter.
18	We will now take clarifying questions for
19	the FDA presenters. Please use the raise-hand icon
20	to indicate you have a question, and remember to
21	lower your hand by clicking the raise-hand icon
22	again after you have asked your question. When

1	acknowledged, please remember to state your name
2	for the record before you speak and direct your
3	question to a specific presenter, if you can. If
4	you wish for a specific slide to be displayed,
5	please let us know the slide number, if possible.
6	Finally, it would be helpful to acknowledge
7	the end of your question with a thank you and the
8	end of your follow-up question with, "That is all
9	for my questions," so we can move on to the next
10	presenter.
11	I see that Dr. Bolch has his hand up.
12	Dr. Bolch?
13	DR. BOLCH: Yes. Wes Bolch, University of
14	Florida. I have a question for the first speaker,
15	Dr. Plyku. My question is simply, on your tables
16	for absorbed dose, were those any source organ with
17	highest activity or was there some factoring in of
18	radiosensitivity? Could it have been any organ in
19	the body or was there a subset of radiosensitive
20	organs that were a part of that table?
21	DR. PLYKU: Yes. Thank you for that
22	question, Dr. Bolch. The organ-absorbed dose

1	estimates on the table are the estimates that are
2	reported in the studies. So as calculated, these
3	are dosimetry calculations, and what I showed were
4	the maximum organ-absorbed dose in those studies,
5	in the collective studies. So the radiosensitivity
6	is included in the effective dose estimates.
7	I mentioned that the organs that are
8	exhibiting maximum organ dose values in the
9	majority of the studies that we collected were
10	usually the organs of excretion for most of the
11	studies that we analyzed, not the more
12	radiosensitive organs, and these were as reported
13	in the published data.
14	DR. BOLCH: Okay. Thank you very much, and
15	thank you also for introducing the risk index. I
16	just wanted to alert the individuals of some work
17	between the University of Florida and Memorial
18	Sloan Kettering. We have a pending paper that has
19	been accepted in Medical Physics that is going to
20	address the concept of risk index, and part of that
21	article is a comprehensive annex that goes through
22	all different radionuclide reference phantoms and

1	
1	looks at effective dose; detriment; weighted dose;
2	risk index; and lifetime attributable risk. It
3	should be informative in this regard. Thank you
4	very much.
5	DR. PLYKU: Thank you for letting us know.
6	DR. ROYAL: Okay. Dr. Jacobs had her hand
7	up.
8	DR. JACOBS: Yes. It seems to me, listening
9	to the first presentation, that several different
10	approaches to what could be a cutoff were evaluated
11	from approved agents using the package insert, from
12	published data, from using the RDRC
13	50 millisieverts limit. It was unclear to me how
14	those compared with each other and what were the
15	trade-off discussions between using one type or
16	another?
17	I'm not sure if this question is clear, but
18	it seems there are several different ways that this
19	could be looked at, and I didn't get a sense of the
20	pros and cons of each method.
21	DR. PLYKU: Thank you, Dr. Jacobs, for the
22	question. You're correct. I described the

1	approach we followed to come up with cutoff mean AA
2	values, and the approach is to look at the approved
3	drug label and recommended administered activity
4	levels. In addition to that, we looked at all the
5	available clinical studies with all the PET
6	radionuclides and drugs in order to evaluate the
7	variability in dose estimates and reported
8	dosimetry data, and put these mean AA values in
9	perspective.
10	The additional approaches that were included
11	in my later slides were not part of that
12	determination in particular but were considered as
13	bad or worst-case scenarios so we can have a
14	perspective of recommendations for the mean AA
15	values and also calculations of relative radiation
16	risks in available clinical studies. But I also
17	wanted to mention that FDA has not had an
18	experience and has not observed such scenarios in
19	the IND submission review of PET drugs, so those
20	additional approaches were to supplement my
21	discussion, so to say, and to put things in
22	perspective, but not used to calculate the cutoff.

1	DR. JACOBS: So the cutoff was primarily
2	based on the approved PET drugs, perhaps with the
3	consideration that those have had much more general
4	exposure in diverse patient populations as a kind
5	of a worst case?
6	DR. PLYKU: Mainly on the findings of the
7	safety of the approved PET drugs.
8	DR. JACOBS: Thank you.
9	DR. ROYAL: Dr. Larson has his hand raised.
10	DR. LARSON: Yes. Thank you very much.
11	This is a question for Dr. Cotter. Thank you very
12	much for that very illuminating presentation about
13	FAERS. I wanted to ask about the follow-up on
14	these interesting findings a bit more. I know you
15	were careful to point out the mechanism of action
16	and other things were not intrinsically in the
17	data, or even the incidence, but is there a way
18	that FDA will follow up on this data? For example,
19	with FDG, I didn't notice very many remarks on
20	adverse reactions and, of course, millions of scans
21	are done every year with FDG, whereas with the
22	gallium dotatate, there was a rather significant

1	signal.
2	So can you comment on how you follow up on
3	this and whether there's any sort of denominator to
4	these findings? Once again, thank you very much
5	for your comments.
6	DR. COTTER: Thank you very much for your
7	question. So first of note, with FDG, since it's
8	been on the market longer, we have a tendency to
9	see a drop in the number of reports that are
10	submitted to the agency, and that's probably why we
11	saw the recent spike in the gallium dotatate and
12	the fluciclovine product. If we do receive
13	reports, we definitely have the ability to reach
14	out to the individual that submitted the report,
15	but we realize that that number of 562 compared to
16	the 26 million appears as a lower number. That's
17	why we're continuously going through the medical
18	literature, looking at information that's coming in
19	from the manufacturers.
20	We try to cast a wide net of looking at
21	different data sources because we do acknowledge
22	that the numbers are on the smaller side, but I

1	also think part of the reason for us giving the
2	presentation is to make individuals in the
3	community and healthcare providers aware that we
4	really take those reports seriously. But in regard
5	to following up, we definitely have the ability to
6	reach out to the individual that submitted the
7	report.
8	Does that answer your question?
9	DR. LARSON: Yes. Thanks very much.
10	DR. COTTER: Thank you.
11	DR. ROYAL: Okay. Dr. Jacobs had a
12	question. Oh, maybe not. I don't see any more
13	hands raised.
14	Anyone else have a question?
15	MALE VOICE: Yes
16	DR. ROYAL: I see a bunch of hands raised
17	now.
18	Dr. Nedrow?
19	DR. NEDROW: Hi. I have a question for
20	Drs. Plyku and Cohen, particularly about the
21	microdosing and the mean administered activity for
22	copper-64. As copper-64 is an FDA-approved agent

1	and dotatate is a peptide-based agent and has a
2	lower molecular weight, will that mean activity
3	will also be recommended for agents that are not
4	maybe an antibody but of a higher molecular weight,
5	ranging from 20 to 80, or up to an antibody per
6	kilodalton, or is that going to be relying only on
7	a microdosing of less than 30 nanomoles for
8	protein-based agents? Thank you.
9	DR. PLYKU: Dr. Nedrow, thank you for the
10	question. If you can clarify, the question is
11	about microdosing, in particular copper-64,
12	radiopharmaceuticals?
13	DR. NEDROW: On your talk, which was very
14	nice, the mean administered activity of the current
15	FDA-approved agents would be an adjusted level to
16	start, but for copper-64, the agent is dotatate,
17	which has a low molecular weight, and the
18	pharmacokinetics, the peptides vary drastically
19	different than something of a higher molecular
20	weight. And Copper-64's longer half-life would
21	allow agents that might be a little bit heavier or
22	have a higher molecular weight, maybe not as high

1	as an antibody. But for the recommended
2	administered activity, the mean value, would that
3	be applied to all copper-64-based agents, or would
4	there be a molecular weight cutoff, and that there
5	would need to be a more individual evaluation by
6	the FDA?
7	DR. COHEN: Hi. That's a really good
8	question because copper-64, with a half-life of
9	around 12 hours, it's suitable for labeling both
10	peptides and antibodies. As far as the differences
11	in the PK, certainly small peptides will be,
12	presumably, eliminated a lot faster than larger,
13	whether they be modified antibodies or antibodies
14	themselves, and that could definitely affect the
15	the radiation exposure.
16	My understanding is that we have not
17	actually delved in to look in that detail, but it's
18	likely that that would actually tip the balance in
19	terms of what we would say would go with an
20	approach under a certain limit versus over a
21	certain limit because the characteristics would be
22	different. There's only one currently FDA-approved

1	product, and that's copper-64, which is Detectnet.
2	DR. NEDROW: Thank you.
3	DR. PLYKU: I also want to mention that the
4	approach under consideration is the same for the
5	six radionuclides, and even though we did a small
6	group analysis, radiolabeled molecular type that
7	would be in the literature review, which we aim to
8	publish later, the approach under consideration
9	doesn't include those aspects for the
10	radionuclides. So it's uniform for the six
11	radionuclides.
12	DR. ROYAL: Okay I have five other panel
13	members who have their hands raised, so I'm going
14	to try to move along a little bit more quickly.
15	Dr. Dewaraja?
16	DR. DEWARAJA: Yes. This question is for
17	Dr. Plyku, the first speaker. Thank you for your
18	presentation. My question is regarding whether the
19	bone marrow was considered in any of these studies
20	when reporting the organ-absorbed doses.
21	DR. PLYKU: Thank you, Dr. Dewaraja, for the
22	question. In the studies, we identified the organ

1	with maximum absorbed dose, and that was not the
2	bone marrow. It was generally the organs of
3	excretion. The absorbed dose estimates for all
4	organs were considered in the collective dosimetry
5	data, but this was not the organ with maximum
6	absorbed dose.
7	DR. DEWARAJA: However, some of the studies
8	did include the dose to bone marrow. Is that what
9	you're saying?
10	DR. PLYKU: Yes, because we collected all
11	the reported dosimetry estimates.
12	DR. DEWARAJA: Okay. Thank you.
13	Actually, I have one other quick question.
14	You also mentioned that there was much higher
15	variability in the animal data compared with human
16	data. Do you think that is because of the
17	variability because you mentioned there were
18	multiple different methods for extrapolation from
19	animals to human studies. Would that have been a
20	reason for the higher variability that you saw with
21	the animal data compared with the human data?
22	DR. PLYKU: I think it may be one of the

1	reasons, and probably there is more systematic
2	uncertainties performing animal distribution
3	studies. I would think that variability in animal
4	data could be attributed to more uncertainties
5	associated with performing such studies
6	DR. DEWARAJA: Thank you.
7	DR. ROYAL: Dr. Xiong has a question.
8	DR. XIONG: Chengjie Xiong, biostatistician
9	from Washington University. I've got a question
10	for Dr. Plyku, and then maybe another one for
11	Dr. Cotter. The first one, I want to
12	[indiscernible] again to the cutoff you're using.
13	My understanding is there a total of 19 approved
14	drugs, and your cutoff is entirely based on the 19
15	numbers in the prescription information. Is that
16	correct?
17	DR. PLYKU: Yes.
18	DR. XIONG: If the prescription information
19	gave a window, gave an interval, what do you use
20	then?
21	DR. PLYKU: I'm sorry. Can you repeat the
22	question?

1	DR. XIONG: I don't know if this is actually
2	real. Sometimes the prescription gives you a
3	window from one number to the other number, some
4	interval; and then you use the smaller one or the
5	bigger one?
6	DR. PLYKU: Yes. Thank you for asking the
7	question. We used the mean administered activity
8	in that range. Sometimes prescribing information
9	is per weight, patient weight, and for that case,
10	we used an average human adult of 70 kilograms to
11	calculate that mean administered activity.
12	DR. XIONG: Right. I think you mentioned in
13	your literature review there are some studies,
14	clinical studies, that are also approved drugs. So
15	my question is, are any of those used in your
16	derivation of the cutoff?
17	DR. PLYKU: Yes, because those were reviewed
18	when the drug was approved, so the derivation of
19	the cutoff, those are included.
20	DR. XIONG: Okay.
21	DR. PLYKU: In the data of the label, the
22	clinical data is included in that determination.

1	DR. XIONG: Alright.
2	DR. PLYKU: That's the recommended dosing.
3	DR. XIONG: Okay. That's great. You also
4	gave a percentage of the clinical studies in your
5	literature review that are exceeding the cutoffs,
6	and the percentage ranged from 30 to some higher
7	percentages. What is the message you are trying to
8	convey there? Do those studies have a worst safety
9	profile in some sense, in addition to what you
10	showed as them having a higher effective dose,
11	typically?
12	DR. PLYKU: Yes. Thank you for that. The
13	reason I showed that was to look at the clinical
14	experience with investigational drugs, compare that
15	with the approved drugs and the relative radiation
16	dose between the two. The effective dose was
17	slightly different, and in the investigational
18	drug, higher administered activities could have
19	been administered, higher activities, higher than
20	the mean AA of the approved drug.
21	The largest difference is in the
22	organ-absorbed dose estimate because that could be

1	even higher than the effective dose, whole-body
2	effective dose. The message is to present
3	collective clinical experience with all available
4	PET drugs, and put these mean AA values in
5	perspective if we were to use them as
6	recommendations later.
7	DR. XIONG: Great. That's very helpful.
8	My last question maybe involves Dr. Cotter's
9	presentation as well. In your presentation,
10	Dr. Plyku, you gave a hypothetical stochastic risk
11	index, and in Dr. Cotter's presentation, there is a
12	really nice table of the adverse events related to
13	those drugs. So I wonder whether the FAERS
14	database also follow things like the development of
15	cancer or some other conditions in the long term,
16	and whether that type of information will
17	eventually be available to those approved drugs so
18	that the risk index may not have to be based on a
19	hypothetical situation.
20	DR. COTTER: Thank you very much for your
21	question. In regards to events like cancer with
22	drugs, we see that FAERS is much better for adverse

1	events that are rare and also have a temporal
2	relationship with the drug. Events of cancer, if
3	it occurred 20 years after the patient received the
4	PET drug, the individual reporting would have to
5	submit that they think that the PET drug had a link
6	to the cancer, or at least have the PET drug as
7	part of the past medical history for the patient.
8	So cancers are difficult to identify in
9	FAERS; however, we do also within our office have
10	the Division of Epidemiology, and they are often
11	looking at epidemiologic data, and I believe that
12	that might be a better source for that. But there
13	are multiple attempts to look at postmarketing
14	data, whether it's the adverse events or
15	epidemiologic studies.
16	DR. XIONG: Great. Thanks. I have no more
17	questions.
18	DR. ROYAL: Okay.
19	Dr. Sanghani?
20	DR. SANGHANI: Hi. This is Rupa Sanghani.
21	Thank you for the presentations. I have questions
22	specifically about F-18 because it has the widest

1	range of mean values, but yet we also have the most
2	data. We have the most number of animal and human
3	trials and the most number of already FDA-approved
4	agents.
5	With the literature search you've done, is
6	there anything to point towards either looking at a
7	specific ligand or a specific target organ that
8	might help further refine the F-18 target so it's
9	not quite so broad, and could that be used in the
10	cutoffs?
11	DR. PLYKU: Thank you for the question.
12	You're correct. F-18, there are more F-18 clinical
13	studies and the variability is larger. In the
14	cutoff, we didn't consider the specific targeting
15	mechanism and target organ when determining the
16	cutoff; however, we did look at the published
17	studies and the type of targeting molecule in this
18	different radiopharmaceuticals.
19	I didn't show that in my presentation. That
20	is part of our literature review. We didn't
21	consider that because our approach, initial
22	approach, was to base our determination of this

1	cutoff based on the findings of the safety of
2	approved drugs up to now. But that was part of the
3	literature review, and it will be part of the
4	published article.
5	DR. SANGHANI: Thank you. I have no further
6	questions.
7	DR. ROYAL: Dr. Herscovitch?
8	DR. HERSCOVITCH: Thank you. This is Peter
9	Herscovitch with a question for the first FDA
10	speaker. You plan on using the administered
11	activity as per package inserts as the basis for
12	your thresholds, although informed by RDRC limits
13	and the published literature for investigational
14	drugs. For F-18, there are many approved drugs, as
15	well as a large investigational literature for
16	C-11, and gallium-68, fewer approved drugs, but a
17	very large published literature. In contrast,
18	though, for copper-64, there is just one approved
19	drug and relatively few human studies. Perhaps I'm
20	wrong, but I saw eight in one table.
21	So do you think, given the relative paucity
22	of data from copper-64 in relation to the other

1	radionuclides, that copper-64 should be included in
2	your approach of using package insert administered
3	activity, and should be included or lumped in with,
4	say, C-11 and F-18, where there is a very large
5	amount of data?
6	DR. PLYKU: Thank you, Dr. Herscovitch for
7	that very relevant question. We decided to include
8	copper-64, given the relatively lower radiation
9	profile. But you're right; there is only one
10	approved drug for copper-64 and less clinical
11	studies. We included this in the shorter-lived,
12	half-life radionuclides when compared to other
13	longer-lived ones; therefore, we included it in
14	this group.
15	DR. HERSCOVITCH: Yes. Thank you. Thank
16	you for that answer.
17	DR. ROYAL: Dr. Applegate?
18	DR. APPLEGATE: Thank you. I also had a
19	question for Dr. Plyku, and I really appreciate all
20	of her responses and depth of knowledge. This is
21	regarding the review and the analyses. I haven't
22	heard anything, and may have missed it, or any

1	comment on the use of these agents in children or
2	potentially pregnant women. If she would comment
3	on anything that she came across and potential FDA
4	review in those two populations, and also
5	if well, go ahead. Thank you.
6	DR. PLYKU: Thank you, Dr. Applegate, for
7	the question. I think that patient population
8	falls under the population with higher radiation
9	risk, and these recommendations apply to adult
10	patients, not pediatric patients or this approach
11	under consideration that we are discussing. In my
12	scheme, I think that would fall in the population
13	with higher risk, or higher expected risk.
14	DR. APPLEGATE: Okay. That answers my
15	question. Thank you.
16	DR. ROYAL: Okay. We will now take a break.
17	We'll reconvene at 3:10 Eastern Time. Panel
18	members, please remember there will be no chatting
19	or discussion of the meeting topics with other
20	panel members during the break. Additionally, you
21	should plan to reconvene around 3 p.m. to ensure
22	that you're connected before we reconvene at

1	3:10 p.m. Thank you.
2	(Whereupon, at 2:42 p.m., a recess was
3	taken, and meeting resumed at 3:10 p.m.)
4	Clarifying Questions (continued)
5	DR. ROYAL: We will now reconvene the
6	meeting. As there are no registered open public
7	hearing speakers, we will take the remaining time
8	to answer any clarifying questions. Please use the
9	raise-hand icon to indicate that you have a
10	question, and remember to put your hand down after
11	you have asked your question. Please remember to
12	state your name for the record before you speak and
13	direct your question to a specific presenter, if
14	you can.
15	If you wish for specific slide to be
16	displayed, please let us know the slide number, if
17	possible. As a gentle reminder, it would be
18	helpful to acknowledge the end of your question
19	with a thank you, and the end of your follow-up
20	question with, "That is all for my questions," so
21	we can move on to the next panel member.
22	We have an FDA hand raiser. I don't know

1	the name.
2	DR. FOTENOS: Hi. This is Anthony Fotenos,
3	clinical team leader, again, in the Division of
4	Imaging and Radiation Medicine. I just wanted to
5	take this opportunity to follow up on a couple of
6	the questions for the FDA presenters with respect
7	to the scope of the approach under consideration.
8	Some on the panel may be under the
9	impression that the activity values under
10	consideration apply to all patients during the
11	development of a new PET drug, or potentially even
12	to the entire premarket and postmarket population.
13	Another way of saying this, for example, is for the
14	copper-64 approved agent, that all future copper
15	agents would be expected to have that administered
16	activity, or at least that would be a path of least
17	resistance. And I want to make very clear that
18	that's not the scope of consideration under the
19	proposed approach.
20	What we're talking about is, essentially,
21	the first human subject, or subjects, though
22	probably most formally referred to as the

1	pre-phase 1 dosimetry cohort. And it's
2	specifically that population of phase 1 study
3	subjects limited to sponsors who do not want to
4	perform animal dosimetry studies.
5	So another way of saying this is that
6	phase 1 clinical dosimetry is required for any new
7	PET drug, and all those questions about an antibody
8	having a special biodistribution and exploring for
9	the lowest adequate dose, et cetera, that would
10	still be our standard recommendation for dose
11	optimization, and we would expect that there would
12	be escalation and de-escalation rules in IND
13	opening protocols, conditional again on the
14	clinical dosimetry that would be drug specific and
15	is still required.
16	So I'm trying to make an overall scope chop
17	if any on the committee are under the impression
18	that we're talking about administered activities
19	for the entire population for a given drug. Thank
20	you.
21	DR. ROYAL: Dr. Jacobs?
22	DR. JACOBS: My question actually was

1	related to what just came up here, what was just
2	clarified. My view of what is being proposed here
3	is that for a brand new PET drug, preferably C-11
4	or F-18, the sponsor would go to the FDA and say,
5	"We don't think we need to do animal preclinical
6	studies for the following reasons." And the FDA
7	would either agree or disagree at that point, and
8	they would say, "Yeah, but you're planning on
9	studying very young people with very high doses, so
10	we don't think that's a good idea," or something
11	like that.
12	So it is more a guidance approach than
13	anything else. And my question is, have I got this
14	right? And that's to the last speaker.
15	DR. FOTENOS: Yes, precisely. The approach
16	under consideration is essentially a clarifying and
17	
18	streamlining approach on this division's part to
	streamlining approach on this division's part to say that, in general, the administered activity
19	
	say that, in general, the administered activity
19	say that, in general, the administered activity that you're proposing for this first-human cohort

1	dosimetry, and de-escalate, and find the right
2	dose, et cetera. It's just clarifying a pathway
3	forward in a public open way instead of doing it on
4	a per IND basis.
5	DR. JACOBS: So it's not an open
6	get-out-of-jail free. The assumption is that in
7	many cases you are clearly able to justify it, and
8	in other cases, you wouldn't.
9	DR. FOTENOS: Yes.
10	DR. JACOBS: Okay. Thank you; very helpful.
11	Questions to the Committee and Discussion
12	DR. ROYAL: Are there any other clarifying
13	questions?
14	(No response.)
15	DR. ROYAL: If not, the committee will now
16	turn its attention to address the task at hand, the
17	careful consideration of the data before the
18	committee, as well as the public comments. We will
19	now proceed with questions to the committee and
20	panel discussions. I would like to remind public
21	observers that while this meeting is open for
22	public observation, public attendees may not

1	participate, except at the specific request of the
2	panel.
3	After I read each question, we will pause
4	for any questions or comments concerning its
5	wording. If we can display the first question.
6	Discuss the sufficiency of reviewed data from
7	animal or human studies involving F-18, C-11,
8	gallium-68, copper-64, rubidium-82, and nitrogen-13
9	to allow a reasonable calculation of
10	radiation-absorbed dose to the whole body in
11	critical organs upon first-in-human administration
12	of a new PET drug containing one or more of these
13	radionuclides.
14	One thing we would like to discuss is
15	whether or not this wording is clear. If you have
16	any comments about the wording, please raise your
17	hand.
18	DR. ROYAL: Mark? Dr. Mintun?
19	DR. MINTUN: Well, actually, given the lack
20	of comments, I was going to say that I thought it
21	was clear. So I could stop there because I think
22	the next question is going to say discuss what we

```
FDA MIDAC
```

think about the question. So I will pause and let 1 you continue, Dr. Royal. 2 DR. ROYAL: Okay. 3 DR. MINTUN: But yes, I thought it was 4 clear. 5 DR. ROYAL: Well, it's because you 6 anticipated the next thing. 7 So now that there have been no questions or 8 comments considering the question, we will now open 9 the question for discussion, and I guess I'll take 10 the chairman's prerogative and just make a comment 11 here. 12 One of the things I'm struck by, as we spent 13 an awful lot of time talking about issues related 14 to measuring effective dose and some limitations of 15 measuring effective dose, I would just point out 16 that the connection between effective dose and risk 17 is also tenuous. For example, if you did a study 18 with an effective dose of X in someone who had a 19 life expectancy of less than 10 years, the risk in 20 21 that person approaches zero. On the other hand, if you do that same dose, 22

> A Matter of Record (301) 890-4188

130

1	no variability, and knowing what the dose is in an
2	18 year old, it's going to be several times greater
3	than that same dose in a 60-year-old person. So
4	although risk is related to dose, it's also related
5	to age of exposure and life expectancy.
6	Dr. Jacobs?
7	DR. JACOBS: Yes. I think that from the
8	data there first of all, I agree with you a
9	hundred percent that the risk is not high in
10	somebody in my age group for sure, but for
11	children, it certainly is relevant. But the other
12	thing is the amount of data available for F-18 and
13	C-11 seems to me is clearly sufficient.
14	I'm not convinced that we have enough data
15	for the gallium or the copper to really make a
16	reasonable calculation, and for that, I'm willing
17	to have an argument with whoever would like to have
18	one.
19	DR. ROYAL: Okay. Would someone like to
20	argue in favor of this proposal for other
21	radionuclides besides F-18 and copper-11?
22	Dr. Larson?

1	DR. LARSON: Well, I wouldn't call it an
2	argument, but remember that the scope, as was
3	nicely defined by the last speaker, is for a very
4	specific and limited indication. That's really to
5	move more rapidly to a first-in-human dosing, and
6	that, to me, is important here because it will
7	greatly accelerate certainly the development of
8	radiopharmaceuticals with gallium or copper, I
9	think, because it will eliminate the need for
10	costly preliminary studies.
11	We are talking about very low doses here. I
12	mean, the issue of safety, for example, comes up,
13	and certainly all of us want to use the doses as
14	low as reasonably acceptable, but these are not
15	doses for which there is really firm data that
16	there is a lot of potential risk. So in that
17	sense, I would say that this is a reasonable
18	starting point. Now, you could argue a little more
19	about copper, I suppose, because it does have a
20	12-hour half-life, which is not insignificant, but
21	rubidium, and nitrogen, and gallium all are really
22	pretty low.

1	So I would say that it's true that we would
2	feel a lot more comfortable if there was the same
3	numbers with gallium and copper in terms of the
4	sufficiency of reviewed data. But nonetheless, I
5	think that incorporating that with a concept that
6	we're really talking about very safe doses, which
7	have been previously used extensively in patients,
8	even in the case of copper, I would argue that we
9	could go ahead with this list.
10	DR. ROYAL: One of the things that I was
11	really struck by in Dr. Plyku's presentation is she
12	showed the slide of what the effective dose was per
13	megabecquerel for all tracers, and then I-124 and
14	zirconium. And it did seem like these tracers
15	would give significantly lower doses than the other
16	two tracers. So it kind of made sense to me
17	anyways that you might group all of these together.
18	Oh, a lot of raised hands.
19	Dr. Mintun?
20	DR. MINTUN: Yes. Thank you. Mark Mintun.
21	I feel similarly that while there's more data in
22	two of these, I felt the way the question is worded

1	is that there is actually data that can allow a
2	reasonable calculation. I would argue that for the
3	tracers that have the longer half-life and the
4	least amount of data for instance, the copper-64
5	would be in that category I would expect that
6	when the FDA actually calculates what they would
7	consider a threshold dose, you could conceivably
8	say, due to less data, we would be more
9	conservative and be on the lower side of that.
10	But I think that there is actually
11	demonstration with multiple different ways that
12	we've calculated the effective dose for all of
13	these tracers. And as you just pointed out, Henry,
14	and I was going to point out, the half-life of
15	these means that you can collect images, within
16	those half-lives, reasonably high-quality images
17	without having high amounts of dosimetry, which is
18	not quite as true when you have the much longer
19	half-life agents, where they end up having a lot
20	more dose to the patient for the amount of imaging
21	you can get out of them in a reasonable time.
22	So I would say that all of these have enough

1	data that one can make a reasonable risk assessment
2	and calculate a level of dose that is safe. I'm
3	not saying they should all be exactly the same
4	formula for doing it. Like I said, it could be
5	that ones with a little longer half-life, you'd
6	want to be a little more conservative in your
7	calculation, but I think all of them could be used
8	to generate a first-in-human administrative sort of
9	threshold. Thank you.
10	DR. ROYAL: Terry Gillespie.
11	MS. GILLESPIE: Hi, everyone. I just want
12	to put a patient view into this. I've been having
13	PET scans once a year, sometimes twice a year, for
14	20 years, and this kind of bothers me that you're
15	willing to do a calculation and not prove a human
16	being that was using these drugs really need these
17	scans; they need the PET scan and they need to find
18	out what's going on, and not to make it worse for
19	them. If they're doing a first-time PET drug, and
20	they're already sick, I don't know; the calculation
21	doesn't seem like a risk I'd want to take, but
22	would have to take.

1	Does that make sense? I'd have to take it
2	because I need the PET scan to see what's going on.
3	Would I want to? No, because you guys have no
4	idea. You're guessing. It's something to think
5	about if your loved one was in the same situation
6	as I am, a 20-year lung cancer survivor, and have
7	to have that PET scan, or CT scan; have to, every
8	year. Some people are going every 3 months. Some
9	people are going once a month. It's a lot to think
10	about when you're guessing at the dosage. That's
11	all I have.
12	DR. ROYAL: Thank you.
13	MS. GILLESPIE: Thank you.
14	Dr. Herscovitch?
15	DR. HERSCOVITCH: Hi. Thank you. This is
16	Peter Herscovitch with comments. First, I do want
17	to say that I want to congratulate FDA staff for
18	doing an outstanding literature review and
19	analysis, and I hope they can publish their results
20	at some point. And the question is, did they
21	provide a reference standard? They received
22	extensive review with respect to dosimetry and

1	safety, and I think provide reasonable reference
2	data, along with all the extensive reports of
3	investigational drugs, especially for C-11, F-18,
4	and gallium.
5	Also, it's interesting to note and compare
6	their results to the paper of 2012 by van der Aart,
7	where Dr. Hallett I believe was one of the
8	co-authors, and they came up with the same average
9	effective dose coefficient, roughly 6 microsieverts
10	per megabecquerel for 37 C-11 drugs, which is
11	basically the same as the FDA's more extensive
12	recent analysis. So it's excellent. It's very
13	nice to see this agreement.
14	As was previously noted, I was impressed by
15	the fact that the ED values from human studies of
16	investigational PET drugs were typically quite low,
17	or less than 10 millisievert, or rem, for C-11, and
18	20 millisievert, for example, for F-18. But also
19	importantly, one has to consider individual organs,
20	and in those cases from their extensive review, in
21	general, the organs with the highest administered
22	dose coefficients were not the organs of concern,

1	for example, under the RDRC regulations,
2	blood-forming lens and gonads, and I felt that was
3	very encouraging as well.
4	However, I am still concerned that perhaps
5	there's not enough data available for copper-64,
6	both with its longer half-life than copper,
7	fluorine, or gallium, and also, it could be used to
8	label antibodies, which often have a rather
9	different in vivo biodistribution. So I will
10	perhaps come in somewhere in between Dr. Jacobs and
11	some of the other comments, that I do think there
12	are sufficient data from all the studies summarized
13	for copper-11, F-18, and gallium-68, and of course
14	for N-13 and rubidium, but I am still concerned
15	about copper-64 with regard to sufficiency of data.
16	Thank you.
17	DR. ROYAL: Dr. Nedrow?
18	DR. NEDROW: Yes. I think, overall, the
19	data presented was well done, especially for F-18
20	and carbon-11. Based on the initial comment at the
21	very beginning of this, I think it helped verify,
22	but I'm just curious if maybe the FDA could further

1	elaborate on this to help streamline to get the
2	initial in-human dosimetry studies done at these
3	proposed doses or a variation of those.
4	That's not going to be every agent that
5	comes through, but is there a criteria for a PET
6	agent that could potentially qualify for this
7	radiation dose? For example, if you're doing brain
8	imaging and you have slight modifications to your
9	small molecule, or a peptide with a different type
10	chelators, more so for copper-64, but fluorine-18
11	if you wanted to try the aluminum fluoride type
12	thing, or minor modifications, or a second
13	generation of PET agents that have been tested
14	thoroughly on a first generation; is that more in
15	line with what the FDA is thinking, or is there
16	just going to be some criteria of what agents would
17	actually qualify to be considered for this?
18	Thank you. If someone could elaborate on
19	that a bit more.
20	DR. FOTENOS: FDA is recognized, and I'm
21	happy to respond. Thank you. I think the short
22	answer to your question is our interpretation of

1	the applicable regulation is that there's very
2	little flexibility regarding the need for human
3	dosimetry if you want to go to phase 2. Phase 1
4	studies must perform human dosimetry for the drug
5	under investigation. FDA's interpretation of what
6	is a new drug, any variation in the structure will
7	make it a new drug. I mean, even a new
8	manufacturer makes it a new drug.
9	That's really not the question. To answer
10	your question directly, the scope here is just the
11	need to perform animal dosimetry data for a given
12	product prior to, essentially, clinical dosimetry,
13	and trying to create a flexible approach, given
14	that the studies we see during phase 1, they have a
15	huge variety of aims. Some are carefully dose
16	escalating.
17	There are a lot of clinical pharmacology
18	principles for dose optimization that are
19	independent of our discussion here, and those don't
20	go out the window whether or not you get animal
21	dosimetry data, but it's a very narrowly tailored
22	question about the need for animal dosimetry data,

1	recognizing, essentially, that as soon as the
2	clinical dosimetry data is in hand, those prior
3	animal dosimetry estimates really play no role.
4	They don't go into labeling. They don't go into
5	decisions about raising or lowering the dose or any
6	activity for future cohorts. So we're sort of
7	narrowly focused on this question of the need for
8	animal dosimetry data, but the approach is for the
9	isotopes still listed.
10	DR. ROYAL: Okay.
11	Dr. Dewaraja?
12	DR. DEWARAJA: Yes. My question I don't
13	know if this is a separate discussion but is
14	related to
15	DR. ROYAL: Please state your name and your
16	affiliation.
17	DR. DEWARAJA: Yuni Dewaraja from University
18	of Michigan. I'm not sure if this is a separate
19	discussion, but I would like to know what the
20	status is regarding the chemical toxicity or mass
21	dose requirements with animal studies because I
22	know that it's been very hard to get data on that,

1	but we've been looking at some PSMA studies, where
2	we're trying to get some mass dose information and
3	how much animal data is available for that.
4	Is that a consideration here also?
5	DR. COHEN: Answering the question, this is
6	Jonathan Cohen. Regarding the extent of
7	nonclinical data that's recommended to support a
8	first-in-human study, or phase 1 study, that's
9	mainly a case-by-case basis depending upon what the
10	target is, what available published literature
11	there is, and what available nonclinical data.
12	That's also kind of outside the scope of dosimetry.
13	Typically, we recommend sponsors that are
14	developing products that follow the microdose
15	guidance and stay within those limits of less than
16	100 micrograms per small molecules, 30 nanomoles
17	for proteins and biologics, and more details,
18	generally, prior to submitting an IND with a
19	meeting request.
20	I don't know if that clarifies for you.
21	DR. DEWARAJA: So that's not going to
22	change. You're still going to require the animal

1	studies for chemical toxicity and
2	DR. COHEN: Yes. We're still going to
3	recommend that one does tox studies to support
4	their development unless they can provide
5	justification for not doing those studies.
6	DR. DEWARAJA: I see. I feel there's
7	sufficient data for the animal dosimetry or
8	clinical dosimetry, but generally it has been quite
9	difficult to find information on chemical toxicity
10	or mass dose information from any of these approved
11	agents. Thank you.
12	DR. COHEN: You're welcome.
13	DR. ROYAL: Are there any other comments
14	from the panel, comments or questions?
15	Dr. Xiong?
16	DR. XIONG: Thank you. Chengjie Xiong. I'm
17	going to just comment from maybe a statistical
18	point of view. Certainly, if you say there is only
19	one drug within the radionuclide class, and all the
20	statistics or the cutoffs are based on one drug,
21	there is a lack of information, and that's just
22	from a purely statistical point of view. Like C-11

1	or F-18, you just don't have many drugs to support
2	your conclusion.
3	The other comment and I think I already
4	made some related comment an hour or two ago is
5	about the stochastic risk. I think your data shows
6	a hypothetical 18 year old somewhere between
7	5-fold, if I recall correctly, to 20-fold increase
8	of risk of cancer of kidney. I would love to see
9	some kind of real data if available. I know that's
10	not in the FAERS database, but perhaps some other
11	that can make people realize what that really means
12	as a function of many other factors, sex, age, and
13	all those things we just talked about.
14	I don't know. I think Dr. Bolch I
15	believe that's his name mentioned some of the
16	studies they are doing. I do think if that's
17	real-world data on the PET drugs, that could be
18	really important to look at.
19	DR. ROYAL: I think the data that you were
20	citing was a 5 percent increase in cancer risk as
21	opposed to a 5-fold cancer risk.
22	DR. XIONG: Is that 5 percent or 20 percent?

144

DR. ROYAL: We'd have to see the slide 1 2 again. DR. XIONG: I think that's slide 25 from 3 4 Dr. Plyku's presentation. DR. PLYKU: It was a 4-fold increase for 5 copper-64 as compared to F-18 FDG. That was the 6 7 highest difference, 4-fold. DR. ROYAL: So you're saying that the risk 8 was 4 times greater than it would have been for 9 F-18. 10 DR. PLYKU: Yes, for that unrealistic case. 11 DR. ROYAL: The lifetime risk for getting 12 cancer is 25 percent, or dying of cancer, so 13 4 times that would mean there would be a 14 100 percent chance that you'd die of cancer. But, 15 again, the 4-fold increase is that compared to 16 F-18. 17 18 Dr. Bolch? DR. BOLCH: Yes. Wes Bolch, University of 19 Florida. Just a quick comment on this risk. We've 20 21 been talking about risk index. Aside from the 22 effective dose, the risk index does factor in, to

1	the best of our knowledge, age- and sex-specific
2	variations in risk, and they're coming from studies
3	of atomic bomb survivors supplemented by other
4	studies. But there's huge confidence
5	uncertainties on those risk estimates. So we
6	should never presume that they apply to any
7	particular patient. It's really just a measure of
8	risk to be optimized to image quality benefit.
9	It's really a tool for dose optimization, and we
10	really need to be careful about whether it's a
11	meaningful risk to any particular patient
12	undergoing these very low activity administrations.
12 13	undergoing these very low activity administrations. Thank you.
13	Thank you.
13 14	Thank you. DR. ROYAL: Dr. Applegate?
13 14 15	Thank you. DR. ROYAL: Dr. Applegate? DR. APPLEGATE: Yes. Kimberly Applegate. I
13 14 15 16	Thank you. DR. ROYAL: Dr. Applegate? DR. APPLEGATE: Yes. Kimberly Applegate. I wanted to ask and I tried to put it in the
13 14 15 16 17	Thank you. DR. ROYAL: Dr. Applegate? DR. APPLEGATE: Yes. Kimberly Applegate. I wanted to ask and I tried to put it in the chat for all of this discussion we've been
13 14 15 16 17 18	Thank you. DR. ROYAL: Dr. Applegate? DR. APPLEGATE: Yes. Kimberly Applegate. I wanted to ask and I tried to put it in the chat for all of this discussion we've been having, the slide where the data were provided for
 13 14 15 16 17 18 19 	Thank you. DR. ROYAL: Dr. Applegate? DR. APPLEGATE: Yes. Kimberly Applegate. I wanted to ask and I tried to put it in the chat for all of this discussion we've been having, the slide where the data were provided for humans and animals that Dr. Plyku had for what was
 13 14 15 16 17 18 19 20 	Thank you. DR. ROYAL: Dr. Applegate? DR. APPLEGATE: Yes. Kimberly Applegate. I wanted to ask and I tried to put it in the chat for all of this discussion we've been having, the slide where the data were provided for humans and animals that Dr. Plyku had for what was available, and it had the relative data points,

1	
1	the main PET agents that we use today, so for F-18
2	and carbon-11, and maybe gallium, but not so much
3	for the others.
4	So if we had that in front of us when we
5	were having this discussion, I think it would help
6	us, where we might come to a more consensus in our
7	discussion; at least it would help me. So I'm
8	asking if that can be done, if we can have that one
9	slide put in front of us, because we don't have as
10	much data on the less used radionuclides.
11	DR. ROYAL: So there was a slide that had
12	all of the radionuclides, including I-124 and
13	zirconium. That would be a nice slide to display.
14	DR. APPLEGATE: Thank you.
15	MALE VOICE: Henry, I think this corresponds
16	to tables 3 and 4 in our printed packet.
17	DR. ROYAL: Can the FDA display the slide?
18	AV TECH: Hi. Which of Dr. Plyku's slides
19	was it?
20	DR. ROYAL: It's the slide that has the
21	effective dose for all the radionuclides, including
22	zirconium and iodine.

MALE VOICE: Slide 19. 1 DR. ROYAL: Yes, that's the slide. 2 DR. APPLEGATE: Now, if you just focus on 3 4 the right-hand side, there's a ton of data and low variability for -- well, it looks like for carbon. 5 DR. COHEN: You mean the left side, 6 Kimberly, right? 7 DR. APPLEGATE: The left-hand side, yes; the 8 left-hand side of the table, but not so much for 9 the right-hand side. 10 DR. ROYAL: Yes. Someone commented about 11 having only one data point for copper-64. There 12 are at least a lot of data points displayed on this 13 slide. 14 DR. APPLEGATE: Yes, and that's true. There 15 was another --16 MALE VOICE: The slide right before that, 17 number 18, I think has got more detail that you can 18 19 see. Yeah, that one. I was was concerned about the copper-64 because it was not very much of them. 20 DR. APPLEGATE: Yes. 21 DR. ROYAL: So I am supposed to summarize 22

1	what the panel thinks, and I'm not sure that I'm
2	ready to do that yet. Maybe we should just quickly
3	go through all of the panel members with this slide
4	up, and you could tell us whether or not you would
5	want any of these six radionuclides excluded from
6	having sufficient data to avoid animal dosimetry
7	prior to phase 1 studies.
8	DR. APPLEGATE: Could we also have the next
9	slide? Because it had the animal and the human.
10	DR. ROYAL: Sure.
11	DR. APPLEGATE: I don't know if we could
12	have both of them.
13	DR. ROYAL: I'm going to just go down the
14	roster of members and ask you where you stand, and
15	I'm going to start with Dr. Bolch.
16	DR. BOLCH: I'm a little confused in that
17	the copper-64 data seemed disparate between this
18	slide and the previous slide, but I guess I'll say
19	I support the proposed list as presented to us by
20	FDA.
21	DR. ROYAL: Okay.
22	Dr. Hackney?

1	DR. HACKNEY: I have the same concern as
2	Dr. Bolch. I'm not sure what to do about the
3	copper because it doesn't seem to match between
4	those two data sets, and maybe we just need more
5	time to look at it. But certainly accepting that,
6	I'm happy with the suggestion from the FDA, and I
7	echo Dr. Herscovitch's congratulations for the very
8	well done presentation.
9	DR. ROYAL: Dr. Herscovitch?
10	DR. HERSCOVITCH: I think there's more than
11	enough data to support copper-11, fluorine-18, and
12	gallium-68. I do have some reservations about
13	copper-64 with regard to the paucity of data and
14	its longer half-life.
15	DR. ROYAL: Okay. Dr. Jacobs?
16	MALE VOICE: If I may, the FDA has a
17	comment.
18	DR. ROYAL: I don't see a hand raised. Who
19	has a comment?
20	There it is. Okay. FDA has their hand
21	raised.
22	DR. FOTENOS: Just very briefly, with

1	respect to this question of the discrepancy between
2	the two slides, one is, as was mentioned, contains
3	both human and animal data, and the previous one is
4	a subset of the human.
5	DR. ROYAL: Thank you for that
6	clarification.
7	Dr. Jacobs?
8	DR. JACOBS: Yes. I'm with Dr. Herscovitch
9	here. I think there's more than enough data,
10	except I'm a little concerned about the copper
11	because there's so few of them, and it's a longer
12	half-life. On the other hand, a careful
13	implementation of it might be acceptable as well
14	because I think the FDA will be looking very
15	closely at what's being proposed by someone. So I
16	have no question about all of them but the copper.
17	DR. ROYAL: Okay. Thank you.
18	Dr. Oates?
19	DR. OATES: Yes. I'm fully supportive of
20	all six of the radionuclides. I found this
21	discussion to be fascinating, great presentations,
22	great discussion, and great deliberation, but I'm

1	in favor of all six of them being put forward.
2	DR. ROYAL: Dr. Sanghani?
3	DR. SANGHANI: I share similar concerns
4	about copper-64 as the others, given its longer
5	half-life and a smaller amount of data, but I think
6	the approach, as was mentioned at the beginning of
7	this session, is really what's important, so I
8	support all six.
9	DR. ROYAL: Okay.
10	Dr. Mintun?
11	DR. MINTUN: Yes. I also support all six.
12	I understand the concerns about copper, but I don't
13	think there's anything mysterious. It's going to
14	behave, I think, in a pretty predictable way, and
15	its longer half-life means it's at the far-right of
16	that set of curves there. But I don't think
17	anything unexpected will happen with it, so I'm
18	happy with all six.
19	DR. ROYAL: Dr. Dewaraja? Sorry. I keep
20	mispronouncing your name.
21	DR. DEWARAJA: I support the suggestions as
22	it is for all six of them. I think that's plenty

of data. 1 DR. ROYAL: Terry Gillespie? 2 MS. GILLESPIE: In listening to the 3 4 scientific part of this, I quess I could agree that all six don't have to do animal trials before 5 human, hoping. 6 DR. ROYAL: Thank you. Dr. Larson? 7 DR. LARSON: Yes, I agree with all six, 8 especially in the scope as been defined by our FDA 9 colleagues. 10 DR. ROYAL: Dr. Nedrow? 11 DR. NEDROW: Hi. I agree also that all six 12 should be fine within the scope as just stated by 13 FDA. And I'm sure, as has been presented multiple 14 times, that the consideration of the 15 pharmacokinetics of the agents, especially for 16 copper-64, will be a factor in determining if 17 animal dosimetry is needed or not. 18 DR. ROYAL: Dr. Royal is in favor of all 19 six. I would just say we're not eliminating the 20 21 need for human dosimetry; it's just the order in which it would be obtained, and it would be 22

1	obtained in a very small number of people.
2	Dr. Xiong?
3	DR. XIONG: I share some of the concerns
4	that are expressed already about some of the
5	radionuclide drugs, but I think that the strength
6	of this is the data are based on the approved data,
7	drugs, which we know the safety profile pretty
8	well. So I'll go with all six drugs, six classes,
9	without the animal dosimetry study.
10	DR. ROYAL: Dr. Bolch has his hand raised.
11	DR. BOLCH: Yes. Wes Bolch, University of
12	Florida. Well, my colleagues are saying they're
13	fine with all six, but there are seven here. So I
14	just want to clarify, when you say you're okay with
15	all six, is that proper, or did people mean to say
16	seven and they said six? So I just want to clarify
17	that, Henry. Thank you.
18	DR. ROYAL: No, I'm counting them. One,
19	two, three, four, five, six, seven. So you must be
20	a mathematician. Yes, there are seven, and I
21	believe that everyone was referring to the seven,
22	not the six.

1	Okay. So my summary of the discussion of
2	this first question is that probably three-quarters
3	of the panel members agreed with including all six
4	radionuclides, and a quarter thought that that
5	DR. BOLCH: You mean seven.
6	DR. ROYAL: all seven radionuclides, and
7	maybe 25 percent that that copper-64 should be
8	treated differently.
9	Okay. If we could have the display of
10	question number 2
11	DR. APPLEGATE: Hey. I just want to ask,
12	Henry this is Kimberly Applegate if I'm a
13	voting member. I believe I am.
14	DR. ROYAL: Yes, you are.
15	DR. APPLEGATE: Right. So I would also like
16	to vote.
17	DR. ROYAL: Oh, I didn't call your name?
18	I'm sorry.
19	DR. APPLEGATE: No, that's ok. I also agree
20	with the FDA proposal that all seven of these
21	radionuclides would be appropriate going forward,
22	although there are less data for copper. Thank

1 you. DR. ROYAL: And Dr. Sanghani has her hand 2 raised. 3 4 DR. SANGHANI: Yes. It is six, correct? Because 0-15 was on the previous slide, but I do 5 not believe it is part of the six that we are 6 actually looking at. So this slide has the actual 7 six we are voting on. 8 DR. ROYAL: So Dr. Bolch was just trying to 9 confuse us. 10 (Dr. Sanghani laughs.) 11 DR. BOLCH: Okay. The slide that we were 12 13 looking at had seven. DR. ROYAL: Yes, but what we're voting on is 14 F-18, carbon-11, gallium-64 [sic - 68], copper-64, 15 rubidium-81 [sic - 82], and nitrogen-13. 16 Okay. I think we can move on to question 2. 17 18 Question 2 is discuss reasonableness of the --19 MS. BHATT: Dr. Royal, if I can jump in, I just want to clarify that this is not a voting 20 21 question, so a discussion question. 22 DR. ROYAL: Yes?

1	MS. BHATT: Before we move on to discussion
2	question 2, I just wanted to clarify that question
3	number 1 is a discussion question, so panel members
4	shared their opinions and their remarks, but it was
5	as a discussion, not as a voting question. Thank
6	you.
7	DR. ROYAL: Right.
8	FEMALE VOICE: Thank you.
9	DR. ROYAL: Okay. Question 2 is discuss the
10	reasonableness of the approach under consideration
11	involving administered activity values for new PET
12	tracers containing F-18, C-11, gallium-68,
13	copper-64, rubidium-82, and nitrogen-13, such that
14	phase 1 studies were both initially administered
15	one or more activity levels less than the value,
16	and collect sufficient human dosimetry calculations
17	that may generally be found safe to proceed from a
18	radiation safety perspective in the absence of
19	dosimetry data based on prior animal administration
20	of the new PET drug under investigation.
21	Any questions about the wording of this
22	question?

1	(No response.)
2	DR. ROYAL: Okay. I don't see any hands
3	raised, so I'm going to assume that the
4	DR. DEWARAJA: I have a question. Sorry.
5	This is Yuni Dewaraja. I'm a little confused. I
6	thought we said that it was going to be we're to
7	collect human data for the first patient only, but
8	here it says I'm confused by the wording here.
9	One of the previous presenters had mentioned
10	something about doing the dosimetry only for the
11	first patient.
12	DR. ROYAL: Can someone from the FDA clarify
13	how many patients you would anticipate be studied
14	for dosimetry in phase 1?
15	DR. FOTENOS: Sure. Again, the regulation
16	under consideration is the phase 1 studies must
17	include human dosimetry, so there's some
18	flexibility in terms of when that occurs. The
19	approach here is designed to accommodate both some
20	of the specific considerations for example,
21	mentioned was individual labs by our guest
22	speakers but also not be limited to those

1	specifics.
2	So in short, our general recommendation,
3	though, would be that the clinical dosimetry
4	studies occur as soon as possible during phase 1
5	investigation, and, generally, dosimetry studies
6	sort of follow clinical pharmacology logic in terms
7	of the number of patients studied. So we're
8	typically seeing in the range of 6 to 20. Those
9	are common rules of thumb, but they're not
10	statistically powered or anything like that. I
11	hope that addresses the question.
12	DR. DEWARAJA: My question was mostly
13	regarding that I thought there was a mention of
14	doing one patient at a lower activity. Where does
15	that come in, the first patient?
16	DR. FOTENOS: The approach under
17	consideration could include that. Protocols that
18	describe that sequence, exactly, would certainly
19	qualify as generally safe to proceed from a
20	radiation perspective, but the approach is designed
21	to be more flexible and not to require anyone to
22	follow a specific lab's recommendation or approach.

So the approach you mentioned would qualify, but 1 it's not the only approach that would qualify. 2 DR. DEWARAJA: Thank you. 3 DR. ROYAL: Any additional clarifications 4 regarding this question? 5 (No response.) 6 DR. ROYAL: Okay. I think we need to have 7 the table of recommended administered activities 8 for each of these radionuclides displayed. 9 AV TECH: May I have the slide number, 10 please? 11 DR. BOLCH: I believe it was table 2 in 12 Dr. Plyku's presentation, corresponding to table 5 13 in the printed document. 14 DR. PLYKU: Slide 21. 15 DR. BOLCH: And we're talking about the 16 second-to-the-last column, correct? 17 18 DR. ROYAL: Yes. So the way I understand this table is that 19 one would be able to start doing an FDG dosimetry 20 21 study and phase 1 study using 8 millicuries of activity for fluorine-18, 15 for carbon-11, 22

1	et cetera. So the question before us is whether or
2	not we agree with this table, is the way I
3	understand it. And the only thing I would comment
4	on is some of the activities have been rounded off.
5	Some of them are reported in three digits,
6	suggesting more significant figures than are really
7	warranted, and I would just round them off properly
8	to military values. With gallium-68, I might put
9	4. I might put 40 for rubidium.
10	Any other comments about that column of
11	suggested activities?
12	DR. JACOBS: Jacobs here.
13	DR. ROYAL: Dr. Jacobs?
14	DR. JACOBS: Yes. Paula Jacobs. It was my
15	understanding that this would be the upper limit,
16	and it would also be, in many cases, recommended
17	that it would not be necessary to use the entire
18	amount for your first patient; that you would start
19	off with whatever would allow you to get a decent
20	image to just verify that it didn't go someplace
21	that you weren't expecting, and that then you would
22	go on and do a regular dosimetry in the normal

fashion. 1 DR. ROYAL: Could someone from the FDA 2 address that comment? 3 4 DR. FOTENOS: We agree, and from clinical pharmacology principles, definitely recommend that 5 phase 1 investigation explore multiple administered 6 activities. This is to be considered the upper 7 bound prior to obtaining clinical dosimetry, 8 certainly not a lower bound. 9 DR. ROYAL: Dr. Bolch? 10 DR. BOLCH: My camera turned off. A couple 11 of comments. Can you hear me, Henry? 12 DR. ROYAL: Yes, definitely can. 13 DR. BOLCH: I would round off the values, 14 the megabecquerels, to two significant figures 15 instead of three. And it's my understanding that 16 the proposal is that you could start the 17 18 first-in-human trial if the administered activity is below this level without the need for 19 preclinical animal data. 20 21 Am I saying that correctly? DR. FOTENOS: Yes, exactly. 22

August 1 2023

1	DR. BOLCH: Okay. Thank you.
2	DR. ROYAL: I'm kind of hearing two
3	different things, because I thought Dr. Bolch just
4	said you could start at this dose, and then I
5	thought I heard the FDA say good pharmacologic
6	practice would be to start from a lower dose.
7	DR. BOLCH: Well, these would be upper
8	limits.
9	DR. FOTENOS: Both statements are true,
10	essentially. We have our recommendations, and then
11	we also have the principle of flexibility. And of
12	course, what's not stated in the question, and
13	probably should be it was certainly covered in
14	the briefing document and on the slides is that
15	the population under study needs to be similar to
16	the approved population. And it's not explicitly
17	in that one sentence to the question, so I want to
18	make sure to highlight that there's always clinical
19	judgment in terms of the investigational
20	population.
21	DR. ROYAL: Okay. Dr. Nedrow?
22	DR. NEDROW: Yes. I like the mean

1	recommended administered activity. I'm just
2	wondering if the FDA considered doing it based on
3	megabecquerels per kilogram to have a more
4	normalized dose to patients.
5	DR. FOTENOS: Most of the approved products,
6	especially for adult use, are not weight-based.
7	Even though studies that are proposing weight-based
8	approaches are fair game, it would seem
9	inconsistent with at least the bulk of the approved
10	products today.
11	DR. ROYAL: Dr. Herscovitch?
12	DR. HERSCOVITCH: Hello. This is Peter
13	Hercovitch from the NIH. I would just like to make
13 14	Hercovitch from the NIH. I would just like to make the comment about those data in the
14	the comment about those data in the
14 15	the comment about those data in the second-to-the-last column on the right being the
14 15 16	the comment about those data in the second-to-the-last column on the right being the upper limit, but also that they're based on the
14 15 16 17	the comment about those data in the second-to-the-last column on the right being the upper limit, but also that they're based on the package insert. And, in general, I think package
14 15 16 17 18	the comment about those data in the second-to-the-last column on the right being the upper limit, but also that they're based on the package insert. And, in general, I think package insert doses are based on the ability of the
14 15 16 17 18 19	the comment about those data in the second-to-the-last column on the right being the upper limit, but also that they're based on the package insert. And, in general, I think package insert doses are based on the ability of the radiopharmaceutical to be useful as a diagnostic to
14 15 16 17 18 19 20	the comment about those data in the second-to-the-last column on the right being the upper limit, but also that they're based on the package insert. And, in general, I think package insert doses are based on the ability of the radiopharmaceutical to be useful as a diagnostic to detect disease like a small metastases, whereas

1	measuring radioactivity from whole organs.
2	So I think there is a fair amount of
3	judgment that could go into it, and I think the
4	folks from the FDA did mention starting off with
5	lower doses than in that table. But in terms of
6	opinion, I think those are reasonable upper limits
7	and thresholds, and even though I did express
8	concerns for copper-64, I do have confidence that
9	in interactions between the investigators and the
10	FDA, this isn't going to be a blanket approval of,
11	yes, you can use four; consideration will be built
12	into what the FDA approves. So I feel somewhat
13	more comfortable about copper-64, knowing how the
14	FDA will apply these limits. Thank you.
15	DR. ROYAL: Thank you, Peter.
16	Okay. I don't see any more hands raised, so
17	to summarize the comments, it seems like the panel
18	is comfortable with the reasonableness of this
19	approach and is comfortable with the activity
20	levels that are in that table.
21	Before we adjourn, are there any last
22	comments from the FDA?

1	DR. MARZELLLA: We greatly appreciate the
2	discussion and the preparation that went into it.
3	Thank you very much.
4	Adjournment
5	DR. ROYAL: Okay. We will now adjourn the
6	meeting. Thank you to the FDA staff and to the
7	panel members
8	(Whereupon, at 4:10 p.m., the meeting was
9	adjourned.)
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	