

On February 2, 2024, FDA published the final rule to amend the Quality System (QS) regulation in 21 CFR part 820 ([89 FR 7496](#), effective February 2, 2026). The revised 21 CFR part 820 is now titled the Quality Management System Regulation (QMSR). The QMSR harmonizes quality management system requirements by incorporating by reference the international standard specific for medical device quality management systems set by the International Organization for Standardization (ISO), ISO 13485:2016. The FDA has determined that the requirements in ISO 13485 are, when taken in totality, substantially similar to the requirements of the QS regulation, providing a similar level of assurance in a firm's quality management system and ability to consistently manufacture devices that are safe and effective and otherwise in compliance with the Federal Food, Drug, and Cosmetic Act (FD&C Act).

This guidance document was issued prior to the effective date of the final rule. FDA encourages manufacturers to review the current QMSR to ensure compliance with the relevant regulatory requirements.

Characterization of Metallic Coatings and/or Calcium Phosphate Coatings on Orthopedic Devices

Draft Guidance for Industry and Food and Drug Administration Staff

DRAFT GUIDANCE

This draft guidance document is being distributed for comment purposes only.

Document issued on January 23, 2024

You should submit comments and suggestions regarding this draft document within 60 days of publication in the *Federal Register* of the notice announcing the availability of the draft guidance. Submit electronic comments to <https://www.regulations.gov>. Submit written comments to the Dockets Management Staff, Food and Drug Administration, 5630 Fishers Lane, Room 1061, (HFA-305), Rockville, MD 20852. Identify all comments with the docket number listed in the notice of availability that publishes in the *Federal Register*.

For questions regarding this document, contact OHT6: Office of Orthopedics/DHT6A: Division of Joint Arthroplasty Devices at 301-796-5650.

When final, this document will supersede 510(k) Information Needed for Hydroxyapatite Coated Orthopedic Implants, dated March 10, 1995 (revised February 20, 1997); and Guidance for Industry on the Testing of Metallic Plasma Sprayed Coatings on Orthopedic Implants to Support Reconsideration of Postmarket Surveillance Requirements dated February 2, 2000.

Contains Nonbinding Recommendations

Draft – Not for Implementation

Preface

Additional Copies

Additional copies are available from the Internet. You may also send an e-mail request to CDRH-Guidance@fda.hhs.gov to receive a copy of the guidance. Please use the document number GUI00020051 and complete title of the guidance in the request.

DRAFT

Table of Contents

I. Introduction	4
II. Scope	5
III. Premarket Submission Recommendations	6
A. Coating Description	6
B. Sterility	7
C. Pyrogenicity	8
D. Shelf Life and Packaging	9
E. Biocompatibility	10
F. Non-Clinical Bench Testing	11
(1) General Recommendations	11
(2) Testing of Metallic Coatings	13
(3) Testing of Calcium Phosphate Coatings	16
(4) Testing of Metallic and Calcium Phosphate Dual Coatings	19
(5) Coated Substrate/Device Testing	20
G. Non-Clinical Animal Testing.....	21
H. Clinical Performance Testing	21
I. Labeling	23
IV. Modifications (Devices subject to 510(k)).....	23

Characterization of Metallic Coatings and/or Calcium Phosphate Coatings on Orthopedic Devices

Draft Guidance for Industry and Food and Drug Administration Staff

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the FDA staff or Office responsible for this guidance as listed on the title page.

I. Introduction

This draft guidance document provides recommendations for premarket submissions for orthopedic devices that contain metallic coatings and/or calcium phosphate coatings on the surface. The recommendations reflect current review practices and are intended to promote consistency and facilitate efficient review of these submissions. In this document, the terms “you” and “your” refer to members of industry, sometimes referred to as sponsors, submitters, or applicants; and the terms “we,” “us,” and “our” refer to FDA.

For the current edition of the FDA-recognized standards referenced in this document, see the [FDA Recognized Consensus Standards Database](https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/search.cfm).¹ For more information regarding use of consensus standards in regulatory submissions, please refer to the FDA guidance titled “[Appropriate Use of Voluntary Consensus Standards in Premarket Submissions for Medical Devices](https://www.fda.gov/regulatory-information/search-fda-guidance-documents/appropriate-use-voluntary-consensus-standards-premarket-submissions-medical-devices).”²

In general, FDA’s guidance documents do not establish legally enforceable responsibilities. Instead, guidances describe the Agency’s current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The

¹ <https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/search.cfm>

² <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/appropriate-use-voluntary-consensus-standards-premarket-submissions-medical-devices>

32 use of the word *should* in Agency guidance means that something is suggested or
33 recommended, but not required.

34

35 **II. Scope**

36 The recommendations in this document are applicable to class II and class III devices that
37 contain metallic and/or calcium phosphate coatings, intended for orthopedic applications.
38 Specifically, this guidance addresses the characterization of the following coatings on
39 orthopedic devices:

40

- 41 1. a metallic coating, which can be manufactured using thermal spray (e.g., plasma
42 spray), sintering (e.g., sintering of powders, beads, or fiber mesh pad), chemical
43 vapor deposition/infiltration, physical vapor deposition (e.g., ionic plasma
44 deposition), additive manufacturing³ (e.g., electron beam manufacturing, selective
45 laser sintering) or other methods;⁴
- 46 2. a calcium phosphate coating, which can be manufactured by plasma spray,
47 solution precipitation, electrochemical deposition or other methods⁴; and
- 48 3. a metallic and calcium phosphate dual coating, which can be manufactured using
49 one or more of the above methods.

50

51 Other types of coatings (e.g., other calcium-based coatings, other ceramic coatings) or
52 surface modifications (e.g., surface etching, surface anodizing) are not within the scope of
53 this guidance document. For a coating containing a drug or a biologic, this guidance does
54 not discuss drug or biologic characterization recommendations.

55

56 This guidance does not address device-specific functional testing, such as system
57 component fatigue testing. For additional information on device-specific performance
58 testing, refer to the recommendations in any applicable device-specific guidance
59 document, if available, or contact the appropriate review division.

60

61 Some of the recommendations in this guidance may assist in complying with some of the
62 special controls for devices within the scope of this guidance. For information regarding
63 special controls, refer to the appropriate classification regulation and the following
64 special controls documents, as applicable:

³ Please refer to FDA's guidance document entitled "[Technical Considerations for Additive Manufactured Medical Devices](#)," available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices> for additional information on this topic.

⁴ See ISO 17327-1 *Non-active surgical implants — Implant coating — Part 1: General requirements*.

- 67 • [Class II Special Controls Guidance Document: Knee Joint Patellofemorotibial and](#)
68 [Femorotibial Metal/Polymer Porous-Coated Uncemented Prostheses; Guidance for](#)
69 [Industry and FDA⁵](#)
- 70 • [Class II Special Controls Guidance: Shoulder Joint Metal/Polymer/Metal](#)
71 [Nonconstrained or Semi-Constrained Porous-Coated Uncemented Prosthesis -](#)
72 [Guidance for Industry and FDA Staff⁶](#)
- 73 • [Class II Special Controls Guidance Document: Hip Joint Metal/Polymer](#)
74 [Constrained Cemented or Uncemented Prosthesis⁷](#)

75 Where consensus standards are included in a special control for devices within the scope
76 of this guidance, FDA believes conformance to the currently FDA-recognized version of
77 the standard would provide the same level of or improved protection of the public health
78 and safety as conformance to other versions of these standards included in a special
79 control, and that conformance to the currently FDA-recognized standard would meet any
80 such consensus standards included in a special control. Therefore, firms may choose to
81 submit a declaration of conformity to the currently FDA-recognized standard.⁸

84 **III. Premarket Submission Recommendations**

85 **A. Coating Description**

86 We recommend that you provide the following information in your submission to describe a
87 metallic and/or calcium phosphate coating on orthopedic devices.

- 89 1. Name of the coating including the coating type (e.g., titanium coating, hydroxyapatite
90 coating, titanium/hydroxyapatite dual coating). If a coating is applied by a third party
91 (i.e., a coating vendor), you can reference the third party's master file (MAF) for
92 specific information regarding the coating. In your premarket submission, you should
93 include a letter of authorization (LOA) from the MAF holder, which specifies the
94 location of the information relevant to your submission within the master file. The
95 LOA allows the Agency to reference information included within the MAF and to
96 discuss concerns applicable to your submission with the MAF holder. For additional
97 information on master files, see FDA's website on [Master Files](#).⁹
- 98 2. Coating method including a description of the process, and pre- and post-processing.

⁵ <https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/knee-joint-patellofemorotibial-and-femorotibial-metalpolymer-porous-coated-uncemented-prostheses>

⁶ <https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/shoulder-joint-metalpolymermetal-nonconstrained-or-semi-constrained-porous-coated-uncemented>

⁷ <https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/hip-joint-metalpolymer-constrained-cemented-or-uncemented-prosthesis-class-ii-special-controls>

⁸ See section 514(c) of the Federal Food, Drug and Cosmetic Act (FD&C Act).

⁹ <https://www.fda.gov/medical-devices/premarket-approval-pma/master-files>

101 3. Starting materials (e.g., a description of the materials and their chemical
102 compositions) used for both the coating and the substrate and any standards to which
103 they conform; note that the starting materials are not necessarily the same as the
104 materials of the final coating (e.g., calcium and phosphate salts are generally used as
105 the starting materials for a solution precipitated calcium phosphate coating).

106 4. Physical structure of the coating including number of layers with different physical or
107 chemical properties, thickness of the coating and each layer, and whether the coating
108 is a porous coating (see **Section F.(2).b** below for a description of “porous coating”
109 as specified in certain device classification regulations); including interconnecting
110 porosity, volume porosity percentage, and pore size.

111 5. Location of the coating and its coverage of the device (e.g., provide device
112 engineering drawings showing the location of the coating and the total coverage
113 area).

B. Sterility

117 **Significance:** Metallic and/or calcium phosphate coated orthopedic devices are implanted
118 devices and should be adequately sterilized to minimize infections and related complications.

119
120 **Recommendation:** We recommend that manufacturers sterilize all coated orthopedic devices
121 as it is unclear how processing (cleaning and sterilization) by the end user may affect the
122 integrity of a coating (e.g., if the cleaning and sterilization method by the end user will affect
123 the chemical properties of the coating), or if a porous coating can be adequately cleaned.
124 Therefore, if you are intending to provide a coated device non-sterile, a rationale based on
125 testing data or scientific literature should be provided to justify that the proposed
126 reprocessing instructions will not affect the integrity of the coating and/or the cleanliness of
127 the device. For recommendations regarding the development and validation of reprocessing
128 instructions in your proposed device labeling, refer to the guidance “[Reprocessing Medical](#)
129 [Devices in Health Care Settings: Validation Methods and Labeling](#).¹⁰

130
131 For metallic and/or calcium phosphate coated orthopedic devices labeled as sterile, we
132 recommend that you provide information outlined below:

133
134 1. For the sterilization method¹¹:
135 a. a comprehensive description of the sterilization method/process;
136 b. a description of the sterilization chamber if not rigid and fixed (e.g., flexible bag);
137 c. the sterilization site;
138 d. in the case of radiation sterilization, the radiation dose;

¹⁰ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reprocessing-medical-devices-health-care-settings-validation-methods-and-labeling>

¹¹ Please refer to FDA’s recognized standards database [FDA Recognized Consensus Standards Database](https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/search.cfm), available at <https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/search.cfm> for applicable consensus standards depending on the type of sterilization method chosen for your device.

139 e. for chemical sterilants (e.g., ethylene oxide (EO), H₂O₂), the maximum levels of
140 sterilant residuals that remain on the device, and an explanation of why those levels
141 are acceptable for the device type and the expected duration of patient contact.

142
143 In the case of EO sterilization, CDRH has accepted EO residuals information based
144 on the currently recognized version of the standard, “*ISO 10993-7 Biological*
145 *Evaluation of Medical Devices — Part 7: Ethylene Oxide Sterilization Residuals.*”

146
147 2. For the sterilization method used, a description of the method used to validate the
148 sterilization cycle (e.g., the half-cycle method), as well as the sterilization validation
149 data.¹² A premarket submission should also identify all relevant consensus standards used
150 and identify any aspects of the standards that were not met. In the absence of a
151 recognized consensus standard, a comprehensive description of the sterilization process
152 and the complete validation protocol should be submitted for review.

153
154 3. You should state the sterility assurance level (SAL) of 10⁻⁶ for devices labeled as sterile.

155
156 We recommend that all calcium phosphate coated devices be sterilized using gamma
157 radiation based on a long history of clinical use of orthopedic devices with such coatings that
158 have been sterilized using this method and non-clinical data demonstrating that gamma
159 radiation does not negatively impact the coating properties. If any other sterilization method
160 is used, supporting data or scientific rationale should be provided to demonstrate that the
161 sterilization method will not affect the properties of calcium phosphate coatings (e.g., phase
162 composition and chemical structure) and the resulting clinical outcomes.

163 C. Pyrogenicity

164 **Significance:** Pyrogenicity testing is used to help protect patients from the risk of febrile
165 reaction due to gram-negative bacterial endotoxins and/or chemicals that can leach from a
166 medical device (e.g., material-mediated pyrogens).

167
168 **Recommendation:** To address the risks associated with the presence of bacterial endotoxins,
169 metallic and/or calcium phosphate coated orthopedic devices should meet applicable pyrogen
170 limit specifications.¹³ You should also follow the recommendations in FDA’s guidance

¹² Submission of validation protocols and data is only recommended for certain premarket submission types and sterilization methods. For additional information regarding submission recommendations for sterility information in 510(k), please see “[Submission and Review of Sterility Information in Premarket Notification \(510\(k\)\) Submissions for Devices Labeled as Sterile](#),” available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/submission-and-review-sterility-information-premarket-notification-510k-submissions-devices-labeled>

¹³ For devices subject to 510(k) requirements, please also see “[Submission and Review of Sterility Information in Premarket Notification \(510\(k\)\) Submissions for Devices Labeled as Sterile](#),” available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/submission-and-review-sterility-information-premarket-notification-510k-submissions-devices-labeled>

171 “[Pyrogen and Endotoxins Testing: Questions and Answers](#).¹⁴ To address the risks associated
172 with material-mediated pyrogens, you should follow the recommendations in FDA’s
173 guidance “[Use of International Standard ISO 10993-1, ‘Biological evaluation of medical](#)
174 [devices - Part 1: Evaluation and testing within a risk management process](#).¹⁵”
175

176 For devices intended to be labeled as “non-pyrogenic,” we recommend that both bacterial
177 endotoxins and material-mediated pyrogens be addressed.

178 **D. Shelf Life and Packaging**

179 **Significance:** Shelf-life testing is conducted to support the proposed expiration date through
180 evaluation of the package integrity for maintaining device sterility and/or evaluation of any
181 changes to device performance or functionality.

182 **Recommendation:** With respect to package integrity for maintaining device sterility, you
183 should provide a description of the packaging, including how it will maintain the device’s
184 sterility, and a description of the package integrity test methods. Depending
185 on submission type, you should also provide the protocol(s) used for your package integrity
186 testing, the results of the testing, and the conclusions drawn from your results. We
187 recommend that a package validation study include simulated distribution and associated
188 package integrity testing, as well as an aging process (accelerated and/or real-time) and
189 associated seal strength testing, to validate package integrity and shelf-life claims. We
190 recommend you follow the methods described in the FDA-recognized series of consensus
191 standards ISO 11607-1 *Packaging for terminally sterilized medical devices — Part 1: Requirements for materials, sterile barrier systems and packaging* and ISO 11607-2
192 *Packaging for terminally sterilized medical devices — Part 2: Validation requirements for forming, sealing and assembly processes*.

193 With respect to evaluating the effects of aging on performance or functionality of a metallic
194 and/or calcium phosphate coated device, shelf-life studies should evaluate the critical
195 physical, chemical and mechanical properties of the metallic and/or calcium phosphate
196 coating to ensure the coated device will perform adequately and consistently during the entire
197 proposed shelf life. To evaluate coating performance, we recommend that you assess each of
198 the bench tests described in **Section F.(2)**. for metallic coatings and **Section F.(3)**. for
199 calcium phosphate coatings and repeat all tests that evaluate critical coating characteristics
200 that are potentially affected by aging using aged devices.

201 We recommend that you provide the protocol(s) used for your shelf-life testing, results, and
202 the conclusions drawn from your results. If you use coated devices or specific test samples
203 (coupons) subject to accelerated aging for shelf-life testing, we recommend that you specify
204 the way in which the devices or coupons were aged and provide a rationale to explain how

¹⁴ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pyrogen-and-endotoxins-testing-questions-and-answers>

¹⁵ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-international-standard-iso-10993-1-biological-evaluation-medical-devices-part-1-evaluation-and>

210 the results of shelf-life testing based on accelerated aging are representative of the results if
211 the device were aged in real time. We recommend that you age your devices as per the
212 currently FDA-recognized version of ASTM F1980 *Standard Guide for Accelerated Aging of*
213 *Sterile Barrier Systems for Medical Devices* and specify the environmental parameters
214 established to attain the expiration date. For resorbable calcium phosphate coatings, you
215 should conduct testing on real-time aged samples to confirm the results of the accelerated
216 aging study. This testing should be conducted in parallel with submission review, with results
217 documented to file in the design history file (i.e., complete test reports do not need to be
218 submitted to FDA).

219 **E. Biocompatibility**

220 **Significance:** Both the metallic coatings and calcium phosphate coatings on orthopedic
221 devices are patient-contacting, which, when used for their intended purpose (i.e., contact type
222 and duration), may induce a harmful biological response.

223
224 **Recommendation:** You should determine the biocompatibility of all patient-contacting
225 materials present in your device, including both the device substrate as well as the coating. If
226 your coating is identical in composition and processing methods to a coating on a legally
227 marketed device with a history of successful use, you can reference previous testing
228 experience or literature, if appropriate. For some device materials, it may be appropriate to
229 provide a reference to either a recognized consensus standard, or to a LOA for a device
230 MAF.

231
232 If you are unable to identify a legally marketed device with similar location/duration of
233 contact and intended use that uses the same coating (i.e., materials and manufacturing
234 process) as used on your device, we recommend you conduct and provide a biocompatibility
235 evaluation as recommended in FDA's guidance "[Use of International Standard ISO 10993-1, Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process.](#)"¹⁶ The evaluation should explain the relationship between the
236 identified biocompatibility risks, the information available to mitigate the identified risks,
237 and any knowledge gaps that remain. You should then identify any biocompatibility testing
238 or other evaluations that were conducted to mitigate any remaining risks. We recommend
239 that you consider the recommendations in this guidance, which identifies the types of
240 biocompatibility assessments that should be considered and recommendations regarding how
241 to conduct related tests.

242
243 Per ISO 10993-1 *Biological evaluation of medical devices — Part 1: Evaluation and testing*
244 *within a risk management process* and Attachment A of FDA's guidance on ISO 10993-1,
245 orthopedic implants are considered implant devices in contact with tissue/bone for a long-
246 term contact duration. Therefore, the following endpoints should be addressed in your
247 biocompatibility evaluation:

¹⁶ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-international-standard-iso-10993-1-biological-evaluation-medical-devices-part-1-evaluation-and>

250

251 • cytotoxicity;

252 • sensitization;

253 • irritation or intracutaneous reactivity;

254 • acute systemic toxicity;

255 • material-mediated pyrogenicity;

256 • subchronic toxicity (sub-acute toxicity);

257 • genotoxicity;

258 • implantation;

259 • chronic toxicity; and

260 • carcinogenicity.

261

262 We recommend consideration of the following for metallic and/or calcium phosphate

263 coatings:

264

265 • Your biocompatibility assessment should consider not only the starting materials used

266 for the coating and the device, but also the subsequent processing of the materials, the

267 manufacturing methods (including coating process and pre- and post-coating

268 processes), cleaning, and sterilization steps, and any residuals from manufacturing

269 aids used during the process to ensure the biocompatibility assessment reflects the

270 final sterilized device.

271

272 • Differences in formulation, processing, sterilization, device surface properties (e.g., a

273 coating containing “nano” characteristics) compared to legally marketed devices that

274 could affect biocompatibility of the final device may warrant additional

275 biocompatibility testing.

276

277 • For new formulations of degradable or resorbable calcium phosphate coatings, in

278 addition to the testing described above, we recommend you address the

279 biocompatibility of the coating over the life of the device and discuss the starting,

280 intermediate, and final degradation products present over the course of degradation.

281

F. Non-Clinical Bench Testing

(1) General Recommendations

282

283 This section identifies general recommendations to consider when conducting non-clinical

284 tests to characterize coatings. **Section F.(2)** and **Section F.(3)** below list recommended non-

285 clinical tests for evaluating the integrity of metallic coatings and calcium phosphate coatings,

286 respectively. Inadequate coating integrity could cause device failure and clinical

287 complications such as poor fixation.

288

289 For information on the recommended content and format of test reports for the testing

290 described in this section, refer to FDA’s guidance, “[Recommended Content and Format of](#)

291 Non-Clinical Bench Performance Testing Information in Premarket Submissions.”¹⁷

292

293 Unless a coupon is described in the consensus standard used, we recommend that you use
294 final sterilized devices from multiple lots for testing and characterization. Alternatively, a
295 rationale should be provided to justify that the test sample is equivalent to the final device in
296 terms of manufacturing process including variability between lots, geometry (e.g., radius of
297 curvature), cleaning and sterilization. Also, whenever applicable, you should include a
298 description of the test sample, such as the test sample is a coating with substrate, a coating
299 peeled off from a substrate, or powder that has been pulverized from a coating. A minimum
300 sample size has been recommended for each test below unless it is specified in the associated
301 material/testing consensus standards. Unexpected test results (e.g., a large variability in
302 results) or device design may suggest a larger sample size should be utilized.

303

304 The specifications (a range of values to be achieved) for a specific coating property, if
305 applicable, must meet the established acceptance criteria from required special controls, if
306 any, and should follow any other applicable recommendations arising out of guidance
307 documents, or consensus standards, or be supported by clinical justifications. The range of
308 the specifications defined for each coating property should be assessed and justified both
309 individually and as an aggregate with the other properties to demonstrate that the worst-case
310 scenario is acceptable. For example, a coating with a thickness (or porosity or pore size) at
311 the highest end of the specifications should demonstrate acceptable mechanical properties.
312 The test results should be expressed quantitatively including average, standard deviation, and
313 range whenever applicable. You should provide a discussion of the conclusions drawn from
314 your test results.

315

316 If you believe some of the recommended tests described below are not applicable to your
317 coating, or if you are using an alternative testing standard/method, you should describe your
318 approach (e.g., providing a scientific rationale to explain the tests that you have conducted
319 and decided not to conduct).

320

321 Note that the tests specified in **Section F.(2)** and **Section F.(3)** are not all inclusive. Thus, it
322 is important to ensure that unique attributes specific to your coating or your device are
323 adequately evaluated. Also note that some orthopedic devices have device-specific
324 recommendations for certain coating properties and/or testing methods, and some devices are
325 subject to special controls. Refer to FDA’s website regarding Guidance Documents (Medical
326 Devices and Radiation-Emitting Products)¹⁸ for additional guidance documents or class II
327 special controls documents¹⁹ that may pertain to your device type.

328

¹⁷ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/recommended-content-and-format-non-clinical-bench-performance-testing-information-premarket>

¹⁸ <https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/guidance-documents-medical-devices-and-radiation-emitting-products>

¹⁹ <https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/class-ii-special-controls-documents>

329 For feedback regarding your specific coating, we recommend submitting a Pre-Submission to
330 obtain Agency feedback. For further information regarding the Q-Submission Program, refer
331 to the guidance “[Requests for Feedback and Meetings for Medical Device Submissions: The](#)
332 [Q-Submission Program](#).”²⁰

(2) Testing of Metallic Coatings

333 This section lists recommended bench tests for characterizing metallic coatings. Three types
334 of metallic coatings with significant clinical experience may be sufficiently evaluated with a
335 subset of these tests (see **Section F.(2).d** below).

a. Coating Chemical Analysis

336 **Significance:** Chemical composition of a metallic coating affects the stability and the
337 patient’s biological response to the coated device.

338 **Recommendation:** We recommend providing a chemical composition analysis of the
339 metallic coating on the final device with a minimum sample size of three. The test results
340 should be expressed quantitatively and compared to specifications identified in relevant
341 consensus standards (e.g., for plasma-sprayed coatings derived from unalloyed titanium and
342 TiAl6V4 powders, see ISO 13179-1 *Implants for surgery — Coating on metallic surgical*
343 *implants — Part 1: Plasma-sprayed coatings derived from titanium and titanium-6*
344 *aluminum-4 vanadium alloy powders*).

b. Coating Microstructural Characterization

345 **Significance:** The microstructure of a metallic coating affects the implant fixation since the
346 coating directly interfaces the bone/tissue. These tests provide elementary quantifications of
347 the microstructural characteristics of the coating on the device. For a porous-coated device,
348 the characteristics of the porous coating are indicators of the ability of the coating to allow
349 for biological fixation.

350 **Recommendation:** You should specify in your premarket submission if you intend to label
351 your device as porous coated for biological fixation. Per 21 CFR 888.3358(a) and 21 CFR
352 888.3670(a), the porous coating of a hip joint metal/polymer/metal semi-constrained porous-
353 coated uncemented prosthesis and a shoulder joint metal/polymer/metal nonconstrained or
354 semi-constrained porous-coated uncemented prosthesis “has a volume porosity between 30
355 and 70 percent, an average pore size between 100 and 1,000 microns, interconnecting
356 porosity, and a porous coating thickness between 500 and 1,500 microns.” Such devices are
357 designed “to achieve biological fixation to bone without the use of bone cement” (21 CFR
358 888.3358(a) and 21 CFR 888.3670(a)). While the description is included in the
359 aforementioned regulations only, FDA recommends that other orthopedic device types that
360 include porous coatings for biological fixation that are discussed in this guidance generally
361 have those characteristics as well.

²⁰ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/requests-feedback-and-meetings-medical-device-submissions-q-submission-program>

367 Regardless of whether the device is labeled for biological fixation, we recommend providing
368 the following microstructural evaluation of the coating on the final device with a minimum
369 sample size of three.

- 1) Surface and cross-sectional photomicrographs of the coating should be provided to show all microstructural features of the coating such as physically or chemically distinct layers, interconnecting porosity, and coating-substrate interface. The magnification should be identified on each image.
- 2) Thickness, average pore size, and overall porosity of the coating and/or each layer should be reported.
 - We recommend using ASTM F1854 *Standard test method for stereological evaluation of porous coatings on medical implants* to evaluate the mean coating thickness, average pore size (mean void intercept length), and porosity (volume percent void) of the coating and each distinct layer, if applicable.
 - For some device types (e.g., knee femoral and tibial components; anatomic shoulder glenoid components), the Tissue Interface Gradients method per ASTM F1854-15 sections on Tissue Interface Gradients and Tissue Interface Gradient Method should be used to evaluate the porous coating. In this case, the volume percent void and the mean void intercept length should be evaluated in three 200- μm -thick zones below the tissue interface. The results should demonstrate that the mean void content and intercept length in all three zones generally align with the porous coating description in 21 CFR 888.3358(a) and 21 CFR 888.3670(a).
 - For some devices, coatings with a higher volume porosity (i.e., > 70%), larger average pore size (>1000 μm) or greater thickness (i.e., > 1500 μm) than those described in 21 CFR 888.3358 and 21 CFR 888.3670 may be desired. These coatings may have low rigidity; therefore, we recommend additional mechanical testing pertaining to their application, e.g., a test on plastic deformation of porosity (see **Section F.(2).c**, below).

c. Coating Mechanical Testing

398 **Significance:** Mechanical properties of a metallic coating impact the integrity (e.g., coating
399 delamination, spallation, abrasion) of the coated device. These tests evaluate the mechanical
400 strength and abrasion resistance of a metallic coating due to the implantation of the device
401 during surgery or micromotion/fatigue loading of the implant over time.

403 Recommendation: All mechanical tests should be performed with a minimum sample size of
404 six, using the worst-case sample, which is usually the thickest coating to be marketed.

405 The following should be evaluated for any metallic coating:

407 1) Static tensile strength per ASTM F1147 *Standard test method for tension testing of*
408 *calcium phosphate and metallic coatings*. The static tensile strength should exceed 22
409 MPa (per ISO 13179-1).

410 2) Shear fatigue strength per ASTM F1160 *Standard test method for shear and bending*
411 *fatigue testing of calcium phosphate and metallic medical and composite calcium*
412 *phosphate/metallic coatings*. Results from shear fatigue testing to 10^7 fatigue cycles
413 should be provided with the inclusion of the photomicrographs of the test samples
414 before and after each test. The coating should withstand at least 10^7 cycles with a
415 shear fatigue maximum stress of at least 10 MPa without any failure (per ISO 13179-
416 1).

417 3) Taber abrasion resistance test per ASTM F1978 *Standard test method for measuring*
418 *abrasion resistance of metallic thermal spray coatings by using the Taber Abraser*.
419 Results should include the cumulative mass loss for each specimen and the mean
420 cumulative mass loss and standard deviations for 2, 5, 10, and 100 cycles. The
421 coatings should lose less than a total of 65 mg (by weight) when abraded for 100
422 cycles (per ISO 13179-1).

423

424 The following test should be conducted for metallic coatings with low rigidity (which may
425 include, but is not limited to, a coating with a higher volume porosity (i.e., > 70%), larger
426 average pore size (i.e., >1,000 μm) or greater thickness (i.e., > 1,500 μm)). See **Section**
427 **F.(2).b**, above.

428 430 Test for plastic deformation of the coating porosity. We recommend reporting the
429 amount of plastic deformation of the porosity with a minimum sample size of six. The
431 device should be loaded by a flat surface under the worst case loading anticipated to
432 occur during and after implantation. The test method and test sample used should be
433 defined and appropriately justified given the device type. Test results including an
434 evaluation of post-testing pore structure of the coating should be provided and
435 justified.

436

437 **d. Testing recommendations for three specific types of metallic**
coatings

438 Three types of metallic coatings with a long history of clinical use, specifically:

439 440 a) beaded, sintered cobalt-chrome coatings on a cobalt-chrome substrate,
441 b) beaded, vacuum-sintered titanium coatings on a titanium substrate, and
442 c) vacuum-sintered titanium fiber mesh pads on a titanium substrate,

443 444 may be sufficiently evaluated with the descriptive information and testing outlined in items
445 1-3) below:

446 447 1) Identify the materials used for both the metallic coating and the substrate and any
448 consensus standards to which they conform.

451

452 2) Evaluate the static shear strength of the coating to the substrate per ASTM F1044

453 *Standard test method for shear testing of calcium phosphate coatings and metallic*

454 *coatings.*

455

456 3) Provide the average bead size and number of bead layers for beaded coatings; and

457 evaluate average pore size, overall pore volume, and thickness of the coating per

458 ASTM F1854.

459 i. If you intend to label the device as porous coated for biological fixation, the

460 coating characteristics generally should align with the porous coating

461 description referenced in **Section F.(2).b.**

462 ii. The Tissue Interface Gradients method per ASTM F1854-15 sections on

463 Tissue Interface Gradients and Tissue Interface Gradient Method should be

464 used for certain orthopedic devices (see **Section F.(2).b.**, above).

(3) Testing of Calcium Phosphate Coatings

465 This section lists recommended bench tests for characterizing a calcium phosphate coating.

a. Coating Physicochemical Analysis

466 **Significance:** The physicochemical properties of a calcium phosphate coating affect the

467 stability, dissolution and resorption *in vivo*, and other biological response of the coated

468 device. These tests evaluate if the calcium phosphate coating has appropriate

469 physicochemical properties to ensure the safe use of the coated device in the human body.

470

471 **Recommendation:** For any plasma-sprayed calcium phosphate (also known as

472 hydroxyapatite or HA) coating, we recommend providing the following physicochemical

473 properties with a minimum sample size of three (see “**Additional Information**” at the end of

474 this section for the recommended physicochemical analysis for other types of calcium

475 phosphate coatings). Unless there are other types of control samples for a specific test, we

476 recommend a control sample, e.g., National Institute of Standards & Technology (NIST)

477 Standard Reference Material (SRM) [2910B²¹](#) or a historical control be tested as a comparison

478 for the analyses.

479

480 We recommend that the starting material for plasma-sprayed HA coatings be HA powder that

481 conforms to one of the following two consensus standards in terms of trace elements, phase

482 composition /crystallinity, and Ca/P ratio:

483

484

- 485 • ASTM F1185 *Standard specification for composition of hydroxylapatite for surgical*
- 486 *implants* or

²¹ https://shop.nist.gov/crz_ProductDetails?sku=2910b&cclcl=en_US

487 • ISO 13779-6 *Implants for surgery — Hydroxyapatite — Part 6: Powders.*

488 List of recommended physicochemical analyses:

491 1) Elemental analysis including calcium and phosphorous, intentional additions, and
492 manufacturing impurities per ASTM F1609 *Standard specification for calcium*
493 *phosphate coatings for implantable materials* or ISO 13779-2 *Implants for*
494 *surgery — Hydroxyapatite — Part 2: Thermally sprayed coatings of*
495 *hydroxyapatite.*

496 2) Phase analysis per X-ray diffraction – X-ray diffraction patterns with
497 crystallographic interpretations, including the identification and quantitative
498 analysis of each crystalline phase (i.e., HA, α -tricalcium phosphate or α -TCP, β -
500 tricalcium phosphate or β -TCP, tetracalcium phosphate or TTCP, calcium oxide
501 or CaO) and amorphous calcium phosphate (ACP), as well as crystallinity ratio.
502 The X-ray diffraction determination and phase analysis should be performed with
503 a copper radiation and scanned from 4° to 60° and utilize one of the following two
504 standards. The worst-case coating for this test, which is usually the thinnest
505 coating, as a thinner coating generally contains more amorphous phase compared
506 to a thicker coating, should be used.

507 • ASTM F2024 *Standard practice for X-ray diffraction determination of phase*
508 *content of plasma-sprayed hydroxyapatite coatings.*

510 • ISO 13779-3 *Implants for surgery — Hydroxyapatite — Part 3: Chemical*
511 *analysis and characterization of crystallinity ratio and phase purity.*

513 If the phase composition determined per each standard is out of the specified
514 range in that standard, supporting data or scientific rationales should be provided
515 to justify that the coating is acceptable for the intended clinical use.

517 3) Ca/P ratio analysis using one of the following two methods:

520 • X-ray method per ISO 13779-3: If the calculated Ca/P ratio is outside the range
521 established in ISO 13779-2 Third Edition 2018-12 Clause 5.2 “Calcium to
522 phosphorus ratio (Ca:P)” (i.e., 1.61 to 1.76), supporting data or a scientific
523 rationale should be provided to justify the Ca/P ratio, or

524 • A general wet chemistry method such as inductively coupled plasma mass
525 spectroscopy (ICP-MS) or inductively coupled plasma atomic or optical
526 emission spectroscopy (ICP-AES or ICP-OES).

528 4) Structural analysis per infrared analysis – Infrared spectra with detailed molecular
529 interpretations, including band assignments for all phosphate (HPO_4^{2-} , PO_4^{3-}) and
530 hydroxyl (OH^-) bands, crystallinity, structural water, and carbonate. The infrared

531 spectra allow us to understand the chemical structure of the coating, which cannot
532 be obtained from X-ray diffraction.

533

534 5) Dissolution rate measured at 37°C in both pH 7.4 and pH 5.5 buffered solutions
535 per ASTM F1926/F1926M *Standard test method for dissolution testing of calcium*
536 *phosphate granules, fabricated forms, and coatings*. The pH changes of the
537 solution during measurement should be recorded. In addition, we recommend the
538 following:

539 a. Ratio of initial material mass (mg) to total dissolution media volume
540 (mL): ASTM F1926/F1926M-14 (Clause 6 “Analytical Parameters”)
541 recommends a ratio of 1 to 4 mg/ml, which is a wide range; a justification
542 should be provided for the ratio used in your test.

543

544 **Additional Considerations:** If you are using a coating method other than plasma spray, or if
545 the phase composition of your coating is different from that of a typical plasma-sprayed
546 calcium phosphate coating, for example, your coating is intended to contain one or more
547 other crystalline phases (e.g., dicalcium phosphate dihydrate (DCPD or Brushite),
548 octacalcium phosphate (OCP) with or without amorphous phase, the phase composition(s) of
549 the coating should be determined against the corresponding crystalline phase(s), respectively.
550 If the calcium phosphate phases formed in the coating are novel, animal or clinical data may
551 be requested to ensure safe clinical use (see **Sections G and H**, below).

552

553 **b. Coating Microstructural Characterization**

554 **Significance:** The microstructure of a calcium phosphate coating affects implant fixation as
555 the coating directly interfaces the bone/tissue. These tests provide elementary quantifications
556 of the microstructural characteristics of the coating on the device.

557 **Recommendation:** We recommend providing the following microstructural evaluation of a
558 calcium phosphate coating on the final device with a minimum sample size of three.

559

560 1. Surface and cross-sectional photomicrographs of the coating should be provided to
561 demonstrate all microstructural features of the coating such as physically or
562 chemically distinct layers, interconnecting porosity, and coating-substrate interface.
563 The magnification bar should be identified on each image.

564

565 2. Thickness, average pore size, and overall porosity of the coating and each layer
566 should be provided.

567

568 You may use ASTM F1854 to determine the thickness, average pore size, and
569 porosity of the coating and each distinct layer or an alternative standard/method.

570

571 If you intend to label the calcium phosphate coating as a “nano” coating (e.g., nano-
572 crystalline, nano-structured), you should provide additional microstructural characterization
573 to demonstrate the “nano” characteristics (e.g., nano crystal size or other nano features) and

574 address concerns related to the biocompatibility of the “nano” characteristics (see **Section E.**
575 **Biocompatibility**).

576 **c. Coating Mechanical Testing**

577 Significance: Mechanical properties of a calcium phosphate coating impact the integrity
578 (e.g., coating delamination, spallation, abrasion) of the coated device itself. These tests
579 evaluate the mechanical strength of a metallic coating following the implantation of the
580 device during surgery or micromotion/fatigue loading of the implant over time.

581
582 Recommendation: All tests should be performed with a minimum sample size of six using
583 the worst-case sample, which is usually the thickest coating to be marketed.

584 1. Static tensile strength per ASTM F1147 or ISO 13779-4: *Implants for surgery —*
585 *Hydroxyapatite — Part 4: Determination of coating adhesion strength*, (see ISO
586 13779-2 Third Edition 2018-12 Clause 5.7 “Coating strength” for acceptance criteria,
587 i.e., the mean tensile coating adhesion strength should not be less than 15 MPa and no
588 individual result should be less than 10 MPa.).

589 2. Static shear strength per ASTM F1044.

590 3. Fatigue strength per ASTM F1160. Results from shear fatigue testing for 10^7 cycles
591 should be provided with inclusion of the photomicrographs of the test samples before
592 and after each test.

593 **(4) Testing of Metallic and Calcium Phosphate Dual Coatings**

594 For a metallic and calcium phosphate dual coating, we recommend that you provide the
595 following information:

596 1) a description of any additional processing between the two coating processes in
597 addition to the coating description recommended in **Section A** for both metallic
598 coatings and calcium phosphate coatings;

599 2) testing of the metallic coating per the recommendations in **Section F.(2)**;

600 3) physicochemical properties of the calcium phosphate coating per the
601 recommendations in **Section F.(3).a**; and

602 4) microstructural characterization and mechanical testing of the dual coating per the
603 recommendations in **Section F.(2).b and F.(2).c**. The underlying metallic coating can
604 be porous (intended for biological fixation) or nonporous (intended for surface
605 roughening and enhanced bonding between calcium phosphate coating and substrate).
606 If the underlying metallic coating is porous and you intend to label the dual-coated
607 device for biological fixation, you should characterize the dual coating to determine if
608

614 the dual coating generally aligns with the previously discussed description of “porous
615 coating.”²²

616 **(5) Coated Substrate/Device Testing**

617 Significance: Some coating processes may affect the physical, chemical (e.g., changes in
618 dimension, color, and chemical structure/ stability) or fatigue properties of the coated device.
619 This may include but not be limited to i) when a coating is significantly thicker than coatings
620 of the same type on legally marketed devices; ii) when a coating process is novel; or iii)
621 when an implant material (e.g., polymer) or implant geometry (e.g., very thin) could be
622 impacted by the coating process. These tests evaluate the effect of the coating process on
623 performance of the coated device in these situations.

624
625 Recommendation: We recommend conducting the following tests:

626 1) Comparative Physical and Chemical Testing of the Coated Substrate – Examination
627 and testing of the substrate before and after coating with a minimum sample size of
628 three to demonstrate that the coating process will not lead to physical or chemical
629 changes (e.g., changes in dimension, color, chemical structure/stability) of the coated
630 substrate.

631 2) Comparative Fatigue Testing of the Coated Substrate – This can be evaluated using
632 the bending fatigue testing recommendations outlined in ASTM F1160 or a similar
633 method to assess the substrate material (i.e., axial, bending, or rotating beam test with
634 a minimum sample size of six). Both the non-coated (i.e., substrate only) and the
635 coated specimens should be tested to quantify any effect that the coating has on the
636 substrate.

637 Alternatively, the effect of the coating process on the fatigue property of the coated
638 device can be assessed using a fatigue test method specific to the final device if such
639 a method exists. You should examine and describe the coating integrity and/or failure
640 mode after the test in the test report. If failure of the device is associated with the
641 coating, rationales or a benefit-risk analysis should be provided to justify the addition
642 of the coating on the device.

643 For some applications (e.g., spinal devices), when performing a device-specific
644 fatigue test, you should characterize the wear particulates generated from the metal
645 coated device per ASTM F1877 *Standard Practice for Characterization of Particles*.
646 Please refer to any applicable device-specific guidance documents and special
647 controls for your device.

²² See 21 CFR 888.3358 and 21 CFR 888.3670.

650 **G. Non-Clinical Animal Studies**

651 Significance: Due to limitations of bench models, animal studies are often conducted to
652 support medical device premarket submissions for novel metallic and/or calcium phosphate
653 coatings. The *in vivo* setting generally provides an initial assessment of how a medical device
654 interacts with biological systems, including physiological, pathological, and toxicological
655 effects of the device, and how the biological system may affect the device.

656

657 Recommendation: Animal testing is generally unnecessary for most metallic and calcium
658 phosphate coated devices; however, such testing may be appropriate in situations such as
659 novel technology (e.g., novel materials, compositions and/or phases in a calcium phosphate
660 coating) that cannot be evaluated through bench tests or in a clinical study. The study design
661 and endpoints should be based upon the intended use of the device and mitigation of risk.

662

663 FDA supports the principles of the “3Rs,” to replace, reduce, and/or refine animal testing
664 when feasible. We encourage sponsors to consult with us if they wish to use a non-animal
665 testing method that they believe is suitable, adequate, validated, and feasible. We will
666 consider if such an alternative method could be assessed for equivalency to an animal study.

667

668 We encourage manufacturers to take advantage of the Q-Submission Program to ensure that
669 the animal study protocol addresses safety concerns and contains elements that are
670 appropriate for a regulatory submission. Additionally, for information and recommendations
671 regarding animal studies used to support medical device submissions, refer to the guidance
672 “[General Considerations for Animal Studies Intended to Evaluate Medical Devices](#).”²³

673 If you are proposing to use a non-animal testing method in lieu of an animal study, we
674 recommend that you discuss the proposal using the Q-Submission Program. We will consider
675 if such an alternative method could be assessed for equivalency to an animal test method. For
676 details on the Q-Submission Program, refer to the guidance “[Requests for Feedback and](#)
677 [Meetings for Medical Device Submissions: The Q-Submission Program](#).”²⁴

678

H. Clinical Performance Testing

679 Clinical studies are generally unnecessary for metallic and calcium phosphate coated
680 orthopedic devices; however, such testing may be appropriate in situations such as the
681 following:

682 • Use of novel technology (e.g., materials, compositions and/or phases in a calcium
683 phosphate coating) different from that used in legally marketed devices of the same
684 type; and/or

685 • Cases where bench and/or animal testing raise issues that warrant further evaluation
686 with clinical studies (e.g., devices with concerning mechanical properties compared

²³ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-considerations-animal-studies-medical-devices>

²⁴ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/requests-feedback-and-meetings-medical-device-submissions-q-submission-program>

687 to legally marketed devices of the same type such as lower shear fatigue strength,
688 higher abrasion rate, or new types of wear particulates).

689
690 We will consider alternatives to clinical studies when the proposed alternatives are supported
691 by an adequate scientific rationale. If a clinical investigation involving one or more subjects
692 is conducted to determine the safety or effectiveness of a device, the Investigational Device
693 Exemption (IDE) regulation, 21 CFR Part 812, applies unless the investigation is excepted
694 from the IDE requirements (see 21 CFR 812.3(a) and (c)). Generally, we believe metallic
695 and/or calcium phosphate coated orthopedic devices addressed by this guidance document
696 are significant risk devices (see 21 CFR 812.3(m)) subject to all requirements of 21 CFR Part
697 812 (the abbreviated requirements referenced in 21 CFR 812.2(b) are generally not
698 applicable to significant risk devices). See the FDA guidance titled, “[Significant Risk and](#)
699 [Nonsignificant Risk Medical Device Studies](#).”²⁵ In addition to the requirements of 21 CFR
700 Part 812, investigations to determine safety and effectiveness of a device may also be subject
701 to FDA regulations governing institutional review boards (21 CFR Part 56) and the
702 protection of human subjects (21 CFR Part 50), including informed consent (21 CFR Part 50,
703 subpart B).

704
705 When data from clinical investigations conducted outside the United States are submitted to
706 FDA for metallic and/or calcium phosphate coated orthopedic devices, the requirements of
707 21 CFR 812.28 may apply.²⁶ 21 CFR 812.28(a) outlines the conditions for FDA acceptance
708 of data from clinical investigations conducted outside the United States to support an IDE or
709 a device marketing application or submission. For more information, see the FDA guidance
710 “[Acceptance of Clinical Data to Support Medical Device Applications and Submissions: Frequently Asked Questions](#).”²⁷

711
712 In some cases, “real-world data” (RWD) may be used in lieu of traditionally collected
713 clinical data. Whether the collection of RWD for a legally marketed device requires an IDE
714 depends on the particular facts of the situation. Specifically, if a cleared device is being used
715 in the normal course of medical practice, an IDE would likely not be required. For additional
716 information regarding this topic, refer to the FDA Guidance entitled “[Use of Real-World](#)
717 [Evidence to Support Regulatory Decision-Making for Medical Devices](#).”²⁸

²⁵ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/significant-risk-and-nonsignificant-risk-medical-device-studies>.

²⁶ 21 CFR 812.28 applies to relevant clinical investigations that enroll the first subject on or after February 21, 2019, and that support an IDE or a device marketing application or submission to FDA.

²⁷ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/acceptance-clinical-data-support-medical-device-applications-and-submissions-frequently-asked>.

²⁸ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-real-world-evidence-support-regulatory-decision-making-medical-devices>

722 **I. Labeling**

723 As prescription devices, orthopedic devices with coatings are exempt from the requirement to
724 have adequate directions for use under section 502(f)(1) of the FD&C Act as long as the
725 conditions in 21 CFR 801.109 are met. For instance, to be so exempt, labeling that furnishes
726 information for use of the prescription device must, among other things, contain adequate
727 information for such use, including indications, effects, routes, methods, and frequency and
728 duration of administration and any relevant hazards, contraindications, side effects, and
729 precautions, under which practitioners licensed by law to employ the device can use the
730 device safely and for the purposes for which it is intended. (21 CFR 801.109(d)).

731

732 Specific labeling information will vary depending on the device on which the coating is used.
733 The following should be considered for the labeling of orthopedic devices with coatings:

734

- 735 1. Calcium phosphate coated joint arthroplasty devices should only be implanted using a
736 cementless method because calcium phosphate coatings can adversely affect the
737 longevity of cemented fixation; we recommend that this information be clearly
738 specified in the Indications for Use Statement and labeling.
- 739 2. A device with a porous coating that generally aligns with the description identified in
740 21 CFR 888.3358 and 21 CFR 888.3670 may be labeled for biological fixation. FDA
741 is currently not aware of valid scientific means, including clinical, animal, or bench
742 models, to support enhanced fixation claims such as osseointegration, bone ingrowth
743 or bone ongrowth in a clinical setting.
- 744 3. If you intend to label a coated device as “nano” (e.g., nano-crystalline, nano-
745 structured), characterization data to demonstrate the “nano” characteristics of the
746 coating should be provided in the submission (see **Section F.(3).b**).

747

748

749

750 **IV. Modifications (Devices subject to 510(k))**

751 21 CFR 807.81(a)(3) provides that a device change or modification “that could significantly
752 affect the safety or effectiveness of the device” or represents “[a] major change or
753 modification in the intended use of the device” requires a new 510(k).²⁹ The changes or

²⁹ Section 3308 of the Food and Drug Omnibus Reform Act of 2022 (FDORA), enacted as part of the Consolidated Appropriations Act, 2023, added section 515C “Predetermined Change Control Plans for Devices” to the FD&C Act (Pub. L. No. 117-328). Section 515C provides FDA with express authority to approve or clear PCCPs for premarket notification. For example, section 515C provides that supplemental applications (section 515C(a)) and new premarket notifications (section 515C(b)) are not required for a change to a device that would otherwise require a premarket approval supplement or new premarket notification if the change is consistent with a PCCP approved or cleared by FDA. Section 515C also provides that FDA may require that a PCCP include labeling for safe and effective use of a device devices requiring premarket approval or as such device changes pursuant to such plan, notification requirements if the device does not function as

754 modifications listed below are examples of changes that may require submission of a new
755 510(k). Note that this list is not exhaustive but provides examples of modifications that are
756 likely to require submission of a new 510(k). Also note this list does not address other
757 modifications for your device but is limited to the modifications for coatings. For additional
758 details, see FDA guidance “[Deciding When to Submit a 510\(k\) for a Change to an Existing](#)
759 [Device](#).³⁰

760

761 Such changes or modifications include:

762

- 763 • A change to a different coating method or to a different coating vendor (different
764 coating vendors generally have different specifications of coating process parameters,
765 e.g., spray power, distance, and environment for a plasma spray process) that lead to
766 final coatings with different properties – FDA generally considers these changes to be
767 significant changes in material and chemical composition, which could significantly
768 affect the safety and effectiveness of the coated device by adversely impacting
769 biocompatibility or impacting coating integrity. Complete characterization of the new
770 coating should be provided in a new 510(k) submission.
- 771 • Addition of coating layers, increasing thickness, or modifying the pore size or
772 porosity – FDA generally considers these changes to be significant changes in design,
773 which could significantly affect the safety and effectiveness of the coated device by
774 introducing a new potential worst-case scenario for mechanical properties of the
775 coating and the risks associated with device failure.
- 776 • A change to another substrate material (e.g., from one metal to either another metal or
777 a polymer) or modifications of the surface treatment that could result in a
778 significantly different surface roughness – FDA generally considers these changes to
779 be significant changes in material or material processing, which could significantly
780 affect the safety and effectiveness of the coated devices by introducing a change in
781 the risks associated with device strength and failure modes.

782

783 FDA believes that the following changes or modifications would likely not require
784 submission of a new 510(k):

785

786

- 787 • A change to another supplier for the starting material for a plasma-sprayed metallic
788 coating (e.g., unalloyed titanium powder) where the material specifications such as

789 intended pursuant to such plan, and performance requirements for changes made under the plan. If you are
790 interested in proposing a PCCP in your marketing submission, we encourage you to submit a Pre-Submission to
791 engage in further discussion with CDRH. See FDA’s guidance “[Requests for Feedback and Meetings for](#)
792 [Medical Device Submissions: The Q-Submission Program](#),” available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/requests-feedback-and-meetings-medical-device-submissions-q-submission-program>

³⁰ <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/deciding-when-submit-510k-change-existing-device>

790 chemical composition conforming with an FDA-recognized consensus standard,
791 particle size distribution, morphology and porosity are still within the same material
792 specifications. This change generally is not expected to impact biocompatibility or
793 change the risks associated with device failure.

794

795 • Reduction of number of coating layers or thickness of a metallic coating on a
796 previously cleared device while other microstructural characteristics (i.e.,
797 interconnecting porosity, pore size, volume porosity) are still within the initial
798 specifications (in the case of a porous coating, the microstructural characteristics
799 should still generally align with the porous coating description previously
800 discussed³¹). Provided that the overall device dimensions still remain within the
801 tolerance of the cleared device, these scenarios generally are not expected to
802 introduce new or significantly modified risks or a new worst-case for mechanical
803 properties of the coating and the failure modes of the coated devices.

804

DRAFT

³¹ See 21 CFR 888.3358 and 21 CFR 888.3670.