

Center for Xxxx Xxxxxx Xxxxxxxxx

CENTER FOR DRUG EVALUATION & RESEARCH OFFICE OF CLINICAL PHARMACOLOGY

Assessment of the Impact of Renal Impairment and Drug Dosage Considerations

Martina Sahre, PhD Policy Lead, Guidance and Policy Team

Disclaimer: The opinions and views contained in this presentation are my own and should not be construed to represent FDA's views or policies.

Renal drug elimination

- Kidneys are an important part of the elimination of drugs
- Drugs encounter glomerular filtration, tubular secretion, tubular reabsorption
- Kidney disease and resulting renal impairment can affect elimination of drugs
 - That are predominantly cleared by the kidneys
 - That are cleared via the liver
- What is meant by renal impairment
 - A change in the capacity of the kidneys to eliminate a drug
 - Also includes impact on absorption, distribution and metabolism

Regulatory Guidance

- Guidance for Industry: Pharmacokinetics in Patients with Impaired Renal Function — Study Design, Data Analysis, and Impact on Dosing (Revised Draft, 2020)
 - When to assess the impact of renal impairment on PK (and PD, where possible)
 - Study design considerations
 - Considerations on deriving dosage recommendations

When to assess the impact of renal impairment on PK?

When more than 30% of the systemically available parent drug is excreted in urine

- For therapeutic proteins and peptides < 69 kDa</p>
- Drugs that are eliminated by non-renal routes where metabolic and transport pathways could be affected by renal impairment
- Drugs that are used in patients receiving renal replacement therapy in the form of dialysis, either intermittently or continuously

How are stand-alone studies designed?

- Full study design
 - Full range of renal function enrolled
 - For drugs that are predominantly eliminated via the kidneys
- Reduced study design
 - Enrollment of the severe RI group only
 - For drug with non-renal elimination
- Any contemporary equation for estimation is acceptable
- Patients have stable reduction in renal function, i.e., not acutely changing

Description	Range of values for renal function (mL/min)
Normal renal function (control)	≥ 90
Mild impairment	60 to 89
Moderate impairment	30 to 59
Severe impairment	15 to 30
Kidney failure	< 15, not receiving dialysis

Data from Phase 2 and Phase 3 Studies

- Sparse sample collection
- Population PK analysis for covariate effects
- Can also be used for analysis of exposure-response relationships

- Observation:
 - Mild and some moderate RI enrolled
 - Severe RI often not enrolled or not sufficient data

Translation to Dosage Recommendations

 Understanding of the relationship between a measure of renal function and relevant PK parameters (usually area under the plasma concentration time curve (AUC), clearance (CL), halflife (t_{1/2})

- Understanding of the exposure-response relationships
- Dosage recommendation based on matching exposure to a reference group
 - Often the normal function group, but does not have to be
 - Assumption: Exposure-response relationship for efficacy and safety similar between patients with RI and those with normal renal function

Translation to Labels for Adults

Approvals from 2014 to 2019 235 labels of 261 total approved drugs \rightarrow 64 BLAs and 171 NDAs

- Dose Information:
 - Dose adjustment,
 - No dose adjustment needed,
 - Avoid use,
 - Use not recommended,
 - Use contraindicated
- No Information:
 - No study was conducted,
 - Impact of renal impairment on pharmacokinetics is unknown,

- Dose instruction cannot be provided,
- Renal impairment or subgroup not mentioned at all

Regulatory Guidance – Pediatrics

 Guidance for Industry: Pharmacokinetics in Patients with Impaired Renal Function — Study Design, Data Analysis, and Impact on Dosing (Revised Draft, 2020) FDA

- Guidance for Industry: General Clinical Pharmacology Considerations for Pediatric Studies of Drugs, Including Biological Products (Draft, 2022)
 - Clinical pharmacology information supporting safe and effective use of approved drugs in children

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pharmacokinetics-patients-impaired-renal-function-study-design-data-analysis-and-impact-dosing; https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-clinical-pharmacology-considerations-pediatric-studies-drugs-including-biological-products

Language in Guidance

- Renal impairment guidance and pediatric clinical pharmacology guidance
 - Any widely accepted and contemporary equation to estimate kidney function is acceptable
 - Below two years of age, take maturation into account
- The pediatric clinical pharmacology guidance also has the following considerations
 - For drugs that are renally cleared, exposures can be impacted by both the maturation of kidney function and renal impairment due to kidney disease.
 - Pediatric patients with impaired renal function should be recruited for clinical study when it is possible and ethically justifiable to do so.
 - Data from adults are generally used to complement the information obtained in pediatrics
 - Modeling and simulation approaches should be applied
 - Application of modeling is limited by current understanding of ontogeny and is particularly challenging in neonates.

Translation to Labels for Pediatrics

Lexicomp entries with pediatric renal impairment Those in Lexicomp with pediatric recommendations also having labeling recommendations recommendations Yes 19 (15 %) No 107 (85 %) Yes No 126 (11 %) 995 (89 %)

Translating from Adults to Children

Normal kidney function

Renal impairment

