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Targeted genetic engineering before genome editing
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Genome Editing:
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Genome Editing B.C. (Before CRISPR): Two Enduring Concepts 5

An engineered enzyme (“the genome editor”)
(i) binds a DNA targetin a cell in an investigator-specified way and

(ii) drives an enzymatic reaction that results in genetic change at that
target.

1—as all enzymes, genome editors follow biochemical principles that

GENOME EDITING 7 f T : . . ,
B it ules for aenailerapy et o o #8 can be studied, understood, and that inform their in-cell action

2010 2 —in contrastto enzymes reacting with substratesin a test tubes,

Genome editing with engineered genome editors act on the genome in its living form.

zinc finger nucleases
The biology of the cellis the prism through which genome editors act.

Urnov et al Nature (2005) 435:646-651 | Urnov et al Nature Reviews Genetics (2010) 11:636-646.
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Double Strand Break (DSB) Repair: Two Major Pathways 5
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DSB-driven editing
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Genome editing can produce small, nonrandom deletions and
insertions at native genes in human cells

2008 (ZFNs):
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“Structural basis for Cas9 off-target activity”

“The target DNA specificity of the CRISPR-associated genome editor nuclease Cas9 is determined by

complementaritytoa 20-nucleotide segmentin its guide RNA. However, Cas9 can bind and cleave partially
complementary off-target sequences, which raises safety concernsforits usein clinical applications.”

B FANCF guide RNA
“Bagg, 200008 FANCF  on-target R g (L R T T e T i i o e
| (80888
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Pacesaetal Cell (2022) 185:4067-4081.



“Structural basis for Cas9 off-target activity”

“The target DNA specificity of the CRISPR-associated genome editor nuclease Cas9 is determined by

complementaritytoa 20-nucleotide segmentin its guide RNA. However, Cas9 can bind and cleave partially
complementary off-target sequences, which raises safety concernsforits usein clinical applications.”

FANCF guideRNA |- G G
C C

FAMNCF on-target T TAGOGOGAAGACGTU CGTGSG
FANCF  off-targetl =rona i I

FANCF  off-target2 ... IR - - - -6 -
rA(+) — dC wobble rU - dG wobble

INCF off-target #2 FANCF offtarget #2 -

Q?s

REC Il

HNH
RuvC Il Table 1. Kinetic and thermodynamic analysis of off-target substrate binding and cleavage
Pl ; 24-h
4 FANCF on-target cleavage
Gene  Target (%) Kobs (Min~") kon (M~'.57") Kot (577) Ka (PM)
FANCF on-target 97.5 0.238 £ 0.013 345:+0.19 x 10° 7.46+097 x 107° 21.6+3.1
FANCF  off-target #1 35.1 0.001 = 0.0001 3.97 +0.06 x 10° 2.09+0.06 x 10°° 528+17

Pacess et 3l Ce//(2022)185'4067—4081 FANCF off-target #2 62.4 0.001 = 0.0002  1.42+0.03 x 10° 2.45+0.06 x 10~® 1,730 + 60



In a test tube:
Cas9 cuts different DNA targets with comparable efficiency

Test tube:
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Jinek et al Science (2012)337:816-821 | Lazzarotto et al Nature Biotechnology (2022)38:1317-1327.
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In a cell:

Cas9 cutting efficiency varies dramatically target-to-target
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In a cell: g

Cas9 cutting specificity varies dramatically gRNA to gRNA
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The number of DNA targets a given Cas9-gRNA can cut in the naked
human genome is a small fraction of what it actually cuts in a cell
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How You Handle the Cells During Genome Editing Provides

Critical Input to the Outcome

CRISPR screens in T cells reveal Cas9-induced chromosome loss

Chromosome loss is generalizable across the genome

Indels Affected chromosome
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Mitigation of chromosome loss in clinical
CRISPR-Cas9-engineered T cells

Connor A. Tsuchida,’?>* Nadav Brandes,**° Raymund Bueno,*®’-*! Marena Trinidad,? Thomas Mazumder,*
Bingfei Yu,*%3%2:32 Byungjin Hwang,?3* Christopher Chang,%7-#%1% Jamin Liu," "5 Yang Sun,®

Caitlin R. Hopkins,'2:1%:14,15.16 Kevin R. Parker,*3 Yanyan Qi,'” Laura Hofman,?'® Ansuman T. Satpathy,10.17
Edward A. Stadtmauer,'%° Jamie H.D. Cate,?%21.22 Justin Eyquem,®9.1° Joseph A. Fraietta,!%1%.14.15.16

Carl H. June,’%1%14.15 Howard Y. Chang,*5-2% Chun Jimmie Ye,:3.9.10.24,25,26,27.

and Jennifer A. Doudna'-?:10:20,21,22,28,29,57.%

“[In a comparison of] the results from our laboratory experiments
(where substantial chromosomeloss was detected) and our clinical
trial (where we did not observe chromosome loss above
background levels), there were multiple technical differencesin the
parameters used for chromosome loss estimation.

We tried to account for these differences by downsampling the
CROP-seq screen dataset so thatits parameters were similar to
those of the clinical trial dataset, which was sparser. Even upon
downsampling, our estimations of chromosome loss in the CROP-
seq screen were comparabletothe original complete dataset.

This supportsthe conclusion that biological rather than technical
reasons explain the dramatic differencein chromosomeloss
estimation.”

Tsuchida et al Cell (2023) 186:4856-4582



Key conclusion g

The presence in a human genome of a perfect sequence match, or partial match, to a gRNA spacer
that Cas9 can carry is of questionable utility in determining the potency or the outcome spectrum of

genome editing using that Cas9/gRNA in a living human cell.



Key conclusion

Context iscritical in determining the outcomes of genome editing in a primary human cell:

What Cas9 was used? In what form?

What gRNA?

What chemical composition of both?

Targeted to what sequence?

Delivered how and at what amount of each?

Into what kind of cells?

How were the cells handled before and after genome editing?

What were the functional consequences of editing on the cellsin the near- and long-term?
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