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Motivation Markov Random Field (MRF) Real Data Application 

The medical device industry plays an crucial role in the healthcare of patients worldwide. For 
example, it can do prevention, diagnosis, or even treatment for the patients. The safety, effec-
tiveness, and security of medical devices in the United States are monitored by the U.S. Food and 
Drug Administration (FDA). Many manufacturers, and regulators are interesting in monitoring the 
safety of those medical devices. They tried to find whether there exist a geographic pattern of 
those adverse events (AEs). By exploring those finding pattern, it would be helpful for manufac-
turers and regulators to take corresponding actions. 

Inspired by Orbanz and Buhmann (2008), we apply the pairwise Markov random filed into our Hypothetical data comprised total number of Left Ventricular Assist Device (LVAD) used in the 
model to handle spatial dependency. Consider an undirected random graph G = (V, E, W ), state and the related number of stroke occurrences associated with LVAD use. Three combination 
where V is the vertex set while E is the set of graph edges, with weights W on the corresponding cases of adverse event rates. The AE rate for the area outside the cluster is 0.1, and three different 
edges. The pairwise MRF model is defined as follows, AE rates for the area inside the cluster is 0.297, 0.497, and 0,697. ⎧ ⎫ ⎨ ⎬X X 

� (�1, . . . , �k) = exp Hi (�i) + ⎩ 
Hij(�i�j) − A (W )⎭ 

i2E (i,j)2E,j 6=i 

/ P (�1, . . . , �k) M (�1, . . . , �k) , 
where P is a vertex-wise term and M is an interaction term. 

Bayesian Hierarchical Model: MRF-MFM-Poisson 
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State of Georgia Adapting MRF, and used Gamma distribution as the base measure, the Bayesian hierarchical 
model can be expressed as follows, 

Data Model: y(si) | �(si) ˘ Poisson(�(si)), i = 1, . . . n 
nY 

MRF: (�(s1), · · · , �(sn)) ˘ M(�(s1), · · · , �(sn)) G(�(si)) 
i=1 

kX 
MFM: G(�(si)) = ˇj�j, 

j=1 
�1, . . . , �k ˘ Gamma(a, b), 
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Design 4

Design 1 Design 2 Design 3 Design 4 
Background, Challenges, Goals, and Contributions P (zi = j) = ˇj, 

Case 1 Sen 0.927 0.975 0.908 0.944 
ˇ1, . . . , ˇk | k ˘ Dirichlet( , . . . , ), 

Spe 0.944 0.972 0.929 0.954 
Background, and Challenges. k ˘ p(·), where p(·) is a p.m.f on {1, 2, . . .}. 

PPV 0.802 0.906 0.798 0.884 
– Hu et. al (2021) used a frequentist spatial scan statistics to find the potential spatial cluster for medical device 

NPV 0.988 0.994 0.988 0.986
safety. 

Cover Rate 16.5% 34.1% 21.4% 22.8%– Although spatial scan statistics is a useful tool but it suffers some obstacles. 
� Overfitting issue. Likelihood Ratio Test (LRT) Not Detected 0.4% - 3.7% 1.4% 
� Contiguous moving window assumption. 

Case 2 Sen 0.990 0.997 0.996 0.995� Computational cost. 
Recall, for each sub-region, we have the corresponding pair data. Spe 0.997 0.999 0.997 0.997Goals, and Contributions. 

PPV 0.988 0.994 0.988 0.988– Our model provide an alternative way to identify the spatial signal region in an efficient manner. 
First step only use y(si) to finding potential signal clusters. NPV 0.998 0.999 0.999 0.999– Provide an ability to capture both locally spatially contiguous clusters and globally discontiguous clusters. 
In this step, both (y(si), t(si)) will be involved. Cover Rate 84.9% 92.5% 90.1% 83.4% 

Case 3 Sen 0.998 0.999 0.999 0.999
Assuming that, Notations Spe 0.999 0.999 0.999 0.999 

nZ ˘ Poisson(pZ � tZ), PPV 0.999 0.999 0.999 0.999 
Assuming only one device and a fixed adverse event. Existing sub-region s1, . . . , sn in an entire n� − nZ ˘ Poisson(qZ � (t� − tZ)), nZ ?? (n� − nZ). NPV 0.999 0.999 0.999 0.999 
geographical area �. We have the corresponding pair data (y(si), t(si)), Cover Rate 98.1% 99.3% 99.5% 98.8%The hypothesis testing as follows, 
– y(si) denotes the count of adverse event occurrences. H0 : pZ = qZ � p0, 8Z � � 
– t(si) denotes the device exposure information. HA : pZ > qZ, for at least one zone. Discussions and Future Works 

Then, the region associated with maximum log-likelihood ratio is identified as the most likely We only need y(si) to finding the potential signal clusters. Discussions 
cluster signal. – Our algorithm included two steps: y(si) ˘ Poisson(�(si)), i = 1, · · · , n. 

1. First step, we used the proposed MRF-MFM-Poisson model to find potential signal clusters. 

We assume the n data vectors can be clustered into k potential signal clusters. 2. Then we used likelihood ratio test (LRT) as second step on these potential clusters to identified the most likely spatial cluster References 
signal. 

– Our model provide an alternative way to identify the spatial signal region in an efficient manner. 
Nonparametric Clustering – Our method provide an ability to capture both locally spatially contiguous clusters and globally discontiguous 
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