

FOOD AND DRUG ADMINISTRATION

CENTER FOR DRUG EVALUATION AND RESEARCH

ANTIMICROBIAL DRUGS ADVISORY

COMMITTEE (AMDAC) MEETING

Virtual Meeting

Thursday, June 8, 2023

9:30 a.m. to 4:43 p.m.

Meeting Roster

DESIGNATED FEDERAL OFFICER (Non-Voting)

She-Chia Jankowski, PharmD

4 Division of Advisory Committee and

5 Consultant Management

6 Office of Executive Programs, CDER, FDA

7

ANTIMICROBIAL DRUGS ADVISORY COMMITTEE MEMBERS

9 (Voting)

Lindsey R. Baden, MD

11 (Chairperson)

12 Director of Clinical Research

13 Division of Infectious Diseases

14 Brigham and Women's Hospital

15 Director, Infectious Disease Service

16 | Dana-Farber Cancer Institute

17 Professor of Medicine, Harvard Medical School

18 Boston, Massachusetts

19

20

21

22

1 **Michael D. Green, MD, MPH**

2 Professor of Pediatrics, Surgery and Clinical &
3 Translational Science
4 University of Pittsburgh School of Medicine
5 Division of Infectious Diseases
6 Director, Antimicrobial Stewardship &
7 Infection Prevention
8 Co-Director, Transplant Infectious Diseases
9 Children's Hospital of Pittsburgh Pittsburgh,
10 Pennsylvania

11

12 **W. David Hardy, MD, AAHIVS**

13 Attending, Rand Schrader (HIV) Clinic
14 Adjunct Clinical Professor of Medicine
15 Division of Infectious Diseases
16 Keck School of Medicine of
17 University of Southern California
18 Los Angeles, California

19

20

21

22

1 Sally A. Hunsberger, PhD
2 Biostatistician
3 Biometrics Research Branch
4 National Institute of Allergy and Infectious
5 Diseases (NIAID)
6 National Institutes of Health (NIH)
7 Rockville, Maryland
8
9

10 Ighovwerha Ofotokun, MD, MSc
11 Professor of Medicine
12 Division of Infectious Diseases
13 Emory University School of Medicine
14 Infectious Disease Specialist
15 Grady Memorial Health System
16 Atlanta, Georgia
17
18
19
20
21
22

1 **Nimish Patel, PharmD, PhD**

2 Professor of Clinical Pharmacy

3 Skaggs School of Pharmacy and Pharmaceutical
4 Sciences

5 University of California San Diego, Division of
6 Clinical Pharmacy

7 La Jolla, California

8

9 **Federico Perez, MD, MS**

10 Infectious Disease Physician

11 Louis Stokes Cleveland VA Medical Center

12 Associate Professor of Medicine

13 Case Western Reserve University

14 Cleveland, Ohio

15

16 **George K. Siberry, MD, MPH**

17 Senior Clinical Advisor to the Director

18 Office of HIV/AIDS

19 Bureau of Global Health

20 United States Agency for International Development

21 Washington, District of Columbia

22

1 **Roblena E. Walker, PhD**

2 *(Consumer Representative)*

3 Chief Executive Officer

4 EMAGAHA, INC.

5 Mableton, Georgia

6

7 **ANTIMICROBIAL DRUGS ADVISORY COMMITTEE MEMBER**

8 **(Non-Voting)**

9 **Richa S. Chandra, MD, MBA**

10 *(Industry Representative)*

11 Clinical Development Head

12 Communicable Diseases

13 Global Health Development Unit

14 Novartis Pharmaceuticals

15 East Hanover, New Jersey

16

17

18

19

20

21

22

1 **TEMPORARY MEMBERS (Voting)**2 **Mary Cataletto, MD, MMM**3 *(Retired February 2023)*

4 Clinical Professor of Pediatrics

5 NYU Langone School of Medicine

6 Pediatric Pulmonologist

7 NYU Health

8 Mineola, New York

9

10 **Douglas S. Diekema, MD, MPH**

11 Professor of Pediatrics and Bioethics & Humanities

12 University of Washington School of Medicine

13 Director of Education, Treuman Katz Center for

14 Pediatric Bioethics

15 Seattle Children's Research Institute

16 Seattle, Washington

17

18

19

20

21

22

1 **Peter L. Havens, MD, MS**

2 Professor Emeritus, Pediatrics

3 (Infectious Diseases)

4 Medical College of Wisconsin

5 Children's Wisconsin

6 Milwaukee, Wisconsin

7

8 **Rohan Hazra, MD**

9 Director, Division of Extramural Research

10 Eunice Kennedy Shriver National Institute of Child

11 Health and Human Development (NICHD), NIH

12 Bethesda, Maryland

13

14 **Mary Anne Jackson, MD, FAAP, FIDSA, FPIDS**

15 Dean and Professor of Pediatrics

16 Children's Mercy, Kansas City

17 University of Missouri-Kansas City

18 School of Medicine

19 Kansas City, Missouri

20

21

22

1 **Karen L. Kotloff, MD**

2 John A. Scholl, MD and Mary Louise Scholl, MD

3 Distinguished Professor

4 Head, Infectious Disease and Tropical

5 Pediatrics, and Associate Director Clinical

6 Research

7 Center for Vaccine Development and Global Health

8 University of Maryland School of Medicine

9 Baltimore, Maryland

10

11 **Steven Krug, MD**

12 Professor of Pediatrics

13 Northwestern University Feinberg

14 School of Medicine

15 Prior Head, Division of Emergency Medicine

16 Ann & Robert H. Lurie Children's Hospital of

17 Chicago

18 Chicago, Illinois

19

20

21

22

1 **Tamorah Lewis, MD, PhD**

2 Division Head, Clinical Pharmacology & Toxicology

3 Staff Neonatologist

4 The Hospital for Sick Children

5 Associate Professor, Department of Paediatrics

6 University of Toronto Temerty Faculty of Medicine

7 Toronto, Ontario

8

9 **Meredith McMorrow, MD, MPH**

10 CAPT, US Public Health Service

11 Acting Branch Chief

12 Surveillance and Prevention Branch

13 Coronavirus and Other Respiratory Viruses Division

14 National Center for Immunization and Respiratory

15 Diseases

16 U.S. Centers for Disease Control and Prevention

17 Atlanta, Georgia

18

19

20

21

22

1 **Stacey Stokes, MD, MPH**

2 Assistant Professor, Pediatric Hospital Medicine,
3 George Washington University
4 Medical Director of Informatics, Children's
5 National Hospital
6 Washington District of Columbia

7

8 **Jasmine Shackleford Thomas**

9 *(Patient Representative)*
10 Patient Advocate
11 Lupus and Allied Diseases Association, Inc.
12 Waldorf, Maryland

13

14 **Benjamin Wilfond, MD**

15 Professor, Divisions of Bioethics and Palliative
16 Care & Pulmonary and Sleep Medicine,
17 Department of Pediatrics, University of Washington
18 School of Medicine
19 Seattle, Washington

20

21

22

FDA PARTICIPANTS (Non-Voting)**John Farley, MD, MPH**

Director

Office of Infectious Diseases (OID)

Office of New Drugs (OND), CDER, FDA

Yodit Belew, MD

Associate Director for Therapeutic Review

Division of Antivirals (DAV)

OID, OND, CDER, FDA

Melisse Baylor, MD

Clinical Reviewer

DAV, OID, OND, CDER, FDA

Justin Earp, PhD

Pharmacometrics Reviewer

Division of Pharmacometrics

Office of Clinical Pharmacology (OCP)

Office of Translational Science (OTS)

CDER, FDA

1 Neha Gada, PharmD, BCPS

2 Cross Discipline Safety Advisor

3 Office of Pharmacovigilance and Epidemiology

4 Office of Surveillance and Epidemiology

5 CDER, FDA

6

7 Anna Kettermann, Dipl.-Math, MA

8 Statistics Reviewer

9 Division of Biostatistics IV

10 Office of Biostatistics

11 OTS, CDER, FDA

12

13 Yang Zhao, PhD

14 Clinical Pharmacology Reviewer

15 Division of Infectious Disease Pharmacology

16 OCP, OTS, CDER, FDA

17

18

19

20

21

22

	C O N T E N T S	
	AGENDA ITEM	PAGE
1		
2	Call to Order	
3	Lindsey Baden, MD	16
4		
5	Introduction of Committee	
6	She-Chia Jankowski, PharmD	16
7		
8	Conflict of Interest Statement	
9	She-Chia Jankowski, PharmD	25
10		
11	FDA Opening Remarks	
12	John Farley, MD, MPH	30
13		
14	Applicant Presentations - AstraZeneca	
15		
16	Introduction	
17	Tonya Villafana, PhD, MPH	39
18		
19	Efficacy	
20	Amanda Leach, MRCPCH	48
21		
22	Safety	
23	Manish Shroff, MBBS, MS, MBA	66
24		
25	Clinical Perspective	
26	William Muller, MD, PhD	79
27		
28	Benefit-Risk and Conclusions	
29	Tonya Villafana, PhD, MPH	88
30		

1	C O N T E N T S (continued)	
2	AGENDA ITEM	PAGE
3	FDA Presentations	
4	Overview	
5	Melisse Baylor, MD	92
6	Yang Zhao, PhD	97
7	Efficacy and Safety Issues	
8	Anna Kettermann, Dipl.-Math, MA	101
9	Melisse Baylor, MD	112
10	Justin Earp, PhD	123
11	Melisse Baylor, MD	128
12	Proposed Pharmacovigilance Strategy	
13	Neha Gada, PharmD, BCPS	136
14	Overall Summary	
15	Melisse Baylor, MD	144
16	Clarifying Questions	145
17	Open Public Hearing	168
18	Clarifying Questions (continued)	181
19	Charge to the Committee	234
20	Questions to the Committee and Discussion	238
21	Adjournment	311
22		

1 P R O C E E D I N G S

2 (9:30 a.m.)

3 **Call to Order**

4 DR. BADEN: Good morning, and welcome. I
5 would first like to remind everyone to please mute
6 your line when you are not speaking. For media and
7 press, the FDA press contact is Chanapa
8 Tantibanchachai. Her email is currently displayed.

9 My name is Dr. Lindsey Baden, and I will be
10 chairing this meeting. I will now call the June 8,
11 2023 Antimicrobial Drug Advisory Committee meeting
12 to order. Dr. Jankowski is the designated federal
13 officer for this meeting and will begin with
14 introductions. We'll first start with the standing
15 members of the AMDAC Committee?

16 **Introduction of Committee**

17 DR. JANKOWSKI: Thank you, Dr. Baden.

18 Good morning. My name is She-Chia
19 Jankowski, and I am the designated federal officer,
20 DFO, for this meeting. When I call your name,
21 please unmute yourself and turn on your camera.
22 Please introduce yourself by stating your name and

1 affiliation for the record.

2 We'll first start with AMDAC voting members.

3 Dr. Baden?

4 DR. BADEN: I'm Dr. Lindsey Baden. I'm an
5 infectious diseases specialist in Boston at Brigham
6 and Women's, Dana-Farber, and Harvard Medical
7 School. Thank you.

8 DR. JANKOWSKI: Dr. Green?

9 DR. GREEN: Good morning. My name is
10 Michael Green. I am a pediatric infectious disease
11 specialist at the UPMC Children's Hospital
12 Pittsburgh, University of Pittsburgh School of
13 Medicine. Thank you.

14 DR. JANKOWSKI: Dr. Hardy?

15 DR. HARDY: Good morning. My name is
16 Dr. David Hardy. I am an attending physician at
17 the LA County USC Medical Center here in Los
18 Angeles, and I apologize; my camera's not turning
19 on for some reason, but I am here.

20 DR. JANKOWSKI: Great.

21 Dr. Hunsberger?

22 DR. HUNSBERGER: Good morning. I'm Sally

1 Hunsberger. I'm a biostatistician at NIAID at NIH.

2 Thank you.

3 DR. JANKOWSKI: Dr. Ofotokun?

4 DR. OFOTOKUN: Good morning, everybody. My
5 name is Igho Ofotokun. I am an adult infectious
6 disease specialist at Emory University School of
7 Medicine, Atlanta, Georgia. Thank you.

8 DR. JANKOWSKI: Dr. Patel?

9 DR. PATEL: Good morning, everyone. My name
10 is Nimish Patel. I am a full professor at the
11 Skaggs School of Pharmacy and Pharmaceutical
12 Sciences at the University of California San Diego.
13 I'm an infectious diseases pharmacist and
14 pharmacoepidemiologist.

15 DR. JANKOWSKI: Dr. Perez?

16 DR. PEREZ: Good morning. I'm Federico
17 Perez. I'm an adult infectious diseases specialist
18 at Case Western Reserve University and at Northeast
19 Ohio Veterans Healthcare Administration System in
20 Cleveland, Ohio. Thank you.

21 DR. JANKOWSKI: Dr. Siberry?

22 DR. SIBERRY: Good morning. I'm George

1 Siberry, pediatric infectious disease physician and
2 chief medical officer at the Office of HIV/AIDS,
3 United States Agency for International Development.
4 Thanks.

5 DR. JANKOWSKI: And Dr. Walker?

6 DR. WALKER: Good morning. I am Dr. Roblena
7 Walker, chief executive officer for EMAGAHA, Inc.,
8 and also the consumer representative in Atlanta,
9 Georgia. Thank you.

10 DR. JANKOWSKI: Next is AMDAC non-voting
11 member, industry representatives, Dr. Chandra.

12 DR. CHANDRA: Good morning. I am Richa
13 Chandra. I am working as the clinical development
14 head at Novartis for infectious diseases, and today
15 I am representing industry on this advisory
16 committee meeting. Thank you.

17 DR. JANKOWSKI: Then we have temporary
18 voting members.

19 Dr. Cataletto?

20 DR. CATALETTTO: Good Morning. My name is
21 Mary Cataletto. I am recently retired from NYU,
22 Long Island School of Medicine after 34 years of

1 clinical practice. I retired as full professor of
2 pediatrics, and I'm very happy to be here. Thank
3 you.

4 DR. JANKOWSKI: Dr. Diekema?

5 DR. DIEKEMA: Good morning. I'm Doug
6 Diekema. I do pediatric emergency medicine and
7 bioethics at the University of Washington and
8 Seattle Children's Hospital.

9 DR. JANKOWSKI: Dr. Havens?

10 DR. HAVENS: I'm Peter Havens, recently
11 retired from pediatric infectious diseases at the
12 Medical College of Wisconsin and Children's
13 Wisconsin in Milwaukee.

14 DR. JANKOWSKI: Dr. Hazra?

15 DR. HAZRA: Good morning. I'm Rohan Hazra.
16 I'm a pediatric infectious disease physician by
17 training and the director of the Division of
18 Extramural Research at the Child Health Institute
19 at NIH.

20 DR. JANKOWSKI: Dr. Jackson?

21 DR. JACKSON: Good morning. I'm Mary Anne
22 Jackson. I'm a pediatric infectious disease doctor

1 at Children's Mercy Hospital and a professor of
2 pediatrics at the University of Missouri, Kansas
3 City School of Medicine.

4 DR. JANKOWSKI: Dr. Kotloff?

5 DR. KOTLOFF: Good morning. I'm Karen
6 Kotloff. I'm head of pediatric infectious disease
7 at the University of Maryland School of Medicine
8 and associate direct the Center for Vaccine
9 Development.

10 DR. JANKOWSKI: Dr. Krug?

11 DR. KRUG: Hey. Good morning. My name is
12 Steve Krug. I'm a pediatric emergency medicine
13 specialist. I work at the Ann & Robert H. Lurie
14 Children's Hospital of Chicago, and I'm a professor
15 of pediatrics at the Northwestern University
16 Feinberg School of Medicine.

17 DR. JANKOWSKI: Dr. Lewis?

18 DR. LEWIS: Good morning. I'm Tamorah
19 Lewis. I'm a neonatologist and pediatric clinical
20 pharmacologist at Sick Kids in Toronto, Ontario.

21 DR. JANKOWSKI: Dr. McMorrow?

22 DR. McMORROW: Hi. I'm Dr. Meredith

1 McMorrow. I'm a pediatrician and epidemiologist at
2 the U.S. Centers for Disease Control and Prevention
3 in the Coronavirus and Other Respiratory Viruses
4 division.

5 DR. JANKOWSKI: Dr. Stokes?

6 DR. STOKES: Good morning. I am Dr. Stacey
7 Stokes. I am a pediatric hospitalist at Children's
8 National in Washington DC and an assistant
9 professor of pediatrics at GW University.

10 DR. JANKOWSKI: Ms. Thomas?

11 MS. SHACKLEFORD THOMAS: Hi. My name is
12 Jasmine Thomas. I'm a patient representative with
13 the Lupus and Allied Diseases Association based out
14 of Verona, New York.

15 DR. JANKOWSKI: And Dr. Wilfond?

16 DR. WILFOND: Good morning. I'm Ben
17 Wilfond. I am a pediatric pulmonologist at Seattle
18 Children's University of Washington. I'm also an
19 investigator at the Treuman Katz Center for
20 Pediatric Bioethics, and my clinical practice is
21 focused exclusively on children's chronic lung
22 diseases of prematurity.

1 DR. JANKOWSKI: Thank you.

2 Finally, we have FDA participants,
3 non-voting.

4 Dr. Farley?

5 DR. FARLEY: Good morning. I'm John Farley,
6 director of the Office of Infectious Diseases in
7 the Office of New Drugs, Center for Drug Evaluation
8 and Research, FDA.

9 DR. JANKOWSKI: Dr. Belew?

10 DR. BELEW: Good morning. My name is Yodit
11 Belew. I'm the associate director for therapeutic
12 review in the Division of Antivirals, Office of
13 Infectious Diseases, CDER, FDA.

14 DR. JANKOWSKI: Dr. Baylor?

15 DR. BAYLOR: Good morning. I'm Melisse
16 Baylor, clinical reviewer in the Office of New
17 Drugs, Division of Antiviral Products.

18 DR. JANKOWSKI: Dr. Earp?

19 DR. EARP: Good morning. I'm Justin Earp.
20 I'm the pharmacometrics division team lead and I'm
21 the pharmacometrics reviewer for this application.

22 DR. JANKOWSKI: Dr. Gada?

1 DR. GADA: Good morning. I'm Neha Gada. I
2 work in the Office of Surveillance and Epidemiology
3 as a cross-discipline safety advisor.

4 DR. JANKOWSKI: Dr. Kettermann?

5 DR. KETTERMANN: Good morning. My name is
6 Anna Ketterman, and I'm a statistician in the
7 Office of Biostatistics in CDER, FDA.

8 DR. JANKOWSKI: And Dr. Zhao?

9 DR. ZHAO: Good morning. I'm a clinical
10 pharmacologist in the Office of Clinical
11 Pharmacology, CDER, and I'm the clinical
12 pharmacology reviewer for this BLA. Thank you.

13 DR. JANKOWSKI: Thank you, everyone.

14 Now back to you, Dr. Baden.

15 DR. BADEN: Thank you. I'd like to remind
16 panel members to turn off their cameras and
17 microphones when they are not speaking.

18 For topics such as those being discussed at
19 this meeting, there are often a variety of
20 opinions, some of which are quite strongly held.
21 Our goal is that this meeting will be a fair and
22 open forum for discussion of these issues and that

1 individuals can express their views without
2 interruption. Thus, as a gentle reminder,
3 individuals will be allowed to speak into the
4 record only if recognized by the chairperson. We
5 look forward to a productive meeting.

6 In the spirit of the Federal Advisory
7 Committee Act and the Government in the Sunshine
8 Act, we ask that the advisory committee members
9 take care that their conversations about the topic
10 at hand take place in the open forum of the
11 meeting.

12 We are aware that members of the media are
13 anxious to speak with the FDA about these
14 proceedings; however, FDA will refrain from
15 discussing the details of this meeting with the
16 media until its conclusion. Also, the committee is
17 reminded to please refrain from discussing the
18 meeting topic during breaks or lunch. Thank you.

19 Dr. Jankowski will read the Conflict of
20 Interest Statement for the meeting.

21 **Conflict of Interest Statement**

22 DR. JANKOWSKI: Thank you, Dr. Baden.

1 The Food and Drug Administration, FDA, is
2 convening today's meeting of the Antimicrobial
3 Drugs Advisory Committee under the authority of the
4 Federal Advisory Committee Act, FACA, of 1972.
5 With the exception of the industry representative,
6 all members and temporary voting members of the
7 committee are special government employees, SGEs,
8 or regular federal employees from other agencies,
9 and are subject to federal conflict of interest
10 laws and regulations.

11 The following information on the status of
12 this committee's compliance with federal ethics and
13 conflict of interest laws, covered by but not
14 limited to those found at 18 U.S.C. Section 208, is
15 being provided to participants in today's meeting
16 and to the public.

17 FDA has determined that members and
18 temporary voting members of this committee are in
19 compliance with federal ethics and conflict of
20 interest laws. Under 18 U.S.C. Section 208,
21 Congress has authorized FDA to grant waivers to
22 special government employees and regular federal

1 employees who have potential financial conflicts
2 when it is determined that that agency's need for a
3 special government employee's services outweighs
4 their potential financial conflict of interest, or
5 when the interest of a regular federal employee is
6 not so substantial as to be deemed likely to affect
7 the integrity of the services which the government
8 may expect from the employee.

9 Related to the discussions of today's
10 meeting, members and temporary voting members of
11 this committee have been screened for potential
12 financial conflicts of interests of their own as
13 well as those imputed to them, including those of
14 their spouses or minor children and, for purposes
15 of 18 U.S.C. Section 208, their employers. These
16 interests may include investments; consulting;
17 expert witness testimony; contracts, grants,
18 CRADAs; teaching, speaking, writing; patents and
19 royalties; and primary employment.

20 Today's agenda involves the discussion of
21 biologics license application, BLA, 761328, for
22 nirsevimab, a long-acting respiratory syncytial

1 virus, RSV, F protein inhibitor monoclonal antibody
2 for intramuscular use, submitted by AstraZeneca AB.
3 The proposed indication is prevention of RSV lower
4 respiratory tract disease in neonates and infants
5 born during or entering their first RSV season and
6 for children up to 24 months of age who remain
7 vulnerable to severe RSV disease through their
8 second RSV season. This is a particular matters
9 meeting during which specific matters related to
10 AstraZeneca's BLA will be discussed.

11 Based on the agenda for today's meeting and
12 all financial interests reported by committee
13 members and temporary voting members, conflict of
14 interest waivers have been issued in accordance
15 with 18 U.S.C. Section 208(b)(3) to Drs. Lindsey
16 Baden and Ighowwerha Ofotokun.

17 Dr. Baden's waiver covers his employer's
18 license for patents used for a competing product.
19 Dr. Baden is not aware of the funding amount being
20 provided to his employer for this license.
21 Dr. Ofotokun's waiver covers his employer's license
22 for proprietary RSV technologies used for a

1 competing product. Dr. Ofotokun is not aware of
2 the funding amount being provided to his employer
3 for this license.

4 The waivers allow these individual to
5 participate fully in today's deliberations. FDA's
6 reasons for issuing the waivers are described in
7 the waiver documents, which are posted on FDA's
8 website at www.fda.gov/advisory-committees/committees-and-meeting-materials/human-drug-advisory-committees. Copies of the waivers may
9 also be obtained by submitting a written request to
10 the agency's Freedom of Information Division,
11 5630 Fishers Lane, Room 1035, Rockville, Maryland,
12 20857, or requests may be sent via fax to
13 301-827-267.

14 To ensure transparency, we encourage all
15 standing committee members and temporary voting
16 members to disclose any public statements that they
17 have made concerning the product at issue. With
18 respect to FDA's invited industry representative,
19 we would like to disclose that Dr. Richa Chandra is
20 participating in this meeting as a non-voting

1 industry representative, acting on behalf of
2 regulated industry. Dr. Chandra's role at this
3 meeting is to represent industry in general and not
4 any particular company. Dr. Chandra is employed by
5 Novartis Pharmaceuticals.

6 We would like to remind members and
7 temporary voting members that if the discussions
8 involve any other products or firms not already on
9 the agenda for which an FDA participant has a
10 personal or imputed financial interest, the
11 participants need to exclude themselves from such
12 involvement, and their exclusion will be noted for
13 the record. FDA encourages all other participants
14 to advise the committee of any financial
15 relationships that they may have with the firm at
16 issue. Thank you.

17 Back to you, Dr. Baden

18 DR. BADEN: We will now proceed with the
19 with FDA opening remarks from Dr. John Farley.

20 Dr. Farley?

21 **FDA Opening Remarks - John Farley**

22 DR. FARLEY: Good morning. I am John

1 Farley, and I'll be giving the FDA opening remarks.
2 Today the FDA is convening this advisory committee
3 to discuss whether the available data support an
4 overall favorable benefit-risk assessment for the
5 use of nirsevimab for prevention of respiratory
6 syncytial virus, or RSV, lower respiratory tract
7 disease in neonates and infants born during or
8 entering their first RSV season, as well as in
9 children up to 24 months of age who remain
10 vulnerable to severe RSV disease through their
11 second RSV season.

12 Nirsevimab is a monoclonal antibody directed
13 against the prefusion conformation of the RSV
14 fusion, or F protein, which is required for cell
15 entry. The mechanism of action of nirsevimab is
16 passive immunity. It is not a vaccine and it is
17 being regulated as a drug. The proposed indication
18 is prevention of RSV lower respiratory tract
19 disease in neonates and infants born during or
20 entering their first RSV season, as well as
21 children up to 24 months of age who remain
22 vulnerable to severe RSV disease through their

1 second RSV season. The proprietary name is
2 Beyfortus, which has been conditionally granted.

3 The proposed dosing for the first RSV season
4 is a single 50-milligram intramuscular, or IM,
5 injection for infants weighing less than
6 5 kilograms, and a single 100-milligram IM
7 injection for infants weighing 5 kilograms and
8 greater. For children less than 24 months of age,
9 who remain at increased risk for severe RSV disease
10 in their second RSV season, the proposed dose is a
11 single 200-milligram IM injection. For the
12 purposes of today's discussions, we will define an
13 infant as a child not more than 12 months of age.

14 In terms of other drugs or biologics for
15 prevention of RSV disease in the U.S., palivizumab
16 is an FDA-approved monoclonal antibody for
17 prevention of serious lower respiratory tract
18 disease caused by RSV in children at high risk of
19 RSV disease. It is indicated for use in infants
20 with a history of premature birth that is less than
21 or equal to 35 weeks gestational age; children with
22 chronic like lung disease of prematurity; and

1 children with hemodynamically significant
2 congenital heart disease. It is administered
3 monthly during the RSV season. There are multiple
4 RSV vaccines currently in clinical development for
5 both maternal immunization and for immunization of
6 infants and children.

7 We'll be discussing three major clinical
8 trials today. The first is Trial 03, a
9 double-blind, placebo-controlled trial, which
10 evaluated the safety and efficacy of nirsevimab for
11 the prevention of medically attended respiratory
12 syncytial virus lower respiratory tract
13 infection -- so we will abbreviate that MA RSV
14 LRTI -- and infants born at greater than or equal
15 to 29 weeks to less than 35 weeks of gestation, who
16 were born during or entering their first RSV
17 season.

18 Trial 04 was a double-blind,
19 placebo-controlled trial, which also evaluated the
20 safety and efficacy of a single dose of nirsevimab
21 for the prevention of MA RSV LRTI. Trial 04
22 enrolled infants born at greater than or equal to

1 35 weeks of gestation who were born during or
2 entering their first RSV season.

3 Trial 05 is a double-blind,
4 active-controlled trial, which compared the safety
5 of nirsevimab versus palivizumab in infants at high
6 risk of severe RSV disease; the premature infants
7 born at less than 35 weeks of gestation; infants
8 with chronic lung disease of prematurity; or
9 hemodynamically significant congenital heart
10 disease.

11 I'd like to highlight two regulatory
12 considerations this morning. The first is data
13 pooling. Trial 04, which enrolled infants born at
14 greater than or equal to 35 weeks of gestation, had
15 an enrollment pause related to COVID-19 after
16 enrolling approximately 1500 children.

17 In addition, the agency had requested a
18 safety database of approximately 3,000 children
19 considering all trials. Patients enrolled prior to
20 this pause are referred to as the primary cohort.
21 Patients enrolled after the pause are referred to
22 as the safety cohort. The statistical analysis

1 plan for Trial 04 prespecified the primary analysis
2 for efficacy would be conducted in the primary
3 cohort. While analyses pooling the primary cohort
4 and safety cohort may be helpful for subgroup
5 analyses, the agency regards such analyses as
6 exploratory.

7 Relevant to Trial 05, extrapolation of
8 efficacy is an explicit authority granted to the
9 agency in the pediatric setting. It was first
10 introduced in 1994. Regulations describe the
11 evidence needed for extrapolation of efficacy based
12 on adult studies as follows: pediatric use
13 statement may also be based on adequate and
14 well-controlled studies in adults provided that the
15 agency concludes that the course of the disease and
16 the drug's effects are sufficiently similar in the
17 pediatric and adult populations to permit
18 extrapolation from the adult efficacy data to
19 pediatric patients.

20 Where needed, pharmacokinetic data to allow
21 determination of an appropriate pediatric dosage
22 and additional pediatric safety information must

1 also be submitted. The Pediatric Research Equity
2 Act of 2003 addressed extrapolation of efficacy
3 from one pediatric age group to another, utilizing
4 the same principles and stating that a study may
5 not be needed in each pediatric age group if data
6 from one age group can be extrapolated to another
7 age group.

8 We'll be asking the committee to address
9 four questions today. The first is a voting
10 question. Is the overall benefit-risk assessment
11 favorable for the use of nirsevimab for the
12 prevention of RSV lower respiratory tract disease
13 in neonates and infants born during or entering
14 their first RSV season?

15 The second is a discussion question. We'll
16 ask you to comment on the benefits and risks for
17 nirsevimab when assessed by chronological and
18 gestational age groups. Please discuss the
19 population or subpopulation for whom nirsevimab
20 administration in the first RSV season would be
21 most appropriate.

22 The third question is a voting question. Is

1 the overall benefit-risk assessment favorable for
2 the use of nirsevimab for the prevention of RSV
3 lower respiratory tract disease in children up to
4 24 months of age who remain vulnerable to severe
5 RSV disease through their second RSV season?

6 And the last question is a discussion
7 question. In the context of potential, future
8 availability of maternal RSV disease to protect
9 infants from RSV disease during their first RSV
10 season, what additional data may be helpful to
11 inform future recommendations regarding the use of
12 nirsevimab in infants born to mothers who received
13 RSV vaccination?

14 I want to conclude by thanking the committee
15 for the time you took to prepare for this meeting
16 and for the advice that we'll receive today.

17 Back to you, Dr. Baden

18 DR. BADEN: Thank you, Dr. Farley.

19 Both the FDA and the public believe in a
20 transparent process for information gathering and
21 decision making. To ensure such transparency at
22 the advisory committee meeting, FDA believes that

1 it is important to understand the context of an
2 individual's presentation.

3 For this reason, FDA encourages all
4 participants, including the AstraZeneca
5 non-employee presenters, to advise the committee of
6 any financial relationships that they may have with
7 the applicant, such as consulting fees, travel
8 expenses, honoraria, and interest in the applicant,
9 including equity interests and those based upon the
10 outcome of the meeting.

11 Likewise, FDA encourages you at the
12 beginning of your presentation to advise the
13 committee if you do not have any such financial
14 relationships. If you choose not to address this
15 issue of financial relationships at the beginning
16 of your presentation, it will not preclude you from
17 speaking.

18 We will now proceed with AstraZeneca's
19 presentations. Dr. Villafana will lead the
20 presentation, and I assume, Dr. Villafana, that you
21 will choreograph the different presentations for
22 the applicant.

1 I will give you the floor.

2 **Applicant Presentation - Tonya Villafana**

3 DR. VILLAFANA: Good morning. Yes, and I
4 confirm that I will choreograph the presentations
5 from the sponsor.

6 Good morning, members of the advisory
7 committee, FDA, and guests. I'm Tonya Villafana,
8 global franchise head in Vaccines and Immune
9 Therapies at AstraZeneca. We are grateful for the
10 opportunity to present our data today in support of
11 the positive benefit-risk of nirsevimab. We will
12 describe the strong efficacy and safety profile of
13 nirsevimab across infant populations, from healthy
14 term and preterm infants, to those who are most
15 vulnerable for serious outcomes due to RSV disease.

16 With many others at AstraZeneca, I have had
17 the privilege to lead the development of nirsevimab
18 for the past decade. Nirsevimab has been
19 authorized for use in Europe, Great Britain, and
20 Canada, and is currently under review globally,
21 including in Japan and China.

22 RSV is a major unmet public health need in

1 infants and children globally. It comes in
2 seasonal epidemics in the Northern Hemisphere and
3 is the most common cause of acute lower respiratory
4 tract infection in infants and children. In
5 addition to the outpatient burden, RSV is the major
6 reason for hospital admissions in infants and young
7 children globally, regardless of national economic
8 status.

9 Premature infants and those with underlying
10 lung or heart disease are at highest risk of severe
11 illness. For those infants, the only approved
12 prophylaxis is palivizumab, which requires monthly
13 dosing to provide protection through a season.
14 Importantly, most medically attended RSV cases
15 occur in otherwise healthy term infants for whom
16 there is no effective RSV prevention licensed in
17 the United States.

18 The pyramid on this slide illustrates the
19 significant burden of RSV disease in the U.S. in
20 the first year of life, which is when the disease
21 is of primary concern. Every year in the U.S.,
22 there are over 500,000 medically attended RSV

1 infections, which lead to approximately 400,000
2 office or clinic visits. Approximately 150,000
3 infants will be seen in the emergency department
4 and 33[000] to 80,000 will be admitted to the
5 hospital. This creates a significant burden on
6 hospitals and families, particularly during the
7 height of the RSV season, which typically overlaps
8 with the influenza season in the winter months.

9 Because those infants generally receive
10 excellent supportive care, the number of deaths is
11 small compared to the rest of the world, and sadly
12 the majority of deaths occur in infants at highest
13 risk of severe RSV disease. It's important to
14 remember that almost three-quarters of
15 hospitalizations and two-thirds of ICU admissions
16 for RSV occur in healthy term infants in their
17 first year of life.

18 Also, the most vulnerable infants with
19 certain conditions, such as congenital heart
20 disease and chronic lung disease of prematurity,
21 remain at significant risk in their second year of
22 life and need protection. Last, the burden of RSV

1 is exemplified by the most recent RSV season, where
2 we saw many hospitals overburdened by RSV and ICUs
3 at full capacity.

4 It has been a long road to developing an
5 effective prevention to address the unmet medical
6 need in a broad infant population. RSV was first
7 discovered in the 1950s, and the first RSV vaccine
8 trial of a formalin-inactivated vaccine was
9 conducted in the mid-60s. However, that vaccine
10 caused enhanced disease in seronegative children
11 who were subsequently exposed to RSV and resulted
12 in the death of 2 infants, which dramatically
13 impeded subsequent vaccine development of active
14 immunizations directly to the infant.

15 In the mid '80s, the first studies
16 demonstrating passive immunization with an antibody
17 were completed, and this led to the development of
18 RSV-IVIG and its approval in 1996. Next came the
19 approval of palivizumab in 1998, which targets the
20 RSV F fusion protein. In 2013, the conformational
21 mapping of the prefusion F protein by Jason
22 McLellan and Barney Graham's group at the NIH

1 revolutionized the field, identifying important
2 epitopes on prefusion F, including site 0, which
3 nirsevimab targets. The first clinical trials of
4 nirsevimab began in 2014.

5 Nirsevimab represents our commitment to
6 finding a solution for RSV prevention in all
7 infants and builds on our 25-year history of
8 development in this space, including palivizumab,
9 which has been given to millions of infants
10 worldwide. We have demonstrated that passive
11 immunization with a monoclonal antibody is a safe
12 and effective approach to preventing RSV disease.

13 Nirsevimab was made possible by advances in
14 technology, including the ability to isolate highly
15 potent neutralizing antibodies from human B cells;
16 select conserved epitopes through mapping of the
17 crystal structure; and extending the half-life of
18 antibodies. Those advances have translated into a
19 product profile with potential advantages,
20 including rapid onset of protection, coverage for
21 an entire RSV season with a single fixed dose, and
22 well-defined levels of neutralizing antibody.

1 Nirsevimab meets the desired product
2 profile. It is a highly potent, recombinant, human
3 IgG1 kappa monoclonal antibody that targets site 0,
4 a highly conserved epitope on the prefusion RSV F
5 protein, and it has a prolonged serum half-life.
6 Nirsevimab binds to site 0, locks the F protein in
7 the prefusion conformation, thereby inhibiting the
8 essential membrane fusion step in the viral entry
9 process. It directly neutralizes RSV and blocks
10 cell-to-cell fusion.

Importantly, regardless of when the infant is born, nirsevimab directly administered to the infant provides the opportunity for flexible, rapid, and sustained protection throughout the entire RSV season, with a single fixed intramuscular dose of a potent monoclonal antibody.

17 The key regulatory milestones for nirsevimab
18 are illustrated on this slide. We conducted a
19 comprehensive and thorough clinical development
20 program in close collaboration with the FDA and
21 other regulatory authorities. We've also had
22 extensive interactions with the Advisory Committee

1 on Immunization Practices, shown by the gold
2 triangles on the slide, and nirsevimab received
3 fast-track and breakthrough therapy designations.

4 There are 4 main studies in the nirsevimab
5 clinical development program supporting licensure,
6 three pivotal studies and one supportive. We
7 conducted two randomized, placebo-controlled
8 efficacy studies, Trial 03 and Trial 04, in healthy
9 preterm and term infants. These studies differ
10 only in the infant populations that were studied.
11 They had similar designs and they evaluated similar
12 endpoints.

13 We also conducted a randomized study in
14 infants with significant underlying medical
15 conditions who were eligible for palivizumab called
16 Trial 05, and an ongoing open-label, single-arm,
17 phase 2 study in immunocompromised children called
18 Trial 08. For these studies, efficacy
19 extrapolation was based on PK. Taken together,
20 these studies span the entirety of the infant
21 population. In addition, we have an ongoing
22 real-world study in Germany, France, and the UK

1 called HARMONIE, which looks at prevention of
2 hospitalization due to RSV.

3 A clinical development program supports the
4 proposed indication we are seeking for nirsevimab.
5 We are proposing nirsevimab for the prevention of
6 respiratory syncytial virus lower respiratory tract
7 disease in neonates and infants born during or
8 entering their first RSV season, and in children up
9 to 24 months of age who remain vulnerable to RSV
10 disease through their second RSV season.

11 Nirsevimab can provide direct protection of
12 infants through their first RSV season regardless
13 of the time of year they are born. Infants born
14 outside of the RSV season, such as April through
15 October, would receive nirsevimab at the beginning
16 of the season during a routine well-baby visit in
17 the pediatrician's office. Infants born during the
18 RSV season, such as November through March, would
19 receive nirsevimab at birth before discharge from
20 the hospital.

21 This simple vaccine-like implementation
22 strategy, which delivers a 50-mg dose to infants

1 less than 5 kg and a 100-mg dose for infants
2 greater than or equal to 5 kg, provides protection
3 to all infants with a single intramuscular
4 injection, and this strategy offers an advantage to
5 palivizumab-eligible infants. For infants who
6 remain vulnerable to RSV disease entering their
7 second season, a 200-milligram dose prior to the
8 start of the season will deliver protection.

9 This slide outlines what you will hear
10 today. Dr. Amanda Leach from AstraZeneca will
11 cover the clinical efficacy of nirsevimab. Our
12 data demonstrate that nirsevimab achieved
13 clinically meaningful efficacy across the spectrum
14 of disease severity in a broad range of infants,
15 and the data showed that a single dose is
16 efficacious for a minimum of 5 months.

17 Dr. Manish Shroff will present the clinical
18 safety data, which shows that the overall safety
19 profile of nirsevimab is favorable across the
20 populations studied. Dr. William Muller from
21 Northwestern University will provide his clinical
22 perspective on the unmet need and his view that the

1 data support the use of nirsevimab for all infants
2 entering their first RSV season and high-risk
3 children in their second RSV season. And finally,
4 I will summarize the benefit-risk of nirsevimab in
5 the proposed indication, based on the totality of
6 the data, which shows that nirsevimab provides
7 consistent rapid and durable protection from RSV
8 LRTI with a single dose and a favorable safety
9 profile.

10 In addition to the presenters, the
11 individuals shown here will be available today to
12 respond to questions, and now I will turn it over
13 to Dr. Leach.

14 **Applicant Presentation - Amanda Leach**

15 DR. LEACH: Thank you, Dr. Villafana.

16 I'm Amanda Leach, global clinical head for
17 nirsevimab at AstraZeneca. Today, I'll review the
18 clinical development program and efficacy data for
19 nirsevimab from the placebo-controlled trials in
20 healthy infants, and followed by the extrapolation
21 of efficacy to vulnerable populations based on PK
22 data.

1 The efficacy profile of nirsevimab was
2 evaluated in two double-blind, randomized,
3 placebo-controlled trials in healthy preterm and
4 term infants. Trial 03 was a phase 2B trial
5 conducted in infants who were born from 29 up to
6 35 weeks gestational age. The sample size was
7 1,500 infants. Trial 04 was a phase 3 conducted in
8 infants who were born term and late preterm from
9 35 weeks gestational age. It was intended to
10 enroll a total of 3,000 infants.

11 Apart from the gestational age at birth,
12 both studies had near identical designs. Infants
13 were randomized 2 to 1, nirsevimab or placebo, and
14 dosed prior to the onset of their first RSV season.
15 Efficacy was established over the 5-month period of
16 the RSV season. Safety, PK, and ADA were assessed
17 through day 361.

18 In addition, in Trial 04, children were
19 monitored for RSV disease through their second
20 season without re-dosing. These two studies were
21 also similar with respect to case definitions,
22 disease surveillance procedures, and statistical

1 methods of analysis. This was done from the outset
2 to allow comparison of results between studies.

3 Here is the primary case definition of
4 medically attended RSV LRTI, which was specific and
5 represents significant clinical disease. It was
6 developed in consultation with leading experts in
7 the field and was discussed and agreed with the
8 FDA. Every case was presented for care by their
9 parents or guardians, and this is the medical
10 attendance component of the definition. The case
11 should be RSV positive by a central laboratory PCR
12 assay and have a sign of low respiratory tract
13 involvement on chest auscultation. In addition,
14 there should be at least one sign of disease
15 severity present, as is listed on this slide.

16 The secondary endpoint was RSV LRTI with
17 hospitalization. The attending physician made the
18 decision which cases needed to be hospitalized in
19 line with the local or national guidelines. These
20 guidelines were evidence driven and broadly similar
21 across sites. They required evidence of
22 significant respiratory distress, hypoxia, or

1 reduced capacity to feed.

2 We also introduced another case definition,
3 very severe RSV LRTI. This was added as an
4 exploratory endpoint in response to regulatory
5 authorities' requests for definition of severe
6 disease, applying objective criteria. Very severe
7 disease corresponds to the subset of hospitalized
8 infants who required supplemental oxygen or IV
9 fluids. Efficacy analyses were done according to
10 the intention-to-treat principle using a Poisson
11 regression model with robust variance. This slide
12 summarizes our statistical approach.

13 Next, I'll focus on the results of Trial 03.
14 This trial enrolled preterm infants born from 29 up
15 to 35 weeks gestational age. The infants were
16 otherwise healthy and were not eligible to receive
17 palivizumab under local practice guidelines. In
18 total, 1,453 infants were enrolled. All
19 demographic factors were balanced between placebo
20 and nirsevimab arms.

21 You can see there was good representation
22 across the gestational age range. Fifty-three

1 percent were less than or equal to 3 months of age
2 at randomization and the arms were balanced for
3 sex. Approximately 70 percent of the study was
4 white and 20 percent were of Hispanic or Latino
5 ethnicity, and approximately 60 percent weighed
6 less than 5 kilograms.

7 Moving now to the results of Trial 03, the
8 primary endpoint was met. Efficacy was estimated
9 to be 70.1 percent with a lower bound of the
10 confidence interval above 50 percent and a highly
11 significant p-value. For the secondary endpoint of
12 medically attended RSV LRTI with hospitalization,
13 the efficacy estimate was 78.4 percent, which was
14 again highly statistically significant. For very
15 severe RSV LRTI, the estimate was consistent at
16 87.5 percent.

17 The subgroup for analysis of medically
18 attended RSV LRTI in the Trial 03 ITT population
19 showed clinically meaningful estimates of efficacy
20 across subgroups that were consistent with the
21 overall results, which is shown at the top of the
22 slide. However, we observed a trend to lower

1 efficacy in the subgroup weighing 5 kilograms or
2 more at dosing, so we conducted a post hoc
3 exposure-response analysis and observed a trend
4 towards lower efficacy in infants with the lowest
5 nirsevimab serum exposures. Nirsevimab serum
6 exposure is correlated with body weight, and as you
7 can see in this figure, infants weighing
8 5 kilograms or more had substantially lower
9 exposure to nirsevimab after receiving a
10 50-milligram dose.

11 Therefore, the decision was taken to
12 optimize the dose for infants weighing 5 kilograms
13 or more by increasing their dose to 100 milligrams,
14 and this is the basis for the weight-banded dosing
15 strategy, which was evaluated in all studies going
16 forward.

17 We reanalyzed efficacy in the cohort of
18 infants in Trial 03 who were less than 5 kilograms
19 at randomization, and therefore was considered
20 adequately dosed. We termed this the proposed dose
21 cohort. In this exploratory analysis, the efficacy
22 estimates for medically attended RSV LRTI was

1 86.2 percent, with similarly high efficacy
2 estimates against hospitalization and very severe
3 RSV disease.

4 Now, I'd like to turn your attention to
5 Trial 04. Trial 04 was the phase 3 trial conducted
6 in term and late preterm infants. Enrollment began
7 in the Northern Hemisphere in 2019. Shortly
8 afterwards, the COVID-19 pandemic was declared at
9 the beginning of 2020, and the onset of the
10 pandemic led to several operational challenges and
11 a decline in RSV incidence; therefore, we took the
12 decision to pause enrollment to the trial.

13 We were faced with difficult choices. It
14 was a period of uncertainty, and we sought to
15 protect the primary endpoint of the trial. We
16 consulted with the FDA, and agreement was reached
17 to analyze the primary endpoint based on the first
18 1,490 infants enrolled at that time. This was
19 termed the primary analysis and the primary cohort.
20 We began to enroll the remainder of infants to the
21 safety cohort in the Southern Hemisphere by the
22 2021 season. By this time, the restrictions

1 associated with the COVID-19 pandemic were being
2 eased, and RSV transmission was occurring, albeit
3 with some atypical seasonality. Of note, both
4 cohorts were conducted in a fully double-blind
5 manner.

6 So here are the demographics for Trial 04
7 primary cohort. All the demographic factors were
8 balanced between placebo and nirsevimab arms.
9 Approximately 85 percent of the infants were born
10 at term. Fifty-eight percent of infants were less
11 than or equal to 3 months of age at randomization,
12 and the trial was racially diverse. Approximately
13 50 percent were white, and a quarter were black or
14 African American, and about 10 percent of infants
15 were Hispanic or Latino ethnicity.

16 Shown here is the primary analysis conducted
17 on the primary cohort. Trial 04 met its primary
18 endpoint, demonstrating 74.5 percent efficacy
19 against medically attended RSV LRTI, with a lower
20 bound of the confidence interval close to
21 50 percent and a significant p-value. However, due
22 to the extraordinary circumstances of the pandemic,

1 the secondary endpoint was impacted by the reduced
2 sample size and the low number of events.

3 For RSV LRTI with hospitalization, there
4 were only 8 events in the placebo arm and 6 events
5 in the nirsevimab arm. Remembering the 2 to 1
6 randomization, this translated to a point estimate
7 of 62.1 percent efficacy, but the confidence
8 interval was broad and overlapped zero. The
9 analysis did not meet statistical significance.
10 The exploratory endpoint of very severe RSV LRTI
11 was similarly impacted by the low number of events.

12 Here's the subgroup analysis for medically
13 attended RSV LRTI. Shown at the top is the overall
14 result showing 74.5 percent efficacy, and although
15 we did see some heterogeneity, we observed
16 clinically meaningful efficacy across subgroups
17 consistent with the overall result.

18 Now, if I may, I'd like to consider what
19 information on efficacy is available from the
20 safety cohort, and first to look at the
21 demographics. As you can see, they were similar
22 between the two cohorts with gestational age at

1 birth, age, and sex. The difference in racial and
2 ethnic breakdown reflects that for the safety
3 cohort, we enrolled from Latin America but not
4 South Africa.

5 Now looking at the comparison of the results
6 from the safety cohort with those in the primary
7 cohort, you'll notice similar disease incidence of
8 medically attended RSV LRTI in the placebo arm of
9 both cohorts being 5 percent and 5.7 percent,
10 respectively. The estimates of efficacy against
11 medically attended RSV LRTI are very similar, which
12 strongly supports the consistency of effect and the
13 validity of analyzing the two cohorts together.

14 There were 14 cases of hospitalization
15 observed in the primary cohort and an additional 15
16 in the safety cohort. The point estimates are
17 62.1 percent and 86.2 percent, respectively, and
18 the confidence intervals of both include the
19 estimate effect of the other. Sites enrolling in
20 both cohorts followed formalized local criteria for
21 admitting children with RSV LRTI.

22 The hospitalization rates of cases of

1 medically attended RSV LRTI were similar between
2 cohorts, being around 30 percent of cases admitted.
3 Therefore, the observed differences in point
4 estimates may be explained by the small number of
5 events that occurred in each of the cohorts. Here
6 now, combining the two as the all subject analysis,
7 we see an estimate effect of efficacy of
8 76.8 percent against RSV LRTI with hospitalization,
9 with a confidence interval extending from 49 to
10 89 percent.

11 I'd like to take a moment to explain why we
12 believe this exploratory data showing efficacy
13 against RSV hospitalization in term infants is of
14 high relevance for healthcare providers. The
15 COVID-19 pandemic was an exceptional situation, and
16 we did everything we could to ensure safety of
17 participants and robustness of data. This was one
18 trial that was divided in two by the pandemic.

19 The all subject data is the trial as it was
20 originally designed and is the largest data set for
21 the analysis of less frequent events. There was
22 robust data collection in both cohorts in a

1 double-blind manner. We've seen that the
2 populations were consistent and admission practices
3 to hospital were consistent between the two
4 cohorts, and the results of the all subject
5 analysis are highly consistent with Trial 03, which
6 looked at preterm infants. There is no biological
7 mechanism to presuppose efficacy would be different
8 in term and preterm infants, so we believe that the
9 all subject analysis provides important information
10 for healthcare providers and for families.

11 This shows the duration of efficacy over
12 150 days in Trial 03, ITT on the left and the
13 primary and safety cohorts of Trial 04 on the
14 right. The takeaway from these, that the curves
15 diverge over the full-time period of observation,
16 leading to a conclusion of consistent efficacy over
17 150 days. And shown here are the results of
18 efficacy against medically attended RSV LRTI for
19 RSV subtypes A and B in Trial 03 ITT and Trial 04
20 all subject cohorts. As you can see, there was
21 consistent efficacy demonstrated against both
22 subtypes.

1 Finally, I'd like to briefly touch on
2 another important exploratory endpoint that we
3 assessed in the placebo-controlled trials all-cause
4 respiratory illness. In Trial 03 ITT cohort and
5 Trial 04 all subject analysis, there is a
6 demonstrably efficacy both against all-cause
7 medically attended LRTI and respiratory illness
8 with hospitalization. We have shown the consistent
9 strong efficacy of nirsevimab against RSV disease,
10 and now this evidence of effect against all-cause
11 disease is strongly reassuring of the overall
12 benefit of nirsevimab.

13 Turning now to high-risk infants and
14 children who remain vulnerable to RSV disease in
15 their second season, as agreed with the FDA,
16 efficacy in vulnerable populations may be
17 established through a PK bridge to the clinical
18 efficacy studies.

19 This shows the design of Trial 05. Prior to
20 their first RSV season, preterm infants and infants
21 with CHD or CLD were randomized 2 to 1 to
22 nirsevimab or palivizumab. In the second season,

1 children with CHD or CLD who received nirsevimab in
2 the first season received a repeat dose in the
3 second season. Those receiving palivizumab in
4 their first season were re-randomized to either
5 nirsevimab or palivizumab in the second season, and
6 the second dosage was 200 milligrams. The primary
7 endpoint for the study was safety. PK was a
8 secondary endpoint to support the efficacy
9 extrapolation. Safety, PK, and ADA were assessed
10 through day 361 in both Season 1 and Season 2.

11 This slide shows the PK results of Trial 05.
12 These graphs show mean serum concentrations over
13 time, with Season 1 on the left and Season 2 on the
14 right. For efficacy extrapolation, we are focusing
15 on serum concentrations at the end of the season,
16 day 151.

17 Here you can see the nirsevimab serum
18 concentrations at day 151, focusing on the
19 subgroups of interest and directly comparing them
20 to the concentrations in the efficacy Trial 04,
21 which is represented by the shaded bar going
22 across. All subgroups achieved similar serum

1 exposures compared to Trial 04 in Season 1 and
2 slightly higher exposures in Season 2. Based on
3 these results, efficacy against RSV disease is
4 expected in the Trial 05 study population.

5 The study was not designed to estimate
6 efficacy, but cases of medically attended RSV LRTI
7 were captured in a systematic manner. In the first
8 season, there were a small number of cases which
9 were balanced by group. In the second season, when
10 children were older and there were only
11 262 children in the CHD/CLD cohort who remained
12 under surveillance, no cases were observed in
13 either recipients of palivizumab or nirsevimab.

14 In further support of the efficacy, we can
15 also look at RSV neutralizing antibodies. In the
16 nirsevimab group, the peak level of neutralizing
17 antibody at the first measured time point day 31 is
18 approximately 150 times higher than baseline
19 levels. At day 151 they're still 50-fold higher
20 than baseline levels. In fact, at all times
21 measured post-dose, nirsevimab recipients had
22 higher levels than palivizumab, which are shown in

1 gray, and here are the results from Season 2.

2 You'll recall that infants who received
3 palivizumab in Season 1 were re-randomized in
4 Season 2. Nirsevimab provides high and sustained
5 RSV neutralizing antibody levels throughout the
6 season, which compared very favorably with the
7 palivizumab comparator arm. So in summary, first
8 based on PK levels, which are comparable to those
9 in the efficacy studies and supported by clinical
10 cases, which are balanced to the palivizumab group,
11 and in addition, high levels of neutralizing
12 antibody associated with nirsevimab, we've
13 established the efficacy of nirsevimab in high-risk
14 infants and vulnerable children in their second
15 season.

16 And lastly, I'd like to share some of our
17 findings with respect to anti-drug antibodies and
18 monoclonal antibody escape variants. With regard
19 to anti-drug antibodies, the overall incidence of
20 detectable ADA to nirsevimab was low across the
21 clinical program. The incidence was approximately
22 6 percent in Trials 03, 04, and 05. Importantly,

1 ADA did not have any discernible effect on efficacy
2 and did not have an apparent effect on the safety
3 profile of nirsevimab. Furthermore, there was no
4 anamnestic ADA response observed in infants who
5 received a second dose of nirsevimab in the second
6 season of Trial 05.

7 Given the potential for emergence of
8 monoclonal antibody escape variants, we performed
9 genomic analysis of all RSV infections in our
10 clinical trials. We evaluated a total of 267 RSV
11 genomes and sequenced the F protein to identify
12 potential polymorphisms. There were no major
13 variant binding site substitutions in RSV A and
14 only two binding site substitutions in RSV B were
15 infrequently observed. We are characterizing all
16 substitutions observed in the clinical trials and
17 have found that over 99 percent of RSV sequences
18 isolated from these studies were effectively
19 neutralized by nirsevimab.

20 In Trial 03, there were three substitutions
21 associated with decreased susceptibility to
22 nirsevimab, which occurred in 2 infants.

1 Importantly, both of these infants had high serum
2 concentrations of nirsevimab. No infant in
3 Trial 04 or Trial 05 had substitutions that
4 impacted susceptibility to nirsevimab. In
5 addition, we've conducted prospective global
6 molecular surveillance studies and confirmed that
7 nirsevimab escape variants are rare that
8 resistance-associated substitutions occurred with
9 less than 1 percent prevalence, results that are
10 consistent with our clinical studies.

11 In summary, we have robust data from two
12 large randomized, placebo-controlled trials in
13 healthy preterm and term infants, demonstrating
14 that a single dose of nirsevimab was efficacious
15 over a minimum of 5 months, which is consistent
16 with the observation that RSV neutralizing antibody
17 levels remain more than 50 times higher than
18 baseline at day 151.

19 In these two studies, we observed a
20 consistent level of RSV protection across subgroups
21 and the spectrum of disease severity for medically
22 attended visits to severe cases of disease. I also

1 showed you data on exposure and neutralizing
2 antibodies that suggests at least similar
3 protection to palivizumab in vulnerable populations
4 through their first and second RSV seasons. And
5 finally, I showed you that the incidence of ADA was
6 low and that nirsevimab escape variants are rare.

7 Thank you for your attention. I'll now turn
8 it over to Dr. Shroff to review the safety data.

9 **Applicant Presentation - Manish Shroff**

10 DR. SHROFF: Thank you, Dr. Leach.

11 I'm Manish Shroff, global safety lead for
12 nirsevimab at AstraZeneca, and I will take you
13 through the safety data that demonstrates the
14 overall safety profile of nirsevimab is favorable
15 across the populations studied.

16 A total of 3,620 infants and children were
17 exposed to nirsevimab in our pivotal clinical
18 trials. Of those, 3,224 received the proposed
19 dosing regimen. In the first RSV season, a total
20 of 3,580 infants were dosed, including 3,184 at the
21 proposed dose. In the second RSV season, 220
22 children were dosed with nirsevimab. Safety was

1 monitored to day 361, which represents 5 half-lives
2 of nirsevimab elimination.

3 As of the data cutoff, the median safety
4 follow-up was 361 days in the first RSV season and
5 198 days in the second RSV season. The safety
6 database across clinical trials is adequate to
7 assess the safety profile of nirsevimab in the
8 proposed indication, which builds on over two
9 decades of experience with safety of palivizumab.

10 Safety assessments included
11 treatment-emergent adverse events; serious adverse
12 events; adverse events of special interest; and new
13 onset of chronic disease through day 361 post-dose.
14 No events were solicited. AEs of special interest
15 for the program included, one, immediate
16 hypersensitivity, including anaphylaxis; two,
17 immune complex disease, both of which are based on
18 risks associated with any monoclonal antibody; and
19 three, thrombocytopenia based on postmarketing
20 experience for palivizumab. These reflect
21 important potential risks during clinical
22 development. An external independent data

1 monitoring committee reviewed the safety data
2 across all studies and did not identify any safety
3 concerns.

4 Among 3,580 infants who received nirsevimab
5 in the first RSV season, 59 percent received
6 50 milligrams and 41 percent received
7 100 milligrams. Among 220 children who received
8 nirsevimab in the second RSV season, 98 percent
9 received the full 200-milligram dose. A few
10 subjects received different doses either due to
11 replacement after cardiopulmonary bypass or
12 medication errors.

13 Overall, the safety profile of nirsevimab in
14 healthy term and preterm infants was favorable.
15 The data shown here and on the next few slides
16 represent the proposed-dose safety pool of the
17 placebo-controlled trials, including Trial 03
18 infants who weighed less than 5 kilos at dosing and
19 all infants in Trial 04. These data are based on
20 completed safety follow-up through day 361 for
21 Trial 03 and primary cohort of Trial 04, and at
22 least through day 151 for the safety cohort of

1 Trial 04.

2 The incidence of any grade
3 treatment-emergent adverse events, as well as
4 grade 3 or greater severity AEs, SAEs, and deaths,
5 were well balanced across treatment groups.

6 Unfortunately, 9 deaths were reported in the
7 proposed-dose safety pool. Every reported fatal
8 event was reviewed in detail for the cause of
9 death, underlying comorbidities, concurrently
10 reported events, and background rates in those
11 populations. The causes of death were attributed
12 to common causes of infant mortality reported in
13 the region where the infant was enrolled or to
14 underlying medical conditions.

15 Importantly, none of the deaths were
16 considered related to the investigational product
17 by the investigator or the sponsor, and these
18 conclusions are aligned with the agency's
19 assessment. Based on investigator assessment,
20 6 infants in the nirsevimab group had an AESI,
21 which I will describe more in detail later in my
22 presentation. New onset of chronic disease was

1 reported in a few subjects and did not suggest any
2 safety concern.

3 The most frequently reported all-grade,
4 treatment-emergent adverse events, by preferred
5 term per MedDRA, or Medical Dictionary for
6 Regulatory Activities, were well balanced between
7 the nirsevimab group, shown here on the right in
8 plum, and the placebo group, shown on the left in
9 green. These are mostly related to respiratory and
10 gastrointestinal infections, which is consistent
11 with what is expected in this population of young
12 infants, and the vast majority were mild to
13 moderate in severity and recovered without any
14 medical treatment. Here are the most frequently
15 reported serious adverse events by preferred term.
16 Five of the most common terms were respiratory
17 infections.

18 Looking at AESIs reported in the safety
19 pool, a total of 6 AESIs were reported by the
20 investigator through at least day 151. There were
21 no reported events of serious hypersensitivity
22 events or anaphylaxis. All reported events were

1 assessed as non-serious hypersensitivity reactions,
2 and 3 of the 6 events occurred on the day of
3 dosing. There were no AESIs of immune complex
4 disease or thrombocytopenia reported in the safety
5 pool. Overall, the incidence of AESIs was low and
6 the reported events were restricted to non-serious
7 skin and subcutaneous reactions. Close monitoring
8 for these types of events will continue in the
9 postmarketing setting.

10 Based on prior experience with motavizumab,
11 a different anti-RSV F antibody, events suggestive
12 of immediate hypersensitivity, specifically
13 cutaneous manifestations, were observed. We
14 conducted a comprehensive analysis of post-dose,
15 skin-related adverse events in the nirsevimab
16 studies. These were referred to as skin reactions
17 and collected on a dedicated case report form
18 through day 361 to ensure all potential events of
19 hypersensitivity were adequately evaluated.

20 In the safety pool, skin reactions, although
21 common in this population, were balanced between
22 nirsevimab and placebo arms. IP-related skin

1 reactions were reported in the nirsevimab arm, with
2 a low incidence of less than 1 percent. Of these,
3 six were considered IP-related skin
4 hypersensitivity reactions. The remaining were
5 injection site reactions and rash that are not
6 considered hypersensitivity events. Overall, the
7 incidence of IP-related skin reactions and skin
8 hypersensitivity reactions was low. Nearly all
9 were mild to moderate in severity and resolved or
10 recovered without any medical treatment.

11 Given the proposed indication, an important
12 consideration is the safety of nirsevimab when
13 co-administered with routine childhood
14 vaccinations. Because nirsevimab is a fully human
15 RSV-specific monoclonal antibody that works through
16 passive immunization, it is not expected to
17 interfere with active immune response to routine
18 childhood vaccines.

19 The available data on co-administration with
20 childhood vaccinations indicate that the safety and
21 reactogenicity profile of the co-administered
22 regimen was similar to childhood vaccines given

1 without nirsevimab. In addition, palivizumab has
2 been used for more than two decades in infants who
3 also receive routine vaccinations, and to date,
4 concerns related to vaccine efficacy or safety have
5 not been reported, and guidelines, including ACIP,
6 support the co-administration of palivizumab with
7 childhood vaccines.

8 We also investigated whether nirsevimab
9 could potentially cause enhanced RSV disease in the
10 second season, which is hypothesized to occur in a
11 setting of sub-neutralizing or non-neutralizing
12 concentrations of anti-RSV antibodies. Just as a
13 reminder, infants in Trial 04 only received
14 nirsevimab once prior to their first RSV season,
15 and the same subjects were followed through a
16 second season without additional dosing.

17 In Season 2, we did not see any increase in
18 cases of medically attended RSV LRTI or increased
19 severity of disease. Notably, there were no
20 reported cases of RSV LRTI with hospitalization or
21 very severe RSV LRTI in Season 2. Results were
22 similar for any cases of medically attended RSV

1 LRTI due to RSV, either confirmed by central or
2 local tests. Based on these data, there is no
3 evidence to support the theoretical risk of
4 antibody-dependent enhancement of disease with
5 nirsevimab.

6 Now, I would like to turn your attention to
7 the safety profile of nirsevimab in the populations
8 at higher risk of severe RSV disease studied in
9 Trial 05 and Trial 08. Just as a reminder,
10 Trial 05 enrolls infants at high risk of severe RSV
11 disease who are eligible for palivizumab. This
12 included infants with CHD, CLD, and premature
13 infants. Trial 08 is an ongoing phase 2,
14 open-label study that enrolled children less than
15 24 months of age with immunocompromised states
16 entering their first or second RSV season and
17 presented here for completeness.

18 In Trial 05 Season 1, the safety profile of
19 nirsevimab was comparable to that of palivizumab.
20 The incidence of adverse events was fairly balanced
21 between the two arms for both the preterm cohort
22 and the CHD/CLD cohort. Regarding SAEs, the

1 incidence was higher in the CHD/CLD cohort, in line
2 with their underlying conditions, but the incidence
3 was similar in both treatment groups, and none of
4 these were considered related to the
5 investigational product.

6 One infant in the preterm nirsevimab group
7 had an AE leading to discontinuation from IP, which
8 was temporally associated with the placebo dose
9 3 months after the active dose of nirsevimab.
10 There were 5 deaths reported in Trial 05 Season 1
11 in the nirsevimab group. None of the deaths were
12 considered related to IP by the investigator or the
13 sponsor, and is aligned with the agency's
14 assessment. Two deaths in the preterm cohort
15 included one infant with COVID-19 and the second
16 with bronchiolitis, leading to cardiopulmonary
17 failure, whereas 2 of the 3 events of the CHD
18 cohort died due to cardiac complications, and one
19 subject died due to lower respiratory tract
20 infections.

21 IP-related skin reactions were reported in
22 two infants receiving palivizumab and 2 infants who

1 received nirsevimab. Three infants in the
2 nirsevimab group reported AESIs, including one
3 IP-related skin hypersensitivity and two events of
4 non-serious thrombocytopenia not considered related
5 to IP in the CHD/CLD cohort.

6 In the CHD/CLD cohort that continued to
7 Season 2, the safety profile was also favorable.
8 You can see at the top of the table what each group
9 received in Season 1 and Season 2. Minor numerical
10 differences were observed in the overall incidence
11 of grade 3 or greater severity AEs and SAEs. Those
12 AEs that are cut at a higher frequency in the
13 nirsevimab recipients were primarily due to
14 infections or were related to underlying medical
15 conditions, and none of them were considered
16 related to the investigational product.

17 There were no clinically relevant trends or
18 safety concerns identified, and when we looked at
19 the events occurring within 30 days after the first
20 dose, there was no imbalance. In addition, there
21 were no SAEs related to IPs, deaths, IP-related
22 skin reactions, or AESIs in Season 2. Overall, we

1 conclude from these data that nirsevimab
2 demonstrated a favorable safety profile in these
3 vulnerable populations.

4 Now, turning to safety in immunocompromised
5 infants and children, in their first or second RSV
6 season, based on the open-label Trial 08, the
7 observed safety profile was consistent with what we
8 would expect for the study population. None of the
9 AEs greater than or equal to grade 3 severity or
10 SAEs were considered related to nirsevimab. One
11 death was reported in an infant with underlying
12 pilomyxoid astrocytoma and possible intra-tumoral
13 hemorrhage, not considered to be related to
14 nirsevimab.

15 Two IP-related skin reactions were reported,
16 including erythema, also considered an AESI, and
17 rash. The AESIs observed in this study were all
18 non-serious hypersensitivity events limited to
19 cutaneous findings of which three were not related
20 to nirsevimab, and none occurred on the day of
21 dosing.

22 In summary, the overall safety profile of

1 nirsevimab is favorable in the first and second RSV
2 season across studies and cohorts. The safety
3 profile of nirsevimab in infants at higher risk of
4 severe RSV disease is generally comparable to that
5 of palivizumab. The safety profile in
6 immunocompromised infants and children is
7 consistent with that expected for the study
8 population.

9 Importantly, the overall incidence of AESIs
10 was low. Hypersensitivity was limited to
11 non-serious skin and subcutaneous reactions. There
12 were no events of anaphylaxis, or serious allergic
13 reaction, or thrombocytopenia attributed to
14 nirsevimab. There were no events of immune complex
15 disease by investigator assessment reported during
16 the trials. Once the product is on the market, we
17 will continue to monitor the safety profile of
18 nirsevimab through a robust global
19 pharmacovigilance system.

20 This covers periodic and ongoing review of
21 data from several sources, as shown here, including
22 close monitoring of AESIs and ongoing molecular

1 surveillance studies to monitor escape variants and
2 resistance. Safety is of utmost importance, and we
3 will continue to increase our knowledge of RSV
4 maps, building on 25 years of experience with
5 palivizumab.

6 Thank you for your attention. Now I will
7 turn it over to Dr. Muller.

8 **Applicant Presentation - William Muller**

9 DR. MULLER: Thank you, Dr. Shroff.

10 My name is Bill Muller, and I am a professor
11 of pediatrics in the Division of Infectious
12 Diseases at Northwestern University and an
13 attending physician at the Ann & Robert H. Lurie
14 Children's Hospital of Chicago. It's my pleasure
15 to be here today to offer my perspective on the
16 data you've just seen and the potential impact of
17 nirsevimab on public health in the U.S. Note that
18 I am a paid consultant for AstraZeneca, but I have
19 no financial interest in the outcome of this
20 meeting. I also served as a site principal
21 investigator for the studies of nirsevimab that
22 have been discussed.

1 All of us who have trained in pediatrics are
2 familiar with winter call nights involving multiple
3 admissions of infants with bronchiolitis, some of
4 whom are critically ill. Although this past
5 winter, the RSV surge made national and local news
6 for its effect on children's hospitals, a surge at
7 some level is an annual event for pediatric
8 hospitals and providers. Even though I completed
9 training more than 20 years ago, all we still
10 really have to offer for these infants is
11 supportive care, including suctioning, IV fluids,
12 and oxygen or other respiratory support.

13 RSV infections in infants lead to tens of
14 thousands of hospitalizations annually, affecting
15 not only these babies, but also their families. As
16 sad as it is to consider a baby in the hospital
17 with difficulty breathing, there are parents
18 stressed about their baby's health who are also
19 missing work and who often have other young
20 children at home, which adds to their burden. By
21 one estimate, the cost of hospitalization for RSV
22 disease in children under age 2 exceeds \$1 billion

1 in the U.S. annually, and that does not even
2 account for the cost of outpatient visits, lost
3 work time, and other effects on families.

4 From a clinical perspective, there are
5 several aspects of the data presented today that
6 jump out at me. First, you saw the consistency of
7 the efficacy estimates; generally, over 75 percent
8 relative risk reduction for medically attended RSV
9 LRTI, LRTI with hospitalization, and very severe
10 LRTI in the two placebo-controlled studies. These
11 efficacy results were generally consistent across
12 the relevant populations and seem to generally hold
13 across different subgroups, although in certain
14 subgroups the numbers were small.

15 Importantly, the weight of RSV LRTI in the
16 placebo group of the full Trial 04 cohort was just
17 over 5 percent, with 2 percent requiring
18 hospitalization, which is consistent with rates in
19 the literature and supports generalizability of the
20 study data. In support of this, a real-world
21 phase 3B trial known as HARMONIE was recently
22 reported at ESPID. This study enrolled over

1 8,000 infants in three countries in Europe who are
2 at least 29 weeks gestational age during or
3 entering their first RSV season, and they were
4 randomized to nirsevimab or no intervention. The
5 study showed 83 percent effectiveness against RSV
6 LRTI hospitalization and 58 percent against
7 all-cause LRTI hospitalization.

8 From the perspective of the number of
9 infants needed to treat, the data are comparable to
10 or perhaps better than vaccines in similar
11 settings. The Trial 04 data translate to a number
12 needed to immunize 53 infants to prevent one
13 hospitalization for lower respiratory tract
14 infection of any cause. Although it's not
15 completely apples to apples, a 2007 study of
16 influenza vaccine estimated that between 1,000 and
17 3,000 young children would need to be vaccinated to
18 prevent one hospitalization. So to the extent that
19 these data may be compared, we would expect the
20 benefit of nirsevimab to be at least as great, if
21 not greater, than influenza vaccination, an
22 intervention which is recommended annually.

1 The levels of neutralizing antibodies
2 observed in Trial 04 and Trial 05 were very
3 consistent over the time period of the trials and
4 significantly above the antibody levels seen with
5 natural infection in healthy term and late preterm
6 infants. It is reasonable to expect that the
7 levels of neutralizing antibodies serve as a
8 surrogate for clinical efficacy, supporting that
9 nirsevimab should provide benefit in the at-risk
10 populations studied in Trial 05.

11 These neutralizing antibody levels
12 corresponding with efficacy provide optimism that
13 studies in other immunosuppressed populations, such
14 as cancer and transplant patients and those with
15 primary immune deficiencies, could show an
16 additional role for this treatment, and these are
17 the children that I spend the majority of my
18 clinical time caring for.

19 Regarding safety of nirsevimab, the data
20 presented comprise a large program in pediatrics
21 with good follow-up. These data from the safety
22 pool support that the incidence of adverse events

1 was remarkably balanced compared with placebo.
2 Combined with the other data presented, the risks
3 were comparable between placebo or palivizumab and
4 nirsevimab recipients. In addition, the phase 3B,
5 real-world HARMONIE study showed a favorable safety
6 profile, consistent with pivotal trials with no
7 safety concerns.

8 Treatment-emergent AE and serious AE
9 profiles reflected the study population and are
10 comparable between the treatment and placebo
11 groups. The AE of special interest profile was
12 mild and mostly restricted to non-serious skin and
13 subcutaneous reactions and does not raise concern.
14 A theoretical risk of antibody-dependent
15 enhancement was addressed in the trial, and no
16 signal was observed.

17 Based on our experience with other
18 monoclonal antibodies, there's no reason to expect
19 problems with the co-administration of nirsevimab
20 with routinely recommended childhood vaccines, and
21 in recently published data, there was no
22 interference with the anti-RSV response to natural

1 infection.

2 So how would I recommend the use of
3 nirsevimab in clinical practice? I would recommend
4 it for every infant entering their first RSV
5 season, with a timing dependence on the birth month
6 and local RSV epidemiology. I would also recommend
7 using the second RSV season for high-risk infants
8 and children, and I also anticipate a role for
9 nirsevimab in protection of immunocompromised
10 children.

11 There may be questions about the role of
12 nirsevimab in the setting of maternal vaccination
13 against RSV. This is a question which should
14 ultimately be discussed and addressed by the
15 advisory committee on immunization practices, as
16 there are many considerations, including timing of
17 birth and gestational age at delivery.

18 There will also be logistical considerations
19 for providers, including whether a maternal dose
20 can be verified at the time an infant would be
21 considered for nirsevimab. My own personal opinion
22 is that the risk of giving nirsevimab is low, even

1 with high levels of passively acquired maternal
2 antibody, and there is potential for benefit.
3 Ultimately, I would also recommend that the ACIP
4 recommendation be the basis for a discussion of
5 risk and benefit between the caregiver and the
6 infant's provider.

7 In terms of public health, nirsevimab would
8 be the first RSV prophylactic intervention
9 available for all infants. Use of nirsevimab in
10 babies entering their first RSV season would
11 provide a significant public health benefit. We
12 would see lower demand on hospitals and busy
13 emergency departments and outpatient practices
14 during the winter respiratory season. We would
15 also anticipate fewer secondary infections and less
16 demand for antibiotics, both inside and outside the
17 hospital.

18 The long half-life of nirsevimab and the
19 convenience of a single injection also confers the
20 potential for an impact on health equity. Because
21 palivizumab requires multiple doses, not all
22 infants receive the full regimen, especially the

1 ones who are challenged to access healthcare.

2 Lastly, I would also like to point out the
3 real-world effect that nirsevimab could have on
4 some families. While the data we've discussed
5 support that nirsevimab will reduce RSV disease in
6 infants, as a provider, I will most welcome having
7 fewer parents needing to spend sleepless nights in
8 the hospital, watching their infant children
9 struggling to breathe and worrying about what will
10 happen next.

11 In summary, I think it's clear that
12 effective interventions that prevent or treat RSV
13 disease would be a major advance in pediatric
14 medicine. Trial data from nirsevimab show a
15 consistent benefit in all infants for clinically
16 significant endpoints, and it's reasonable to
17 extrapolate to high-risk populations.

18 The safety of nirsevimab is supported by the
19 data presented, showing little difference from
20 placebo and adverse effects consistent with the
21 study populations. The data presented support a
22 proposal to provide nirsevimab to all infants

1 entering their first RSV season and high-risk
2 children entering their second RSV season. Thank
3 you, and now I will hand it back to Dr. Villafana
4 to conclude.

5 **Applicant Presentation - Tonya Villafana**

6 DR. VILLAFANA: Thank you, Dr. Muller.

7 I will now summarize our assessment of the
8 benefit-risk profile of nirsevimab in the proposed
9 indication, which should be considered in the
10 context of the unmet medical need.

11 All infants, including healthy term infants,
12 are at risk for serious outcomes from RSV, but
13 there are no preventive strategies currently
14 available for the majority of infants. Nirsevimab
15 demonstrated clinically meaningful and consistent
16 efficacy across disease severities, with a single
17 dose being efficacious for the entire RSV season
18 for at least 5 months.

19 The efficacy estimates against medically
20 attended LRTI were 75 percent and 86 percent in
21 term and preterm infants. Efficacy against
22 hospitalization in Trial 04 was clearly impacted by

1 COVID-19; however, the all subjects analysis, while
2 exploratory, provides a more precise estimate of
3 efficacy against hospitalization. These point
4 estimates are also supported by Trial 03. In
5 addition, infants and children at high risk
6 achieved similar PK exposures to nirsevimab as
7 healthy infants, which allows us to extrapolate
8 efficacy. With regard to safety, nirsevimab
9 demonstrated a favorable safety profile in the
10 infant populations studied.

11 Going back to the numbers in my
12 introduction, nirsevimab has the potential to have
13 a significant impact on public health and could
14 prevent up to 500,000 medical visits in the U.S.
15 annually. Assuming a hundred percent uptake of
16 nirsevimab, and using a conservative estimate of
17 75 percent efficacy across disease severity, over
18 300,000 office visits from medically attended RSV
19 LRTI, 112,500 emergency department visits, and as
20 many as 60,000 hospital admissions with over 40,000
21 of those being in term infants, could be prevented.
22 This could have significant impact on families and

1 the U.S. healthcare system. Moreover, nirsevimab
2 is the only intervention that can provide
3 protection to all infants regardless of when they
4 are born, relative to the RSV season and whether
5 they are born full-term or preterm.

6 Based on the totality of evidence, a single
7 dose of nirsevimab provides consistent, rapid, and
8 durable protection from RSV LRTI for neonates and
9 infants born during or entering their first RSV
10 season and children up to 24 months of age who
11 remain vulnerable to severe RSV disease through
12 their second RSV season. Therefore, we conclude
13 that the benefits of nirsevimab outweigh the risks
14 in the proposed indication.

15 On behalf of AstraZeneca and our partner,
16 Sanofi, we would like to thank all the
17 investigators and families who participated and
18 made these studies possible; the independent data
19 monitoring committee; the pediatric advocacy
20 groups; the CDC, and the ACIP, and the committee
21 for your time and consideration today; and finally,
22 the agency for your direction and guidance through

1 the years. Thank you for your attention, and we
2 look forward to answering your questions.

3 DR. BADEN: Thank you, Dr. Villafana and
4 team, for an excellent set of presentations on a
5 tremendous amount of data, as pointed out, during
6 extremely challenging times with the impact of
7 COVID.

8 We will now take a 6-minute break and resume
9 at 11:10. For the committee members, we will have
10 a combined discussion after the agency's
11 presentation, so we will ask clarifying questions
12 of both the applicant and the agency together. So
13 we will be on break, and no discussion among panel
14 members about the meeting topic, and we shall
15 resume at 11:10. Thank you.

16 (Whereupon, at 11:04 a.m., a recess was
17 taken, and meeting resumed at 11:10 a.m.)

18 DR. BADEN: We will now resume from break.
19 It is 11:10.

20 We will now proceed with the FDA
21 presentation from Dr. Baylor.

22 Dr. Baylor, the floor is yours.

FDA Presentation - Melisse Baylor

DR. BAYLOR: Hi. My name is Melisse Baylor, and I'm going to provide an overview of the agency presentation. The agency presentation will include the following topics. First, we'll discuss an overview of nirsevimab's clinical trials, followed by a discussion of nirsevimab dosing, the efficacy results, and key efficacy considerations, which are efficacy by chronological age and gestational age and efficacy in infants who remain vulnerable to severe RSV disease through their second season.

Then there will be a discussion of safety considerations, including anaphylaxis, rash, and other hypersensitive reactions, and a discussion of the imbalance in the number of deaths between the nirsevimab arm and the control arms. We'll discuss other considerations in our review, and finally we'll discuss our proposed pharmacovigilance strategy if nirsevimab is approved.

You've heard about the three pivotal trials supporting the safety and efficacy of nirsevimab. First, Trial 03 was a randomized, double-blind,

1 placebo-controlled trial that enrolled infants born
2 at 29 weeks or greater gestational age to less than
3 35 weeks gestational age. In this trial,
4 968 subjects received nirsevimab, and the primary
5 endpoint was the incidence of medically attended
6 RSV lower respiratory tract infection.

7 The design of Trial 04 was similar to that
8 of Trial 03, but Trial 04 enrolled infants born at
9 35 weeks gestational age or greater. Trial 04
10 enrolled infants into 1 of 2 cohorts, an efficacy
11 cohort and a safety cohort. A total of
12 1,998 subjects were enrolled in the two cohorts
13 combined and received nirsevimab. As in Trial 03,
14 the primary endpoint for Trial 04's primary cohort
15 was the incidence of medically attended RSV lower
16 respiratory tract infection.

17 Trial 05 was conducted in infants who were
18 at high risk for severe RSV disease. Trial 05
19 enrolled premature infants born at less than
20 35 weeks gestational age, infants with chronic lung
21 disease of prematurity, and infants with
22 hemodynamically significant congenital heart

1 disease. While the other two trials were placebo
2 controlled, Trial 05 used palivizumab as the active
3 control. In the two seasons of the study,
4 654 subjects received nirsevimab, and the primary
5 endpoint for Trial 05 was safety.

6 As you saw on the previous slide and heard
7 in the applicant's presentation, the primary
8 efficacy endpoint in Trial 03 and the primary
9 cohort of Trial 04 was the prevention of medically
10 attended RSV lower respiratory tract infection.
11 When palivizumab was approved over 20 years ago,
12 the efficacy endpoint was RSV hospitalization;
13 however, the agency also considers medically
14 attended RSV lower respiratory tract infection to
15 be a clinically meaningful endpoint.

16 The medically attended RSV lower respiratory
17 tract infection endpoint is important because the
18 majority of infants with RSV lower respiratory
19 tract infection are not hospitalized. In fact,
20 infants are much less likely to be hospitalized now
21 than they were several decades ago, and the
22 medically attended RSV lower respiratory tract

1 infection has a long history of being evaluated in
2 the literature.

3 In the classic 2009 New England Journal
4 article by Dr. Hall and her associates, medically
5 attended RSV lower respiratory tract infection was
6 discussed. Dr. Hall and her associates conducted a
7 prospective surveillance study of RSV. They looked
8 at both RSV hospitalization and outpatient visits.
9 They documented the increased rate of both
10 emergency department visits and of visits to the
11 pediatrician offices in infants younger than
12 24 months of age; and as you can see, at that time,
13 the rate of pediatric office visits for RSV in
14 infants younger than 12 months of age was as high
15 as 194 visits per 1,000 children.

16 Finally, the agency has had extensive
17 internal and public discussion about efficacy
18 endpoints in the trials for the prevention of and
19 for the treatment of RSV. Experts in the field
20 have provided their input to the FDA. The clinical
21 benefit of prevention endpoints, such as medically
22 attended RSV lower respiratory tract infection,

1 were discussed at an FDA-Duke workshop in 2016.
2 After that workshop, FDA published draft guidance
3 on developing antiviral drugs for prevention and
4 treatment of RSV. This guidance, which is cited on
5 the slide, recommends use of laboratory confirmed
6 RSV lower respiratory tract infection as a primary
7 endpoint in prevention trials.

8 As we move forward, I want to clarify one of
9 the terms that we'll be using in our presentations
10 today. High risk is a term that's often used in
11 RSV disease, and high risk refers to an increased
12 risk of RSV hospitalizations due to severe lower
13 respiratory tract disease.

14 The Centers for Disease Control provides a
15 list of high-risk conditions on their website, and
16 these include all infants, particularly infants
17 younger than 6 months of age; so high risk can mean
18 all infants who are 6 months of age and have an
19 increased risk of lower respiratory tract RSV
20 disease. However, when we refer to high-risk
21 infants in our talks today, we're referring to the
22 infants that are listed in the higher risk group,

1 and that's infants born prematurely and infants
2 with chronic lung disease and/or congenital heart
3 disease, and that's the population that's enrolled
4 in Trial 05.

5 Now, I'd like to turn the presentation over
6 to Dr. Zhao to discuss nirsevimab dosing.

7 **FDA Presentation - Yang Zhao**

8 DR. ZHAO: Thank you, Dr. Baylor.

9 Good morning. I'm Yang Zhao, the primary
10 clinical pharmacology reviewer for this BLA. In
11 the next few slides, I will present the data FDA
12 reviewed to support the proposed nirsevimab dosage.
13 The proposed nirsevimab dosage for neonates and
14 infants born during or entering the first RSV
15 season is based on body weight; a single
16 50-milligram dose by IM injection if body weight is
17 less than 5 kilograms or a single 100-milligram IM
18 injection for infants whose body weight is
19 5 kilograms or greater. The dosage for children
20 less than 24 months of age who remain vulnerable to
21 severe RSV disease during the second RSV season is
22 a single 200-milligram IM injection dose.

1 This is the overall basis for nirsevimab
2 dose determination. For neonates and infants in
3 RSV Season 1, the proposed dosage regimen is
4 primarily supported by the clinical efficacy
5 results of Trial 03 and Trial 04. In Trial 03, a
6 single 50-milligram dose was administered to all
7 infants regardless of body weight. Trial 03
8 results demonstrated differential outcomes in
9 clinical efficacy and nirsevimab exposure in
10 different body weight groups. In the group with
11 body weight above 5 kilograms, the incidence of
12 medically attended RSV LRTI was higher with lower
13 nirsevimab exposure compared to the group with body
14 weight groups below 5 kilograms.

15 This result indicates a need to increase the
16 dose in heavier infants, and led to a decision to
17 use the proposed bodyweight band-based dosing
18 regimen in Trial 04 and also in Trial 05 and 08.
19 The body weight band-based dosing regimen is also
20 supported by the flat exposure-response
21 relationship between the area under the
22 concentration time curve, AUC, and the incidence of

1 medically attended RSV LRTI at the proposed dose.

2 For premature neonates and infants in RSV

3 Season 1, and also for infants and children with

4 certain underlying medical conditions in both RSV

5 seasons, the proposed dosage regimen was primarily

6 supported by similar nirsevimab serum exposure

7 observed in Trial 05 versus in Trial 04, and

8 additionally supported by descriptive efficacy

9 results in Trial 05.

10 Pharmacokinetic data supported the proposed

11 nirsevimab dosage. One exposure measure is the

12 nirsevimab serum concentration post-dose at the end

13 of the proposed protection period on day 150. The

14 value of 6.8 was determined based on EC90. EC90 is

15 the concentration for 90 percent effectiveness.

16 The EC90 value was obtained in cotton rat RSV

17 challenge model, and this model was used for dose

18 selection for palivizumab.

19 Another exposure measure used is the

20 nirsevimab AUC, derived based on individual

21 baseline clearance. A value of 12.8 milligram as a

22 target per day per milliliter was identified based

1 on the exposure-response efficacy analysis based on
2 all the data from Trial 03 and 04. Above this AUC,
3 nirsevimab efficacy plateaus and no additional
4 benefit was observed when the nirsevimab exposure
5 increased. Also, the same PK measure applied to
6 high-risk infants and children, and these two PK
7 metrics on day 150, nirsevimab concentration and
8 the AUC baseline clearance were used to support
9 efficacy extrapolation to high-risk population.
10 Dr. Earp will elaborate on efficacy extrapolation
11 in a later section.

12 With the proposed nirsevimab dose of
13 50 milligrams if body weight is less than
14 5 kilograms or 100 milligrams if body weight is
15 5 kilograms or greater in neonates and infants in
16 RSV Season 1, more than 90 percent of the subjects
17 achieved day 150 post-dose nirsevimab serum
18 concentration above the target of 6.8 micrograms
19 per milliliter and additionally achieved exposure
20 above the target AUC 12.8 milligram day per
21 milliliter.

22 After discussion of the dosing, I would like

1 to turn your attention to nirsevimab efficacy.
2 Anna Kettermann will present FDA's assessment on
3 clinical efficacy. Thank you.

4 **FDA Presentation - Anna Kettermann**

5 DR. KETTERMANN: Thank you.

6 Good morning. I'm Anna Kettermann, and I'm
7 a statistician in the Office of Biostatistics in
8 CDER. Today, I'm going to present the FDA
9 statistical assessment of efficacy. I will begin
10 with a brief overview of the general structure of
11 the placebo-controlled trials.

12 The clinical program included two
13 placebo-controlled trials. One of them was a
14 phase 2 trial; the other one was a phase 3 trial.
15 The trials were conducted sequentially. Both
16 trials were randomized, double blind, and had the
17 same primary and secondary endpoints. The primary
18 and the secondary endpoints were evaluated from
19 baseline through day 150 post-dose. The key
20 differences between trials were study populations,
21 selected doses, and duration of safety follow-up.

22 The discussion of the statistical assessment

1 of efficacy will include a brief summary of design
2 and basic demographics for Trials 03 and 04. I
3 will present the primary and secondary efficacy
4 results, then I will discuss the primary endpoint
5 results in subgroups. As a part of my
6 presentation, I'm going to touch on COVID-related
7 interruption in Trial 04 and its impact on
8 prespecified analysis. I will wrap up with
9 conclusions.

10 Both Trials 03 and 04 had the incidence of
11 PCR confirmed medically attended LRTI events as
12 their primary endpoint. The incidence of
13 hospitalizations among subjects with medically
14 attended confirmed LRTI events was the secondary
15 endpoint. Both primary and secondary endpoints
16 were evaluated through day 150 post-dose.

17 A Poisson regression model with robust
18 variance adjusted for randomization, age, and
19 hemisphere was used to analyze the primary
20 endpoint. In this analysis, the missing outcome
21 data was imputed using the placebo event rate
22 conditional on baseline stratification factors. To

1 evaluate the impact of missing data, we performed a
2 more conservative sensitivity analysis. This
3 analysis repeated the primary analysis with an
4 additional assumption that data for all subjects
5 with a missing outcome on nirsevimab will be
6 imputed as events.

7 Trial 03 was a phase 2B double-blind trial.
8 Subjects were randomized 2 to 1 to nirsevimab or
9 placebo. The randomization was stratified by
10 baseline age: 3 months or younger, 3 to 6 months,
11 or older than 6 months of age. The randomization
12 was also stratified by hemisphere. The primary
13 efficacy analyses were conducted at day 150
14 post-dose after receiving a single dose of
15 nirsevimab or placebo on day 1. Safety follow-up
16 was 360 days post-dose.

17 The Trial 03 population comprised of very
18 and moderately preterm infants born between 29 and
19 35 weeks of gestation. In this trial, all subjects
20 randomized to nirsevimab received a 50-milligram
21 dose regardless of body weight.

22 Overall, 1,453 subjects were randomized to

1 Trial 03. All of those subjects were born between
2 29 and 35 weeks of gestation. Of them, 52 percent
3 were male; 72 percent were white; 18 percent were
4 black or African American; 20 percent of the
5 subjects were from the U.S., and 68 percent were
6 from the Northern Hemisphere. The average age at
7 baseline was 3.3 months. The average weight was
8 4.6 kilos. Ninety-eight percent of subjects were
9 younger than 8 months.

10 Here are the results of the primary endpoint
11 analysis of Trial 03. Among 969 subjects on
12 nirsevimab, 25 experienced medically attended RSV
13 LRTI. In contrast, 46 out of 484 subjects on
14 placebo experienced an event. The missing data
15 rates were similar between treatment groups, 2 and
16 a half percent on treatment and 2.3 on placebo.
17 The relative risk reduction estimated by the
18 Poisson model adjusted for baseline age and
19 hemisphere was 70.1 percent with a 95 percent
20 confidence interval between 52.3 and 81.2 percent
21 in favor of nirsevimab. In this analysis, missing
22 outcomes were imputed based on the observed placebo

1 rate conditional on baseline stratification
2 factors.

3 To test the impact of missing data, we
4 conducted a more conservative analysis. In this
5 scenario, we repeated the primary analysis with an
6 additional assumption that all subjects with
7 missing data on nirsevimab experienced a medically
8 attended RSV LRTI event. In this case, the
9 relative risk reduction went down to 48.4 percent
10 and the 95 percent confidence interval was still
11 above zero and was between 24.2 and 64.9 percent in
12 favor of nirsevimab, suggesting that the results of
13 the primary analysis were robust

14 Similar to the primary endpoint, the number
15 of subjects who experienced RSV with
16 hospitalization was smaller among participants
17 randomized to nirsevimab. Eight subjects on
18 treatment and 20 on placebo were hospitalized
19 during the trial. Similar to the primary endpoint,
20 2 and a half percent of subjects on treatment and
21 2.3 on placebo had a missing outcome.

22 The relative risk reduction estimated by

1 unadjusted Poisson model was 78.4 percent with a
2 95 percent confidence interval between 51.9 and
3 90.3 percent in favor of nirsevimab. Similar to
4 the primary endpoint in this analysis, missing
5 outcomes were imputed based on observed placebo
6 rate.

7 In Trial 03, treatment effects of medically
8 attended RSV LRTI events were consistent across
9 subgroups and with the overall treatment effect.
10 All treatment subgroup results were favorable to
11 nirsevimab and were to the right of the vertical
12 line at mark zero. Because there were only
13 2 percent of subjects older than 8 months and there
14 was only one medically attended RSV event, the
15 relative risk reduction estimate for subjects older
16 than 8 months of age could not be determined.

17 Trial 04 was a phase 3, double-blind trial.
18 Subjects were randomized 2 to 1 to nirsevimab or
19 placebo. Randomization was stratified by baseline
20 age, 3 months or younger, 3 to 6 months, or older
21 than 6 months of age. Randomization was also
22 stratified by hemisphere. Similar to Study 03, the

1 primary efficacy analyses were conducted at day 150
2 post-dose after receiving single dose of nirsevimab
3 or placebo on day 1. Safety follow-up was 360 days
4 post-dose. Additionally, subjects in Trial 04 had
5 a follow-up from day 362 through day 511 to monitor
6 for medically attended RSV LRTI incidence in the
7 second RSV season. There was no protocol
8 requirement for reporting of safety events during
9 that period.

10 In this trial, all subjects randomized to
11 nirsevimab were dosed based on their baseline
12 weight. Subjects weighing less than 5 kilos
13 received 50-milligram dose; subjects weighing
14 5 kilos or more received 100-milligram dose.
15 Originally, this trial was designed to include
16 3,000 subjects, but it was interrupted because of
17 the COVID-19 pandemic impact on operational aspects
18 of the study. The prespecified primary analysis
19 was based on the data collected before the
20 interruption. We'll refer to this part of the
21 trial as the primary cohort.

22 After interruption, additional participants

1 were subsequently randomized to collect more safety
2 data. We refer to this part of the trial as the
3 safety cohort. Randomization, safety monitoring,
4 and efficacy assessment were in the same way in
5 both trials. Combining primary and safety cohorts
6 for the analysis of efficacy was considered
7 exploratory because it was a prespecified
8 exploratory analysis in the applicant's statistical
9 analysis plan.

10 Overall, 1,490 subjects were randomized to
11 the primary cohort of Trial 04. All of those
12 subjects were born 35 weeks or more of gestation.
13 Of them, 52 percent were male, 53 percent were
14 white, and 29 percent were black or African
15 American; 29 percent of subjects were from the
16 United States; 69 percent were from the Northern
17 Hemisphere. The average age at baseline was
18 2.9 months and the average weight was 5 and a half
19 kilos. Ninety-seven percent of subjects were
20 younger than 8 months of age.

21 During review of this application, the
22 agency identified data discrepancy. There were

1 2 subjects in the primary cohort that were
2 initially marked as non-events in the submitted
3 data set, and subsequently the applicant confirmed
4 the status of those subjects as lost to follow-up
5 before day 150 post-dose. Our analyses are based
6 on the updated data set that includes those
7 subjects as lost to follow-up, and the applicant's
8 analyses are based on the original data set;
9 however, the differences in the primary and
10 secondary analysis results are not large.

11 Here are the results of the primary endpoint
12 analysis in the primary cohort in Trial 04. Among
13 994 subjects on nirsevimab, 12 experienced a
14 medically attended RSV LRTI event. In contrast,
15 25 out of 496 subjects on placebo experienced an
16 event. The missing data rates were similar between
17 the treatment groups, 1.6 percent on treatment and
18 1.4 on placebo. The relative risk reduction
19 estimated by the Poisson model adjusted for
20 baseline age was 74.9 percent with a 95 percent
21 confidence interval between 50.6 and 87.3 percent,
22 in favor of nirsevimab. In this analysis, missing

1 outcomes were imputed based on the observed placebo
2 rate.

3 To test the impact of missing data on the
4 primary analysis results, we conducted a more
5 conservative analysis. Similar to Trial 03, we
6 repeated the primary analysis with an additional
7 assumption that all subjects on nirsevimab with
8 missing outcomes had experienced medically attended
9 LRTI events will be imputed as having those events.
10 In this case, the relative risk reduction went down
11 to 44.8 percent and the 95 percent confidence
12 interval was still above zero, between 6.7 percent
13 to 67.3 percent in favor of nirsevimab, suggesting
14 that the results of the primary analysis were
15 robust.

16 Similar to the primary endpoint, the number
17 of subjects who experienced RSV with
18 hospitalization was smaller among participants
19 randomized to nirsevimab. Six subjects on
20 treatment and eight on placebo were hospitalized
21 during the trial. Similar to the primary endpoint,
22 1.6 percent of subjects on treatment and

1 1.4 percent of subjects on placebo had a missing
2 outcome. The relative risk reduction estimated by
3 an adjusted Poisson model was 60.2 percent and the
4 95 percent confidence interval was between
5 minus 14.6 percent and 86.2 percent. The result
6 was not statistically significant. Similar to the
7 primary endpoint, in this analysis, missing
8 outcomes were imputed based on the observed placebo
9 rate.

10 In the primary cohort of Trial 04, treatment
11 effects of medically attended RSV LRTI were
12 consistent across subgroups and with the overall
13 treatment effect. All treatment subgroup results
14 showed trends that were favorable to nirsevimab and
15 the relative risk reduction estimates were to the
16 right of the vertical line. Similar to Trial 03,
17 there were no events among subjects older than
18 6 months of age and no events among subjects from
19 the Southern Hemisphere. Because of this, no
20 estimate for those subgroups could be determined.

21 In conclusion, the primary endpoint was met
22 in both trials. Missing data did not impact

1 conclusion of superiority of nirsevimab to placebo
2 in prevention of medically attended RSV LRTI
3 events. Subgroup analyses for the primary endpoint
4 were consistent across all subgroups in both
5 trials. In the prespecified secondary endpoint,
6 incidence of RSV with hospitalization was met in
7 Trial 03, and it was trending towards efficacy in
8 Trial 04 in infants born at 35 or more weeks of
9 gestation.

10 Now, I would like to turn it over, back to
11 Dr. Baylor. Thank you.

12 **FDA Presentation - Melisse Baylor**

13 DR. BAYLOR: We will now discuss two
14 efficacy considerations. These considerations are,
15 one, the evidence for the efficacy of nirsevimab
16 for the prevention of medically attended RSV lower
17 respiratory tract infection in the first RSV season
18 across both chronological and gestational age
19 groups. The second is the support for the use of
20 nirsevimab in the prevention of RSV lower
21 respiratory tract disease in children who remain
22 vulnerable to severe RSV disease through their

1 second RSV season.

2 First, we will discuss the efficacy of
3 nirsevimab across chronological and gestational age
4 groups. Anna Kettermann already showed you the
5 efficacy results from Trial 03, and this slide
6 depicts efficacy as a scatter plot. The green dots
7 are non events in the subjects who did not get
8 medically attended RSV LRTI, the blue dots are
9 subjects with medically attended RSV LRTI, and the
10 red dots are RSV hospitalizations. You can clearly
11 see the difference in efficacy because there are
12 more red and blue dots or more medically attended
13 RSV lower respiratory tract infection and RSV
14 hospitalizations on the placebo side.

15 Next, I would like to point out that the
16 X-axis shows chronological age at baseline and the
17 red vertical line on the plot represents 6 months
18 of chronological age. You can see the majority of
19 infants enrolled in the trial were younger than
20 6 months of age. With this overlay, you can see
21 that there were very few subjects who were older
22 than 8 months of age.

1 This is another scatter plot of efficacy,
2 and this plot is for the primary cohort in
3 Trial 04. The dots and colors are the same in this
4 slide, with blue representing medically attended
5 RSV lower respiratory tract infection and red
6 representing RSV hospitalizations. In Trial 04, as
7 in Trial 03, you can see nirsevimab efficacy and
8 that there are more blue and red dots or more RSV
9 lower respiratory tract infections and RSV
10 hospitalizations in the placebo arm than in the
11 nirsevimab arm.

12 As you look at efficacy in this slide by
13 baseline age, you can also see that there were few
14 subjects who were older than 6 months of age, and
15 that's the vertical red line, in Trial 04. There
16 was no medically attended RSV lower respiratory
17 tract infection in infants older than 6 months of
18 age who received nirsevimab, and there were few
19 cases of medically attended RSV lower respiratory
20 tract infection in placebo recipients who were
21 older than 6 months of age. You can also see that
22 there were very few subjects older than 8 months of

1 age and no events of medically attended RSV LRTI in
2 subjects older than 8 months of age.

3 As these two slides show, the majority of
4 subjects in both efficacy trials were younger than
5 8 months of age, and while the design of the trials
6 limited the number of subjects over 6 months of age
7 to 500 subjects, the number actually enrolled over
8 6 months of age was much lower.

9 The small number of infants older than
10 8 months of age is not unexpected and is consistent
11 with the epidemiological data regarding age at
12 first exposure to RSV. Age at first exposure is
13 related to when RSV circulates, and RSV circulation
14 varies by climate. The U.S. includes both tropical
15 and temperate climates. In areas with tropical
16 climates such as Florida and Hawaii, RSV circulates
17 year round. In more temperate areas, RSV season
18 starts in the fall, peaks in the winter, and ends
19 in spring. The RSV season typically starts around
20 mid-September to mid-November and ends in April or
21 May, resulting in a 5-month RSV season.

22 Because of the year-long RSV circulation in

9 These data have shown that efficacy was
10 demonstrated across chronological age in both
11 Trial 03 and in the primary cohort of Trial 04, but
12 there were few infants enrolled in these trials who
13 were older than 8 months of age and there is less
14 need for prevention in this age group.

15 Infants of all gestational ages were
16 enrolled in the three main nirsevimab trials.
17 While Trial 03 enrolled infants from 29 weeks or
18 greater gestational age to less than 35 weeks
19 gestational age, Trial 04 enrolled late preterm
20 infants and term infants, and the majority of
21 subjects in Trial 04 were term infants. Trial 05
22 enrolled preterm and term infants, including

1 128 subjects who were born at less than 29 weeks of
2 gestational age and who received nirsevimab. As
3 you can see, the majority of subjects in Trial 05
4 were born from 29 weeks gestational age to less
5 than 35 weeks gestational age.

6 Anna Kettermann described the results of
7 Trial 03 and the results of the primary cohort of
8 Trial 04, and efficacy was demonstrated in both of
9 those trials. If you look at the next-to-the-last
10 subgroup, infants that were born at 35 weeks to
11 less than 38 weeks of gestational age, the
12 percentage of medically attended RSV lower
13 respiratory tract infection is lower in the
14 nirsevimab arm compared to the placebo arm.

15 In the last subgroup on this slide, infants
16 born at 38 weeks gestational age and older, and
17 that's term infants, again the percentage of
18 infants with medically attended RSV lower
19 respiratory tract infection in the nirsevimab arm
20 was lower than the percentage of infants in the
21 placebo arm; and thus, efficacy results were
22 consistent across gestational age subgroups in

1 Trial 03 and in Trial 04.

2 Trial 05 enrolled premature infants born at
3 less than 35 weeks gestational age. In addition,
4 infants with CLD and CHD enrolled, and those
5 infants were born across a range of different
6 gestational ages. Trial 05 included 196 infants,
7 or 21 percent of the entire study population, who
8 were born at less than 29 weeks gestational age and
9 who received either nirsevimab or palivizumab.
10 Efficacy was the secondary endpoint in Trial 05,
11 and the trial was not powered to show a difference
12 in the incidence of medically attended RSV lower
13 respiratory tract infection between the nirsevimab
14 and the palivizumab arm.

15 There were only 2 events of medically
16 attended RSV LRTI observed in infants born at less
17 than 29 weeks gestational age. One event was in
18 the nirsevimab arm and one was in the palivizumab
19 arm. Clearly, these numbers are too small to reach
20 any conclusions.

21 So in conclusion, on analysis of efficacy by
22 chronological age, we observed that few infants in

1 the efficacy trials -- that's Trial 03 and the
2 primary efficacy cohort in Trial 04 -- were older
3 than 8 months of age, and that most infants in the
4 U.S. are exposed to RSV by 7 months of age;
5 however, we do recognize that there are times when
6 the use of nirsevimab in infants older than
7 8 months of age is appropriate. There can be
8 infants who present to health care late or infants
9 who are in care but are lost to follow-up and
10 reappear in health care at a later time. In
11 addition, as we've recently seen with the COVID
12 pandemic, there can be an unusual or unpredictable
13 timing of the RSV season.

14 In our analysis of efficacy by gestational
15 age, efficacy was observed across the subgroups of
16 gestational age from 29 weeks to term in the two
17 efficacy trials, Trial 03 and the primary cohort of
18 Trial 04. Trial 05 was not powered to demonstrate
19 efficacy. Efficacy in this high-risk population,
20 including in infants born at less than 29 weeks of
21 gestational age, was established by extrapolation,
22 and now we'll discuss further efficacy in

1 extrapolation in Trial 05.

2 The population in Trial 05, which I've been
3 calling high risk, can be described also as preterm
4 infants, including those born at less than 29 weeks
5 gestational age, as well as neonates and infants
6 with certain underlying medical conditions.

7 Trial 05 was a randomized, double-blind,
8 palivizumab-controlled trial in infants and
9 children at high risk of severe RSV disease. This
10 included infants born at less than 35 weeks
11 gestational age, including those born at less than
12 29 weeks gestational age. These infants
13 participated in Trial 05 during their first RSV
14 season and were either born during that RSV season
15 or were enrolled prior to entering that first RSV
16 season.

17 The second population was infants and
18 children with chronic lung disease of prematurity
19 and hemodynamically significant congenital heart
20 disease who were enrolled in their first year of
21 life. These infants were born during the RSV
22 season or received nirsevimab before entering their

1 first RSV season, and then these study subjects
2 were also followed through their second RSV season.
3 In Trial 05, efficacy was assessed by the incidence
4 of medically attended RSV lower respiratory tract
5 infection as a secondary endpoint, and efficacy in
6 both RSV Season 1 and Season 2 was supported by
7 extrapolation.

8 This is the Trial 05 design, and as you can
9 see, all subjects, both premature infants and
10 infants with chronic lung disease and/or congenital
11 heart disease, were randomized in a 2 to 1 ratio to
12 receive either nirsevimab or palivizumab. Subjects
13 were then followed for safety, which was the
14 primary endpoint until 360 days post-dose or
15 day 361. Subjects with CLD or CHD could continue
16 the trial into their second year of life. Subjects
17 who received nirsevimab in year 1 also received
18 nirsevimab in year 2, but subjects who received
19 palivizumab in year 1 were randomized in a
20 1 to 1 ratio to receive either palivizumab or
21 nirsevimab in year 2. All subjects in year 2 were
22 followed for safety for another 360 days. In both

1 trials, information on efficacy was collected
2 through day 150 or day 151, as you see on this
3 schema.

4 The total number of subjects who received at
5 least one dose of nirsevimab or palivizumab in
6 Trial 05 was 918, and this included 304 subjects
7 who received palivizumab and 614 who received
8 nirsevimab. A similar percentage of subjects in
9 both arms were born prematurely -- 68 percent and
10 66 percent -- and approximately one-third of
11 subjects in both arms had either CLD or CHD. Of
12 those subjects, the majority, which is 64 in the
13 palivizumab arm and 138 in the nirsevimab arm, had
14 chronic lung disease. Some subjects, a very few,
15 had both chronic lung and congenital heart disease,
16 and there was one subject with Down syndrome
17 enrolled.

18 Of the subjects with CLD and CHD in
19 Season 1, the subjects who continued in Season 2
20 are shown in the box to the right. 85.6 percent of
21 subjects in the CLD/CHD cohort from Season 1
22 continued the trial and participated in the second

1 year. Again, the majority of subjects had CLD.

2 In the first RSV season of Trial 05, the
3 percentage of subjects with medically attended RSV
4 lower respiratory tract infection was low and was
5 similar between the two study arms, with medically
6 attended RSV lower respiratory tract infection
7 reported in 0.6 percent of subjects in the
8 nirsevimab arm and 1 percent of subjects in the
9 palivizumab arm. In the second RSV season, no
10 cases of medically attended RSV lower respiratory
11 tract infection were reported. The second RSV
12 season was conducted in 2020 and 2021, and may have
13 been affected by the COVID pandemic.

14 Now, I'd like to turn it over to Dr. Earp
15 who will discuss extrapolation of efficacy in this
16 population.

17 **FDA Presentation - Justin Earp**

18 DR. EARP: Thank you, Dr. Baylor.

19 Extrapolation of efficacy from the
20 population enrolled in Trials 03 and 04 to the
21 population enrolled in Trial 05 is based on the
22 following key principles. First, the disease

1 etiology and pathophysiology is expected to be the
2 same for each population. Second, as the target of
3 nirsevimab is the virus molecule itself, the
4 mechanism of action for prevention remains the same
5 regardless of the population, and the key
6 therapeutic exposures of the drug should also
7 remain the same. Thus, it is expected that the
8 exposure-response relationships for nirsevimab be
9 similar between the healthy infants and the
10 high-risk population.

11 This is also supported, in part, from
12 additional data in preterm neonates in Trial 03 and
13 from the low incidence of infections in the
14 614 subjects that received nirsevimab in Trial 05.
15 Because of these principles of extrapolation, an
16 exposure matching approach was taken to ensure that
17 the dose in the high-risk infants in children would
18 give similar concentrations as those from the
19 proposed dose in healthy infant and neonate trials.
20 The applicant evaluated exposures utilizing the
21 concentration at 150 days post-dose and also
22 utilizing the AUC determined from the patient's

1 body weight at baseline.

2 This plot was made for the comparison of
3 concentrations at 150 days post-dose in Trial 05
4 against those from Trial 04. The Y-axis depicts
5 nirsevimab concentration at day 150. Our point of
6 reference and target range is defined by the
7 experience in Trial 05 [sic - Trial 04], shown in
8 the red box plot on the far left. Immediately
9 adjacent to this box to the right is the summary of
10 concentrations for every subject receiving
11 nirsevimab in Trial 05. Further right are
12 exposures from subsets of patients in Trial 05.

13 The first two groups in dark blue are
14 congenital heart disease and chronic lung disease
15 in Season 1. The next two panels with the highest
16 exposures are congenital heart disease and chronic
17 lung disease patients in Season 2. Their exposures
18 are higher, as they received the 200-milligram dose
19 in Season 2. The last two groups are preterm
20 neonates less than 29 weeks gestational age, and
21 greater than 29 weeks gestational age without
22 either CHD or CLD.

1 The pink band behind the boxes is provided
2 for visual reference back to the interquartile
3 range of concentrations in Trial 04, as the doses
4 in Trial 04 are the proposed dosing regimen for
5 labeling and efficacy that are being utilized for
6 extrapolation. The dashed line is an EC₉₀ that was
7 identified as an early target exposure from
8 preclinical data. It is clear the exposure
9 profiles for patients in Trial 05 are comparable to
10 the concentrations in Trial 04 and, in general,
11 exceed the target concentration identified in
12 nonclinical development.

13 The second exposure metric evaluated for
14 extrapolating efficacy is the subject area under
15 the curve, or AUC, of nirsevimab concentrations.
16 AUC is generally considered to be represented as a
17 patient's overall exposure and often correlates
18 closely with concentrations in the elimination part
19 of the pharmacokinetic time course, like those you
20 saw on the previous slide.

21 The applicant's exposure-response analyses
22 from the clinical efficacy data for the primary

1 endpoint in Trials 03 and 04 led to the
2 identification of a threshold AUC value of
3 12.8-milligram days per milliliter. Above this
4 point, exposures fall into the plateau of maximal
5 response for nirsevimab efficacy, and no additional
6 benefit is expected by increasing nirsevimab
7 exposures further.

8 This table shows the percentage of patients
9 in each subset of Trial 05 that achieved AUC values
10 greater than 12.8. For reference, in Trial 04,
11 92.5 percent of subjects met this threshold at the
12 proposed dose. This AUC comparison also suggests
13 that the proposed dose in patients in Trial 05
14 achieved similar exposures to those in Trial 04.

15 In summary, nirsevimab concentrations and
16 AUC values are comparable between healthy infants
17 and neonates in Trial 04 at the proposed doses and
18 high-risk infants and children in both seasons of
19 Trial 05. This supports extrapolation of efficacy
20 to Trial 05, and the extrapolation is also, in
21 part, supported by overlapping populations of
22 preterm neonates in both Trials 03 and 05 and by

1 the efficacy data obtained from 614 subjects that
2 received nirsevimab compared to the palivizumab arm
3 in Trial 05.

4 I will now turn the presentation back over
5 to Dr. Baylor to discuss the safety considerations
6 for nirsevimab.

7 **FDA Presentation - Melisse Baylor**

8 DR. BAYLOR: Hi. First, we'll discuss the
9 safety database, and then we'll discuss some safety
10 considerations. Overall, 3,285 infants and
11 children received the proposed dose of nirsevimab
12 in clinical trials. This included 3,224 who were
13 enrolled in one of the three main trials; that's
14 03, 04, or 05. The majority of subjects were
15 enrolled in Trial 04.

16 All subjects in the three main trials of
17 nirsevimab were followed for safety for 360 days
18 post-dose. Subjects in Trial 04 were also followed
19 for an additional time, from day 361 to day 510, to
20 collect information on medically attended lower
21 respiratory tract infections, and this was without
22 further dosing with nirsevimab. At the time of the

1 BLA submission, safety data from days 361 to 510 in
2 the safety cohort for Trial 04 were not available,
3 and they were not included in the BLA. In
4 addition, safety data for days 150 to 360 in RSV
5 Season 2 of Trial 05 were also not available and
6 not included in the BLA.

7 The two key safety considerations that we
8 will discuss are anaphylaxis, rash, and other
9 hypersensitivity reactions and the imbalance in the
10 number of deaths in the nirsevimab and control
11 arms. For rashes that may be a manifestation of a
12 hypersensitivity reaction, we conducted two
13 analyses, and these analyses differ from the
14 analyses conducted by the applicant.

15 First, all skin reactions that were
16 identified from the safety data sets, using a large
17 group of adverse event terms to identify skin
18 adverse events that could be associated with
19 hypersensitivity were used to collect adverse
20 events. Once the skin or adverse rash events were
21 identified, we narrowed the list to those that may
22 have been drug related by omitting rashes with

1 another clear etiology such as diaper dermatitis.
2 We also omitted rashes that involved a single
3 lesion and chronic skin conditions such as eczema.
4 And finally, we omitted all rashes after day 75 if
5 the rash was judged by the investigator as mild.

6 The second analysis of rashes that may have
7 been associated with a hypersensitivity reaction
8 was an analysis of rash within 14 days of study
9 drug administration. The 14-day period was used
10 because of the temporal relationship to nirsevimab
11 administration and because that time period
12 includes the time in which subjects have the
13 highest serum concentration of nirsevimab.

14 In our analysis of anaphylaxis rash and
15 other hypersensitivity reactions, there were no
16 adverse events of anaphylaxis. In addition, no
17 serious skin events such as Stevens-Johnson
18 syndrome were reported. One event developed
19 grade 2 or severe angioedema on day 142 and was
20 hospitalized for observation, and her angioedema
21 may have been related to a change in formula.

22 There were two adverse events of urticaria,

1 one on day 7 and one on day 20 after the subjects
2 both received nirsevimab, but both events of
3 urticaria were mild in intensity. A moderate or
4 grade 3 drug eruption was reported in one infant on
5 day 6 after receipt of nirsevimab, and this adverse
6 event was judged as related to nirsevimab. In our
7 second analysis of rash within 2 weeks of receipt
8 of study drug, rash was reported in less than
9 2 percent of subjects in both the nirsevimab and
10 the control arms, and the majority of rashes were
11 mild and moderate, and were not accompanied by
12 other symptoms.

13 In conclusion, there were no adverse events
14 of anaphylaxis in the clinical trials of
15 nirsevimab. Skin and mucous membrane adverse
16 events consistent with hypersensitivity reactions
17 were observed at a low incidence in subjects who
18 received nirsevimab and in those who received the
19 control; however, anaphylaxis hypersensitivity
20 reactions in rash have been reported with
21 palivizumab and other monoclonal antibodies.
22 Therefore, postmarketing reports of these events

1 are likely to be observed in patients who've
2 received nirsevimab if nirsevimab is approved.

3 The second safety issue that we would like
4 to consider is the imbalance in the number of
5 deaths between the nirsevimab and control arms.
6 There were 12 deaths in subjects who received
7 nirsevimab in the clinical trials that were
8 included in the BLA compared to 4 subjects in the
9 control arms; however, the percentage of subjects
10 who died was low, and the overall percentage was
11 similar in the nirsevimab and control arms in all
12 of the studies. In addition, Trial 08 did not
13 include a control arm, and one subject in the
14 placebo arm of Trial 03 died 6 days after the study
15 end.

16 The causes of death varied. Most deaths
17 were due to an underlying disease such as cardiac
18 disease or one subject with a tumor in Trial 08.
19 Other infants died of an infectious etiology such
20 as 2 subjects in South Africa who died of
21 gastroenteritis and one infant who died of COVID.

22 One subject did die of a lower respiratory

1 tract infection, but that infant's health was
2 compromised by severe protein calorie malnutrition.
3 And finally, 2 infants were doing well when they
4 were put to bed, but died of possible SIDS. One of
5 these infants was previously healthy, and although
6 she had an autopsy, those results were not made
7 available. The other subject had multiple
8 hospitalizations and was thought to have an
9 undiagnosed chronic condition.

10 In conclusion, in the trials of nirsevimab,
11 the absolute number of deaths was higher in the
12 nirsevimab arms than in the control arms, but the
13 percentage of deaths was low and similar between
14 nirsevimab and control arms. The causes of death
15 varied, and there was no pattern in the cause of
16 death, and the deaths were not all related to a
17 single organ system. And finally, none of the
18 deaths appeared to be related to nirsevimab.

19 I will end my presentation with a discussion
20 of two other considerations. The first
21 consideration is use of nirsevimab in infants whose
22 mothers received the maternal RSV vaccine. There

1 are currently several RSV vaccines under
2 development. An advisory committee was recently
3 held for a maternal RSV vaccine on May 18th of
4 2023, so just last month.

5 In the clinical trials of nirsevimab,
6 infants whose mothers had received an
7 investigational maternal RSV vaccine were excluded
8 from participation; so as a result, we have no
9 information from clinical trials, and we're left
10 with several gaps in our knowledge, such as does
11 use of nirsevimab in infants whose mother received
12 a maternal RSV vaccine provide added benefit and is
13 there concern for safety that's related to the use
14 of nirsevimab in this setting?

15 The second question is what happens to
16 children in their second RSV season who received
17 nirsevimab in their first RSV season? Do they get
18 infected with RSV in their second year; and if so,
19 do they have more severe RSV in their second year
20 of life?

21 Subjects in Trial 04 were followed through
22 their second RSV season; so that's from day 362

1 through day 511, and they did not receive an
2 additional dose of nirsevimab prior to the second
3 RSV season, and the subjects were monitored for
4 medically attended lower respiratory tract
5 infections. These were the results for the primary
6 cohort, and the results for the safety cohort have
7 not been submitted.

8 As you can see, the percentage of subjects
9 with a medically attended RSV lower respiratory
10 tract infection, regardless of the test used to
11 diagnose RSV, was low in each arm and similar
12 between the two arms. One subject in each arm was
13 hospitalized for an RSV respiratory tract illness,
14 and the low incidence of medically attended RSV
15 lower respiratory tract illness suggest that there
16 was no shift of RSV burden to the second year of
17 life, and the low number of RSV hospitalizations
18 suggest that there was no increase in severe RSV
19 disease after nirsevimab, potentially secondary to
20 antibody-dependent enhancement of disease; however,
21 the numbers are very small, and we are expecting to
22 have additional data to address long-term safety.

1 Therefore, it's difficult to reach definitive
2 conclusions.

3 I'd like to now turn it over to Dr. Neha
4 Gada from the Office of Surveillance and
5 Epidemiology.

6 **FDA Presentation - Neha Gada**

7 DR. GADA: Good morning. My name is Neha
8 Gada, and I work in CDER's Office of Surveillance
9 and Epidemiology. Today, I will discuss FDA's
10 proposed pharmacovigilance strategy for nirsevimab
11 if it is approved, and we are including this in the
12 presentation for the advisory committee today
13 because, if approved, nirsevimab has the potential
14 for widespread use and will be used for the
15 prevention of disease as opposed to for the
16 treatment of disease in a population that includes
17 healthy children, where the risk tolerance for use
18 of an agent is appropriately low.

19 So first, let's discuss premarketing safety
20 and safety in the overall lifecycle of FDA
21 regulated drug products. Safety is addressed in
22 all aspects of the product lifecycle. Prior to

1 approval, safety is evaluated throughout the
2 phase 1 to phase 3 clinical trials in conjunction
3 with the dosage and efficacy evaluation. When FDA
4 concludes the benefit-risk balances is positive, a
5 determination may be made to approve the drug
6 product. Although premarketing clinical trials are
7 the gold standard to determine safety and efficacy
8 at the time of drug approval, all trials have
9 limitations, and while nirsevimab has a large
10 safety database from the clinical development
11 program, one important limitation of clinical
12 trials for all drugs is the size of the population
13 studied in trials that are smaller than what would
14 be exposed in the real-world setting.

15 With this, trials will allow
16 characterization of the safety profile for adverse
17 events that happen frequently, but rare and serious
18 adverse events may not be observed, as it is not
19 feasible to power a study around multiple safety
20 outcomes that rarely occur. As a result, FDA
21 relies on pharmacovigilance as the safety net for
22 monitoring approved drug products after approval to

1 detect rare but serious adverse events that may not
2 have manifested during the clinical trials.

3 The benefit-risk assessment does not end
4 with the FDA's approval of a product. FDA
5 considers a lifecycle approach to a drug's
6 benefit-risk assessment, acknowledging that our
7 understanding of both a product's benefit and risk
8 often changes over time as new information about
9 the product becomes available. On the next slide,
10 I will explain how postmarketing reports get to
11 FDA.

12 The mainstay for pharmacovigilance includes
13 our spontaneous adverse event reporting system. In
14 the United States, spontaneous adverse events are
15 received and entered into the FDA adverse event
16 reporting system, or the FAERS database, or sent to
17 the applicant's global safety database. FAERS is a
18 computerized database of spontaneous adverse event
19 reports for human drug and therapeutic biological
20 products.

21 This illustration here depicts how voluntary
22 adverse event reports are submitted to FDA. There

1 are two pathways for patients, consumers, and
2 healthcare professionals to report a suspected
3 adverse event. First, reports can be submitted
4 directly to MedWatch or they can be submitted to
5 the product's manufacturer who is then required to
6 submit all such reports to FDA. Once the
7 manufacturer receives these reports, they are
8 required, under the Code of Federal Regulations, to
9 report to FDA. Note that for serious and
10 unexpected adverse events, the manufacturer is
11 required by law to submit the reports to FDA within
12 15 days of receipt of such information, and all
13 other reports can be submitted periodically.

14 From a regulatory standpoint, I want to
15 explain what a serious adverse event means. Those
16 would be adverse events that result in any of these
17 outcomes here: death; life-threatening; inpatient
18 hospitalization; persistent or significant
19 disability; congenital birth defect; or other
20 serious. Also, from a regulatory standpoint,
21 expectedness of an adverse event is based on the
22 product labeling information, so an unexpected

1 adverse event would be one that is not listed in
2 the product's current labeling.

3 In the next slide, I will go over how to
4 submit adverse event reports to MedWatch. There
5 are two ways to report to MedWatch, online at the
6 website listed on this slide or the forms can be
7 downloaded from this site, completed, and sent
8 back. When you access MedWatch online to report an
9 adverse event, the website will guide you through
10 an electronic questionnaire. In the next slide, I
11 will go over two types of postmarketing
12 surveillance and then describe FDA's current
13 thinking regarding our pharmacovigilance strategy
14 for nirsevimab if it is approved.

15 The spontaneous reporting systems are
16 labeled as passive surveillance based on the fact
17 that the reporting center or the manufacturer
18 passively received this information rather than
19 actively seeks it out. In contrast, active
20 surveillance system is a system for the collection
21 of case safety information as a continuous
22 preorganized process.

1 FDA's pharmacovigilance strategy for
2 nirsevimab, if approved, will include coordination
3 across multiple data sources, and our strategy for
4 nirsevimab, if approved, includes screening of
5 FAERS reports for new safety information for
6 nirsevimab; reviewing the published medical
7 literature using Embase and PubMed on a regular
8 basis, again, for new safety information; and
9 reviewing the applicant's periodic safety report
10 for new safety information. The user required
11 regulatory submissions that are generally submitted
12 quarterly for the first three years, and then
13 annually thereafter.

14 We are also exploring claims-based data
15 sources, including Sentinel, for active
16 surveillance approaches that can be conducted
17 post-approval. Based on the safety profile for
18 nirsevimab that has been assembled from the
19 clinical development program, expected adverse
20 events of interest include hypersensitivity
21 reactions, as we've heard earlier today. We would
22 also be monitoring for prespecified adverse events

1 of interest such as injection site reactions and
2 serious cutaneous adverse reactions.

3 FDA intends to reassess our strategies based
4 on drug uptake and any new safety information that
5 may emerge, and we acknowledge it is critical to
6 review the totality of available data in order to
7 inform any regulatory decisions across the drug
8 lifecycle. And for nirsevimab, we plan to leverage
9 our federal partnerships for the Centers for
10 Disease Control and Prevention to foster
11 information-sharing across the agencies who are
12 collaborating with CDC on the safety data
13 collected, using their near real-time active
14 surveillance encompassing claims-based data from
15 the Vaccine Safety Datalink database for nirsevimab
16 if it is approved.

17 As the agency or the applicant identifies
18 any new safety information, FDA will work with the
19 applicant and propose regulatory action based on
20 the safety signal as warranted. And as per the
21 applicant's submitted pharmacovigilance plans, the
22 applicant will conduct routine pharmacovigilance.

1 So how will FDA share new safety information
2 with the public if nirsevimab is approved? FDA has
3 many communication pathways that we use for all
4 drug products to communicate new safety
5 information, and I will bring a few to your
6 attention.

7 First, we have the FAERS Public Dashboard,
8 which is a highly interactive web-based tool that
9 allows for the querying of the FAER's database.
10 There are many limitations to the use and
11 interpretation of these data, but for the purposes
12 of the advisory committee meeting today, I want to
13 note that one important limitation is the presence
14 of a report is not confirmation that the drug or
15 biologic product caused the event because causation
16 does not have to be proven for a report to be
17 entered into our database.

18 Second, FDA shares early safety signals, or
19 potential signals, in accordance with Section 921
20 of the Food and Drug Administration Amendments Act
21 of 2007. On this website here, safety information
22 does not mean that FDA has determined that this

1 drug has this risk, but rather it may be a
2 potential safety signal under investigation. FDA
3 may also update the prescribing information for the
4 product labeling, and at times, FDA may decide to
5 communicate directly with the public or healthcare
6 professionals using drug safety communications and
7 other communication tools.

8 I will now turn it back to Melisse Baylor,
9 who will provide an overall summary on behalf of
10 FDA.

11 **FDA Presentation - Melisse Baylor**

12 DR. BAYLOR: In summary, nirsevimab efficacy
13 for the prevention of medically attended RSV lower
14 respiratory tract infection was demonstrated in two
15 adequate and well-controlled trials. Nirsevimab
16 efficacy for the prevention of RSV hospitalization
17 was demonstrated in infants born at 29 weeks or
18 later to less than 35 weeks of gestational age, and
19 there was a trend toward efficacy in infants born
20 at 35 weeks of gestational age or later.

21 The efficacy of infants less than 24 months
22 of age who remain vulnerable to severe RSV disease

1 in their second RSV season was established by
2 extrapolation. No major safety concerns were
3 identified. And finally, FDA plans to conduct
4 postmarketing surveillance to further assess
5 nirsevimab safety, if approved, using several data
6 search sources, and that's the end of our
7 presentation.

Clarifying Questions

9 DR. BADEN: Thank you, Dr. Baylor and
10 colleagues for presenting complex data,
11 reanalyzing, and making it incredibly accessible
12 and digestible.

1 When acknowledged, please remember to state
2 your name for the record before you speak and
3 direct your question to a specific presenter, if
4 you can. If you wish for a specific slide to be
5 displayed, please let us know the slide number, if
6 possible. Finally, it would be helpful to
7 acknowledge the end of your question with a thank
8 you and the end of your follow-up question with,
9 "That is all for my question," so we can move on to
10 the next panel member.

11 To my panel members, please start raising
12 your hands so we can have clarifying questions to
13 the applicant and the agency. In terms of
14 management of time for everyone, we will go to
15 12:50 as noted in the schedule. We will then have
16 the 40 minutes for lunch. We'll have the open
17 public hearing session, and then we will resume
18 clarifying questions for the applicant and agency.

19 Looking for questions from my panel members,
20 Dr. Ofotokun, can you open the clarifying question
21 period?

22 DR. OFOTOKUN: Thank you so much, Dr. Baden,

1 and I really thank the applicant and the FDA for a
2 very clear presentation of this product.

3 My question has to do with additional data
4 from surveillance, postmarketing surveillance, from
5 Europe and Asian countries. This drug looks good.
6 The efficacy and the safety data looks very
7 promising. I was wondering if we have
8 postmarketing data from Europe, Asia, and other
9 countries where this drug has been approved and is
10 now currently in use.

11 DR. VILLAFANA: Thank you. Tonya Villafana,
12 global franchise head, AstraZeneca, just
13 reintroducing myself.

14 Yes, we have approval in Europe, but
15 nirsevimab has not been launched as of yet in
16 Europe, and it hasn't been launched in Asia. We
17 don't have approvals in Asia yet, just to clarify
18 that point. The trial is currently under review in
19 Japan and China.

20 I will call Dr. Manish Shroff to discuss our
21 plans for surveillance.

22 DR. SHROFF: Manish Shroff, global safety

1 lead, AstraZeneca. Slide up. We do have a robust
2 global pharmacovigilance plan. As indicated by
3 Dr. Villafana, at this point in time, the product
4 has not been launched yet; and therefore there is
5 no postmarketing data available or additional data
6 available. However, the global pharmacovigilance
7 system does include that any adverse event reported
8 in any of those countries, either in Europe or
9 Asia, will be entered into a global adverse event
10 database, we'll get the review, and the review
11 would be on a periodic aggregate level. Thank you.

12 DR. BADEN: It is difficult for me to
13 determine if the agency wanted to comment, but I
14 will assume not, unless you start talking.

15 Dr. Green, you have a question?

16 DR. GREEN: Thank you. Michael Green, UPMC
17 and University of Pittsburgh. The primary endpoint
18 here is medically attended lower respiratory tract
19 infection with RSV, but different locations may use
20 their healthcare providers differently, and this
21 was an international study involving multiple
22 continents and multiple countries.

1 Given that that primary endpoint is seeing a
2 healthcare provider and not necessarily requiring
3 hospitalization, how do we balance how different
4 locations use their healthcare providers to know
5 that we're not missing cases in certain geographic
6 areas. This is probably for the sponsor, but if
7 the agency wanted to address it, I'd be happy to
8 hear their answer as well. Thank you.

9 DR. VILLAFANA: So I'll go first from the
10 sponsor. I'd like to call Dr. Amanda Leach to
11 address the question, but just to start with the
12 fact that this case definition that we had for
13 medically attended RSV LRTI was developed in
14 collaboration with global experts, and I'll
15 Dr. Leach go through the rest.

16 DR. LEACH: The purpose of having a primary
17 case definition that is clearly defined was to make
18 sure that we had one single case definition as it
19 was applied universally across the centers in the
20 trial. We did some checking. We've looked at the
21 frequency of the symptoms, the severity of the
22 disease at different locations using this case

1 definition, and I can confirm they are the same.
2 There are a couple of pieces of information which I
3 think would be useful to share. The first is we
4 looked at a more sensitive case definition of
5 medically attended RSV LRTI, where we included
6 those children who perhaps did not have a central
7 test performed but had a local test performed, and
8 there I can confirm that however we defined it in a
9 more sensitive way, that we had a consistent
10 estimate of effect.

11 The other thing that I think might be useful
12 to remind ourselves of is the all-cause impact that
13 we had, because what that actually tells us in
14 terms of all cause is that it really means that
15 we've had an overall benefit of the product that
16 captures not only those cases that we know, but
17 also those cases where perhaps RSV was just
18 contributing to the disease. I have those numbers
19 to show you, and I can just slide up to reinforce
20 the all-cause numbers there.

21 Thank you. I hope I addressed your question.

22 DR. BADEN: Thank you.

1 Dr. Krug?

2 DR. KRUG: Hi. Can you guys hear me?

3 DR. BADEN: Yes.

4 DR. KRUG: So a disclaimer, this is really
5 not a question, but I just thought that it would be
6 important to speak to the larger public health
7 impact here, if that's ok. It's not a specific
8 question.

9 (No response.)

10 DR. KRUG: Well, I'm hearing nothing, so
11 I'll just proceed.

12 DR. BADEN: Yes. Go ahead and please
13 provide your comment.

14 DR. KRUG: Yes. And again, a great
15 presentation today by both the sponsor and FDA;
16 really quite interesting.

17 For as long as I can remember, and certainly
18 pre-pandemic, RSV has been the culprit behind large
19 surges in respiratory illness and large surges in
20 the demand for health care at all levels, and this
21 is true not just at the hospital level and in busy
22 emergency departments, but also in ambulatory care

1 settings. Nearly every year, those surges result
2 in a crisis in terms of the availability of
3 inpatient beds; so where am I going to put this
4 patient who's breathing really hard and they can't
5 drink? And the critical point of the pyramid was
6 really in critical care because the number of
7 critical care beds is obviously smaller than the
8 number of general inpatient beds.

9 Over time, the other thing that's been going
10 on -- and we didn't become aware of this until the
11 pandemic itself -- was that it has been a
12 significant contraction in the number of available
13 pediatric beds. Pediatric beds have been closing
14 across the nation, in part, because institutions
15 maybe used them for different purposes during the
16 pandemic, in part, driven by economics, and in
17 part, also recently driven by the fact that we
18 don't have enough healthcare providers. So even at
19 the largest children's hospitals, there's been a
20 contraction of beds.

21 So again, this has impacted the care of
22 children at all levels of care, and not just the

1 effect of children with RSV bronchiolitis, but for
2 all other children that are seeking acute care and
3 children seeking just day-to-day, well child care.

4 The recent triple-demic, as people were
5 calling it this over the past few months ago, was a
6 combination of COVID, influenza, and RSV. While we
7 were seeing patients with all three illnesses, the
8 primary driver of the surge was RSV; not the flu,
9 and certainly not COVID. In fact, the primary
10 driver for inpatient beds was, again, RSV. I think
11 this put the awareness of the fact that we don't
12 have enough inpatient care beds in the United
13 States to care for our children, and that this
14 mismatch is much greater than what's necessary in
15 the adult population.

16 This resulted in children not being able to
17 make their way to tertiary care because there were
18 no beds at the end, and that created some very
19 unsavory situations, where you had well-intended
20 providers caring for a very sick child, who
21 ordinarily don't do that because, ordinarily, they
22 transfer the patient.

1 DR. BADEN: Dr. Krug?

2 DR. KRUG: Yes, sir?

3 DR. BADEN: We have limited time to
4 clarify --

5 DR. KRUG: No, I was actually about to
6 finish. The point is, putting aside, again, this
7 excellent data that's been presented, RSV will
8 continue to be a major threat to all children, not
9 just the kids who get sick, because of its impact
10 on our existing healthcare system. So thank you.
11 Sorry if I took too much time.

12 DR. BADEN: No, no. Comments are
13 appreciated, and we all agree, a very important
14 issue. There will be more time for discussion from
15 the committee members during our discussion
16 session, our precious time to get clarifying
17 information. I ask committee members to state
18 their name before they ask their question, and be
19 as targeted as possible so we can get as much facts
20 from our colleagues as possible.

21 Dr. Kotloff?

22 DR. KOTLOFF: Hi. Karen Kotloff from

1 University of Maryland. Thank you so much for this
2 beautiful presentation. I do have one clarifying
3 question for both the sponsor and the agency,
4 really.

5 We're asked to consider the BLA for infants,
6 which was defined as through the first year of
7 life, but we really have a paucity of data to
8 assess the risk-benefit after 6 months, and I'm
9 wondering if that has been considered and if there
10 is anything we should know about, whether the
11 decision has to be for 12 months or if it could be
12 more nuanced to a specific age group.

13 DR. VILLAFANA: So maybe I will start from
14 the sponsor. Would the FDA like to start?

15 DR. SINGER: Please go ahead.

16 DR. BADEN: Go ahead, Dr. Villafana.

17 DR. VILLAFANA: Yes.

18 As we've shown in the data from our studies,
19 we do have representation of infants and children
20 in our study across 12 months of age and the first
21 year, albeit with fewer children represented above
22 8 months. I think the majority of infants who

1 would probably get nirsevimab in their first year
2 of life will be 8 months or younger, but I think
3 the FDA did a really nice job of laying out why we
4 would want to have nirsevimab available for all
5 infants up to 12 months of age, based on the fact
6 that we could have changes in seasonality patterns,
7 children may have missed dosing, or a child may
8 relocate, and there's no real concern from our data
9 package, as you can see. Looking across the
10 spectrum from a safety perspective and from the
11 exposures that we've shown as well, we would have
12 no concern of dosing children for those first
13 12 months of life.

14 With that, I will turn it over to the agency
15 to get their perspective.

16 DR. SINGER: Sure. This is Mary Singer,
17 CDER, FDA. We've already presented the data on
18 what data is available for children in the various
19 age groups, and this is something we would like the
20 committee to discuss a little bit further to help
21 us decide whether there needs to be some type of
22 limitation on the age for nirsevimab receipt.

1 Thank you.

2 DR. BADEN: Thank you,

3 Dr. Patel?

4 DR. PATEL: Hi. Nimish Patel, University of
5 California, San Diego. My question is for the
6 agency, and I was wondering if they would be able
7 to pull up slide 60. It's the slide that has the
8 proportion of individuals who are achieving the AUC
9 target of 12.8 by the different subgroups of
10 CHD/CLD, et cetera. It looked like there are three
11 groups where the target attainment was 90-plus
12 percent, but there's one group where the target
13 attainment was 80 percent, and I wanted to get some
14 clarification from the agency about that group.

15 Yes. So the CHD group, it looks like
16 1 out of 5 times, they don't hit that 12.8 target.
17 In that group, are there any signals of why they're
18 not hitting that target, and should the dose be
19 increased so that there's a greater proportion who
20 are hitting the 12.8 target?

21 DR. SINGER: Thank you for your question.

22 I'll have Dr. Justin Earp answer that one for you.

1 DR. EARP: Hi. Thanks for the question. We
2 definitely thought about this a little bit, too.
3 We looked at this, and the primary explanation for
4 this is that the CHD patients that were in this
5 group for this trial had a higher body weight
6 compared to the rest of the group. It was about
7 25 percent higher, and the body weight is
8 definitely an important factor for clearance of
9 this product, as well as the volume of
10 distribution.

11 So it's definitely something that plays a
12 role here. Is that true of all CHD patients? I
13 think it's something we're evaluating a little bit
14 further to see if a dose change would really be
15 something to discuss.

16 I don't know if the applicant wants to
17 comment if there are any other factors contributing
18 to that, but body weight was about 25 percent
19 higher for that.

20 DR. VILLAFANA: Yes. I'd like to ask
21 Dr. Hamren to come up and address that.

22 DR. HAMREN: Ulrika Hamren, clinical

1 pharmacology, AstraZeneca. So while we've
2 established efficacy through extrapolation based on
3 comparable serum exposures, we've used different
4 metrics to evaluate this. And what we were looking
5 at just now was the AUC baseline clearance target,
6 which, as noted, was barely met or just about
7 80 percent for one of the subgroups; noting that
8 this is a small subgroup, so every infant in that
9 range will be a big percentage. To ensure that we
10 actually have comparable serum exposures in these
11 groups, we've also looked at serum concentrations
12 day 151, as shown in the cohort presentation. If I
13 could have the slide up?

14 As noted, the AUC that was used for target
15 attainment was derived using clearance derived at
16 baseline, so based on baseline body weight. And
17 these kids grow over time, and there is some
18 difference in how they grow, so by looking at
19 day 151 serum concentration, we account for that
20 growth, and when we compare serum concentrations at
21 day 151, we do see very comparable serum exposures
22 in these children as well. Further to that point,

1 in our population PK analysis, we evaluate whether
2 we do have any differences in CHD or CLD infants,
3 and we see no significant differences in
4 pharmacokinetics in these kids. Thank you.

5 DR. BADEN: I see that myself, Dr. McMorrow,
6 and Dr. Lewis have follow-on questions. Thank you
7 for modeling how to do this.

8 Dr. McMorrow, the follow-on?

9 DR. McMORROW: Yes. Thank you. I wondered
10 if you could tell us whether there were differences
11 in AUC by age in months, as well as by body weight
12 overall, and what you considered as second season
13 for your dosing of the trial, whether that was
14 children under 24 months or children under
15 20 months; and if the former, how many children
16 were dosed 20 months or older. Thank you.

17 DR. BADEN: Sounds like a question for the
18 applicant.

19 DR. VILLAFANA: Yes.

20 Dr. Hamren?

21 DR. HAMREN: Ulrika Hamren, clinical
22 pharmacology, AstraZeneca. We don't have any AUC

1 data to share versus age at dosing, but knowing
2 that age and body weight is highly correlated, what
3 we can share are nirsevimab AUCs across body
4 weights at dosing for different gestational age
5 groups. Slide up please.

6 This figure shows you the nirsevimab AUC
7 throughout the whole year for the different
8 gestational age groups, and on the X-axis you have
9 the body weight at dosing, so you can see how the
10 nirsevimab exposure varies with body weight. You
11 also have the variability between subjects
12 indicated, and you can see that the serum exposures
13 are in a similar range in these age groups.
14 They're also similar across gestational age groups.
15 Thank you.

16 DR. BADEN: Dr. Lewis? And I will remind
17 panel members to state your name prior to your
18 question.

19 A follow-on, Dr. Lewis.

20 DR. LEWIS: Hi. I'm Tamorah Lewis, and I
21 have a follow-on question about dosing. We saw
22 slide CE-24 from the sponsor comparing different

1 AUC target attainment, so if you could pull that
2 slide back up, it would be helpful.

3 My question is about the dose used in
4 Season 2 and the fact that it's 200 milligrams, but
5 the PK data that you guys have shown has much
6 higher serum concentrations, and I think AUC
7 exposures if I remember correctly. Since the
8 sponsor plans to provide it in 50- and
9 100-milligram prefilled syringes, was a dose of
10 150 milligrams modeled in the children in Season 2,
11 and do you think that that would achieve more
12 comparable exposures?

13 DR. HAMREN: Correct. We have prefilled
14 syringes of 50 and 100 milligrams, and the dose for
15 Season 2 was selected to achieve comfortable serum
16 concentrations across the expected weight range of
17 Season 2. If we could have the slide showing
18 exposures in Season 2?

19 As I said, the dose of 200 was selected to
20 achieve serum exposures in that weight range across
21 the expected body weight range. We do achieve
22 slightly higher serum exposures with the

1 200-milligram dose in those infants or those
2 children weighing less; however, we have no safety
3 concerns with these exposures given that nirsevimab
4 has no endogenous targets, and we also have large
5 margins to the exposures that we've achieved in
6 adults with no safety concerns. As you can see on
7 this slide here, you see both AUC across the body
8 weight range and predicted Cmax across the body
9 weight range, so therefore, we believe that this
10 dose achieves a positive benefit-risk in these
11 infants or children. Thank you.

12 DR. BADEN: Dr. Havens, I see you have a
13 follow-on question as well.

14 DR. HAVENS: Yes. Thank you. Peter Havens
15 from Milwaukee. I appreciated the slide of AUC by
16 body weight, but you've already pointed out that
17 that's somewhat inexact because of the changes in
18 body weight. Do you have the same slide of day 151
19 serum concentration by body weight that might be a
20 better indicator of how many people actually got
21 above the 6.8 microgram per mL target?

22 DR. HAMREN: Sure. Slide up. In this

1 figure, you see the day 151 serum concentrations
2 versus body weight dosing for our three different
3 gestational age groups. What's indicated in the
4 gray shaded area there is the 95th percentile of
5 exposures achieved in our Trial 04 in our efficacy
6 trial, just for context. You can see that the
7 range here is above 10 micrograms per mL versus
8 that preclinical target of 6.8. Thank you.

9 DR. HAVENS: Great. Thank you. That's a
10 great slide. Thank you.

11 DR. BADEN: One more follow-on, and it's a
12 two-part; one to the agency. How comfortable are
13 you with the 12.8 as a target of efficacy? And to
14 the applicant, there may be different wasting
15 states such as nephrotic syndrome or protein-losing
16 enteropathies. Have you thought about differing
17 clearance states that may impact dosing?

18 DR. SINGER: Thank you. I'll turn this over
19 to Dr. Justin Earp.

20 DR. EARP: If we can pull up the slide 224,
21 I believe. This is the applicant's
22 exposure-response shown for the exposure metric

1 that was used here with the AUC baseline clearance,
2 and we thought about that question, about 12.8, and
3 where we end up.

4 The applicant also evaluated day 151
5 concentrations exposure-response, and they also
6 evaluated AUC determined over the course of the
7 365-day period. Those relationships are not as
8 clear with the lowest exposures, but what is
9 apparent for all the relationships is that the
10 exposures that are at the proposed dosing regimen
11 fall into a plateau of maximal response, and
12 consistently for those other metrics, they do
13 appear to be significantly different than placebo
14 when you look at it in this context. But 12.8 was
15 something that I believe was determined early in
16 their development as they were moving forward, and
17 they noted the clinical experience from Trial 03 as
18 rationale for increasing the exposures then, I
19 believe. The exposure-response was conducted early
20 with Trial 03 before they updated that analysis,
21 including the results of Trial 04 as well.

22 So given the variability that we see in each

1 of these quartiles for the hazard ratio, the
2 improvement relative to placebo, 12.8 in my mind is
3 a little bit soft, but I do believe for all the
4 exposure-response analysis, we're achieving
5 concentrations in that plateau of response.

6 DR. BADEN: Thank you.

7 DR. HAMREN: Ulrika Hamren, clinical
8 pharmacology. I'll respond to the question of
9 protein wasting syndrome. In our efficacy trials,
10 we don't have any children who have these
11 conditions; however, in our ongoing study in
12 immunocompromised infants and children, we do see a
13 few subjects where that is the case with nephrotic
14 syndrome. As can be expected in these children,
15 there is a higher clearance in these, so some kind
16 of consideration to dosing in these children will
17 have to be made. Thank you.

18 DR. BADEN: Thank you.

19 I realize there are five more hands up. It
20 is time for lunch. We will resume at 1:30 with the
21 open public hearing session. At the conclusion of
22 the OPH session, we'll resume the clarifying

1 questions in the order the hands have been raised,
2 so please, colleagues, keep your questions ready.
3 Thank you all. See you at 1:30 promptly.

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

A F T E R N O O N S E S S S I O N

(1:30 p.m.)

Open Public Hearing

4 DR. BADEN: It is now 1:30, and we shall
5 resume. We'll now begin the open public hearing
6 session.

7 Both the FDA and the public believe in a
8 transparent process for information gathering and
9 decision making. To ensure such transparency at
10 the open public hearing session of the advisory
11 committee meeting, FDA believes that it is
12 important to understand the context of an
13 individual's presentation.

1 meeting.

2 Likewise, FDA encourages you, at the
3 beginning of your statement, to advise the
4 committee if you do not have such financial
5 relationships. If you choose not to address this
6 issue of financial relationships at the beginning
7 of your statement, it will not preclude you from
8 speaking.

9 The FDA and this committee place great
10 importance in the open public hearing process. The
11 insights and comments provided can help the agency
12 and this committee in their consideration of the
13 issues before them.

14 That said, in many instances and for many
15 topics, there will be a variety of opinions. One
16 of our goals for today is that this open public
17 hearing be conducted in a fair and open way, and
18 where every participant is listened to carefully
19 and treated with dignity, courtesy, and respect.
20 Therefore, please speak only when recognized by the
21 chairperson. Thank you for your cooperation.

22 Speaker number 1, please unmute, and you may

1 turn on your webcam. Will speaker number 1 begin
2 and introduce yourself? Please state your name and
3 any organization you're representing, for the
4 record. You have five minutes.

5 MS. LEE: Good afternoon. My name is DeEtta
6 Lee. I am mom to Paisley, my beautiful daughter
7 who was born healthy and full term at 39 weeks
8 gestation. When Paisley was 4 months old, my
9 husband and I became concerned when she started to
10 have difficulty breathing and eating. We
11 immediately got her to a primary care physician who
12 decided to admit her to the local hospital. She
13 tested positive for RSV and was admitted for
14 2 days.

15 At the time, I knew very little about RSV.
16 I recognized the name RSV because Paisley had been
17 tested for it once before when she had a cold, but
18 I didn't know much more than that, and Google
19 definitely was not my friend during this difficult
20 time. I certainly was not prepared to have our
21 baby in the hospital so soon after birth. Watching
22 Paisley struggle to breathe and eat, along with

1 numerous failed attempts at getting an IV in her
2 was devastating to us as parents, and we constantly
3 wondered what more we could have done for our sweet
4 girl.

5 While our situation felt dire in the moment,
6 we have since learned that there are many other
7 families whose lives have been turned upside down
8 because of this scary virus. The emotional and
9 financial toll on families can be devastating. All
10 we want to do as parents is protect our children.
11 I wish there would have been an immunization
12 available to Paisley when she was born that would
13 have helped her fight back against RSV.

14 I hope that if the FDA determines that this
15 new immunization that will help prevent RSV is safe
16 and effective, they will move swiftly to approve it
17 so other families will not have to watch their baby
18 suffer as my husband and I did. Every family
19 deserves the option to protect their child from
20 RSV, its short-term and long-term effects. With
21 swift approval, other relevant federal agencies can
22 work together to make sure any necessary changes

1 are made to the vaccine infrastructure to ensure
2 this new passive immunization can be equitably
3 implemented, and implemented timely before the next
4 RSV season begins in a few months.

5 Thank you for your hard work to bring safe
6 and effective vaccines, immunizations, medicines,
7 and devices to the market, which improve our lives.
8 Thank you.

9 DR. BADEN: Thank you.

10 Speaker number 2, please unmute, and you may
11 turn on your webcam. Will speaker number 2 begin
12 and introduce yourself? Please state your name and
13 any organization you're representing, for the
14 record. You have five minutes.

15 DR. SONNEY: Thank you, and good afternoon.
16 I'm Dr. Jennifer Sonney, president of the National
17 Association of Pediatric Nurse Practitioners, or
18 NAPNAP, speaking on behalf of our over 8,000
19 members. As to financial interests, NAPNAP did
20 receive a small grant from Sanofi aimed at raising
21 public awareness of RSV, but not specifically to
22 promote nirsevimab.

1 Recognizing the sustained burden of
2 respiratory syncytial virus that constrain our
3 health systems, pediatric hospital beds, and the
4 pediatric healthcare workforce, NAPNAP acknowledges
5 the disproportionate threat to the health and
6 well-being of infants and young children that RSV
7 proposes. Immature immune systems and anatomically
8 disadvantaged respiratory system place infants and
9 young children at the highest risk for serious and
10 life-threatening illness from RSV and other
11 respiratory viral illnesses.

12 The CDC estimates 2.1 million outpatient
13 visits among children under age 5 and up to 80,000
14 hospitalizations in that same population each year.
15 During the most recent RSV season, children's
16 hospitals across the country experienced
17 overwhelming hospital admissions due to RSV that
18 far exceeded a typical season.

19 NAPNAP supports the timely and complete
20 immunization of all infants, children, adolescents,
21 and adults to maximize population health and
22 well-being. Our support for immunization extends

1 to innovative technologies that introduce
2 antibodies to enhance the immune system and fight
3 disease such as nirsevimab. Given the rise in
4 severity of RSV cases across the country during the
5 last few years that resulted in health systems
6 vying for critical resources, including hospital
7 beds, ventilators, and staff; the unseasonably
8 early arrival and extraordinary spread of RSV in
9 recent years further complicated by influenza and
10 COVID-19, these all demonstrate the importance for
11 the FDA and its colleagues at the CDC to use all
12 possible means to review and approve safe and
13 efficacious treatments to limit the incidence and
14 severity of RSV in infants before the next RSV
15 season.

16 NAPNAP believes the efficacy data for the
17 RSV monoclonal antibody therapy make it a critical
18 tool to combat RSV in newborns and young infants.
19 While we have historically focused on the impacts
20 of RSV on preterm infants and those with serious
21 health conditions, a 2020 study in the Journal for
22 Pediatric Infectious Diseases reported that

1 72 percent of infants hospitalized for RSV were
2 full term and had no underlying health conditions,
3 similar to the story of Paisley. In some children,
4 severe RSV disease has even been associated with
5 recurrent wheezing and asthma continuing into
6 adulthood, and of course if symptoms worsen, RSV
7 can go on to pneumonia, bronchiolitis, and other
8 serious health conditions.

9 Because all infants and toddlers are at
10 risk, it is imperative that safe and effective
11 preventive therapies are approved and available to
12 all young patients. In addition to the physical
13 burden on infants and toddlers, acute RSV illness
14 can cause long lasting psychological stress for
15 patients' parents and siblings; lost wages
16 impacting family stability; time away from other
17 children; and reduce bonding with children.

18 A survey by the National Coalition for
19 Infant Health and Alliance for Patient Access
20 reported that more than two-thirds of parents
21 caring for an infant with RSV experience financial
22 burden or crisis for their families, and watching

1 their children suffer with RSV impacted their own
2 mental health. From a workforce perspective,
3 NAPNAP's frontline pediatric and family nurse
4 practitioner members reported devastating staffing
5 shortages in pediatric hospitals, some operating at
6 300 percent capacity this past RSV season. Our
7 colleagues in primary care described overwhelmed
8 community-based clinics, and compounding these
9 concerns is that it is often the marginalized
10 children that are most impacted, reflecting broad
11 health inequities of RSV burden.

12 NAPNAP appreciates the FDA's timely
13 attention to the review and approval of the RSV
14 monoclonal antibody, nirsevimab, to improve health
15 outcomes in newborns, infants, and toddlers.
16 NAPNAP firmly believes and strenuously urges that
17 all approved RSV immunization technologies,
18 including monoclonal antibodies, be accessible to
19 every infant and young child before the next RSV
20 season; and looking ahead, we further advocate that
21 these be accessible to all young children
22 regardless of where they live or their ability to

1 pay, just as we do with other essential vaccines.

2 Thank you.

3 DR. BADEN: Thank you.

4 Speaker number 3, please unmute, and you may
5 turn on your webcam. Will speaker number 3 begin
6 and introduce yourself? Please state your name and
7 any organization you're representing, for the
8 record. You have five minutes.

9 MR. VACCA: Thank you. Good afternoon. My
10 name is Bill Vacca, and I am the parent of Georgia
11 Vacca, who's almost one year old in actually a week
12 from today, and I am receiving no financial
13 influence or support.

14 My wife Sarah and I know firsthand how
15 serious RSV infection can be after our 4-month-old
16 daughter, Georgia, contracted the virus late last
17 year in October of 2022. We're very fortunate that
18 Georgia was able to recover, and we hope that no
19 other parent has to ever experience this like how
20 we had to go through, and something that's still on
21 our minds today.

22 Prior to our experience, we thought that RSV

1 was always a mild or serious matter if your baby
2 was premature or was sickly, and with our daughter
3 being fully healthy, full-term, RSV was not on our
4 radar at the time, but I remember like it was
5 yesterday. We were getting ready to drop Georgia
6 off at daycare one morning when we noticed that she
7 was breathing unusually. She obviously was not
8 feeling very well, but we got the sense that it was
9 much more concerning than just a common cold.

10 We have a 4-year-old daughter as well.
11 We've been through colds, sinus infections, and all
12 that stuff, but we were noticing that her nostrils
13 were flaring and that she was retracting in her
14 lungs and her stomach was retracting. Her chest
15 was going up and down very fast, and it was scary
16 to see her suffer, and hopefully it's something we
17 never have to ever do again or no parent has to go
18 through.

19 So we took a trip to the urgent care after
20 going to our pediatrician who said you need to take
21 her to urgent care immediately. We were advised to
22 bring Georgia to the emergency room after urgent

1 care, where she was diagnosed with RSV. We spent
2 four harrowing days in the hospital before we were
3 allowed to bring our baby home, only to go back to
4 the hospital just the next day -- just about a week
5 later when Georgia's symptoms reappeared again.
6 Her oxygen levels had been carefully monitored, and
7 eventually after those 4 days returned to normal
8 after having to wear an oxygen mask for those
9 3 days to make sure that she had the right levels.

10 Our pediatrician then put Georgia on a
11 nebulizer, and she still actually uses that
12 nebulizer to this day if she gets sick. We noticed
13 that if she gets sick, her raspiness really
14 increases, and she needs that nebulizer to regain
15 that oxygen level to 94 to 98 percent. We are so
16 grateful, though, to be on the other side of that
17 all-encompassing terror and fear that we felt for
18 those couple of weeks, and we're so thankful for
19 the healthcare professionals who provided Georgia
20 with exceptional care, and did everything that they
21 could to make her feel comfortable. It was
22 terrifying seeing her in this plastic box, but they

1 were doing everything they could.

2 During our time at the hospital, we observed
3 the different typical interventions that doctors
4 provided for babies that were battling RSV that had
5 fluids administered intravenously to help with the
6 hydrations; the IV; deep suction to clear out the
7 nasal and throat passageways; and external oxygen
8 to assist with the breathing.

9 Before this happened to Georgia, we didn't
10 realize that there were tens of thousands of other
11 families that had been impacted by RSV just like
12 us. When we got to the hospital for that first
13 time, there were parents of patients, of little
14 kids that were basically 2 to 3 to a room because
15 it had gotten so crazy during this past October.
16 It's essential, though, and we're very fortunate
17 that she was able to recover, but it's something
18 that we don't take for granted, and we hope that no
19 other parent has to experience this ever again.

20 We were encouraged to learn that there's a
21 new solution expected to be available soon to help
22 prevent RSV in infants who aren't eligible for

1 traditional vaccines. I believe that it's
2 essential that all families have equal access to
3 it, regardless of personal income, to protect our
4 babies from RSV and keep more of them out of the
5 hospital. Thank you again.

6 **Clarifying Questions (continued)**

7 DR. BADEN: Thank you.

8 The open public hearing portion of this
9 meeting has now concluded. We appreciate the
10 comments from families that have been so profoundly
11 affected by RSV and we will no longer take comments
12 from the audience. We will resume our clarifying
13 questions.

14 To my colleagues, please use the raise-hand
15 icon to indicate that you have a question and
16 remember to put your hand down after you've asked
17 your question. Please use the checkbox for the
18 follow-on. Please remember to state your name for
19 the record before you speak and direct your
20 question to a specific presenter, if you can. If
21 you wish for a specific slide to be displayed,
22 please let us know the slide number, if possible.

1 As a gentle reminder, it would be helpful to
2 acknowledge the end of your question with a thank
3 you and the end of your follow-up questions with,
4 "This is all for my questions," so we can move on
5 to the next panel member. Please unmute yourself
6 and turn on your camera when speaking.

7 I will resume from the five speakers who had
8 their hands up at the end of the pre-lunch session.
9 We'll start with Dr. Wilfond, who was incredibly
10 patient.

11 DR. WILFOND: Thank you. This is Ben
12 Wilfond from the University of Washington. I
13 really have several clarifying questions regarding
14 Study 05, and particularly focusing on the
15 population for which there's currently an approved
16 preventive intervention for RSV already.

17 My first question, I think these are
18 questions for the FDA. I'm curious to know why the
19 FDA decided not to recommend a study that was
20 powered for efficacy because, for me, that would be
21 really important, given that there's already an
22 approved medication. I love the design but not the

1 power.

2 The second question, to help me understand
3 that better, is can you clarify, for the prior drug
4 that was approved for this population, what was
5 required then? I believe there was a much larger
6 population that was necessary for FDA approval for
7 that. And finally, my last question for
8 clarification regards whether or not, in terms of
9 our voting and activities, we have the opportunity
10 to actually make a different decision for this
11 population for which there's an effective therapy
12 compared to, otherwise, children who would not be
13 receiving a medication. So they're kind of
14 interrelated, but they're three separate questions.
15 Thank you.

16 DR. SINGER: This is Mary Singer, CDER, FDA.

17 Melisse Baylor, if you could take those
18 questions --

19 DR. BAYLOR: Yes.

20 DR. SINGER: -- I think we'll start on
21 slide --

22 DR. BAYLOR: 138.

1 DR. SINGER: I think it's 140 --

2 DR. BAYLOR: If we could start on 138 and
3 then go to 145, I think that would help.

4 Sorry, Mary.

5 DR. SINGER: Slide 138, please?

6 DR. BAYLOR: As far as the endpoint that we
7 chose for 03, 04, and 05, and how that was
8 different from palivizumab, we used all three of the
9 endpoints in all three main trials, and it did
10 require one -- as you heard already, you had to
11 have an RSV positive by the central lab, at least
12 one finding on a physical exam related to the lower
13 respiratory tract, and one measure of clinical
14 severity; so respiratory rate, hypoxemia, or a
15 clinical sign of severe respiratory disease that
16 was hypoxic or a ventilatory failure; new onset
17 apnea; nasal flaring; retractions, grunting, or
18 need for IV fluids.

19 If you go to number 145 --

20 DR. SINGER: Slide 145, please?

21 DR. BAYLOR: -- the reason that we felt that
22 the design was rationale for Trial 05 is we

1 couldn't do a placebo-controlled trial because
2 Trial 05 enrolled infants with the highest risk of
3 severe RSV disease and who were eligible for pali
4 in the country or the site they were enrolled in.
5 In addition, the noninferiority trial design wasn't
6 considered feasible because it required a large
7 sample size. So a trial of the size needed to
8 determine noninferiority would take a considerable
9 amount of time to fully enroll, and it was unlikely
10 that such a large trial could be conducted within a
11 reasonable amount of time.

12 Finally, the noninferiority margin couldn't
13 be determined because there's no randomized
14 placebo-controlled trial with the endpoint of
15 medically attended RSV LRTI available to establish
16 the treatment effect of palivizumab versus placebo
17 in the high-risk population.

18 In addition, in a slide we presented already
19 in the main part of the talk, we kind of discussed
20 that while pali had used RSV hospitalization, we
21 did present this to a panel of experts and discuss
22 possible endpoints at an FDA-Duke meeting, and then

1 we did issue guidance and had expert opinion in
2 response to the guidance about using an endpoint.
3 Part of the reason that medically attended was
4 picked for all patients was that the rate of
5 hospitalization has decreased in the 24 years since
6 pali's been approved, and more patients are being
7 treated as outpatients. In addition, with
8 enrolling patients that are term and healthy and
9 not just the higher risk, you get to a rate of
10 hospitalization that's very low, and it was thought
11 to be hard to study such a low hospital rate.

12 Any other questions I can clarify?

13 DR. WILFOND: That was very helpful. Could
14 you clarify my third question which has to do with
15 in terms of our voting and discussion, whether or
16 not there's a way of still distinguishing between
17 these two groups, because --

18 DR. BAYLOR: Yes.

19 DR. WILFOND: -- I realize it would take
20 more effort to do this, but for this population, I
21 have no idea how to make a -- I'm concerned I don't
22 know what to do.

1 DR. BAYLOR: Right. Yes.

2 I'm sorry. Go ahead.

3 DR. WILFOND: I'd love to hear from other
4 people on the panel in the second-next question. I
5 feel like I don't have the data to know whether or
6 not this drug will be as good as what's currently
7 available for those populations of children who are
8 on oxygen. That's what I care about, and I don't
9 feel like -- maybe I'm not stupid, or not stupid.
10 Maybe I don't understand this well enough, but I
11 just don't have the confidence that I know what
12 should be done for those patients.

13 DR. BAYLOR: I think I would give that kind
14 of a two-part answer, and the first part would be
15 that it would be very difficult to have any kind of
16 hospitalized -- especially with oxygen and ICU, and
17 have a study performed just for that population
18 because the numbers are just fairly small, and the
19 noninferiority margins are unknown, so it would be
20 difficult.

21 Then we've used at the FDA extrapolation to
22 support pediatric efficacy. I think it was since

1 1994 that we've used extrapolation. The drug
2 concentrations of nirsevimab that you do get in the
3 higher risk population of Trial 05 are the same as
4 it is in Trial 03 and Trial 04. In Trial 03 and
5 Trial 04, there was evidence of efficacy. There's
6 no rationale, that we know of, of why patients in
7 Trial 05 would have different efficacy because the
8 mechanism of action is the same, the disease
9 process is the same, and we expect that the drug
10 should act the same in that population, so we're
11 using extrapolation to support that.

12 DR. WILFOND: Thank you.

13 DR. SINGER: And there will be a separate
14 voting question on the extrapolation in that
15 population.

16 DR. BADEN: Does the applicant have a
17 comment?

18 DR. VILLAFANA: Yes, we do have a comment,
19 and I think we'd like to show some data that we
20 showed previously, the PK new data comparing
21 nirsevimab to palivizumab just to help for further
22 consideration for the question.

1 DR. HAMREN: Ulrika Hamren, clinical
2 pharmacology, AstraZeneca. In addition to the
3 serum nirsevimab exposures that we've shown and
4 compared across these populations, we have also
5 looked at RSV neutralizing antibody levels and
6 compared them to palivizumab, as shown in the core
7 presentation.

8 This figure is very similar to the one that
9 was shared in the core presentation, where you see
10 the mean RSV neutralizing antibodies over time for
11 nirsevimab in purple and palivizumab in gray for
12 Season 1 to the left and Season 2 to the right.
13 We've also overlaid the predicted palivizumab
14 levels following five monthly doses, so you also
15 see the peak levels of palivizumab here.

16 You can then see here that the nirsevimab
17 neutralizing antibody levels are approximately
18 10-fold higher and more across the full time course
19 over 360 days. We do know that palivizumab works
20 in this population, and therefore, we believe that
21 nirsevimab should be as efficacious as palivizumab,
22 and therefore have a positive benefit-risk in these

1 children, with the addition of being delivered as a
2 single dose instead of five monthly doses. Thank
3 you.

4 DR. BADEN: Thank you.

5 I'm looking for green checkboxes and don't
6 see them.

7 Dr. Siberry?

8 DR. SIBERRY: Thanks very much, Chair, and
9 thanks for the great presentations. This question
10 is for the applicant, Dr. Leach, and I may be
11 pulling up the efficacy slide number 15.

12 I share your interest in having us consider
13 the trial for safety cohort data as additional
14 evidence of efficacy, but to do that I'd like to
15 make sure that we are aligned with it being very
16 similar to the primary cohort that was prespecified
17 for efficacy. You mentioned that South Africa did
18 not participate, I think you said, in the safety
19 cohort, and it looks to me that as a result -- go
20 back one --

21 DR. VILLAFANA: Dr. Leach?

22 DR. SIBERRY: -- there were only about

1 1 percent in the safety cohort of black
2 participants even though there was more than
3 25 percent in the primary cohort. So I interpreted
4 that to mean that about a quarter of your primary
5 cohort came from South Africa.

6 I wanted to ask did you look at the primary
7 cohort for South African participants alone and
8 without South African participants to do some
9 additional reassurance about the comparability of
10 what we might be comparing here between the primary
11 and safety cohorts? I assume, but would like you
12 to confirm, that women with HIV were allowed to
13 have their uninfected infants participate, and if
14 so, how common that was. Thanks.

15 DR. LEACH: Yes, certainly.

16 Actually, it was such an unusual
17 circumstance in South Africa that I'd like to show
18 you the data from South Africa itself because as we
19 were -- perhaps if you could draw the slide for me?
20 Thank you, and let's show that slide now. What
21 actually was happening -- slide up, please -- in
22 that primary cohort, actually, the cases were

1 driven by what was happening in the Northern
2 Hemisphere. By the time we enrolled in South
3 Africa, it was already affected by the COVID
4 pandemic and the restrictions that are applied. So
5 what you're looking at here is just the cases in
6 South Africa, there on the left, where there was no
7 transmission during the primary endpoint period but
8 it began after day 150, completely atypically and
9 a-seasonally [ph]. And there you see that we have
10 6 cases in both groups, remembering the 2 to 1
11 randomization, and there seemed to be a trend to
12 efficacy that was after the 5-month period.

13 So your question really was relating back to
14 whether we can compare the data from the safety
15 cohort and the primary cohort. What I believe that
16 I can assure you -- if we could get that data back
17 up again -- is that actually -- please, if you
18 could put it up; slide up -- this is the data that
19 you've seen that, actually, when we look at the
20 estimates of effect, they both fall within the
21 overall estimate, and we believe they are similar.
22 So I don't believe any difference in populations

1 has altered that result. Thank you.

2 DR. SIBERRY: Okay, and the question about
3 the HIV-infected women being able to enroll their
4 uninfected infants?

5 DR. LEACH: Indeed, we had no restriction on
6 that part, but I couldn't tell you how many of the
7 mothers were HIV positive, but there was no
8 restriction. Thank you.

9 DR. SIBERRY: Great. Then finally, you also
10 just showed that slide that showed efficacy beyond
11 5 months. A lot of the efficacy has been premised
12 on an injection that gets protection through a
13 typical RSV season, but did you consider the
14 potential need to re-dose within a first season
15 infants who live in places that had an atypical
16 seasonality or, say, tropical places that had
17 ongoing seasonality?

18 DR. LEACH: Clearly, what we have is a
19 product that gives 5 months consistent efficacy
20 with perhaps an indication that efficacy can extend
21 beyond that. We haven't investigated multiple
22 dosing at this point in time. Thank you.

1 DR. SIBERRY: Great. Thanks so much.

2 Back to you, Chair.

3 DR. BADEN: Dr. Ofotokun has a follow-on
4 question.

5 DR. OFOTOKUN: Yes. This may be really
6 interesting in terms of differences in the duration
7 across the geographical location that may be
8 affected by climate. I recall when Dr. Baylor was
9 presenting, one of the points that was made was
10 that in the temperate part of the world, say the
11 United States where you have cold weather and warm
12 weather, RSV is usually during the more colder part
13 of the year, if this product is approved, you
14 probably give it before the RSV season begins. But
15 in the warmer part of the country, like Florida and
16 Hawaii, we do have -- so it's not seasonal; RSV is
17 not seasonal, and you see RSV infection across
18 different seasons of the year.

19 The question I have is really the efficacy
20 or the way this product will be used in temperate
21 versus the non-temperate region. Do we imagine
22 that in places like Hawaii or Florida this is

1 something that will be given throughout the year,
2 then elsewhere with weather, you have seasonal
3 duration in RSV, that it will be given before and
4 during the RSV season. I just wanted some clarity
5 on that.

6 DR. VILLAFANA: Yes. I think we discussed
7 the indication statement previously, which is that
8 we anticipate that nirsevimab will be given prior
9 to or during the RSV season, depending on when the
10 infant is born relative to the season. I fully
11 understand your question on places where the
12 seasonality may not be as predictable, and we don't
13 have efficacy broken down into those specific
14 jurisdictions, as you said, but I think this is
15 something that we expect to work on with the CDC
16 and others to get some guidance in terms of how
17 they will recommend nirsevimab use in those
18 situations, very similar to how maybe palivizumab
19 has been used.

20 As we've shown, we know that nirsevimab in
21 the context of the studies we've done can cover for
22 a typical at least a minimum of 5 months, and

1 potentially more than 5 months, as you've seen with
2 the data from South Africa, and that will be
3 something for future study and discussion. Thank
4 you.

5 DR. BADEN: Panel members, please remember
6 to state your name prior to your question.

7 Dr. Ofotokun, you actually were up for the
8 next line of questioning if you still have a
9 question.

10 DR. OFOTOKUN: Okay. Igho Ofotokun. I
11 think I will yield to others. Thanks.

12 DR. BADEN: Thank you.

13 Dr. McMorrow?

14 DR. McMORROW: Thank you very much to the
15 Chair. Meredith McMorrow, CDC. I just want to
16 reiterate some of the points that Dr. Krug made
17 earlier about the impact of RSV disease in
18 children. This is a really exciting point to be
19 at, where we have potential products to address
20 this in a broader portion of the infant population.

21 Positive immunization is really essential
22 for younger children who have immature immune

1 systems and may not be able to mount an active
2 immune response to other types of vaccines. It's
3 particularly important as a mechanism to protect
4 the youngest infants, and those are also the
5 infants that we know are at highest risk of
6 RSV-associated severe disease.

7 By 8 to 11 months of age, the risk of
8 RSV-associated hospitalization is typically in the
9 U.S. under 1 percent. It's about a quarter the
10 risk of that in infants 0 to 2 months of age, and
11 this is predominantly for two reasons, one that the
12 infant is larger and the airways are larger, so
13 they're less susceptible to bronchiolitis, but also
14 that they've had some degree of prior exposure
15 often. Because of those larger airways and/or some
16 degree of prior exposure, they are at lower risk of
17 lower respiratory tract infection when they are
18 infected with RSV disease.

19 Again, I really appreciate that the FDA
20 pointed out that the majority of infants in the
21 primary trial looking at the first season
22 indication was under 8 months of age, and the

1 second season indication is a much smaller
2 population that's been studied, and I wondered if
3 you had had a chance, because it was a relatively
4 small study, to look at whether any of those
5 infants had prior RSV exposure and if you have any
6 data on RSV antibody concentrations in those
7 infants prior to their Season 2 dosing, and how
8 many of the 220 children were under 20 months of
9 age at the time of dosing, and whether there were
10 differences in response by dosing weight and age in
11 that second season.

12 I know you responded to the earlier question
13 with trial data from Trial 03 and 04, where you had
14 first season data, but I wondered if you had any
15 second season data as well. Thank you. That's all
16 my questions.

17 DR. VILLAFANA: Thanks. And just to
18 clarify, this is with regard to the second season
19 in Trial 05 --

20 DR. McMORROW: Yes.

21 DR. VILLAFANA: -- that you're asking.
22 Thanks. I'd like to ask Dr. Kelly to come

1 up and go through the neutralizing antibody data
2 from that study.

3 DR. KELLY: Good afternoon. My name is Beth
4 Kelly. I'm a clinical virologist and immunologist
5 at AstraZeneca. I'll have a slide up, please. You
6 saw this data previously from my colleague,
7 Dr. Leach, in her core presentation.

8 On the left-hand side, you see the
9 neutralizing antibody responses throughout
10 Season 1, and on the right-hand side, in those
11 infants who had CLD and CHD and were re-randomized
12 to a second dose of nirsevimab or another dose of
13 palivizumab, you see the neutralizing antibody
14 responses on the right-hand side.

15 Now, you can see that the baseline levels of
16 those infants on the right-hand side of Season 2
17 who received nirsevimab, in the plum color, are
18 very high and, actually, these are the residual
19 neutralizing antibody responses afforded by
20 nirsevimab in the first season. So those are still
21 around 7-fold above the first time that they got
22 the first dose of nirsevimab, and those are much

1 higher levels than natural immune responses.

2 So it's really hard to see natural immune
3 responses in the presence of even levels of
4 neutralizing antibodies of nirsevimab that have
5 been there for a year, but you can see in the group
6 that had palivizumab, that these infants have
7 pretty similar levels to those infants at the
8 beginning of Season 1.

9 What we know about those infants after one
10 season is that around two-thirds or three-quarters
11 of infants will have had a natural exposure to RSV
12 and, importantly, as Bill showed in his core
13 presentation, nirsevimab does not inhibit a natural
14 immune response to infection. So we get
15 neutralizing antibodies that are afforded by both
16 nirsevimab, as well as those neutralizing antibody
17 responses that are afforded by natural infection.

18 Thank you.

19 DR. BADEN: Dr. Jackson?

20 DR. VILLAFANA: Just --

21 DR. BADEN: There are some follow-ons,
22 but --

1 DR. VILLAFANA: Oh, sorry. Because I know
2 we haven't fully answered Dr. McMorrow's question,
3 we're going to do that analysis that you requested
4 for the less than 20 months and come back to you.

5 DR. BADEN: Thank you.

6 Dr. Jackson has a follow-on question.

7 DR. JACKSON: Yes. Mary Anne Jackson,
8 pediatric ID from Children's Mercy and the
9 University of Missouri-Kansas City School of
10 Medicine. This relates a bit to Dr. McMorrow's
11 question about age and risk of infection. If
12 you'll pull up slide 74, the FDA's presentation,
13 this relates to the implications of the maternal
14 RSV vaccine and the potential that will shift the
15 age at risk for children with their first RSV
16 episode. The question is, have you thought through
17 what that shift might look like?

18 Then the second part, epidemiologically, I
19 assume that there's no data in an additional
20 at-risk group of children for severe disease, and
21 those are children with neuromuscular diseases,
22 particularly with swallowing dysfunction, and they

1 usually have some of the longest hospitalizations
2 that we see for children with RSV, so thank you for
3 answering my question.

4 DR. BAYLOR: For your question regarding
5 neuromuscular diseases, we did show the CDC list
6 for increased risk. We did not include
7 neuromuscular disease and a couple of other
8 diseases on that list because there were no
9 patients enrolled with any of those diseases. We
10 had one Down syndrome, and I think we had two
11 CF patients, which is a little bit controversial as
12 far as the need for pali. So we have real
13 knowledge gaps in the subpopulations you talk
14 about.

15 We also feel that with the proposed
16 indication being patients that are vulnerable to
17 severe RSV disease, that those types of patients
18 would fit under that category, and it wouldn't
19 restrict it or limited it to any patients that
20 might need it but that weren't in the studies or
21 there weren't good data for.

22 DR. JACKSON: Then the potential in shifting

1 the age at first infection if maternal RSV vaccines
2 are widely implemented, understanding that you
3 can't predict uptake, but it's obviously not going
4 to be as high as what you'd hope.

5 DR. BAYLOR: Right. I think the two things,
6 in my opinion -- kind of off record for this
7 question -- is there's a potential for shifting it,
8 because I think we've seen the data for the
9 maternal vaccines, and it could end up with a
10 shift. I think that would be something that we
11 might learn from epidemiologic data, and the
12 question would be whether or not we as an
13 organization postmarketing would discuss with
14 AstraZeneca another study that could be done if
15 that's what we see what was happening.

16 I also am very hopeful that other
17 organizations may be able to do some studies
18 comparing the maternal vaccine and nirsevimab and
19 help with advising how they should be used together
20 and what works.

21 DR. JACKSON: Thank you very much for that.

22 DR. BADEN: Further follow-on to the

1 applicant about the potency of the product, how
2 does the potency of palivizumab versus nirsevimab
3 compare? You've showed different titers, but
4 potency also is important there. And a corollary
5 to that, to the maternal immunization question, do
6 you have any insights into the immune responses of
7 vaccination versus your neutralizing monoclonal and
8 how one will think about potency as we try to
9 measure success or vulnerability by levels?

10 DR. VILLAFANA: And to clarify, with regard
11 to the vaccination question, maternal vaccination
12 versus the potency of nirsevimab over time; yes?

13 DR. BADEN: Both, but hopefully the
14 palivizumab, it's a little more straightforward,
15 and nirsevimab is quite complicated.

16 DR. VILLAFANA: Yes. I'd like to ask Beth
17 Kelly to come up and address the question.

18 DR. KELLY: Beth Kelly, clinical virology,
19 AstraZeneca. Can I have the slide up, please?

20 Here, I'm showing you the data from Trial 03
21 in preterm infants on the left and Trial 04 in term
22 and late preterm infants on the right. What these

1 are, are RSV neutralizing antibody levels afforded
2 by nirsevimab in the plume color or those maternal
3 antibody responses in the placebo group, which
4 decay over the course of the clinical trials.

5 Now, what we've done is to map on a
6 palivizumab reference line, and what this is, is
7 the peak levels of palivizumab, the neutralizing
8 antibody levels after a first dose of palivizumab.
9 And what you see here is that nirsevimab is
10 significantly more potent than palivizumab, where
11 nirsevimab, in both the preterm infants as well as
12 the term and the late term infants, really only
13 crosses the neutralizing antibody line around
14 360 days after dose. This is very similar to the
15 data that we see in nonclinical models, both in
16 vitro, as well as in preclinical models in vivo,
17 where, in vitro, nirsevimab is over 100-fold more
18 potent than palivizumab.

19 I think you asked about the levels of
20 neutralizing antibodies for nirsevimab as compared
21 to maternal vaccines, and as Dr. Villafana
22 mentioned, it's very difficult for us to directly

1 compare, given that both products were
2 investigational when we were developing nirsevimab,
3 but, again, that palivizumab reference line may
4 become useful there because we did see some data at
5 a recent VRBPAC where those were presented, and
6 you'll see our line crossing around 360 days
7 post-dose and the maternal vaccines tend to cross
8 around 180 days or 6 months post-dose. Thank you.

9 DR. BADEN: Thank you.

10 Dr. Stokes?

11 DR. STOKES: Thank you. Stacy Stokes from
12 George Washington University in Washington, DC. My
13 question is for the applicant, and I think it is in
14 regards to slide CS-11. This goes back to the
15 long-term follow-up in Trial 04.

16 My question is in regards to the data around
17 hospitalizations, and I believe, if that slide can
18 be pulled up, there was implication that the
19 hospitalization rate was improved on that follow-up
20 year, but based on efficacy data from Trial 04, I'm
21 not quite sure you can extrapolate that improvement
22 in data. So I wanted to ask sort of a two-fold

1 question. One, am I missing something in that
2 interpretation; and two, is there a plan to have
3 forthcoming data from the safety cohort combined
4 with the primary cohort to really look at that risk
5 of hospitalization or number of hospitalizations
6 one-year plus out? Thank you.

7 DR. VILLAFANA: Yes. Thank you. I believe
8 we do have that data to share. I'd like to ask
9 Dr. Vaishali Mankad to come up and share that data.

10 DR. MANKAD: Good afternoon. I'm Vaishali
11 Mankad, and I'm a medical director with Global
12 Clinical Development at AstraZeneca. I'm a
13 pediatrician and an allergist-immunologist.

14 Thank you for your question. I believe this
15 was two-fold. Let's first have slide up. This is
16 the data that was shared by my colleague,
17 Dr. Shroff, on the Trial 04 primary cohort data for
18 the first RSV season shown on the left and the
19 second RSV season on the right. I believe
20 Dr. Stokes' question first related to the second
21 season data, where we see no cases of medically
22 attended RSV LRTI with hospitalization and no

1 severe disease, consequently.

2 We see a lower incidence of medically
3 attended RSV LRTI in the second season compared to
4 the first season. One thing that that data tells
5 us is that we don't have a shift in the burden of
6 disease by giving nirsevimab prior to the first
7 season into the second season. The children are
8 also older. But we do have data that was recently
9 available from all subjects in Trial 04, so now the
10 safety cohort has also been followed through the
11 second RSV season. This data was recently
12 submitted to the FDA in response to an information
13 request, and I'd like to share that now.

14 Can I have the slide up, please?

15 So now we are looking at the data for all
16 subjects in Trial 04 in both the first season on
17 the left to day 151, and in the second season to
18 the right, from day 362 to 511. In this larger
19 data set, there are 8 additional cases of medically
20 attended RSV LRTI in the placebo group and
21 12 additional cases in the nirsevimab group in the
22 second RSV season that are contributed by the

1 safety cohort. You can see that we now have three
2 participants in each treatment group that have had
3 a medically attended RSV LRTI with hospitalization,
4 and those same participants met the very severe
5 endpoint.

6 You can see from this larger data set that
7 the incidence of medically attended RSV LRTI and
8 hospitalization remains similar in the placebo and
9 nirsevimab groups, so this suggests that we see no
10 evidence of antibody-dependent enhancement, in that
11 there's similar incidence between the treatment
12 groups and no indication that there is an increased
13 severity of disease in nirsevimab recipients as
14 compared to placebo recipients. Thank you.

15 DR. BADEN: A follow-on, if I may, and very
16 much appreciate the hard work that the applicant is
17 doing to try and prove the negative of ADE;
18 however, the numbers are small. Will there be
19 continued vigilance to monitor for evidence of ADE
20 a year later, or some period of time after dosing,
21 to grow the data set of absence of ADE?

22 DR. VILLAFANA: So there's no continued

1 follow-up of the study, Trial 04, that Dr. Mankad
2 just showed, but I'd like to ask Dr. Shroff to come
3 up and address pharmacovigilance.

4 DR. SHROFF: Manish Shroff, global safety
5 lead, AstraZeneca. At this point of time, there
6 are no studies planned with regard to long-term
7 follow-up. Any study like that would be a little
8 impractical because there could be multiple
9 mechanisms with regard to enhanced disease.
10 However, utilizing the routine pharmacovigilance,
11 if there are any cases of reduced efficacy, or lack
12 of efficacy, that will be processed as per signal
13 management, and any early signs, once again, would
14 be evaluated. Thank you.

15 DR. BADEN: Thank you.

16 Dr. Havens?

17 DR. HAVENS: Thank you very much. This is
18 for the sponsor. I was interested in slide CE-18,
19 which seemed to suggest that there was very little
20 RSV after about day 130 or day 90. The placebo
21 curves flatten out in Trial 04 after about day 90.
22 Does that change our ability to understand the

1 protective efficacy?

2 One way to get to that question would be to
3 look -- we saw the day 151 quartile analysis of the
4 AUC data, efficacy by AUC, but I wondered if you
5 had the day 151 concentration data by AUC in the
6 same quartile analysis, that might be reassuring.
7 I appreciate the South Africa data, which gets to
8 this point nicely.

9 So does the RSV season drop off here in
10 Trial 04 after about day 90; so it's hard for us to
11 interpret that?

12 DR. VILLAFANA: First, to address your
13 question, the first part of your question, I think
14 I'd like to ask Mr. Currie to come up and talk
15 about the consistency of efficacy over time and
16 what we've done from a statistical perspective to
17 analyze that, and then come back and address your
18 second question.

19 DR. HAVENS: Thank you very much.

20 MR. CURRIE: Alex Currie, biostatistics,
21 AstraZeneca. We have with that the efficacy over
22 the 150 days, so I've got two slides to show you.

1 Can we have slide up, please? So presented
2 here, you'll see Trial 03 and Trial 04 presented,
3 broken down by 0 to 90, 0 to 120, and 0 to 150 days
4 with the efficacy estimate, and as you can see, we
5 do have consistent efficacy through the 150 days
6 for both studies.

7 We do have an additional analysis -- slide
8 up, please -- where we've broken that down by
9 30-day increments. So again, you'll see Study 03
10 and Trial 04, and we have the hazard ratios
11 presented, which in terms of calculating efficacy,
12 it's 1 minus the hazard ratio. So as you can see,
13 for Trial 03, for 0 to 30 days, we've got
14 68 percent efficacy, and as you can see over the
15 30-day intervals, we've got consistent efficacy.

16 When we look at Trial 04, we see that we've
17 got consistent efficacy through to 120 days;
18 however, due to the atypical RSV season, we do see
19 the attack rates dropping down, where we had only
20 one case in the last 30 days; therefore, the
21 efficacy estimate is very challenging to be made
22 and should be interpreted with caution, and you can

1 see that in terms of the wide confidence intervals.
2 But overall, we can see that we've got consistent
3 benefit through the 150 days. Thank you.

4 DR. BADEN: Dr. Green?

5 DR. GREEN: Thank you. Michael Green,
6 University of Pittsburgh.

7 DR. HAVENS: Could you finish up with the
8 question about the efficacy by the day 151
9 concentration; not the AUC, but the --

10 DR. VILLAFANA: Yes.

11 DR. HAVENS: -- plasma concentration
12 quartile, which you showed us earlier?

13 DR. VILLAFANA: Yes.

14 DR. HAVENS: This is the second part of the
15 question, and then the --

16 DR. VILLAFANA: Absolutely.

17 DR. HAVENS: -- third part of the question
18 is going to be, the people with the low
19 concentrations at day 151, could you show us that
20 by ADA? Because you mentioned that ADA drops the
21 concentration, but we never really saw the data for
22 that.

1 DR. VILLAFANA: Thanks. I'd like to ask
2 Dr. Hamren to come and address those questions.

3 DR. HAMREN: Ulrika Hamren, clinical
4 pharmacology, AstraZeneca. We'll first address the
5 question about the exposure-response analysis based
6 on serum concentrations day 151. Slide up, please.
7 This forest plot shows you this analysis. At the
8 top, you have the efficacy estimate for the overall
9 in this pool. This is a subset of the full primary
10 cohort and the proposed dose pool with those
11 infants in who we have serum concentrations
12 available. So therefore, the efficacy estimate is
13 slightly different compared to the primary analyses
14 in these studies.

15 The overall is at the top, and then you have
16 the efficacy estimates by exposure quartile with Q1
17 being the lowest exposure and then increasing in
18 serum concentrations, and you see that these
19 estimates are consistent with the overall estimate,
20 and there is no clear ordering of these, proving
21 that we have consistent efficacy across this serum
22 concentration range.

1 Moving to your second question, which was
2 about ADA and effects on serum concentrations, we
3 see no clear effects on serum concentrations
4 day 151. Slide up, please. This figure shows you
5 the day 151 serum concentrations by ADA status, so
6 those who are ADA negative at all time points
7 versus those who are ADA positive at any time
8 point. As you can see, the serum concentrations in
9 the ADA positives subjects are within the range of
10 those who are ADA negative; so no clear evidence of
11 effects on serum concentrations through day 151.
12 Thank you.

13 DR. HAVENS: Thank you. That's very
14 helpful. That's the end of my questions. Thank
15 you.

16 DR. BADEN: Thank you. I did not mean to
17 cut you off, Dr. Havens.

18 DR. HAVENS: Oh, no, no; no problem.

19 DR. BADEN: Thank you for the follow
20 through.

21 Dr. Green?

22 DR. GREEN: Yes. Hi. Michael Green,

1 University of Pittsburgh. This is really a
2 procedural clarifying question for the agency. All
3 the other committee meetings that I've participated
4 in, the decision making has been by the agency on
5 both approval and I guess sort of a recommendation.
6 But I'm trying to understand, for this product,
7 what is the role of CDC, and how will they use any
8 recommendations we provide, or that they will do it
9 completely independently and give recommendations
10 on how to use, and we're really giving advice on
11 whether or not to approve this product. Thank you
12 very much.

13 DR. SINGER: Mary Singer, CDER, FDA. The
14 FDA will take the advisory committee's votes and
15 discussion into account when making our decision
16 about approval, and then the CDC will make their
17 separate recommendations, if nirsevimab is
18 approved, about how it should be used.

19 Does that clarify your question?

20 DR. GREEN: Yes. So it's parallel to what
21 happens with vaccine as opposed to what happens
22 with an antibiotic. Thank you very much.

1 DR. BADEN: So I'll recognize myself for a
2 new line of questioning. Dr. Baden.

3 I have two questions, hopefully relatively
4 straightforward. One has to do with safety and
5 just making sure I understand the safety data to
6 the applicant. You presented rashes and some other
7 findings. The half-life is months, so these safety
8 events, or adverse events, were observed, were
9 managed, and resolved all within weeks, presumably;
10 yet, the drug levels, as you've presented, were
11 relatively high for months.

12 Is that a correct interpretation of the data
13 being presented, for the most part, in large part?

14 DR. VILLAFANA: In large part, yes.

15 DR. BADEN: So that the rashes were not
16 progressive despite the drug level being
17 substantive.

18 DR. VILLAFANA: Correct.

19 DR. BADEN: Thank you. I assumed that was
20 the case, but I didn't want to assume

21 On the flip side, in terms of efficacy, I'm
22 trying to understand viral escape and viral

1 resistance, and you presented some of that in the
2 briefing and today. In those individuals who had
3 high titer antibody and had viral breakthrough
4 infection, any insight as to why that occurred?
5 Were the levels not high enough? Was there viral
6 escape? Any insight or is it unknown?

7 DR. VILLAFANA: Great question, and I'll ask
8 Dr. Kelly to come up and go over everything we did
9 to look through the breakthroughs with great depth.

10 DR. KELLY: Beth Kelly, clinical virology,
11 AstraZeneca. I think the mechanism of breakthrough
12 is something that's really interesting to us as
13 well, and while we don't have a firm conclusion as
14 to why breakthrough occurs yet, we have evaluated a
15 number of potential mechanisms, and I'd really like
16 to walk you through that. So starting out, you
17 mentioned nirsevimab serum concentrations, and as
18 you mentioned, and as you've seen from my
19 colleague, Dr. Hamren, from some of the data
20 already, the serum concentrations of those infants
21 who had breakthrough infections were within the
22 range of those who did not have a medically

1 attended RSV lower respiratory tract infection; so
2 it wasn't that they didn't get enough drug.

3 You heard a little bit about ADA as well,
4 and you heard that ADA is rare in our trials
5 overall, and I can say that they're rare in those
6 infants who had medically attended RSV lower
7 respiratory tract infections as well, and we never
8 saw an ADA event prior to the RSV event; so it
9 wasn't ADA.

10 You heard a little bit about monoclonal
11 antibody escape variants from my colleague
12 Dr. Leach, so 99 percent of those infections that
13 we saw within our clinical trials were very
14 susceptible to nirsevimab, and no shift in
15 susceptibility. Only 2 infants in the entire study
16 had variants that had reduced susceptibility to
17 nirsevimab; so it wasn't escape.

18 We also looked at co-infections. We thought
19 that co-infections might be a reason why we would
20 see breakthrough. Maybe the RSV event wasn't
21 actually causing the lower respiratory tract
22 infection; it was just hanging around with

1 something else that was triggering the lower
2 respiratory tract infection and, again, there we
3 kind of came up negative. We saw in the placebo
4 and nirsevimab groups, the rates of co-infections
5 were balanced.

6 And lastly, we looked at viral load. We had
7 this hypothesis that those infants who had a
8 breakthrough might have had higher inoculating
9 dose; so maybe they were just exposed to a higher
10 amount of inoculum and there wasn't enough antibody
11 to really mop all that up before the viral
12 infection could really get kicked off, and we
13 didn't see that either; so there was no evidence of
14 higher viral load when those infants presented for
15 care.

16 So overall, I've told you a lot of things
17 that aren't the cause of the breakthrough
18 infections, but this is something that's pretty
19 consistent with other prophylactic monoclonal
20 antibodies, including against other viruses. So
21 where we see a threshold of efficacy achieved, in
22 higher drug concentrations, even in the context of

1 things like challenge studies, where you have a
2 measured viral inoculum, doesn't increase that
3 viral dose. Those are the things that we've
4 interrogated already, and we will continue to do
5 further investigations. Thank you.

6 DR. BADEN: Thank you. And it looks like
7 viral escape is not a predominant mechanism, so the
8 likelihood of losing efficacy, as we've seen for
9 monoclonals against some other viruses, seems less
10 likely.

11 DR. VILLAFANA: Correct, yes.

12 DR. BADEN: Dr. Green has a follow-on.

13 DR. GREEN: Thanks. Michael Green,
14 Pittsburgh. You looked at viral load, but do you
15 have any epidemiologic data on your event case
16 reports in terms of intensity of exposure? For
17 instance, those that break through, were they in
18 day care and differentially exposed compared to
19 those that did not? Did they have other
20 individuals in the household that were symptomatic
21 at that time, although maybe it was mild, so that
22 there was an ongoing continuous exposure that maybe

1 challenged the protective benefit as opposed to
2 just looking at a quantitative viral load? Thanks
3 very much.

4 DR. VILLAFANA: Yes. Unfortunately, we
5 don't have that data, that level of epidemiological
6 data in this setting.

7 DR. BADEN: Thank you.

8 Dr. Kotloff?

9 DR. KOTLOFF: Thank you. Karen Kotloff from
10 University of Maryland. I have two sort of related
11 questions. One is to understand what happens when
12 somebody gets infected. Have you examined whether
13 this is sterilizing immunity for the most part and
14 there is no boosting? So this antibody, when the
15 levels become unprotective, is the child without
16 any natural boosting? So that's one question.

17 Then the second sort of related question is
18 we know that recurrent RSV infections are very
19 common, and natural infection is not really
20 immunizing, and I'm wondering whether your
21 hypothesis is that this is so broadly protective
22 and a shared epitope so that this does much better

1 than natural infection in terms of protecting.

2 DR. VILLAFANA: I'd like to ask Dr. Kelly to
3 address what happens to the natural immune response
4 in infants given nirsevimab. Hold on.

5 DR. KELLY: Beth Kelly, clinical virology,
6 AstraZeneca, and I'll have a slide up. Here I'm
7 going to show you a little bit of data from our
8 Trial 04 primary cohort, showing us that nirsevimab
9 does not inhibit a natural immune response to RSV
10 in RSV-exposed infants. We've done some analyses
11 on post-fusion F, which we have recently published,
12 but we know that folks are most interested in RSV
13 neutralizing antibody responses given that we're
14 giving them an RSV neutralizing antibody response.

15 So what we've done here in this analysis is
16 to look at infants who are exposed to RSV and look
17 at what their levels of neutralizing antibody
18 responses are after that exposure. So in this case
19 we're looking at day 361 in infants who have had an
20 RSV exposure, and on the left in green, you'll
21 see placebo subjects, and on the right in plum,
22 you'll see the nirsevimab subjects.

1 Now, we've had to do a subgroup analysis
2 here because, of course, we've given these infants
3 a neutralizing antibody. So what we had to do was
4 only look at those infants who had cleared their
5 nirsevimab levels and had undetectable serum
6 concentrations of nirsevimab at day 361. So in
7 this case, all the neutralizing antibodies that you
8 see in this case are those that are afforded by
9 natural infection.

10 So what you can see in this figure here is
11 that in those infants who had an RSV exposure,
12 whether it was the infants with a medically
13 attended RSV lower respiratory tract event or those
14 infants who had an RSV exposure that was not
15 brought for medical attention, you had very similar
16 levels of neutralizing antibody response. So
17 again, nirsevimab is not inhibiting that ability to
18 generate a natural immune response, which again
19 helps in the second season as well and may get to
20 some of those questions of ADE we've been talking
21 about.

22 I think the second part of your question was

1 how did those levels of nirsevimab induce
2 neutralizing antibody responses compared to natural
3 infection, and I'd like to have a slide up to show
4 you some of those data here.

5 On the left-hand side of the slide, you'll
6 see Trial 03, so preterm infants, and on the
7 right-hand side, we've got Trial 04, so term and
8 late preterm infants again. And here we're looking
9 at neutralizing antibody responses in infants
10 who've received nirsevimab in plum or infants
11 who've received placebo in green, and what we've
12 done is stratified that by whether or not those
13 infants had an RSV exposure, and it's clearest if we
14 look at the placebo group in both trials in green.

15 So those infants who have not had an RSV
16 exposure, you see their antibodies decay over time
17 until the point where they're below the lower limit
18 of quantification versus those infants in the
19 placebo group who had an RSV infection, and those
20 levels are boosted. But in both cases, you can see
21 that the levels that are afforded by nirsevimab,
22 either with an infection or without an infection,

1 are substantially above those that are provided by
2 natural infection. Thank you.

3 DR. BADEN: Dr. Ofotokun has a follow-on.

4 DR. OFOTOKUN: Yes. Thank you so much. I
5 just want to press on this case of infants that had
6 breakthrough infection after immunization,
7 especially those that were severe enough to be
8 hospitalized. One good thing about some of the
9 studies that you've done is you've really recruited
10 from a broad range of demographics. You have
11 29 percent of participants in 04 and 20 percent in
12 03, which is just really impressive. Often, a lot
13 of poorer outcomes happen in people from
14 underrepresented minority, low socioeconomic
15 status, and I wanted to see those individuals that
16 had breakthrough infection after your product. I
17 wanted to know more about this population, the
18 demographics of this population.

19 DR. VILLAFANA: Yes. Thanks for the
20 question. I'd like to ask Dr. Leach to come up and
21 address the question of breakthrough infections and
22 what we see across different populations.

1 Dr Leach?

2 DR. LEACH: Just calling a slide, I believe
3 the question relates to when we start thinking
4 about those more serious breakthroughs that end up
5 in hospital, whether we see anything different
6 across the subgroups.

7 Now, slide up, please. This is efficacy
8 against hospitalization taken from all subjects in
9 Trial 04, and you'll see the overall estimate,
10 which we've mentioned before, is 76.4 percent. And
11 when we look at this by subgroup, you'll see that
12 the estimate of effect is always favoring
13 nirsevimab and falls within the confidence interval
14 of the overall effect. So I hope that's
15 reassuring. Thank you.

16 DR. OFOTOKUN: Just a quick follow-up here.
17 If I look at race and look at the black, African
18 American, confidence interval, you can see that
19 line crosses your predefined -- I don't know if you
20 want to elaborate a little bit more on that.

21 DR. LEACH: I think what might be helpful to
22 show is the actual by race data actually from the

1 U.S., which we have, so slide up. This is looking
2 at Trial 03 all subjects and Trial 04 all subjects.
3 This is medically attended RSV LRTI itself, rather
4 than with hospitalization, to have enough numbers
5 to be able to see some patterns there. You'll see
6 that in both studies, both Trial 03 and Trial 04,
7 we have efficacy demonstrated in the black, African
8 American, population. It doesn't reach statistical
9 significance in the Trial 04 all subjects, but you
10 have a confidence interval that is separated from
11 zero in the Trial 03. So it's when you take all
12 the data together that I think you have confidence
13 there is efficacy across subgroups, and actually
14 this is supported by PK analysis, looking at our PK
15 levels by race and ethnicity. Thank you.

16 DR. OFOTOKUN: So if I look at this data,
17 would you say this is some issue of the number;
18 that you don't have enough numbers to achieve the
19 precision you're looking for? Can we interpret
20 this as saying the trend here is that it seems that
21 people, black, African American, are likely at a
22 disadvantage when it comes to severe disease, at

1 least hospitalization. I just want some clarity on
2 that.

3 DR. LEACH: Oh, I'm sorry if I haven't been
4 clear. No, I believe the data is pointing in the
5 other direction; that actually African Americans
6 have similar to the overall protection both against
7 medically attended RSV LRTI, as well as with
8 hospitalization. And if you would like, I can just
9 show you -- slide up now -- the PK data that is by
10 racial group, which I believe is reassuring that in
11 the black, African American, population, the levels
12 of nirsevimab are similar.

13 DR. OFOTOKUN: Thank you.

14 DR. LEACH: Thank you.

15 DR. BADEN: Thank you.

16 I have one last question while I make sure
17 none of my compatriots have any more questions, and
18 this is to the agency.

19 The second dose was given in about
20 220 participants. I just want some guidance from
21 the agency on how to think about the extrapolation
22 to year 2 framing when the empiric data are limited

1 but the biologic rationale is so strong, a
2 precedent for extrapolation in this setting.

3 DR. SINGER: Mary Singer, FDA, CDER.

4 DR. BADEN: Any agency/colleague comment?

5 DR. SINGER: Hold on a minute here.

6 Justin Earp will try to answer that
7 question. We do extrapolation a lot with pediatric
8 populations.

9 Justin, please add.

10 DR. EARP: Yes. So as you said, the key
11 points that we've defined around the extrapolation
12 have been really around the nature of the disease
13 etiology. The fact that the target remains the
14 same across populations and across seasons -- I
15 guess now we're talking from Season 1 and
16 Season 2 -- the biggest thing that jumps out in my
17 mind with Season 2 is you're going to
18 200 milligrams, so your exposures are going to be
19 that much higher at this point.

20 I've outlined these assumptions that we make
21 when we extrapolate but, really, I don't know that
22 we're going to find, from the data set that we

1 currently have, that evidence for comparison I
2 think you're looking for on top of this. But given
3 the precedent that I've seen in this area, the
4 extrapolation -- just my personal take, for me
5 specifically -- has been that this is a reasonable
6 starting point, but we'd certainly welcome any
7 input that you or the committee members have today
8 on thoughts about those considerations that we're
9 taking here.

10 DR. BADEN: Thank you.

11 Dr. Green may get the last question.

12 DR. GREEN: Thanks. Mike Green, Pittsburgh.
13 This is to the applicant. We're not going to
14 consider the answer to this question, really, in
15 our decision making, I don't think, but can you
16 share with us what is the age and type of
17 immunosuppressed children you have in your ongoing
18 study looking at that population? Thanks very
19 much.

20 DR. VILLAFANA: Yes. I'd like to ask
21 Dr. Mankad to come up and go through the
22 populations in the MUSIC study.

1 DR. MANKAD: Vaishali Mankad, clinical
2 development, AstraZeneca. Can I get the slide up?
3 The populations in Trial 08 are infants up to
4 24 months of age who are entering their first or
5 their second RSV season and are followed through
6 360 days post-dose. You can see here these are the
7 percentage of subjects that meet inclusion
8 criteria, qualifying them for enrollment, and these
9 are children who have either a primary immune
10 deficiency or a secondary immunodeficiency due to
11 HIV virus infection, organ, or bone marrow
12 transplant, or receiving immunosuppressive
13 chemotherapy or other immunosuppressive therapy,
14 including high-dose systemic corticosteroids or
15 immunosuppressive therapy.

16 As you can see, these infants and children
17 can meet more than one of these criteria to qualify
18 for enrollment. On the right-hand side of the
19 slide, you can see the demographic characteristics
20 of the 100 children that have been enrolled in this
21 trial. Thank you.

22 DR. GREEN: Thanks very much. The

1 performance of this study is very appreciated by
2 those of us that care for these children.

3 DR. MANKAD: Thank you.

4 DR. BADEN: Thank you.

5 I thank everyone in the clarification
6 session, especially the applicant and the agency
7 for being so versatile in responding.

8 We will now proceed with the charge to the
9 committee from Dr. Belew.

10 DR. VILLAFANA: Dr. Baden, just one request
11 for a minute? We're generating an answer to the
12 response for Dr. McMorrow. Should we just send
13 that when we're done? I'm not sure it's quite
14 ready yet, but we will have a response to her
15 question.

16 DR. BADEN: I mean, I guess the agency's
17 happy to receive it. I think we're going to move
18 to the formal part.

19 DR. VILLAFANA: Okay. We can follow up
20 later then. Thank you.

21 DR. BADEN: Please. I think that would be
22 reasonable because I think it's important that

1 we're able to get to the voting and discussion
2 matters for the agency. But, Dr. Villafana, we
3 really appreciate the vigor of the responses and
4 the completeness to respond to all the questions.
5 Thank you.

6 DR. VILLAFANA: You're welcome

7 DR. BADEN: So we will now proceed with
8 charge to the committee from Dr. Belew.

9 **Charge to the Committee - Yodit Belew**

10 DR. BELEW: Thank you, Dr. Baden.

11 Good afternoon. Again, Yodit Belew. I am
12 the associate director for therapeutic review in
13 the Division of Antivirals, Office of Infectious
14 Diseases, CDER, FDA, and I will be providing the
15 charge to the committee.

16 This morning, we heard from both the FDA and
17 the applicant about the data contained in this BLA
18 to support use of nirsevimab for the prevention of
19 RSV disease. To briefly remind you, the proposed
20 indication is prevention of RSV lower respiratory
21 tract disease in neonates and infants born during
22 or entering their first RSV season; children up to

1 24 months of age who remain vulnerable to severe
2 RSV disease through their second RSV season, and
3 the proposed dosing is as follows: for the first
4 season, a single 50-milligram IM injection for
5 infants weighing less than 5 kilograms and a single
6 100-milligram IM injection for infants weighing at
7 least 5 kilograms; for the second season, a single
8 200-milligram IM injection for children less than
9 24 months of age who remain vulnerable to severe
10 RSV disease through their second RSV season as
11 proposed.

12 We also heard this morning that RSV disease
13 can be severe or serious. To date, palivizumab is
14 the only FDA-approved product for the prevention of
15 RSV disease in certain pediatric patients, and
16 summarized here are the specific populations for
17 whom palivizumab is approved.

18 For this biological application, three
19 clinical trials provided the safety and efficacy
20 data. Trial 03 was conducted in neonates and
21 infants born at least 29 weeks of gestation up to
22 35 weeks of gestation and entering their first RSV

1 season. Trial 04 was conducted in neonates and
2 infants born at least 35 weeks of gestation and
3 entering their first RSV season.

4 In Trial 05, the trial was conducted in two
5 seasons. Season 1 enrolled neonates and infants
6 born at 35 weeks of gestation, less than 35 weeks
7 of gestation, including those less than 29 weeks of
8 gestation. Season 1 also included infants with
9 chronic lung disease of prematurity or
10 hemodynamically significant congenital heart
11 disease. Season 2 enrolled children up to
12 24 months of age who remain vulnerable to severe
13 RSV disease.

14 Key efficacy and safety considerations for
15 this application included efficacy of nirsevimab in
16 neonates and infants born during or entering their
17 first RSV season as assessed by chronological or
18 gestational age; the efficacy of nirsevimab in
19 children less than 24 months of age who remain
20 vulnerable to severe RSV disease during their
21 second RSV season. With respect to safety, the key
22 considerations included hypersensitivity reactions,

1 including anaphylaxis and other serious adverse
2 events, including death.

3 The first voting question is as follows. Is
4 the overall benefit-risk assessment favorable for
5 the use of nirsevimab for the prevention of RSV
6 lower respiratory disease in neonates and infants
7 born during or entering their first RSV season?
8 Second, we ask the committee to discuss the
9 following. Please comment on the benefits and
10 risks for nirsevimab when assessed by chronological
11 and gestational age groups. Discuss the population
12 or subpopulation for whom nirsevimab administration
13 in the first RSV season would be most appropriate.

14 The second voting question is, is the
15 overall benefit-risk assessment favorable for the
16 use of nirsevimab for the prevention of RSV lower
17 respiratory tract disease in children up to
18 24 months of age who remain vulnerable to severe
19 RSV disease through their second RSV season?

20 The last question, which is a discussion
21 question asks, in the context of potential future
22 availability of maternal RSV vaccine to protect

1 infants from RSV disease during their first RSV
2 season, what additional data may be helpful to
3 inform future recommendations regarding the use of
4 nirsevimab in infants born to mothers who receive
5 RSV vaccination?

6 We thank the committee for their time today,
7 and we look forward to your deliberations. Thank
8 you.

9 **Questions to the Committee and Discussion**

10 DR. BADEN: Thank you, Dr. Belew.

11 The committee will now turn its attention to
12 address the task at hand, the careful consideration
13 of the data before the committee, as well as the
14 public comments.

15 We will now proceed with the questions to
16 the committee and panel discussions. I'd like to
17 remind public observers that while this meeting is
18 open for public observations, public attendees may
19 not participate, except at the specific request of
20 the panel. Dr. Jankowski will provide the
21 instructions for the voting.

22 DR. JANKOWSKI: Thank you, Dr. Baden.

1 This is She-Chia Jankowski, the DFO. Our
2 first question is a voting question. Voting
3 members will use the Zoom platform to submit their
4 vote for the meeting. If you are not a voting
5 member, you will be moved to a breakout room while
6 we conduct the vote. After the chairperson has
7 read the voting questions into the record and all
8 questions and discussion regarding the wording of
9 the voting question are complete, we will announce
10 that voting will begin. A voting window will
11 appear where you can submit your vote. There will
12 be no discussion during the voting session.

13 You should select the radio button that is a
14 round circular button in the window that
15 corresponds to vote, yes, no, or abstain. Please
16 note that once you click the submit button, you
17 will not be able to change your vote. Once all
18 voting members have selected their vote, I will
19 announce that the vote is closed. Please note,
20 there will be a momentary pause as we tally the
21 results and return non-voting members into the
22 meeting room. Next, the vote results will be

1 displayed on the screen. I will read the vote
2 results from the screen into the record.
3 Thereafter, the chairperson will go down the list,
4 and each voting member will state their name and
5 their vote into the record.

6 Are there any questions about the voting
7 process before we begin?

8 (No response.)

9 DR. JANKOWSKI: Hearing none, I just want to
10 note, question number 3 is also a voting question
11 and will follow the same procedure.

12 Since there are no further questions, I will
13 hand it back to Dr. Baden, and we can begin. Thank
14 you.

15 DR. BADEN: There are no questions about the
16 process, so question 1 -- Oh, Dr. Kotloff has a
17 question.

18 DR. KOTLOFF: Sorry. I was slow on that.

19 How does the discussion filter in? I had
20 asked before, for example, if there's a nuance, if
21 we feel that the data support a certain
22 chronological or gestational age but not another,

1 how does that factor into our voting?

2 DR. BADEN: May I ask the agency to respond?

3 (Pause.)

4 DR. BADEN: Thank you, Dr. Farley.

5 DR. FARLEY: Hi, Dr. Baden, and sorry for
6 the delay.

7 Thank you, Dr. Kotloff, for the question. I
8 think there are two opportunities to opine on the
9 issue that you bring up. The first is, I would
10 imagine, as the chair usually does, that the
11 committee will have an opportunity to explain their
12 vote after their vote, and that the panel will be
13 polled. And secondly, of course we've crafted a
14 discussion question, which is question number 2,
15 which I think also addresses that issue.

16 I think what we were imagining is that the
17 committee, if there was a group of infants that
18 they felt that the benefit-risk was favorable for
19 within the phrasing of question 1, that you might
20 consider an affirmative vote and then explain your
21 position in either the discussion or
22 question number 2, but I ultimately defer to the

1 chair on that issue.

2 DR. BADEN: Thank you, Dr. Farley. I was
3 going to have a similar answer, but I want the
4 agency to lead in how this is framed.

5 The voting question is whether or not we
6 think, as individuals given all the data, there is
7 efficacy in any circumstance. Then after the vote,
8 we each will formally state our vote in the record
9 and explain our rationale. Then, Dr. Farley, as
10 the agency has provided provocative discussion
11 questions, that opens up a lot more discussion
12 about the nuance of where efficacy may be known or
13 not known, and there needs to be more thought as we
14 go forward as a community to understand the
15 risk-benefit in different vulnerable communities.
16 I think I'm understanding the guidance from the
17 agency as we've done in other meetings.

18 Does that seem reasonable, Dr. Kotloff?

19 DR. KOTLOFF: Yes, very much. Thank you.

20 DR. BADEN: If no other questions about the
21 process, and as highlighted, we'll vote, and then
22 we will have plenty of time to discuss and explain

1 the nuances of our thinking, we should probably
2 move to the first voting question, and I think I
3 need to formally read this into the record.

4 Question 1, a voting question, is the
5 overall benefit-risk assessment favorable for the
6 use of nirsevimab for the prevention of RSV lower
7 respiratory tract disease in neonates and infants
8 born during or entering their first RSV season.

9 A) If yes, please discuss your rationale; B) If no,
10 please comment on what additional clinical data are
11 needed to support this indication.

12 Are there any questions about the question?

13 DR. OFOTOKUN: This is Igho Ofotokun from
14 Emory. I think the way the question is phrased, it
15 assumes this distinct RSV infection and the
16 distinct RSV season in all parts of the country at
17 all times. But from the data presented, the
18 presentation, that is not necessarily the case. So
19 it's a little confusing. What if I live in Georgia
20 where the weather is warm and maybe no seasonal
21 pattern to RSV, then that question becomes --

22 DR. BADEN: Dr. Ofotokun -- and, of course,

1 I always appreciate the agency chiming in -- my
2 interpretation of this is might there be benefit of
3 this monoclonal in infants who have yet to be
4 exposed to RSV, and where it's seasonal, it becomes
5 easier to think about the seasonal deployment as
6 discussed, and where it's not seasonal, then the
7 deployment will require more nuance from oversight
8 agencies.

9 Is that it, Dr. Farley?

10 DR. FARLEY: Yes, I agree with your
11 response, Dr. Baden. And again, while voting is
12 very important, the agency really values the
13 discussion period that follows the vote so that you
14 can share your recommendations and any nuances to
15 your vote. That's very important to us. Thank
16 you.

17 DR. BADEN: Thank you.

18 Dr. Krug?

19 DR. KRUG: Hi. This is Steve Krug. I'm
20 from Lurie Children's Hospital, Chicago. I'm a
21 pediatric emergency physician. There's a lot of
22 excellent networking that goes on amongst those of

1 us who practice various specialty medicine, and
2 while the RSV season looks different in Georgia, at
3 least based upon feedback from colleagues who work
4 at the children's hospitals there, in Florida and
5 Texas -- I can't really comment on Hawaii -- there
6 are still surges. There is still a surge. The
7 surge may occur in various bursts through the year
8 at odd times.

9 And again, getting back to the comments I
10 made much earlier, part of this is a public health
11 intervention.

12 DR. BADEN: I just want to say one thing.
13 We have to be very careful about process. We need
14 to vote before we explain how we're going to vote,
15 so it's very important not to express how you might
16 vote prior to the vote, and then afterwards, we'll
17 have discussion as to the rationale each of us has
18 given how we voted.

19 DR. JANKOWSKI: This is She-Chia Jankowski.
20 Thank you, Dr. Baden, for mentioning that.

21 To the panel members, please vote as it is,
22 and the wording itself, please go ahead and let's

1 get ready to vote as what's been written. We
2 really welcome your rationale after the vote.
3 Thank you so much.

4 DR. BADEN: And to Dr. Krug, we are going to
5 be very interested in your thoughts, so the
6 thoughts that you're sharing, we want to hear.
7 Let's do that after we vote. Thank you.

8 Let me turn it back to Dr. Jankowski for the
9 next step in the process.

10 DR. JANKOWSKI: Thank you, Dr. Baden,
11 Dr. Krug, and everyone else.

12 We will now move non-voting participants to
13 the breakout room.

14 (Voting.)

15 DR. JANKOWSKI: Thank you for your patience.
16 Again, this is She-Chia Jankowski. Voting has
17 closed and is now complete. The voting results
18 will be displayed.

19 (Pause.)

20 DR. JANKOWSKI: Thank you for your patience.
21 Again, this is She-Chia Jankowski, the DFO. The
22 voting has closed and is now complete. The voting

1 results will be displayed, and it is displayed
2 right now, and there are a total of 21 yeses, zero
3 noes, and zero abstentions.

4 Back to you, Dr. Baden. Thank you.

5 DR. BADEN: Thank you.

6 We'll now go down the list and have everyone
7 who voted state their name and vote into the
8 record. Please also answer the subparts A or B
9 based on your vote, obviously 21 to 0, yes. Please
10 unmute yourself and turn on your camera when
11 speaking. We'll start with the first person on the
12 list.

13 Where is the list?

14 DR. JANKOWSKI: Sorry about that, Dr. Baden.
15 We'll pull it up momentarily. Thank you.

16 DR. BADEN: Thank you; that way it will be
17 an orderly discussion. And to the panel members,
18 here is an opportunity to share your thoughts as to
19 why you voted yes, and other important
20 considerations for the agency as they consider
21 whether or not to move this therapy forward.

22 Dr. Jackson?

1 DR. JACKSON: Thank you. Mary Anne Jackson,
2 pediatric ID, Children's Mercy, UMKC. My vote is
3 yes, and it relates to four different factors.
4 First off, this is one of the most important
5 infectious diseases, resulting in significant
6 illness in the pediatric population, so there's a
7 need. Two, I think the presentations we saw
8 assured me that there is good immune-based data,
9 there's good safety data, and there's good efficacy
10 data that shows that the product will prevent a
11 significant number of cases of RSV lower
12 respiratory tract disease.

13 DR. BADEN: Thank you.

14 Dr. Green?

15 DR. GREEN: Michael Green, University of
16 Pittsburgh, pediatric infectious disease. I voted
17 yes. Like Dr. Jackson, I thoroughly agree that
18 this is a very important problem. I've been taking
19 care of kids with RSV for more than 40 years, and
20 I'm excited about this. I think the data that we
21 saw showed primary efficacy against medically
22 attended RSV lower respiratory tract infection in

1 both studies, and the secondary endpoint of
2 hospital was shown in the first study, and perhaps
3 was shown in the second study if you combined the
4 primary data set and the safety data set.

5 There was no real significant safety signal
6 to worry about, there was no real viral
7 breakthrough, and I think that by expanding the
8 availability of this RSV protective strategy to all
9 children less than 12 months of age, we're going to
10 have great benefit. The value of giving it as a
11 single dose I think is going to make its
12 operational implementation much easier and assure,
13 hopefully, a more equitable availability of the
14 product to all children who could all benefit.

15 Thanks very much.

16 DR. BADEN: Thank you.

17 Dr. McMorrow?

18 DR. McMORROW: Yes. Meredith McMorrow, CDC.
19 Likewise, I supported the efficacy assessment, the
20 benefit-risk assessment. RSV is the leading cause
21 of hospitalization in infants in the United States,
22 and the high efficacy shown against medically

1 attended RSV-associated LRTI and hospitalizations
2 that was reproducible across multiple settings was
3 reassuring to me. I also found the safety data
4 reassuring with few SAEs and no deaths related to
5 the investigational product, and look forward to
6 further discussion.

7 DR. BADEN: Thank you.

8 Dr. Patel?

9 DR. PATEL: Nimish Patel, University of
10 California San Diego. I voted yes for a number of
11 reasons. The drug performed extraordinarily well
12 in a variety of cohorts, including those that were
13 preterm and those that were at term, and those who
14 were at high risk for RSV. I think the once
15 seasonal dosing is a huge advance, and this is
16 probably the closest thing to an RSV vaccine that
17 we have, and it really moves the field forward,
18 especially considering all the comments about how
19 severe RSV is and the tolls taken on their health
20 systems.

21 DR. BADEN: Thank you.

22 Dr. Kotloff?

1 DR. KOTLOFF: Hi. This is Karen Kotloff. I
2 voted yes because I think that there is a very
3 well-characterized burden of severe disease that
4 needs to be prevented. I think that a single dose
5 that's long-acting improves compliance. I think
6 that the data were robust and they addressed a
7 diversity of relevant risk groups and demographic
8 groups, and were very well conducted. I think that
9 the safety data were also compelling.

10 I think there are a couple of nuances that
11 will need to be addressed. I think in terms of
12 gestational age, the group less than 29 weeks
13 gestation, I think the burden in that group is
14 generally demonstrated, and I think data on PK
15 could be extrapolated to make convincing
16 recommendations in that group. The nuances that I
17 think, though, will need to be addressed when it
18 comes to policy recommendations are, one, that I
19 don't know that we have enough data to assess
20 benefit-risk in the kids who are older than
21 6 to 8 months of age because they had so few events
22 that it's really a matter of is the disease burden

1 sufficient to warrant a recommendation in that age
2 group.

3 I also think that implementation, especially
4 with a lot of variance these days in seasonality,
5 will be challenging and will have to be considered
6 very carefully. I think that effectiveness studies
7 that address some of these issues will also be
8 really important post-licensure.

9 DR. BADEN: Thank you.

10 Dr. Cataletto?

11 DR. CATALETTTO: Mary Cataletto, pediatric
12 pulmonary, recently retired from NYU School of
13 Medicine. I voted yes because I thought that the
14 presentations were very comprehensive. I thought
15 that the data was very robust both in terms of the
16 efficacy and the safety. This is a tremendous
17 problem, particularly in the postneonatal and young
18 infants that we see in our daily clinical practice.
19 I'd like to see more information, however, looking
20 at the seasonality areas of seasonality, and also
21 the different types of immunodeficiencies that are
22 tremendously affected by this disease. Thank you.

1 DR. BADEN: Thank you.

2 Dr. Krug?

3 DR. KRUG: Hi there. Steve Krug. Again,

4 I'm from Lurie Children's Hospital in Chicago and

5 the Feinberg School of Medicine. I'm a pediatric

6 emergency physician, and I have literally taken

7 care of thousands of children with RSV. I voted

8 yes, and I voted yes for many of those same

9 excellent reasons that were already offered. This

10 is a pathogen that has a substantial impact on the

11 lives of young children, again, causing significant

12 morbidity and mortality. It has a profound impact

13 on healthcare providers, and it has a substantial

14 impact on other children who just happened to be

15 sick and need to be admitted to the hospital, and

16 particularly children with special healthcare

17 needs.

18 I think the point raised by, I think,

19 Dr. Kotloff, I think we need to look at the

20 gestational group less than 29 weeks because they

21 appear to have that same risk profile as well, and

22 it was probably a difficult group to study, so

1 that's more work to be done. I do agree that the
2 seasonality differential that might occur in a
3 certain part of the nation might require modified
4 practice patterns but, again, thank you.

5 DR. BADEN: Thank you.

6 Dr. Hazra?

7 DR. HAZRA: Yes. Hi. Rohan Hazra from
8 NICHD, NIH, and I voted yes. I do not disagree
9 with anything that the other committee members have
10 stated so far. I think what I'd like to just add
11 is really to praise the sponsor on two really very,
12 very well designed and well executed trials, so
13 that really gave me a lot of confidence for my yes
14 vote.

15 I also want to acknowledge how much input
16 they took -- they mentioned it both in the slide
17 set and in comments -- from experts throughout the
18 field, as well as the regulatory agencies; not just
19 at the beginning and through their planning, but
20 then through the complications of the pandemic and
21 whatnot, too. So it really resulted in some very,
22 very clean, very convincing data, so I really

1 wholeheartedly voted yes. Thank you.

2 DR. BADEN: Thank you.

3 Dr. Stokes?

4 DR. STOKES: Hi. Thank you. Stacey Stokes
5 from George Washington University and Children's
6 National in Washington, DC. I voted yes as well.
7 I would, again, just echo what a lot of people have
8 said about the efficacy and safety data just being
9 quite robust across demographics and gestational
10 ages.

11 I also thought about this entire
12 presentation in the context of practice and public
13 health, and was thinking about morbidity and my
14 patients who have RSV, and the correlation
15 potentially down the road of development of asthma
16 and the profound morbidity that's associated with
17 that; resource utilization from primary care
18 offices to ICUs and the impact that a medication
19 like this may have; opportunity and costs with the
20 lens of equity for families that have to keep
21 children at home, even if they're not hospitalized
22 with RSV; and the potential for improved health

1 equity overall relating to the simplicity of dosing
2 and frequency, which I very much appreciate.

3 The only other thing that I'll mention is I
4 did hesitate a little bit in the greater than
5 8-month old demographic just because I felt like
6 the robustness of that data was not as strong but
7 overall encapsulated that in my yes vote.

8 DR. BADEN: Thank you.

9 Dr. Lewis?

10 DR. LEWIS: Hi. Tamorah Lewis,
11 neonatologist from Sick Kids in Toronto. I voted
12 yes. I agree with everything that the other
13 panelists have already said, and the only thing I
14 would add is that as a neonatologist, I see a lot
15 of late preterm and term children in the first
16 2 months of life who end up hospitalized in the ICU
17 with RSV, and because the currently approved
18 preventive medication is very restrictive in the
19 population, there are a lot of children that fall
20 outside of that, that suffer, and their family
21 suffers, in the ICU, so that was a big driver of my
22 decision.

1 DR. BADEN: Thank you.

2 Dr. Diekema?

3 DR. DIEKEMA: Hi. Doug Diekema. I practice
4 pediatric emergency medicine and bioethics. I
5 voted yes for many of the same reasons that have
6 already been spoken. The incredible importance of
7 a disease that affects almost every child before
8 the age of 2, the impact of that disease on their
9 families, on the children themselves and the
10 healthcare system, all make a product like this
11 very important. I was convinced by the efficacy
12 data. I was reassured by the safety data, and this
13 particular product offers the advantage of a single
14 dose, which will not only increase compliance and
15 real-world efficacy but also, I think, improve
16 equity.

17 DR. BADEN: Thank you.

18 Dr. Siberry?

19 DR. SIBERRY: Hi. George Siberry, USAID. I
20 voted yes. I thought that the studies as presented
21 showed clear evidence of efficacy and reassuring
22 evidence of safety across all the subgroups

1 presented, and I think that this could be a real
2 game-changer, so that yes is an enthusiastic yes.
3 Thanks.

4 DR. BADEN: Thank you.

5 Dr. Wilfond?

6 DR. WILFOND: I voted yes, and certainly for
7 the population of people for whom there is no
8 currently available medication, I think this is
9 absolutely fantastic, and I'm really, really
10 excited about the possibility of this being
11 approved, and available, and used.

12 I still have ambivalence about the
13 population of kids with chronic lung disease and
14 prematurity, who I care for. I think the benefit
15 of the one-time dose is less significant because
16 often those are kids who need to be seen on a
17 regular basis by their local pediatricians. More
18 importantly, that's part of why they come in is
19 because they need to get their their monthly
20 immunization.

21 I appreciate that parents ought to have a
22 choice about which one to do, but I worry that we

1 have limited data. With the extrapolated data
2 only, there will be some parents who I believe
3 might make a reasonable decision to prefer another
4 medication, and I worry that that won't be
5 available. Because the larger population of
6 healthy children is so great that formularies and
7 insurance companies are likely to say, indeed, this
8 will cover everybody. I appreciate the comments
9 about the extrapolated data suggesting efficacy,
10 but I'm still not sure about efficacy compared to a
11 drug for which we have a 25-year experience with,
12 and that just makes me uncertain. There was such
13 confidence among the presenters that, of course,
14 this is better. I will acknowledge and may be a
15 little skeptical that that's really the story.

16 DR. BADEN: Thank you.

17 Dr. Havens?

18 DR. HAVENS: Thank you. Peter Havens,
19 recently retired from the Medical College of
20 Wisconsin and Children's of Wisconsin. I voted
21 yes. I feel like the efficacy data clearly are
22 shown up to age 6 months. I think that after age

1 6 months, the data are sparse, so this might be
2 considered approval by extrapolation for those over
3 age 6 months. I worry about the strength of proven
4 benefit after 3 to 4 months given the data that we
5 saw on fall off in benefit at that time.

6 While the estimate of the relative risk
7 reduction is really quite robust across all study
8 groups, the absolute risk reduction really differs
9 by different groups. For example, the absolute
10 risk reduction will be quite small in older term
11 infants, whereas it's likely to be much larger in
12 premature infants, especially those with chronic
13 lung disease; however, I think that that's not the
14 job of this group to decide that. I note that the
15 labeled FDA indication for palivizumab is really
16 quite different than the AAP guideline on when to
17 use palivizumab, so I think we need to keep that in
18 mind, that guideline groups -- CDC, the AAP -- are
19 going to come up with when they think it's
20 appropriate to use. It's our decision to say
21 whether it's safe and effective. So that's why I
22 voted yes.

1 DR. BADEN: Thank you.

2 Dr. Hunsberger?

3 DR. HUNSMERGER: Sally Hunsberger,

4 biostatistician. I voted yes. The efficacy

5 endpoint as defined in the protocol was clearly

6 met, and it was met across the different subgroups.

7 I thought this was a very well-designed study and

8 implemented, especially in this difficult situation

9 that rates are very low and especially going into

10 COVID, so I thought that was a very strong study.

11 I was impressed by the primary endpoint

12 being very clearly defined, especially because it

13 was an international study, and I think that's a

14 strength of the study that that primary endpoint

15 had a clear definition, and I thought the safety

16 was reassuring. Then also, I was struck by the

17 FDA's analysis, where they imputed for missing

18 data, and the benefit held up across when they

19 imputed different things for the missing data, so I

20 do think the efficacy is a strong endpoint. That's

21 all. Thank you.

22 DR. BADEN: Thank you.

1 Dr. Hardy?

2 DR. HARDY: Hi. This is Dr. David Hardy
3 from Los Angeles. I am an adult infectious disease
4 practitioner, so I haven't seen a lot of RSV in my
5 practice, except for in older people. But I can
6 certainly attest to the fact, having heard and read
7 about this and better understood what this disease
8 process causes in terms of not only morbidity for
9 children but difficulty in the family situations,
10 and away from work, and all those sorts of things.

11 This product really does, I think, advance
12 what is out there already on the market because it
13 makes it easier to use because of a very keen
14 molecular change in the molecule. It pushes, and
15 advances, and broadens the patient populations that
16 can benefit, and we'll talk about the other one in
17 a few minutes I know. But I think efficacy and
18 safety have been shown very clearly by the two
19 clinical trials that we reviewed in detail, and
20 that there's really no reason that this product
21 should not be made available for marketing in the
22 U.S.

1 DR. BADEN: Thank you.

2 Dr. Baden, infectious diseases, Brigham and

3 Women's in Boston. I also voted yes. As already

4 stated, RSV is a really bad disease. In addition

5 to the safety, efficacy, immunology mechanism, very

6 clearly shown and very demonstrated, the

7 considerations include -- in addition to it

8 working, as the efficacy has shown -- there still

9 are many more questions that have to be thought

10 about. Safety in 3,000 is not safety in 3 million.

11 Safety for a year is not safety for a longer time,

12 although that should be much less of a risk in this

13 setting.

14 Understanding efficacy targets such as the

15 12.8 viral escapes, I think there are many more

16 questions that the community will have to be

17 vigilant on to optimize efficacy, but the

18 investigators, the company, and the sponsor

19 conducted a very well-done study under very trying

20 conditions. And as Dr. Hazra said, with COVID and

21 the world shutting down, they were still able to

22 conduct a high-quality study with an event rate to

1 demonstrate efficacy, and some of the event rate
2 issues I'm sure were impacted by COVID that the
3 sponsor was very diligent at addressing in a very
4 transparent fashion. So overall, the efficacy is
5 clear, more work to be done, but they've
6 demonstrated important benefits.

7 Dr. Perez?

8 DR. PEREZ: Thank you. Federico Perez from
9 the Cleveland VA Medical Center. I voted yes
10 because I was convinced by the consistent and
11 robust finding across a large body of data that
12 nirsevimab for RSV protected infants from RSV
13 illness. This indicates the possibility to protect
14 all infants across the entire season with a single
15 dose, which I find a very powerful intervention.
16 This is also with a drug that appeared to be well
17 tolerated with no safety concerns in term and
18 preterm infants. Thank you.

19 DR. BADEN: Thank you.

20 Dr. Ofotokun?

21 DR. OFOTOKUN: Thank you. Igho Ofotokun. I
22 am an adult infectious disease specialist at Emory

1 University here in Atlanta. I also share the same
2 sentiment as my colleagues. I am very impressed
3 with the efficacy, as well as the safety data, and
4 I really want to commend the applicant, as well as
5 the agency, in addition to the community members
6 who came to speak about this product.

7 I am particularly impressed with the details
8 of the study, the fact that they collected data on
9 special populations, including at-risk minority
10 populations and the immunocompromised population
11 enough to give us a level of certainty that this
12 drug is going to work across the board. So I was
13 very impressed, and that was why I voted yes.

14 The only intents of the policy going
15 forward, the number, the sample size for the
16 special populations, the immunocompromised
17 patients, the underrepresented minority, is small,
18 of course, as should be expected. I think going
19 forward, should this drug be approved as we design
20 the postmarketing surveillance study, post-approval
21 study, these are the populations that I really
22 would encourage the agency to pay attention to the

1 design such that more robust data can be collected
2 from the immunocompromised population, as well as
3 the population underrepresented minorities and
4 other at-risk groups.

5 Again, a statement about the seasonality of
6 RSV, when this drug should be in different
7 geographical locations based on the seasonality of
8 RSV should be something that the applicant should
9 think about as we make a final decision should this
10 product move forward; otherwise, I think it's a
11 great product. Thank you.

12 DR. BADEN: Thank you.

13 Dr. Walker?

14 DR. WALKER: Hi. Dr. Walker. I voted yes.
15 I share the same sentiments that have been shared
16 by my colleagues. Furthermore, as the consumer
17 representative, I voted yes because I firmly
18 believe that the children are our future, and I
19 believe that this product will ensure not only a
20 sustainable but a healthy future for them; so huge
21 kudos to the applicant, the agency, as well as the
22 testimonials that were shared by the family members

1 who were previously affected by this. Thank you.

2 DR. BADEN: Thank you.

3 Ms. Shackleford?

4 MS. SHACKLEFORD THOMAS: Hi. Jasmine
5 Shackleford Thomas here, representing the Lupus and
6 Allied Diseases Association. I voted yes. I'm
7 coming from a parent/caregiver perspective. I have
8 four children who battled RSV simultaneously,
9 ranging from the ages of 2 to 9 in October of 2022.
10 As a result of RSV, I have a child who is now
11 officially diagnosed with asthma. He was already
12 at risk before, but I do believe that RSV
13 definitely played a factor in his official
14 diagnosis. So based on seeing how the virus can
15 affect children of various ages is a major factor
16 and why I voted yes, as well as the safety and
17 efficacy information presented today.

18 DR. BADEN: Thank you.

19 For question 1, the vote was 21 to 0
20 that efficacy and safety has been established. The
21 panel was impressed with many features of the study
22 design, study conduct, study implementation, study

1 engagement, with the agency's experts, community,
2 and broad communities, including underrepresented
3 communities in research. The biology of the
4 intervention is clean and straightforward. Safety
5 did not show any concerns, consistent with how
6 these products behave. The immunology was very
7 supportive, and the efficacy with a clean
8 definition was robust across a variety of analyses.
9 The single-dose use is incredibly attractive.

10 Given all of that, certain caveats were
11 raised to just take under advisement. The issue of
12 comparison with palivizumab, particularly for those
13 children who already benefit from its use, needs to
14 be looked at with care before practices change
15 without high-quality comparative data. The
16 absolute versus relative risk needs to be looked at
17 carefully, as not all populations or subpopulations
18 may have the same amount of benefit, and that
19 should be thought about. Important populations
20 like immunocompromised patients need to be better
21 thought about to understand how this behaves and
22 considerations for deployment as one understands

1 seasonality in different regions and how that might
2 impact how this is deployed.

3 So overall, all committee members were
4 impressed with the conduct of the study and the
5 clean results that were presented, but as all good
6 research points out, there's still more work to be
7 done, but the committee believes this is an
8 important advance.

9 We should now move to the discussion
10 question. Before we go to the discussion question,
11 for the panel members, did I misrepresent anything
12 in the summation to the agency for question 1?

13 (No response.)

14 DR. BADEN: Not hearing a groundswell of
15 misrepresentation, thank you. I would like to move
16 to slide 4 and to question 2, which is a discussion
17 question.

18 Question 2 reads as follows. Please comment
19 on the benefits and risks for nirsevimab when
20 assessed by chronological and gestational age
21 groups. Discuss the population or subpopulation
22 for whom nirsevimab administration in the first RSV

1 season would be most appropriate.

2 Any questions about the wording of the
3 discussion question?

4 (No response.)

5 DR. BADEN: If there are no questions about
6 the wording, I will open the floor to discussion
7 about the issues raised here. As Dr. Farley
8 mentioned earlier, the agency is incredibly
9 interested in our thoughts and reflections, so
10 please speak up as to how you think about the
11 issues here for them to carefully consider as we
12 move forward.

13 Dr. McMorrow?

14 DR. McMORROW: Thank you, Dr. Baden.

15 Meredith McMorrow, CDC. I just wanted to respond
16 to a question raised by Dr. Ofotokun. We are
17 planning to look and to speak with jurisdictions
18 where seasonality of RSV is less well defined
19 and/or places that have year-round seasonality, so
20 that should nirsevimab receive FDA approval and
21 consideration by the ACIP, that we would be able to
22 come up with implementation strategies that would

1 address places that don't have clear seasonality.
2 Some of those discussions have centered around
3 either a longer duration of months of the year
4 where one might administer it and/or kind of
5 continuous year-round administration for newborns.

6 So there are some alternatives that we're
7 exploring, and just say that we are starting to
8 think about those things in terms of places that
9 have less well-defined seasonality. Thanks.

10 DR. BADEN: Thank you.

11 Dr. Siberry?

12 DR. SIBERRY: Thanks. George Siberry,
13 USAID. I think that the information we have about
14 risks is reassuring across all chronologic and
15 gestational age groups. I think the question about
16 benefits is a little bit different. It was
17 remarkably consistent in Study 03 and Study 04
18 across the different groups there, so I don't think
19 we need to parse too much. But I'll just say that
20 for the older infants and for children with
21 high-risk conditions, that's come up as an area of
22 discussion.

1 I think that the role here is to say, in my
2 opinion, there's no safety concern in those older
3 infants, just too limited participation to be able
4 to document the potential reduction in the risk of
5 RSV. But I think that a lot of that conversation
6 is for our CDC and professional society guidelines
7 colleagues, and not about enough evidence to
8 license the drug for all infants.

9 Then second -- and, Chair, I'll ask your
10 opinion on this -- for the children with high-risk
11 conditions, do you want us to defer discussing
12 those until after the next question, which refers
13 to the study of other children with high-risk
14 conditions, or do you want us to address that here
15 for newborn infants with high risks, say, pulmonary
16 or cardiac conditions?

17 DR. BADEN: I think that voting question 2,
18 question number 3, gets at that directly, so we
19 should probably discuss that after voting
20 question 3. I accept your comment that the issue
21 of extrapolation underlies this whole discussion,
22 so many of the thoughts will extend both to

1 discussion question 2 and voting 3, but I would
2 prefer that we vote on the second voting question
3 before we discuss the second voting question.

4 DR. SIBERRY: Very good, then I'll end
5 there. Thank you so much.

6 DR. BADEN: Thank you.

7 Dr. Green?

8 DR. GREEN: Mike Green, University of
9 Pittsburgh. I strongly agree with Dr. Siberry. I
10 think that answering the question about whether we
11 should use it in 7 month olds or 9 months olds,
12 really, we don't have the data yet, but this is
13 unique in that it's more like a vaccine. And as
14 Dr. Siberry said, the ACIP and CDC, as well as
15 specialty groups and organizations like the
16 American Academy of Pediatrics and others, will
17 likely weigh in to provide guidance.

18 If and once this is approved, I do think,
19 though, that it would be wonderful if the
20 applicant, and the agency, and the CDC, and the
21 other societies strongly encourage postmarketing
22 and real-world data acquisition and systematic ways

1 to try to formalize and fill in the gaps and
2 knowledge that we currently have, but I don't think
3 that should limit making this available on a broad
4 basis to anyone that's less than a year.

5 I will just add the point that the
6 epidemiologic basis of thinking that the older
7 infant may be at less risk was probably really
8 called into question for those of us that took care
9 of kids in the last year, where it wasn't just the
10 11-month olds that were having more important
11 illness, but toddlers as well. So this was a
12 really important eye-opening experience, where the
13 behavior of this virus changed, whether that was
14 because of lack of exposure during the years of
15 COVID when we wore masks and we didn't go out and
16 about, or other things. But I think we can get at
17 this through the work of postmarketing, real-world
18 data acquisition. Thank you very much.

19 DR. BADEN: Thank you.

20 Dr. Krug?

21 DR. KRUG: Hi. Thanks. This is Steve Krug,
22 pediatric emergency physician at the Lurie

1 Children's Hospital and Feinberg School of
2 Medicine. Again, I really want to applaud the
3 solid work by the applicant/sponsor and, again,
4 the outstanding work done by the FDA today.

5 Based upon the data that I've seen, I think
6 that there's a real benefit exceeding risk here,
7 although, again, while these were well-powered
8 studies, we'll learn a lot more from studies done
9 on even larger numbers of children. While I have
10 an opinion on this, I would absolutely defer to
11 groups like the AAP, CDC, ACIP, and many others who
12 will likely collaborate guidance for all of us to
13 follow as we see how this works. I will point out,
14 though, that not just during the pandemic but,
15 again, the world pre-pandemic, plenty of otherwise
16 incredibly well, healthy, beautiful children who
17 are more than 6 months of age, including toddlers,
18 are desperately ill with RSV, and particularly
19 large numbers of these children, in addition to the
20 children who appear to be at great risk during RSV
21 season. So I think we'll learn a lot more about
22 this as we hopefully get to start to use it. Thank

1 you.

2 DR. BADEN: Thank you.

3 Dr. Kotloff?

4 DR. KOTLOFF: I apologize because I actually
5 did address this in the first statement. But I
6 think that this study was not designed with the
7 primary endpoint being subgroup analysis, so we are
8 recommending approval based on the study design.
9 But I do think, as people have said, that it's the
10 CDC advisory groups that will incorporate
11 epidemiology into making these recommendations, and
12 that will be critical.

13 For example, there wasn't sufficient data
14 after 6 months. If you look at the subgroup in
15 these particular studies, I think to say there's
16 benefit, but that wasn't the design. But the CDC
17 can look at that, and look at the burden of
18 disease, and look at whether there are subgroups of
19 older kids who should have a recommendation. So I
20 think we've done our job, and that taking it from
21 here will be up to the CDC.

22 DR. BADEN: Thank you.

1 Dr. Havens?

2 DR. HAVENS: Peter Havens from Medical
3 College of Wisconsin. So we all agree that other
4 groups are going to make the epidemiologic
5 determination. The question for this group is, is
6 there enough data in the over 6-month or over
7 8-month for the FDA to approve the drug, and are we
8 doing it based on data or are we doing it based on
9 extrapolation from what we know in the younger
10 kids? That's, I guess, my question for the group
11 that I'm really interested in.

12 DR. BADEN: I have a comment for Dr. Havens,
13 but let me let Dr. Ofotokun talk first, and then
14 I'd like to share my thoughts, as Dr. Havens has
15 provocatively raised a key question.

16 DR. OFOTOKUN: Yes. Igho Ofotokun from
17 Emory, Atlanta. I think when we think about this
18 question, if you look at the data broadly,
19 regardless of the subgroup that was looked at,
20 whether the younger or the older age group, even
21 the at-risk population, the signal is there that
22 there was benefit. I think that was clear across.

1 I think the agency data, the scatter plots that
2 they showed at the beginning of their presentation
3 really clearly represented that no matter what
4 group you look at, there was that trend towards
5 benefit.

6 I think the issue here is they were not
7 designed to address those questions, but I think,
8 overall, if you say do no harm, there's no reason
9 to think that this would not benefit even the older
10 group of patients who are at risk, who will need
11 this. Like others have said, that is a question
12 for other agencies to address, but there's no red
13 flag to want to say this is going to be harmful for
14 individuals that are 6 months or older. And when
15 you look at the data, even though it's sparse and
16 it's not sufficient, there is evidence that there
17 is a trend towards benefit, and the risk across
18 board has been just minimal.

19 DR. HAVENS: Well, for sure. I agree that
20 there is no evidence of risk, but a 10- or
21 12-month-old child is much bigger, so they're going
22 to be 10 or even 12 kilos if they've tripled their

1 birth weight by 10 or 12 months. So thinking about
2 the appropriate dose in somebody who we haven't
3 really studied is different. In the second year
4 group, they doubled the dose; it was safe, so I'm
5 not worried about safety, but I do wonder about
6 efficacy in terms of potentially dosing and making
7 this jump based on extrapolation.

8 DR. BADEN: Dr. Havens, I share your
9 concern, but as the agency commented, they
10 routinely extrapolate, and part of the issue of
11 extrapolation is what's the strength of the logic
12 behind it given the needs of the untreated, and
13 from my perspective, the biology of this agent is
14 so clean, so that the risks of the unknown seems
15 smaller.

16 I do have concerns about safety in that a
17 drug that hangs around for a year for a rare safety
18 event, that could be trouble because you can't
19 unring the bell. But there was no evidence of
20 that, and it's something that will have to be
21 monitored for carefully. But the question of the
22 likelihood of activity of this agent against its

1 target remains high whether it's child A or
2 child B. I do think -- and we harped on this in
3 some of the discussion, what is a protective
4 titer -- the 12.8, as magic as that is, I'm not
5 convinced is as clean as it needs to be. But
6 that's the kind of measurement that can be iterated
7 on and improved on, which ultimately, is it really
8 the dose or is it really the level, which are
9 inextricably linked given the size of child. But
10 the biology is straightforward and compelling, and
11 the agency wants some guidance as to does that make
12 sense to extrapolate, and there's a rationale
13 there.

14 DR. HAVENS: Sure. But in Study 03, they
15 already changed the dose from 50 to 100 because at
16 5 kilos, it didn't seem to be enough. So if we're
17 looking at this in a milligram per kilogram dose,
18 it would be interesting to see the day 151
19 concentration by milligram per kilogram dose
20 administered.

21 DR. BADEN: To take your comment to the next
22 step, which doesn't need to happen, but I will,

1 what you're proposing is that, if approved and if
2 used, and if used through extrapolation, that
3 systematic measurements are done to really work out
4 dosimetry, as kids have different metabolism or
5 sizes, so that they can get the dosing optimized.

6 DR. HAVENS: The further you get away from
7 5 kilos, the lower the per kilo dose is,
8 extrapolation works with milligrams per kilogram,
9 not necessarily with a straight milligram dose in
10 somebody who's rapidly gaining weight, and kids
11 triple their birth weight by 10 months.

12 DR. BADEN: Point well made.

13 Seeing no other hands, and the hour is late,
14 my temptation is to skip the break and go right to
15 question 3, the second voting question.

16 Is there any objection to that?

17 (No response.)

18 DR. BADEN: If not, then I think we'll move
19 on to the next question, question 3, which is a
20 voting question.

21 Is the overall benefit-risk assessment
22 favorable for the use of nirsevimab for the

1 prevention of RSV lower respiratory tract disease
2 in children up to 24 months of age who remain
3 vulnerable to severe RSV disease through their
4 second RSV season. If yes, please discuss your
5 rationale. If no, please comment on what
6 additional clinical data are needed to support this
7 indication.

8 First, are there any questions about the
9 wording of the question?

10 (No response.)

11 DR. BADEN: If there are no questions or
12 comments concerning the wording of the question, we
13 can begin the voting. Dr. Jankowski will guide us
14 through the process.

15 DR. JANKOWSKI: Thank you, Dr. Baden. This
16 is She-Chia Jankowski, the DFO. Please bear with
17 me for a moment before getting ready to vote.

18 (Pause.)

19 DR. JANKOWSKI: We will now move non-voting
20 participants to the breakout room.

21 (Voting.)

22 DR. JANKOWSKI: Voting has closed and is now

1 complete. The voting result is displayed. There
2 are a total of 19 yeses, 2 noes, and zero
3 abstentions. Thank you.

4 Back to you, Dr. Baden.

5 DR. BADEN: Thank you.

6 We'll now go down the list and have everyone
7 who voted state their name and vote into the
8 record. Please also answer subparts A or B, based
9 on your vote and thoughts. Please unmute yourself
10 and turn on your camera when speaking. We'll start
11 with the first person on the list, Dr. Cataletto.

12 DR. CATALETTTO: Mary Cataletto. I voted
13 yes because I thought the data regarding efficacy
14 was good. I share some of the concerns that people
15 have about over the 8-month old, but this is a
16 high-risk population, and that swayed my decision.

17 The other thing has to do with the question
18 itself, talking about first or second season. I
19 think we need to clarify the recommendation, and
20 CDC and the other organizations will probably do
21 that in terms of how we handle areas of the country
22 where there's no seasonality to the RSV

1 epidemiology, so I voted yes. Thank you.

2 Dr. Wilfond?

3 DR. WILFOND: Yes. I also also voted yes.

4 And as someone who had already expressed concerns
5 about some of the subpopulations, I very much
6 appreciated all the comments of other members
7 pointing out, again, the distinction between our
8 role and of other entities who will be looking at
9 this in the future. So I feel much more
10 comfortable with supporting the FDA decision, but
11 also really hope, and really want to trust in my
12 other colleagues, and other agencies, and entities,
13 to look more carefully at both the quality of the
14 data now, as well as what further research is
15 needed to make evolving guidelines over time.

16 DR. BADEN: Thank you.

17 Dr. Siberry?

18 DR. SIBERRY: George Siberry, USAID. I
19 voted yes. I think that there is adequate safety
20 information, good results that look aligned with
21 expectations across other groups, good PK
22 information, and this is a critical population to

1 potentially benefit from this, so I voted yes.

2 DR. BADEN: Dr. Patel?

3 DR. PATEL: Hi. Nimish Patel, University of
4 California San Diego. I voted yes.

5 [Indiscernible].

6 DR. BADEN: Can you come closer to your
7 microphone?

8 DR. PATEL: Sure. I voted yes.

9 DR. BADEN: That's better.

10 DR. PATEL: The Season 1 efficacy data was
11 quite compelling, and extrapolating that into
12 year 2, or Season 2, knowing that the exposure was
13 doubled just made the argument a little bit more
14 solidified, and the safety data was quite strong,
15 so that was why I voted yes.

16 DR. BADEN: Thank you.

17 DR. Green?

18 DR. GREEN: Michael Green, University of
19 Pittsburgh. I voted yes. I acknowledge the
20 limitations of the data relating to efficacy, but I
21 believe the PK data supports extrapolation, which
22 has been the practice of FDA. Further, I think the

1 PK data -- taken along with the fact that we have
2 long experience with using palivizumab -- really,
3 in this age group, that is 12 to 24 months for
4 at-risk patients, to my understanding, the
5 mechanism or the biology of how the biologic works
6 is quite similar, so I would anticipate that it
7 should work. We clearly need to get postmarketing
8 and real-world data to help inform this should it
9 be approved by the agency. And again, I think that
10 this is something that can be looked at and
11 modified in terms of how it should be recommended
12 by the other agencies and organizations that will
13 have that responsibility. Thank you very much.

14 DR. BADEN: Thank you.

15 Dr. Krug?

16 DR. KRUG: Hi. Steve Krug from Lurie
17 Children's Hospital and the Feinberg School of
18 Medicine. I very much agree with what's been said
19 so far. The data supports the concept of
20 extrapolation to this older age group, and I think
21 there's, again, still very good safety data. The
22 question at hand here -- and again, we will rely

1 upon other groups to provide specific
2 guidance -- is on the highest risk subpopulation
3 amongst children from ages 12 to 24 months, so
4 that's why I voted yes.

5 DR. BADEN: Thank you.

6 Dr. Kotloff?

7 DR. KOTLOFF: I voted yes. This is the
8 established group with the highest disease burden
9 most in need of being prevented. There's biologic
10 plausibility. There is a strong precedent that
11 this would work with the existing approved
12 monoclonal antibodies. There were no safety
13 signals. There was a suggestion that incidence was
14 the same as a preparation with proven efficacy, and
15 it met criteria for extrapolation, so that's why I
16 did it. Thank you.

17 DR. BADEN: Thank you.

18 Dr. Diekema?

19 DR. DIEKEMA: Doug Diekema, University of
20 Washington and Seattle Children's. I agree with
21 everything people have said before me. This is a
22 particularly important problem for the group in

1 question here. I was convinced by the efficacy
2 data and reassured by the safety data.

3 DR. BADEN: Thank you.

4 Dr. Havens?

5 DR. HAVENS: Peter Havens, from the Medical
6 College of Wisconsin. I voted yes. I'm quite
7 comfortable with extrapolation in the context of
8 the robust PK data, noting that they doubled the
9 dose. The difference with this extrapolation data
10 versus the other is for the older kids under a
11 year, there's inadequate PK data. This has
12 adequate PK data, so I voted yes.

13 DR. BADEN: Thank you.

14 Dr. Hardy?

15 DR. HARDY: Hi. This is Dr. David Hardy
16 from Los Angeles, LA County USC, infectious
17 disease, adults. I voted yes because I think,
18 again, although the data was not as strong for this
19 group simply because it was not powered in the
20 clinical trial that was done, unfortunately, this
21 group of high-risk children remain I think some of
22 the most vulnerable, and therefore in need of a

1 preventative intervention that would prevent them
2 from getting a higher risk for mortality from this
3 disease, so that's why I voted yes.

4 DR. BADEN: Thank you.

5 Dr. Baden, Boston. I voted yes as well. As
6 already stated, the biology PK is pretty
7 straightforward. I think the key issue going
8 forward is to make sure that the PK in the relevant
9 populations like this one is understood, and the
10 viral susceptibility is also maintained because the
11 underpinning of the biology here is that
12 interaction, and I think target tissue attainment
13 shouldn't change. So as long as the community
14 maintains an eye on the underpinnings of
15 extrapolation, and they stay solid, then the
16 extrapolation I think is likely to be successful.
17 Thank you.

18 Dr. Stokes?

19 DR. STOKES: Thank you. Again, Stacey
20 Stokes from GW and Children's National in DC. I
21 voted yes. I don't have too much to add. In
22 addition to what everyone said, I will just say

1 that the conversations around feasibility of
2 Trial 05 options was very helpful to me, as well as
3 the understanding of extrapolation in this context;
4 so definitely thank you to the group and to the
5 sponsor for going through that multiple times. I
6 also really appreciated, and what helped in my
7 vote, the RSV neutralizing antibody level data, and
8 helped to solidify my vote as well. Thanks.

9 DR. BADEN: Thank you.

10 Dr. Lewis?

11 DR. LEWIS: Hi. Tamorah Lewis from Sick
12 Kids in Toronto. I voted yes. I think the key to
13 extrapolating in this group is that the sponsor
14 showed really strong exposure matching data, and it
15 was helpful to see the PK data over the wide range
16 of weights that can be seen in these older children
17 going into their second season. I found that
18 reassuring. So in addition to what everyone else
19 has said, that's why I voted yes.

20 DR. BADEN: Thank you.

21 Dr. Perez?

22 DR. PEREZ: Thank you. Federico Perez,

1 adult infectious diseases, Cleveland VA Medical
2 Center. I voted yes because it appears to me that
3 for children of the highest risk facing their
4 second RSV season, nirsevimab offers advantages.
5 And even though this decision is based on
6 extrapolation, the PK data regarding the high level
7 and long duration of sufficient antibody levels is
8 strong, and this extrapolation is therefore
9 reasonable. As pointed out by the verbatim
10 molecular surveillance of variants is also an
11 important consideration, and numerous discussions
12 of parents and expert pediatric care providers
13 following guidance by public health and
14 professional organizations will be necessary to
15 ensure proper use of this product vis a vis the
16 alternatives. Thank you.

17 DR. BADEN: Thank you.

18 Ms. Thomas?

19 MS. SHACKLEFORD THOMAS: Yes. My previous
20 answer to the first question kind of plays into
21 this. I think, again, coming from the caregiver
22 perspective and the safety data presented, that

1 played a major role in me voting yes. Thank you.

2 DR. BADEN: Thank you.

3 Dr. Walker?

4 DR. WALKER: Hi. Dr. Roblena Walker. I
5 voted yes, and I can concur with everything that
6 has already been expressed. Thank you.

7 DR. BADEN: Thank you.

8 Dr. Ofotokun?

9 DR. OFOTOKUN: Igho Ofotokun from Emory
10 University, adult infectious diseases. I voted yes
11 for the reasons many others have articulated. I
12 think for children at risk of RSV up to the age of
13 24 [sic - months], I see that there could be
14 benefit, and I do agree with all of the caveats
15 that better PK/PD data needs to be collected in
16 this population, but the information that was
17 presented was strong enough for me to think that
18 there is definitely going to be a benefit in this
19 population, so thank you.

20 DR. BADEN: Thank you.

21 I need to remind panel members to state
22 their name for the record.

1 Can Ms. Thomas state her name for the
2 record, please, in association with her vote?

3 MS. SHACKLEFORD THOMAS: Sure. My
4 apologies. Jasmine Shackleford Thomas. I voted
5 yes.

6 DR. BADEN: Thank you.

7 Dr. Hazra?

8 DR. HAZRA: Yes. Hi. Rohan Hazra from
9 NICHD, NIH. I voted yes. The agency clearly has
10 laid out a plan for extrapolation for these
11 populations, and the company, again, did a really
12 nice job with a trial through some difficult
13 circumstances. As other folks have raised, I think
14 there are still a few issues that will need to be
15 addressed in postmarketing and other studies. One
16 is that group with congenital heart disease had a
17 slightly larger proportion that was below that AUC
18 target after the first dose, and then certainly
19 both groups had higher than the comparison after
20 that second dose, but still certainly well below
21 the exposures seen in the adult studies.

22 I'll also just add, for these populations,

1 it may be a little bit harder to do routine
2 surveillance, but likely many of these populations
3 are in other long-term natural history type studies
4 for their conditions, so there may be opportunities
5 to work with NIH and other research organizations
6 to be able to get some of the surveillance and data
7 collected for these populations. But once again, I
8 was very comfortable voting yes.

9 DR. BADEN: Thank you.

10 Dr. Hunsberger?

11 DR. HUNSMERGER: Sally Hunsberger,
12 biostatistician. I thought about this a long time
13 and ended up voting no. I think I just was
14 uncomfortable with extrapolating quite that far,
15 and I worried that if I voted yes, then maybe there
16 wouldn't be quite as much studying done. So it's a
17 bit of a weak no, but hopefully that will just
18 emphasize that I feel like we do need more data on
19 this. I think we need to do more studies to
20 totally understand this. So it's a weak no, but I
21 just wanted to make sure people realize that I feel
22 like we need a little bit more data. Thank you.

1 DR. BADEN: Thank you.

2 Dr. Jackson?

3 DR. JACKSON: Mary Anne Jackson, pediatric

4 ID, Children's Mercy, UMKC School of Medicine.

5 This is a very nuanced no, and I'll tell you the

6 reason why. There's no question that there's a

7 very significant burden of disease in both

8 morbidity and mortality in this patient population.

9 What worried me was within the congenital heart

10 disease population, it was a smaller population

11 that was studied, and it wasn't very well nuanced

12 because many of these patients are undergoing

13 multiple different surgeries during that second

14 year, where they may have a complete exchange of

15 their blood volume and may require re-dosing.

16 So we don't have the data in that group, but

17 I feel very comfortable about the safety

18 information. I understand the PK information, but

19 in that congenital heart population, this may need

20 to be very nuanced, and if it can be in

21 post-licensure studies, then I'm very comfortable

22 with that.

1 DR. BADEN: Thank you.

2 Dr. McMorrow?

3 DR. McMORROW: Yes. Thank you. I apologize

4 for dragging my feet on this one, but my debate was

5 between yes and abstain, and that's because I

6 thought we were asked to extrapolate on both

7 efficacy and safety. There was very little data

8 presented. Only 220 infants received this in the

9 second year of life; however, I do believe that

10 there is little risk of a safety signal from this

11 product.

12 I also thought about abstaining because I

13 recognize the lower risk in the second year of

14 life; however, the comparator product, palivizumab,

15 I did feel like the peak concentrations were higher

16 from nirsevimab in terms of geometric mean antibody

17 concentration. And if I recall correctly -- and

18 others from the FDA or the manufacturer are welcome

19 to correct me -- I believe you don't achieve

20 palivizumab levels until you've received your

21 second or third dose. So for infants in whom

22 follow-up can be challenging, having to come in for

1 monthly injections may be a hurdle to equity and
2 feasibility, so I think the single-dose option made
3 me vote in favor of this. Thank you.

4 DR. BADEN: Thank you.

5 Dr. McMorrow, we need you to state your name
6 and vote for the record.

7 DR. McMORROW: My apologies. Meredith
8 McMorrow, CDC.

9 DR. BADEN: And you voted yes.

10 DR. McMORROW: I voted yes.

11 DR. BADEN: Thank you. I am tasked with
12 making sure we follow procedure, so I appreciate
13 the committee's sense of humor as I try to fulfill
14 my obligations.

15 So in terms of question 3 as a summary of
16 the committee's comments, to some degree question 3
17 and question 2, as Dr. Siberry already alluded to,
18 are based upon the same way of thinking. So in
19 trying to share the summation of the committee's
20 discussion for the discussion question and the
21 voting question, the vote was 19 to 2, yes, and the
22 fundamental concepts about extrapolation, the

1 committee is largely comfortable with given that
2 the biology of this particular product is
3 understood. PK can be measured and target
4 susceptibility is known, but these are things that
5 will have to be monitored and assessed.

6 The role of other bodies, such as the ACIP,
7 the Academy of Pediatrics, will allow more contours
8 to how this can be used clinically, so there's more
9 opportunity as more data emerges and as guidance
10 bodies weigh the emerging information to help
11 provide guidance to the community on how to use
12 these agents.

13 Some of the members noted that the
14 challenges with the noninferiority design and the
15 event rate, which is low when both agents are
16 active and when there is a shutdown, that it is
17 difficult to do an efficacy trial, but many members
18 noted that the efficacy signals were all in the
19 same direction even if underpowered for certain
20 groups. So there wasn't a concern of a flipping of
21 efficacy as much as a power to detect signal,
22 depending on which community we were looking at.

1 The PK in different groups needs to be
2 looked at carefully, as noted in the congenital
3 heart disease group, where the PK looked a little
4 different, and as Dr. Havens, one of our members,
5 mentioned, that dosing may be different based on
6 weight and rapid change in weight, and that needs
7 appropriate attention.

8 The two no votes, our colleagues raised very
9 important issues to pay attention to, both from an
10 agency standpoint, and an applicant standpoint, and
11 a community standpoint. We have to be careful when
12 something is approved, to then stop learning, and
13 that we do not have efficacy data. We have
14 extrapolated data that many of the committee think
15 make sense, but we should not take that as a signal
16 to not continue to do rigorous study, and that is a
17 concern when there isn't pressure to do those
18 studies, even though it's clearly potentially a
19 benefit to the community to better define how these
20 agents work. And I think the sentiment was to
21 encourage the agency, and more importantly, the
22 applicant, to generate the relevant data so that we

1 can be data driven.

2 Then the other important comment from our
3 committee members who voted no is that there's
4 nuance in these high-risk populations, and the
5 PK -- how drugs are used, how blood volume is
6 changed -- really is very nuanced in these
7 populations. So to understand how to use these
8 agents in those populations requires high granular
9 detail to best apply it in those specific
10 circumstances as opposed to more general
11 circumstances. Overall, the vote 19-2, but the
12 committee largely thought the extrapolation
13 approach had a solid foundation in this setting.

14 I once again open the floor if any committee
15 members think I misrepresented any of the important
16 concepts.

17 (No response.)

18 DR. BADEN: If not, we can move to the last
19 question, which is slide 9.

20 Question 4, a discussion question. In the
21 context of potential, future availability of
22 maternal RSV vaccine to protect infants from RSV

1 disease during their first RSV season, what
2 additional data may be helpful to inform future
3 recommendations regarding the use of nirsevimab in
4 infants born to mothers who receive RSV
5 vaccination?

6 Are there any questions about the wording of
7 the question?

8 (No response.)

9 DR. BADEN: If there are any questions about
10 the wording of the question, please speak up. My
11 impression from colleagues whose hands are up is
12 they're ready to discuss.

13 (No response.)

14 DR. BADEN: And seeing nobody speaking up
15 about the question, then what I'd like to do is to
16 open the floor and start with Dr. Patel in opening
17 this discussion.

18 DR. PATEL: Yes. When I read this question,
19 I think of two potential data gaps. They are
20 likely to be women who are unable to take these
21 investigational products and receive a maternal RSV
22 vaccine -- so if there's a certain selection bias

1 of those women and the children that are born to
2 them -- if nirsevimab still confers the same
3 benefit, but also if there's an additive benefit in
4 individuals who've received an RSV vaccine and
5 their infants received nirsevimab, is there
6 additivity that's experienced.

7 DR. BADEN: Thank you.

8 Dr. Cataletto?

9 DR. CATALETTA: I have no additional
10 comments. Thank you.

11 DR. BADEN: Oh, I'm sorry. I apologize. I
12 was misreading my screen.

13 Dr. Jackson? My mistake.

14 DR. JACKSON: Thanks very much. Additional
15 data that might be helpful with the future
16 availability of maternal RSV vaccine and regarding
17 the use of monoclonal antibody really relates to
18 how the epidemiology of this disease might change
19 and, as was discussed just briefly earlier, whether
20 or not the average age of disease may be pushed out
21 to an older older age for first infection, and
22 whether or not we have all the data we want for

1 those older infants in terms of dosing. And I'm
2 talking about 8 months and older, specifically.

3 DR. BADEN: Thank you.

4 Dr. Green?

5 DR. GREEN: Mike Green, Pittsburgh. I think
6 one of the things -- at least I don't have a
7 knowledge of the data and I don't know how well the
8 data were collected in the vaccine trials -- is
9 that women will pass transplacental antibody to
10 their unborn babies differentially, based upon
11 gestational age. So the amount of antibody that a
12 33-week gestational age baby will have in a mother
13 that was vaccinated is likely very different than a
14 39-week gestational age baby.

15 So one would love to have those data
16 available to you and perhaps stratified by age
17 groups, just being sort of off the top of my head,
18 32 to 34, 35 to 37, 38 to 40, something like that,
19 to see if there's a differential benefit based on
20 the gestational age that the baby is born at.

21 Then also as was mentioned just a moment
22 ago, the potential additive benefit that happens if

1 you give the monoclonal, long-acting antibody on
2 top of antibody that comes across the placenta, do
3 you enhance the level of protection? Because while
4 we had efficacy, we did not have a hundred percent
5 efficacy, and there could be differential efficacy.
6 So if the applicant could be so motivated, and if
7 they could cooperate either with the vaccine makers
8 to do a trial, or if they used as an inclusion
9 criteria women that were vaccinated as an inclusion
10 criteria for who they enrolled for babies to really
11 try to look at this study, stratified by
12 gestational age, and looking at both PK differences
13 and also efficacy differences in those that got
14 both versus those that got only one; and then, of
15 course, double checking the safety signal to make
16 sure that nothing untoward happens by doing this.
17 Thanks very much.

18 DR. BADEN: Thank you.

19 Dr. Siberry?

20 DR. SIBERRY: Thanks very much. George
21 Siberry, USAID, and I want to endorse first what
22 Dr. Green has suggested, especially the

1 stratification of the different gestational ages.
2 I'd also add to consider as lab specialists, if
3 it's feasible, to do in vitro or animal studies
4 that can confirm that the immune sera following the
5 maternal RSV vaccination -- so obtained from those
6 pregnant women -- does not interfere with the
7 neutralizing activity of the monoclonal antibody in
8 this product. It's unlikely, but I think it's
9 important to document that the serologic response
10 in the mother that would then be passively
11 transferred to the infant wouldn't interfere, at
12 least in vitro, with the neutralizing activity.

13 Beyond that, I think the rest could all
14 happen post-licensure, and I would hate to see any
15 restriction on using this product in infants if it
16 is going to be used routinely in infants based on
17 whether Mom got the RSV vaccine, but I would love
18 to see a study that can tease apart especially
19 infant getting this or not, in addition to the
20 mother vaccine; is there an added benefit or is it
21 simply just as good? That would be useful to know
22 where to put resources and what to emphasize.

1 Thanks.

2 DR. BADEN: Thank you.

3 Dr. Kotloff?

4 DR. KOTLOFF: Yes. I think that public
5 policy will require a trial that looks at these
6 interventions alone and separately, comparatively.
7 Financially, I don't think that our healthcare
8 system could tolerate universal recommendations for
9 both, and I imagine that there will be niches for
10 each, kind of in the way that varicella vaccine and
11 VZIG worked its way out. So I think there will
12 need to be studies that are done to figure out when
13 one is more useful than the other. I don't think
14 that would interfere with licensure, but I think it
15 would interfere with policy guidelines.

16 DR. BADEN: Thank you.

17 Dr. Ofotokun?

18 DR. OFOTOKUN: Igho Ofotokun from Emory. I
19 think I'm making the same points here, that it
20 would actually depend on the vaccine and the
21 durability of the passive immunity from the mother
22 to the baby. And I think until we have those data,

1 it's going to be really difficult on how to
2 position this product. My sense is how much of
3 this passive immunity is passed on to the baby and
4 how durable is that passive immunity? So we will
5 need additional data to look at the durability of
6 the passive immunity to the baby, and whether we
7 need to continue to study the efficacy comes to the
8 point of getting more data in the older children
9 who are at risk of developing RSV. So in terms of
10 additional studies, it would really depend on the
11 characteristics of the vaccine that is being
12 produced.

13 DR. BADEN: Thank you.

14 Dr. Baden. I'll make some comments.

15 Similar to what Dr. Kotloff and Dr. Ofotokun has
16 said, I think with tetanus and pertussis, there are
17 examples of where maternal vaccination prevents
18 neonatal disease. So I think there is a strong
19 logic here, and there are some data emerging in the
20 vaccine field, as suggested. What gets tricky, as
21 raised, is what's the correlate of protection? Do
22 we understand what that is? Is it antibody,

1 neutralizing antibody? Are they measuring the same
2 thing in a passive antibody versus a vaccine and
3 placental transferred antibody?

4 So it may not be the same moiety of
5 protection, so that has to be understood, and the
6 durability of that placental transfer, whether it's
7 a month, 6 months, and then the burden of infection
8 in the neonate to know at what point passive
9 immunity would add to maternal derived immunity.
10 So that has to be worked out scientifically.

11 The additional issue that I think we have to
12 think about is equity. I worry about certain
13 communities getting multiple layers of protection
14 and other communities not getting any. We have to
15 think about, as we deploy our resources, that we
16 understand what the benefits are and we make sure
17 that those benefits can reach as broadly as
18 possible given the scientific basis of those
19 benefits and the deployability in the relevant
20 communities. So I think there's a lot more science
21 that's needed to really answer this question, but
22 it will be very real, perhaps soon.

1 Other comments from panel members?

2 (No response.) Beyfortus HARMONIE

3 DR. BADEN: Not seeing other comments, then
4 to summarize the discussion for question 4, several
5 panel members thought that there is opportunity to
6 increase the efficacy through multimodality
7 protection, and with the monoclonal, there was
8 clear benefit, but the benefit was not perfect.

9 So therefore, additional modalities such as
10 maternal vaccination can help approach the
11 asymptote of even higher protection levels.
12 However, raised by several of the panel members is
13 there's a lot of biology that's unknown here, so
14 the biology has to be understood in relation to the
15 specific products that come forward.

16 So this is obviously a theoretical question,
17 but understanding how the specific products may
18 lead to immune protection that can be transferred
19 to baby and how that can be optimized
20 scientifically will depend on the specifics, but
21 conceptually an important area to think about to
22 see how best to augment protection in neonates,

1 whether it's through a maternal transfer or through
2 this product as we better understand how it works
3 and can be deployed.

4 Any other additional comments for this
5 question?

6 Dr. Hazra?

7 DR. HAZRA: Yes. I just want to reiterate I
8 think something Dr. Jackson raised about also this
9 issue of potentially pushing out first disease to
10 that older age group greater than 6 months, which
11 is the one that Dr. Havens was very concerned about
12 that we may not be dosing correctly. So I would
13 add that issue to this, too.

14 DR. BADEN: Thank you.

15 If there are no more comments, then before
16 we adjourn, let me just say that I would like to
17 thank the committee for really a marathon session;
18 to the applicant and the agency for incredible data
19 presentations and discussion; and to the community
20 participants, particularly the OPH speakers, for
21 really making palpable the reality of this
22 condition and how important it is for, as a

community, therapies to emerge that can be deployed to prevent this severe illness.

3 Let me, before we adjourn, give the last
4 comments to the agency.

5 DR. HAZRA: I just raised my hand. Lindsey,
6 I also just want to thank you. You did a fantastic
7 job as chair, so thank you for leading us.

8 DR. BADEN: Thank you.

9 Dr. Farley, the floor is yours.

10 DR. FARLEY: On behalf of the review team at
11 the FDA, we want to thank the panel for just an
12 outstanding discussion today. You've given us very
13 valuable feedback to consider as we conclude the
14 review of this application, and to thank the
15 applicant for working with us to facilitate an
16 efficient discussion today, and a thorough one. I
17 want to thank the open public hearings speakers, as
18 well as those who submitted comments to the docket,
19 which we've also reviewed. So thank you very much,
20 and back to you, Dr. Baden, to adjourn us.

Adjournment

22 DR. BADEN: We will now adjourn the meeting.

1 Thank you all.

4

5

6

7

8

6

18

1

10

19

20

21

22