

FOOD AND DRUG ADMINISTRATION

CENTER FOR DRUG EVALUATION AND RESEARCH

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

FOOD AND DRUG ADMINISTRATION
CENTER FOR DRUG EVALUATION AND RESEARCH
MEETINGS OF THE CLINICAL DRUGS ADVISORY COMMITTEE

(AMDAC)

Virtual Meeting

Monday, April 17, 2023

9:00 a.m. to 2:52 p.m.

Meeting Roster

ACTING DESIGNATED FEDERAL OFFICER (Non-Voting)

Takyiah Stevenson, PharmD

4 Division of Advisory Committee and

5 Consultant Management

6 Office of Executive Programs, CDER, FDA

7

ANTIMICROBIAL DRUGS ADVISORY COMMITTEE MEMBERS

9 | (Voting)

Lindsey R. Baden, MD

11 (Chairperson)

12 Director of Clinical Research

13 Division of Infectious Diseases

14 Brigham and Women's Hospital

15 Director, Infectious Disease Service

16 | Dana-Farber Cancer Institute

17 Professor of Medicine, Harvard Medical School

18 Boston, Massachusetts

19

20

21

22

1 **Michael D. Green, MD, MPH**

2 Professor of Pediatrics, Surgery and Clinical &
3 Translational Science
4 University of Pittsburgh School of Medicine
5 Division of Infectious Diseases
6 Director, Antimicrobial Stewardship & Infection
7 Prevention
8 Co-Director, Transplant Infectious Diseases
9 Children's Hospital of Pittsburgh
10 Pittsburgh, Pennsylvania

11

12 **W. David Hardy, MD, AAHIVS**

13 Attending, Rand Schrader (HIV) Clinic
14 Adjunct Clinical Professor of Medicine
15 Division of Infectious Diseases
16 Keck School of Medicine of
17 University of Southern California
18 Los Angeles, California

19

20

21

22

1 **Sally A. Hunsberger, PhD**

2 Mathematical Statistician

3 Biometrics Research Branch

4 National Institute of Allergy and Infectious

5 Diseases (NIAID)

6 National Institutes of Health (NIH)

7 Rockville, Maryland

8

9 **Richard A. Murphy, MD, MPH**

10 Chief, Infectious Diseases

11 Veterans Affairs White River Junction Medical

12 Center

13 Medicine Service

14 White River Junction, Vermont

15

16 **Nimish Patel, PharmD, PhD**

17 Professor of Clinical Pharmacy

18 Skaggs School of Pharmacy and Pharmaceutical

19 Sciences

20 University of California San Diego, Division of

21 Clinical Pharmacy

22 La Jolla, California

Federico Perez, MD, MS

Infectious Disease Physician

Louis Stokes Cleveland VA Medical Center

Associate Professor of Medicine

Case Western Reserve University

Cleveland, Ohio

George K. Siberry, MD, MPH

Medical Officer, Adult Clinical Branch

Office of HIV/AIDS

Bureau of Global Health

United States Agency for International Development

Washington, District of Columbia

Sankar Swaminathan, MD

Don Merrill Rees Presidential Endowed Chair

Professor and Chief

Division of Infectious Diseases

Department of Internal Medicine

University of Utah School of Medicine

Salt Lake City, Utah

1 **Roblena E. Walker, PhD**

2 *(Consumer Representative)*

3 Chief Executive Officer

4 EMAGAHA, INC.

5 Mableton, Georgia

6

7 **ANTIMICROBIAL DRUGS ADVISORY COMMITTEE MEMBER**

8 **(Non-Voting)**

9 **Richa S. Chandra, MD, MBA**

10 *(Industry Representative)*

11 Clinical Development Head

12 Communicable Diseases

13 Global Health Development Unit

14 Novartis Pharmaceuticals

15 East Hanover, New Jersey

16

17 **TEMPORARY MEMBERS (Voting)**

18 **Laura C. Block, PharmD**

19 *(Patient Representative)*

20 Founder/Partner

21 Usagi Medical Group

22 Cary, North Carolina

1 Joan F. Hilton, ScD, MPH

2 Professor, Biostatistics

3 Department of Epidemiology & Biostatistics

4 University of California

5 San Francisco, California

6

7 **FDA PARTICIPANTS (Non-Voting)**

8 John Farley, MD, MPH

9 Director

10 Office of Infectious Diseases (OID)

11 Office of New Drugs (OND), CDER, FDA

12

13 Adam Sherwat, MD

14 Deputy Director

15 OID, OND, CDER, FDA

16

17 Peter Kim, MD, MS

18 Director

19 Division of Anti-Infectives (DAI)

20 OID, OND, CDER, FDA

21

22

1 Dmitri Tarikov, MD, PhD

2 Deputy Director

3 DAI, OID, OND, CDER, FDA

4

5 Mayurika Ghosh, MD

6 Clinical Reviewer

7 DAI, OID, OND, CDER, FDA

8

9 Karen Qi, PhD

10 Statistical Reviewer

11 Division of Biometrics IV

12 Office of Biostatistics, CDER, FDA

13

14 Simone Shurland, PhD

15 Clinical Microbiology Reviewer

16 DAI, OID, OND, CDER, FDA

17

18 Xiaohui (Tracey) Wei, PhD

19 Clinical Pharmacology Reviewer

20 Division of Infectious Disease Pharmacology

21 Office of Clinical Pharmacology, CDER, FDA

22

	C O N T E N T S	PAGE
1	AGENDA ITEM	
2	Call to Order	
3	Lindsey Baden, MD	12
4	Introduction of Committee	
5	Takyiah Stevenson, PharmD	12
6	Conflict of Interest Statement	
7	Takyiah Stevenson, PharmD	19
8	FDA Opening Remarks	
9	Adam Sherwat, MD	23
10	Applicant Presentations - Entasis Therapeutics	
11	Introduction	
12	Shruta Rege, PhD	29
13	Unmet Need	
14	David Paterson, MBBS, PhD, FRACP	37
15	Microbiology and Pharmacology	
16	Alita Miller, PhD	44
17	Efficacy	
18	David Altarac, MD, MPA	54
19	Safety	
20	Drew Lewis, MD, MTM&H, FACP	65
21		
22		

	C O N T E N T S (continued)	
	AGENDA ITEM	PAGE
1		
2	Clinical Perspective	
3		
4	J. Patrik Hornak, MD	71
5	Concluding Remarks	
6		
7	Shruta Rege, PhD	76
8	Clarifying Questions	79
9		
10	FDA Presentations	
11		
12	Efficacy Assessment	
13		
14	Karen Qi, PhD	99
15	Clinical Safety Assessment	
16		
17	Mayurika Ghosh, MD	110
18	Clinical Microbiology Assessment	
19		
20	Simone Shurland, PhD	117
21	Clinical Pharmacology Assessment	
22		
23		
24	Xiaohui Wei, PhD	129
25	Clarifying Questions	137
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		
66		
67		
68		
69		
70		
71		
72		
73		
74		
75		
76		
77		
78		
79		
80		
81		
82		
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		
95		
96		
97		
98		
99		
100		
101		
102		
103		
104		
105		
106		
107		
108		
109		
110		
111		
112		
113		
114		
115		
116		
117		
118		
119		
120		
121		
122		
123		
124		
125		
126		
127		
128		
129		
130		
131		
132		
133		
134		
135		
136		
137		
138		
139		
140		
141		
142		
143		
144		
145		
146		
147		
148		
149		
150		
151		
152		
153		
154		
155		
156		
157		
158		
159		
160		
161		
162		
163		
164		
165		
166		
167		
168		
169		
170		
171		
172		
173		
174		
175		
176		
177		
178		
179		
180		
181		
182		
183		
184		
185		
186		
187		
188		
189		
190		
191		
192		
193		
194		
195		
196		
197		
198		
199		
200		
201		
202		
203		
204		
205		
206		
207		
208		
209		
210		
211		
212		
213		
214		
215		
216		
217		
218		
219		
220		
221		
222		
223		
224		
225		
226		
227		
228		
229		
230		
231		
232		
233		
234		
235		
236		
237		
238		
239		
240		
241		
242		
243		
244		
245		
246		
247		
248		
249		
250		
251		
252		
253		
254		
255		
256		
257		
258		
259		
260		
261		
262		
263		
264		
265		
266		
267		
268		
269		
270		
271		
272		
273		
274		
275		
276		
277		
278		
279		
280		
281		
282		
283		
284		
285		
286		
287		
288		
289		
290		
291		
292		
293		
294		
295		
296		
297		
298		
299		
300		
301		
302		
303		
304		
305		
306		
307		
308		
309		
310		
311		
312		
313		
314		
315		
316		
317		
318		
319		
320		
321		
322		
323		
324		
325		
326		
327		
328		
329		
330		
331		
332		
333		
334		
335		
336		
337		
338		
339		
340		
341		
342		
343		
344		
345		
346		
347		
348		
349		
350		
351		
352		
353		
354		
355		
356		
357		
358		
359		
360		
361		
362		
363		
364		
365		
366		
367		
368		
369		
370		
371		
372		
373		
374		
375		
376		
377		
378		
379		
380		
381		
382		
383		
384		
385		
386		
387		
388		
389		
390		
391		
392		
393		
394		
395		
396		
397		
398		
399		
400		
401		
402		
403		
404		
405		
406		
407		
408		
409		
410		
411		
412		
413		
414		
415		
416		
417		
418		
419		
420		
421		
422		
423		
424		
425		
426		
427		
428		
429		
430		
431		
432		
433		
434		
435		
436		
437		
438		
439		
440		
441		
442		
443		
444		
445		
446		
447		
448		
449		
450		
451		
452		
453		
454		
455		
456		
457		
458		
459		
460		
461		
462		
463		
464		
465		
466		
467		
468		
469		
470		
471		
472		
473		
474		
475		
476		
477		
478		
479		
480		
481		
482		
483		
484		
485		
486		
487		
488		
489		
490		
491		
492		
493		
494		
495		
496		
497		
498		
499		
500		
501		
502		
503		
504		
505		
506		
507		
508		
509		
510		
511		
512		
513		
514		
515		
516		
517		
518		
519		
520		
521		
522		
523		
524		
525		
526		
527		
528		
529		
530		
531		
532		
533		
534		
535		
536		
537		
538		
539		
540		
541		
542		
543		
544		
545		
546		
547		
548		
549		
550		
551		
552		
553		
554		
555		
556		
557		
558		
559		
560		

	C O N T E N T S (continued)	
	AGENDA ITEM	PAGE
3	Open Public Hearing	150
4	Clarifying Questions (continued)	175
5	Charge to the Committee	
6	Peter Kim, MD, MS	207
7	Questions to the Committee and Discussion	208
8	Adjournment	229
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		

1 P R O C E E D I N G S

2 (9:00 a.m.)

3 **Call to Order**

4 DR. BADEN: Good morning, and welcome. I
5 would first like to remind everyone to please mute
6 your line when you are not speaking. For media and
7 press, the FDA press contact is Chanapa
8 Tantibanchachai. Her email is currently displayed.

9 My name is Dr. Lindsey Baden, and I will be
10 chairing this meeting. I will now call the
11 April 17, 2023 Antimicrobial Drugs Advisory
12 Committee, AMDAC, to order. Dr. Stevenson is the
13 acting designated federal officer for this meeting
14 and will begin with introductions. We'll first
15 start with the standing members of AMDAC.

16 **Introduction of Committee**

17 DR. STEVENSON: Good morning. My name is
18 Takyiah Stevenson, and I am the acting designated
19 federal officer for this meeting. When I call your
20 name, please introduce yourself by stating your
21 name and affiliation.

22 Dr. Lindsey Baden?

1 DR. BADEN: Dr. Lindsey Baden. I'm an
2 infectious diseases physician investigator at
3 Brigham and Women's Hospital, Dana-Farber Cancer
4 Center, and Harvard Medical School in Boston.

5 DR. STEVENSON: Dr. Green?

6 DR. GREEN: Good morning. This is Michael
7 Green. I am a pediatric infectious disease
8 physician and investigator at UPMC Children's
9 Hospital Pittsburgh and the University of
10 Pittsburgh School of Medicine. Thank you.

11 DR. STEVENSON: Dr. Hardy?

12 DR. HARDY: Good morning. My name is
13 Dr. David Hardy. I'm an infectious disease
14 specialist and serve as an adjunct clinical
15 professor at the Keck School of Medicine at the
16 University of Southern California in Los Angeles.

17 DR. STEVENSON: Dr. Hunsberger?

18 DR. HUNSMERGER: Hi. I'm Sally Hunsberger.
19 I'm a biostatistician at NIAID at NIH. Thank you.

20 DR. STEVENSON: Dr. Murphy?

21 DR. MURPHY: Hi. Richard Murphy. I'm an
22 infectious disease physician at White River

1 Junction VA Medical Center, and I am affiliated
2 with Geisel School of Medicine at Dartmouth.

3 DR. STEVENSON: Dr. Patel?

4 DR. PATEL: Good morning. My name is Nimish
5 Patel. I'm a pharmacist and pharmacoepidemiologist
6 at the Skaggs School of Pharmacy and Pharmaceutical
7 Sciences at the University of California San Diego.

8 DR. STEVENSON: Dr. Perez?

9 DR. PEREZ: Good morning. My name is
10 Federico Perez. I'm an infectious disease
11 physician at the Cleveland VA Medical Center and
12 Case Western Reserve University in Cleveland, Ohio.

13 DR. STEVENSON: Dr. Siberry?

14 DR. SIBERRY: Good morning. I'm George
15 Siberry, pediatric infectious disease physician and
16 medical officer at the U.S. Agency for
17 International Development, Office of HIV/AIDS.

18 Thank you.

19 DR. STEVENSON: Dr. Swaminathan?

20 DR. SWAMINATHAN: Hello. I'm an infectious
21 disease physician and researcher at University of
22 Utah Health, and I'm the chief of the Division of

1 Infectious Diseases.

2 DR. STEVENSON: I'm sorry. Dr. Swaminathan,
3 could you say your full name and affiliation,
4 please?

5 DR. SWAMINATHAN: Yes. Sorry. Sankar
6 Swaminathan, University of Utah School of Medicine.

7 DR. STEVENSON: Thank you so much.

8 Dr. Walker?

9 DR. WALKER: Good morning. I'm Dr. Roblena
10 Walker, CEO and research scientist of EMAGAHA, INC.
11 in Atlanta, Georgia. Thank you.

12 DR. STEVENSON: Dr. Richa Chandra?

13 DR. CHANDRA: Hello. I am Richa Chandra. I
14 am representing the pharma industry on this
15 advisory committee as a non-voting member today,
16 and I work as the clinical development head for
17 infectious diseases at Novartis Pharmaceuticals.
18 Thank you.

19 DR. STEVENSON: Now I will introduce the
20 temporary voting members.

21 Dr. Block?

22 DR. BLOCK: Hi. I'm Laura Block, and I'm

1 acting as a patient advocate today with direct
2 experience with sepsis and pneumonia in the ICU,
3 but I am a retired hospital pharmacist. I work as
4 an event medic with Usagi Medical Group.

5 DR. STEVENSON: Dr. Hilton?

6 DR. HILTON: I'm Joan Hilton. I'm professor
7 of biostatistics at UCSF School of Medicine.

8 DR. STEVENSON: Thank you.

9 I will now introduce the FDA participants.

10 Dr. Farley?

11 DR. FARLEY: Good morning. I'm John Farley,
12 director of the Office of Infectious Diseases
13 within the Office of New Drugs at CDER, FDA.

14 DR. STEVENSON: Dr. Sherwat?

15 DR. SHERWAT: Good morning. My name is Adam
16 Sherwat. I'm the deputy office director from the
17 Office of Infectious Diseases.

18 DR. STEVENSON: Dr. Kim?

19 DR. KIM: Good morning. My name is Peter
20 Kim. I'm the director of the Division of
21 Anti-Infectives in the Office of Infectious
22 Diseases. Thank you.

1 DR. STEVENSON: Dr. Iarikov?

2 DR. IARIKOV: Good morning. My name is
3 Dmitri Iarikov. I'm the deputy director in the
4 Division of Anti-Infectives, CDER, FDA.

5 DR. STEVENSON: Dr. Ghosh?

6 DR. GHOSH: Good morning. This is Mayurika
7 Ghosh, clinical reviewer, Division of
8 Anti-Infectives, CDER, FDA.

9 DR. STEVENSON: Dr. Qi?

10 DR. QI: Good morning. My name is Karen Qi.
11 I'm the statistical reviewer from FDA, CDER, Office
12 of Biostatistics.

13 DR. STEVENSON: Dr. Shurland?

14 DR. SHURLAND: Good morning. My name is
15 Simone Shurland, and I'm the clinical microbiology
16 reviewer of CDER, Division of Anti-Infectives.

17 DR. STEVENSON: Dr. Wei?

18 DR. WEI: Good morning. My name is Xiaohui
19 Tracey Wei. I'm the clinical pharmacology reviewer
20 in the Division of Infectious Disease Pharmacology
21 from the FDA.

22 DR. STEVENSON: Thank you, everyone. I will

1 hand it back to the chairperson.

2 DR. BADEN: Thank you, Dr. Stevenson.

3 For topics such as those being discussed at
4 this meeting, there are often a variety of
5 opinions, some of which are quite strongly held.
6 Our goal is that this meeting will be a fair and
7 open forum for discussion of these issues and that
8 individuals can express their views without
9 interruption. Thus, as a gentle reminder,
10 individuals will be allowed to speak into the
11 record only if recognized by the chairperson. We
12 look forward to a productive meeting.

13 In the spirit of the Federal Advisory
14 Committee Act and the Government in the Sunshine
15 Act, we ask that the advisory committee members
16 take care that their conversations about the topic
17 at hand take place in the open forum of the
18 meeting.

19 We are aware that members of the media are
20 anxious to speak with the FDA about these
21 proceedings; however, FDA will refrain from
22 discussing the details of this meeting with the

1 media until its conclusion. Also, the committee is
2 reminded to please refrain from discussing the
3 meeting topic during break or lunch. Thank you.

4 Dr. Stevenson will read the Conflict of
5 Interest Statement for the meeting.

6 **Conflict of Interest Statement**

7 DR. STEVENSON: The Food and Drug
8 Administration, FDA, is convening today's meeting
9 of the Antimicrobial Drugs Advisory Committee under
10 the authority of the Federal Advisory Committee
11 Act, FACA, of 1972. With the exception of the
12 industry representative, all members and temporary
13 voting members of the committee are special
14 government employees, SGEs, or regular federal
15 employees from other agencies and are subject to
16 federal conflict of interest laws and regulations.

17 The following information on the status of
18 this committee's compliance with federal ethics and
19 conflict of interest laws, covered by but not
20 limited to those found at 18 U.S.C. Section 208, is
21 being provided to participants in today's meeting
22 and to the public.

1 FDA has determined that members and
2 temporary voting members of this committee are in
3 compliance with federal ethics and conflict of
4 interest laws. Under 18 U.S.C. Section 208,
5 Congress has authorized FDA to grant waivers to
6 special government employees and regular federal
7 employees who have potential financial conflicts
8 when it is determined that the agency's need for a
9 special government employee's services outweighs
10 their potential financial conflict of interest, or
11 when the interest of a regular federal employee is
12 not so substantial as to be deemed likely to affect
13 the integrity of the services which the government
14 may expect from the employee.

15 Related to the discussion of today's
16 meeting, members and temporary voting members of
17 this committee have been screened for potential
18 financial conflicts of interests of their own as
19 well as those imputed to them, including those of
20 their spouses or minor children and, for purposes
21 of 18 U.S.C. Section 208, their employers. These
22 interests may include investments; consulting;

1 expert witness testimony; contracts, grants,
2 CRADAs; teaching, speaking, writing; patents and
3 royalties; and primary employment.

4 Today's agenda involves the discussion of
5 new drug application, NDA, 216974, for
6 sulbactam-durlobactam for injection, submitted by
7 Entasis Therapeutics, Inc. The applicant's
8 proposed indication is the treatment of
9 hospital-acquired bacterial, HABP, and
10 ventilator-associated bacterial pneumonia, VABP,
11 caused by susceptible strains of
12 *Acinetobacter baumannii-calcoaceticus* complex, or
13 ABC, in adults. This is a particular matters
14 meeting during which specific matters related to
15 Entasis Therapeutics' NDA will be discussed.

16 Based on the agenda for today's meeting and
17 all financial interests reported by the committee
18 members and temporary voting members, no conflict
19 of interest waivers have been issued in connection
20 with this meeting. To ensure transparency, we
21 encourage all standing committee members and
22 temporary voting members to disclose any public

1 statements that they have made concerning the
2 product at issue.

3 With respect to FDA's invited industry
4 representative, we would like to disclose that
5 Dr. Richa Chandra is participating in this meeting
6 as a non-voting industry representative, acting on
7 behalf of regulated industry. Dr. Chandra's role
8 at this meeting is to represent industry in general
9 and not any particular company. Dr. Chandra is
10 employed by Novartis Pharmaceutical Corporation.

11 We would like to remind members and
12 temporary voting members that if the discussions
13 involve any other product or firms not already on
14 the agenda for which an FDA participant has a
15 personal or imputed financial interest, the
16 participants need to exclude themselves from such
17 involvement, and their exclusion will be noted for
18 the record. FDA encourages all participants to
19 advise the committee of any financial relationships
20 that they may have with the firm at issue.

21 Thank you, and now I will hand it back to
22 the chairperson.

1 DR. BADEN: We will now proceed with FDA
2 introductory remarks from Dr. Sherwat.

3 Dr. Sherwat?

4 **FDA Opening Remarks - Adam Sherwat**

5 DR. SHERWAT: Good morning. My name is
6 Adam Sherwat, and I'm the deputy director of the
7 Office of Infectious Diseases in the Center for
8 Drug Evaluation and Research. I would like to
9 welcome the advisory committee members and the
10 applicant, Entasis Therapeutics, to today's meeting
11 to discuss the new drug application for
12 sulbactam-durlobactam. The purpose of today's
13 advisory committee meeting is to discuss whether
14 the data contained in the new drug application for
15 sulbactam-durlobactam, abbreviated as SUL-DUR, for
16 injection support a favorable benefit-risk
17 assessment for the treatment of hospital-acquired
18 bacterial pneumonia and ventilator-associated
19 bacterial pneumonia, which will be abbreviated as
20 HABP and VABP, due to susceptible strains of
21 *Acinetobacter* species, including
22 carbapenem-resistant *Acinetobacter baumannii*-

1 *calcoaceticus* complex, which will be referred to as
2 CRABC organisms.

3 CRABC infections represent an unmet medical
4 need in the U.S. due to the emergence and spread of
5 *Acinetobacter* resistance and limited treatment
6 options. Nosocomial pneumonia is the most common
7 disease caused by *Acinetobacter* species, with
8 approximately 50 percent of *Acinetobacter*
9 healthcare-associated infections in the United
10 States caused by CRABC. Patients with CRABC
11 infections appear to have a higher risk of
12 mortality than patients with carbapenem-susceptible
13 *Acinetobacter baumannii* infections, with overall
14 mortality rates in HABP/VABP caused by CRABC
15 ranging from approximately 45-to-60 percent.

16 The sulbactam-durlobactam development
17 program is an example of a streamlined program for
18 targeted therapy for a high unmet need pathogen,
19 namely CRABC. For antibacterial drugs with the
20 potential to treat serious infections in patients
21 who have few or no available treatments, FDA may
22 consider a more flexible program to facilitate

1 development, provided there are adequate data to
2 demonstrate that the drug is safe and effective and
3 the statutory standards for approval are met.

4 The efficacy data to support the proposed
5 indication was from one phase 3 trial conducted in
6 two parallel parts, Part A and Part B. Part A was
7 a randomized, investigator-unblinded,
8 assessor-blinded, non-inferiority assessment that
9 compared sulbactam-durlobactam versus colistin for
10 the treatment of HABP, VABP, ventilator pneumonia,
11 or bacteremia caused by *Acinetobacter*
12 *baumannii-calcoaceticus* complex organisms, which
13 will be abbreviated as ABC.

14 Part B had a single arm to evaluate
15 sulbactam and durlobactam for the treatment of
16 ABC-infected subjects who were resistant to
17 colistin or who were ineligible for Part A due to
18 other factors. Because Part B was a single-arm
19 design, the efficacy assessment of sulbactam and
20 durlobactam was based on Part A.

21 In Part A, subjects were randomized in a
22 1-to-1 ratio to receive either sulbactam and

1 durlobactam or colistin. Randomization was
2 stratified by infection type, baseline disease
3 severity, and geographical region. Subjects in
4 both groups received imipenem and cilastatin as the
5 background therapy. The study duration was
6 7-to-14 days of treatment and 14 days of follow-up
7 after treatment. The primary endpoint was 28-day
8 all-cause mortality, assessed using a 20 percent
9 non-inferiority margin. The FDA subsequent
10 presentations will provide additional details on
11 these design elements.

12 In summary, Part A in the phase 3 study
13 demonstrated that sulbactam and durlobactam was
14 non-inferior to colistin for the primary efficacy
15 endpoint of 28-day all-cause mortality, as the
16 upper limit of the 95 confidence interval for the
17 treatment difference in mortality was 3.5 percent,
18 meeting the prespecified 20 percent non-inferiority
19 margin.

20 The primary efficacy analysis population was
21 the CRABC microbiologically modified
22 intent-to-treat population. This included patients

1 infected with *Acinetobacter baumannii-calcoaceticus*
2 complex organisms, causing HABP, VABP, ventilator
3 pneumonia, or bacteremia, where the baseline
4 *Acinetobacter baumannii-calcoaceticus* complex
5 organism was found to be resistant to carbapenem
6 but not resistant to sulbactam, durlobactam, or
7 colistin. Of note, approximately 96 percent of
8 subjects in the CRABC microbiologically modified
9 intent-to-treat population had HABP or VABP, and
10 only 3 subjects had bacteremia.

11 The safety profile of sulbactam-durlobactam
12 was generally consistent with other beta-lactam and
13 beta-lactamase inhibitor drugs; however, the safety
14 database was limited in size with less than
15 200 patients receiving sulbactam-durlobactam at the
16 proposed dose and duration for the treatment of
17 HABP and VABP. Given the limited size of the
18 safety database, if sulbactam-durlobactam is
19 approved, postmarketing safety monitoring will be
20 important in further assessing the safety profile
21 of this product.

22 Our question for the advisory committee is

1 whether the overall benefit-risk assessment is
2 favorable for the use of sulbactam-durlobactam for
3 the treatment of patients with hospital-acquired
4 bacterial pneumonia or ventilator-associated
5 bacterial pneumonia caused by susceptible strains
6 of *Acinetobacter baumannii-calcoaceticus* complex
7 organisms; and if yes, to provide your rationale,
8 and if no, to provide your rationale and describe
9 what additional studies or trials are needed.

10 The following are my references for this
11 introductory presentation. I would again like to
12 thank the advisory committee for their
13 participation in today's meeting, and thank you for
14 your attention, and I will turn the meeting back
15 over to Dr. Baden.

16 DR. BADEN: Thank you, Dr. Sherwat.

17 Both the FDA and the public believe in a
18 transparent process for information gathering and
19 decision making. To ensure such transparency at
20 the advisory committee meeting, FDA believes that
21 it is important to understand the context of an
22 individual's presentation.

1 For this reason, FDA encourages all
2 participants, including the applicant's
3 non-employee presenters, to advise the committee of
4 any financial relationship that they may have with
5 the applicant, such as consulting fees, travel
6 expenses, honoraria, and interest in the applicant,
7 including equity interests and those based upon the
8 outcome of the meeting.

9 Likewise, FDA encourages you at the
10 beginning of your presentation to advise the
11 committee if you do not have any such financial
12 relationships. If you choose not to address this
13 issue of financial relationships at the beginning
14 of your presentation, it will not preclude you from
15 speaking.

16 We will now proceed with the applicant's,
17 Entasis Therapeutics, presentation.

18 **Applicant Presentation - Shruta Rege**

19 DR. REGE: Good morning. I'm Shruta Rege,
20 senior vice president and head of Regulatory
21 Affairs and Development Operations at Entasis
22 Therapeutics. I would like to thank the FDA, the

1 chair, and members of the committee for giving us
2 the opportunity to present our data supporting the
3 safety and efficacy of sulbactam-durlobactam for
4 the treatment of hospital-acquired and
5 ventilator-associated bacterial pneumonia caused by
6 susceptible strains of *Acinetobacter*
7 *baumannii-calcoaceticus*, including carbapenem
8 resistant to *Acinetobacter*. Let me provide you with
9 some background information for today's meeting.

10 *Acinetobacter baumannii* is a major global
11 public health concern. This is a gram-negative
12 opportunistic bacterial pathogen and is a
13 predominant member of the *Acinetobacter*
14 *baumannii-calcoaceticus* complex. For the rest of
15 today's presentation, we will refer to this complex
16 as *Acinetobacter*.

17 *Acinetobacter* is often associated with
18 infections of the lungs, bloodstream, urinary
19 tract, skin, and other soft tissues. These
20 infections are associated with high morbidity and
21 mortality, ranging anywhere from 30-to-70 percent
22 globally in hospital acquired- and ventilator-

1 associated pneumonia.

2 These infections have become increasingly
3 difficult to treat as multidrug-resistant strains
4 have emerged. Carbapenem-resistant *Acinetobacter*,
5 or you might also hear this referred to as CRABC,
6 is considered an urgent public health threat by the
7 U.S. Centers for Disease Control and Prevention and
8 is also categorized as priority 1 critical by the
9 World Health Organization. In fact, *Acinetobacter*
10 is the fifth leading cause of death associated with
11 resistance globally.

12 Recent guidance from the March 2022
13 Infectious Diseases Society of America states that
14 there is no clear standard-of-care antibiotic
15 regimen for infections caused by
16 carbapenem-resistant *Acinetobacter*. This leaves
17 physicians and patients with a significant need for
18 a safe and effective treatment option that provides
19 a clinically meaningful benefit over existing
20 therapies.

21 Sulbactam-durlobactam, or SUL-DUR, as we
22 will refer to it on the slides, is a targeted

1 therapy that was developed for the treatment of
2 infections caused by this high unmet need pathogen,
3 carbapenem-resistant *Acinetobacter*. Sulbactam,
4 while commonly known as a beta-lactamase inhibitor,
5 is also a well-understood beta-lactam with
6 intrinsic antibacterial activity against a limited
7 number of bacterial species, including
8 *Acinetobacter*. Sulbactam works by inhibiting
9 penicillin- binding proteins, which are required
10 for bacterial cell wall synthesis, thereby
11 resulting in cell death. However, increases in
12 beta-lactamase mediated resistance have rendered
13 sulbactam generally ineffective. Durlobactam,
14 which is a beta-lactamase inhibitor, has potent
15 activity against class A, C, and D beta-lactamases.
16 When used in combination with sulbactam,
17 durlobactam restores sulbactam's activity against
18 resistant *Acinetobacter*.

19 Let me briefly review the relevant
20 development and regulatory history. Durlobactam
21 was discovered in 2012, and we started our first
22 clinical study in 2016. Our clinical program

1 consists of eight total studies, including six
2 phase 1 studies; one phase 2 trial in patients with
3 complicated urinary tract infections and acute
4 pyelonephritis, evaluating the safety and
5 pharmacokinetics of sulbactam-durlobactam; and one
6 pivotal phase 3 trial in patients with infections
7 caused by resistant *Acinetobacter*.

8 In addition to the clinical program, Entasis
9 also has an ongoing expanded access program for
10 patients who were ineligible for participation in
11 the clinical trials and who had serious and
12 life-threatening infections caused by
13 drug-resistant *Acinetobacter*. Entasis has worked
14 closely with the FDA to design and develop a unique
15 pathogen focused clinical program that followed
16 FDA's unmet need guidance and also allowed for
17 flexibility in the development of
18 sulbactam-durlobactam.

19 FDA recognized the high unmet need and the
20 potential for sulbactam-durlobactam to address this
21 unmet need. In 2017, FDA designated
22 sulbactam-durlobactam as a QIDP, or qualified

1 infectious diseases product, and also granted
2 fast-track designation. In March of 2022, we had a
3 pre-IND meeting where the FDA agreed that the
4 phase 3 data, along with the microbiology,
5 pharmacology, and toxicology data in the
6 nonclinical package, were adequate for the FDA's
7 review of the sulbactam-durlobactam new drug
8 application. The new drug application for
9 sulbactam-durlobactam was submitted in September
10 last year and accepted for priority review in
11 November of 2022.

12 In our presentation today, you will hear
13 that patients with infections caused by
14 carbapenem-resistant *Acinetobacter* have a
15 significant unmet need that represents a major
16 public health concern. Limited treatment options
17 for these infections has led to increases rates of
18 morbidity and mortality. We conducted
19 microbiology and nonclinical pharmacology
20 assessments that provide confirmatory evidence of
21 sulbactam-durlobactam's activity against
22 *Acinetobacter*. Phase 1, 2, and 3 data were utilized

1 for robust population PK modeling and PK/PD target
2 attainment analyses were conducted to support our
3 proposed dosing regimens.

4 In the phase 3 trial, sulbactam-durlobactam
5 met the prespecified primary non-inferiority
6 endpoint of 28-day all-cause mortality when
7 compared to colistin. All prespecified secondary
8 endpoints were also met, including clinical and
9 microbiological responses, thereby supporting the
10 clear benefit. Importantly, sulbactam-durlobactam
11 was well tolerated across the clinical program with
12 a favorable safety profile. The phase 3 trial also
13 met the primary safety objective with a
14 statistically significant lower incidence of
15 nephrotoxicity when compared to colistin.

16 The totality of evidence supports a
17 favorable benefit-risk profile for
18 sulbactam-durlobactam, and this addresses the
19 urgent unmet need for a safe and effective
20 treatment option for patients with infections
21 caused by *Acinetobacter*, including
22 carbapenem-resistant strains. Based on the

1 totality of evidence, we're requesting that
2 sulbactam-durlobactam be indicated in adults
3 18 years and older for the treatment of
4 hospital-acquired bacterial pneumonia and
5 ventilator-associated bacterial pneumonia caused by
6 susceptible strains of *Acinetobacter*
7 *baumannii-calcoaceticus* complex.

8 This indication reflects the population that
9 was studied in our phase 3 trial and is also
10 consistent with guidance from the FDA on labeling
11 for antibacterial products. The proposed dose is
12 1 gram of sulbactam and 1 gram of durlobactam given
13 every 6 hours and administered as a 3-hour
14 intravenous infusion. Dose adjustments are
15 recommended based on renal function.

16 With that background, here is the agenda for
17 the remainder of today's presentation. Professor
18 David Paterson will discuss the urgent unmet need
19 for new treatments for infections caused by
20 *Acinetobacter*; Dr. Alita Miller will then review the
21 microbiology and pharmacology data; and Dr. David
22 Altarac and Dr. Drew Lewis will discuss the

1 efficacy and safety data for sulbactam-durlobactam.
2 Dr. Patrik Hornak will share his clinical
3 experience with sulbactam-durlobactam, and I will
4 then summarize with concluding remarks.

5 We also have additional experts with us
6 today to answer your questions. All external
7 experts have been compensated for their
8 participation in today's meeting. Thank you. I
9 will now turn it over to Professor Paterson.

10 **Applicant Presentation - David Paterson**

11 DR. PATERSON: Hello. My name is David
12 Paterson, and I'm a professor at the Saw Swee Hock
13 School of Public Health at the National University
14 of Singapore. There I direct a clinical research
15 network comprising 40 hospitals across Asia, and I
16 remain clinically active. I previously spent
17 10 years working for the University of Pittsburgh
18 Medical Center and have dedicated my career to
19 researching and caring for patients with
20 difficult-to-treat infections.

21 In my time as an infectious diseases
22 physician, I've observed the rise of multidrug

1 resistance, and specifically infections due to
2 carbapenem-resistant *Acinetobacter*, and for me, this
3 is the number one unmet need for new antibiotics.
4 So today I'll be discussing this urgent public
5 health issue and why patients and physicians need a
6 safe and effective treatment option for these
7 devastating and life-threatening infections.

8 Infections due to multidrug-resistant
9 *Acinetobacter* are a growing and global threat. The
10 WHO has identified carbapenem-resistant
11 *Acinetobacter* as a priority pathogen for the
12 development of new antibiotics due to increasing
13 resistance to existing therapies, and
14 carbapenem-resistant *Acinetobacter* was associated
15 with approximately 326,000 deaths worldwide in
16 2019.

17 Speaking specifically to the United States,
18 the CDC has deemed carbapenem-resistant
19 *Acinetobacter* an urgent public health threat, and in
20 2020, there was a significant increase in the
21 number of multidrug-resistant, gram-negative
22 infections in U.S. hospitals, of course, coinciding

1 with the COVID pandemic. Of these, the increase in
2 carbapenem-resistant *Acinetobacter* cases was by far
3 the greatest, with rates that were 78 percent
4 higher than in 2019. So let me just take a step
5 back to explain why *Acinetobacter* is such a problem.

6 *Acinetobacter* is a challenging threat to
7 hospitalized patients, and this is because
8 critically ill patients are susceptible to
9 infections, and furthermore, the organism can
10 survive a long time on a variety of surfaces. It's
11 therefore quite easy to spread, making it a notable
12 cause of outbreaks in the hospital and nursing home
13 settings.

14 While pneumonia and bacteremia are the most
15 common infections caused by *Acinetobacter*, these
16 organisms have also been a notorious cause of skin
17 and soft tissue infections, wound infection, and
18 osteomyelitis in wounded U.S. military personnel.
19 They can also cause urinary tract infections and
20 post-neurosurgical meningitis.

21 Infections caused by *Acinetobacter* can be
22 difficult to treat due in large part to the rising

1 rates of antimicrobial resistance. *Acinetobacter* is
2 intrinsically resistant to penicillins and has also
3 acquired resistance genes for almost all
4 antibiotics used to treat gram-negative bacteria,
5 including fluoroquinolones, aminoglycosides,
6 cephalosporins, and carbapenems. Between 1997 and
7 2016, the SENTRY Antimicrobial Surveillance Program
8 has reported decreasing susceptibility rates among
9 *Acinetobacter* isolates for all observed
10 antimicrobial agents, including carbapenems and in
11 all geographic regions, and this creates a serious
12 problem because once *Acinetobacter* exhibits
13 carbapenem resistance, it generally has acquired
14 resistance to most other antibiotics, leaving few,
15 if any, remaining therapeutic options.

16 We see high morbidity and mortality in
17 patients with infections due to *Acinetobacter*, and
18 furthermore, these are associated with longer
19 hospitalizations and increased healthcare costs.
20 The incidence and prevalence of these infections
21 are increasing in patients with long
22 hospitalization and immunocompromised patients like

1 our transplant recipients, burns patients, or
2 patients receiving treatments for cancer, and also
3 patients in long-term care facilities.

4 These cases can become incredibly complex
5 and sometimes life-threatening partly due to
6 delayed or inappropriate antimicrobial therapy.
7 This leads to mortality rates in the United States
8 due to hospital-acquired or ventilator-associated
9 pneumonia due to *Acinetobacter* at almost 30 percent.
10 In addition, a recent analysis of U.S. healthcare
11 costs showed that infections due to
12 carbapenem-resistant *Acinetobacter* had the highest
13 attributable costs among hospital-onset invasive
14 infections, ranging from \$20[000] to \$128,000 per
15 patient.

16 So let's discuss how we currently treat
17 these patients. Guidance from the IDSA states
18 there is no clear standard of care antibiotic
19 regimen for infections due to *Acinetobacter*.
20 They've identified developing clinical practice
21 guidelines as a top initiative in their strategic
22 plan. Beta-lactam, fluoroquinolone, and a minor

1 glycoside resistance to *Acinetobacter* has limited
2 the effectiveness of these classes, and then
3 resulted in reliance on carbapenems for treating
4 these infections. However, carbapenem resistance
5 has emerged as an urgent threat worldwide; in part
6 because carbapenem use has increased for infections
7 caused by multidrug-resistant gram negatives. In
8 fact, in recent years, up to 69 percent of
9 carbapenem-resistant *Acinetobacter* infections in the
10 United States have been treated with our last
11 resort antibiotics, colistin or polymyxin B, and
12 this is an important point.

13 We do not have sufficient data available to
14 make evidence-based treatment recommendations for
15 this infection. Randomized-controlled comparative
16 effectiveness trials between the commonly used
17 agents are limited, so physicians often rely on
18 combination therapy since no antibiotic regimen has
19 shown clear efficacy. The ISDA guidelines also
20 point out that data to help us prioritize specific
21 agents with activity against carbapenem-resistant,
22 or to understand the additive benefit of commonly

1 used combination regimens, are incomplete,
2 highlighting the urgent and unmet medical need for
3 this patient population. Without these ideal data,
4 being available, physicians are simply left to try
5 different agents or combinations based purely on
6 their clinical judgment.

7 In summary, infections due to resistant,
8 *Acinetobacter* species are a major public health
9 concern both in the United States and also
10 globally. They're associated with increased
11 morbidity and, very importantly, increased
12 mortality due to our limited therapeutic options.
13 These infections are serious, they're life
14 threatening, and they've become much more difficult
15 to treat as resistance rates rise. As a result,
16 carbapenem resistance has emerged as an urgent
17 health threat worldwide, in part due to the
18 increased use of carbapenems to treat multidrug-
19 resistant gram negatives, including *Acinetobacter*.

20 As an infectious diseases physician who has
21 seen too many patients run out of effective
22 options, I need a new, safe effective therapy for

1 my patients with these serious infections, and I am
2 encouraged by the clinical data you'll see today
3 that sulbactam-durlobactam can fill this important
4 unmet need.

5 Thank you. I'll now turn the presentation
6 to Dr. Miller.

7 **Applicant Presentation - Alita Miller**

8 DR. MILLER: Thank you, Dr. Paterson.

9 I'm Dr. Alita Miller, senior vice president
10 and head of research at Entasis Therapeutics. I
11 will now review the microbiology and pharmacology
12 of sulbactam-durlobactam.

13 As Dr. Rege mentioned earlier, sulbactam has
14 a unique spectrum of antibacterial activity that's
15 limited primarily to *Acinetobacter* species; however,
16 sulbactam resistance in *Acinetobacter* is now common
17 due to the acquisition of beta-lactamase gene. In
18 fact, most clinical isolates of *Acinetobacter* encode
19 multiple types of beta-lactamase, as shown on this
20 slide.

21 The Venn diagram on the right shows the
22 results of whole genome sequencing analysis that

1 was performed on 84 multidrug-resistant
2 *Acinetobacter* clinical isolates. Each Ambler class
3 of beta-lactamases is represented by a different
4 color. As a reminder, class A, C, and D are serine
5 beta-lactamases, while class B enzymes are metallo
6 beta-lactamase. As you can see, all 84 of these
7 isolates encoded a class D beta-lactamase. What
8 was striking was that most isolates also encoded an
9 additional class A or extended-spectrum class C
10 gene. In fact, 45 percent of isolates that were
11 analyzed encoded genes for class A, C, and D
12 enzymes. In contrast, only one encoded for a
13 class B beta-lactamase. Therefore, the only kind
14 of a beta-lactamase inhibitor that can restore
15 sulbactam activity in *Acinetobacter* is one with
16 activity against all the serine beta-lactamase
17 classes, which is exactly the spectrum of activity
18 of durlobactam.

19 As shown earlier, durlobactam is a member of
20 the DBO class of beta-lactamase inhibitors whose
21 predecessors include marketed agents such as
22 avibactam. The table on the bottom of this slide

1 compares the biochemical activity of durlobactam to
2 avibactam against representative, purified
3 beta-lactamases. Avibactam inhibits class A and C
4 beta-lactamases, but has limited to no activity
5 against class D enzymes, as shown on the first row
6 of this table.

7 Durlobactam was designed to expand a
8 spectrum of inhibition to include class D enzymes,
9 which are key drivers of beta-lactam resistance in
10 *Acinetobacter* species, as I showed on the previous
11 slide. It is important to note that none of the
12 DBO beta-lactamase inhibitors has activity against
13 class B metallo beta-lactamases.

14 The expanded spectrum of durlobactam, as
15 compared to avibactam against beta-lactamase, is
16 shown on the second row of the table. Durlobactam
17 not only has a broader spectrum of inhibition than
18 avibactam against representative class A, C, and D
19 beta-lactamases, it's also significantly more
20 potent than avibactam against all the enzymes
21 tested, as summarized in the third row of this
22 table.

1 Historically, sulbactam has demonstrated
2 clinical efficacy against infections caused by
3 *Acinetobacter*. Unfortunately, this activity has
4 been eroded in recent years due to the acquisition
5 of beta-lactamases in this pathogen, as I mentioned
6 before. This slide shows the MIC distribution of
7 sulbactam alone, compared to sulbactam-durlobactam,
8 in a global surveillance study conducted between
9 2016 and 2020 against 4,252 clinical isolates of
10 *Acinetobacter*. To put this in perspective, over
11 50 percent of these isolates were carbapenem
12 resistant.

13 The data for sulbactam alone, shown in light
14 blue, the MIC₉₀ corresponds to the MIC value at
15 which the growth of 90 percent of isolates is
16 inhibited. The MIC₉₀ of sulbactam alone against
17 this collection was 64 micrograms per mL, which is
18 significantly higher than the susceptibility
19 breakpoint of 4 microgram per mL, which is
20 indicated by the dashed line on the left; however,
21 addition of durlobactam restored the activity of
22 sulbactam, as shown in dark blue. The combination

1 of subbactam-durlobactam had an MIC₉₀ of 2 microgram
2 per mL, and 98 percent of isolates tested had
3 subbactam-durlobactam MIC values less than or equal
4 to 4 microgram per mL.

5 Multiple studies were conducted in the
6 laboratory to assess the potential for development
7 of resistance to subbactam-durlobactam in
8 *Acinetobacter*, which was found to be quite low. The
9 frequency of spontaneous resistance using both
10 laboratory and contemporary clinical isolates was
11 found to be in the 10⁻¹⁰ range at 4 times the MIC.
12 Resistance emergence was also low in static time
13 kill experiments, where subbactam-durlobactam was
14 bactericidal against multiple clinical isolates.

15 In large global surveillance studies, fewer
16 than 2 percent of isolates had subbactam-
17 durlobactam MIC values greater than the preliminary
18 breakpoints of 4 microgram per mL. In the phase 3
19 trial, 8 of 175, or 4.6 percent, of baseline
20 *Acinetobacter* isolates had subbactam-durlobactam
21 MIC values greater than 4 microgram per mL. Five
22 of these had an MIC of 8 microgram per mL, which is

1 the preliminary breakpoint for intermediate
2 susceptibility, and the other three had
3 sulbactam-durlobactam MIC values of 16 microgram
4 per mL.

5 This graph shows the antibiotic
6 susceptibility of 175 baseline *Acinetobacter*
7 isolates from patients in phase 3. These were
8 tested at the central laboratory against
9 sulbactam-durlobactam and approved comparator
10 agents. The Y-axis shows the percent cumulative
11 inhibition of all strengths tested for each
12 comparator agent at each MIC, as shown on the
13 X-axis. The MIC₉₀ is shown by the dashed horizontal
14 line.

15 On this type of graph, the curves farthest
16 to the left correspond to the most active
17 antibiotics in vitro, whereas the curves that are
18 right-shifted or hover near the bottom respond to
19 antibiotics with poor or no activity in vitro. The
20 antibiotics that were administered to patients in
21 the phase 3 trial are labeled on this graph.
22 Sulbactam-durlobactam is in blue, colistin is in

1 orange, and imipenem is in green. Note that
2 imipenem was used as background therapy in the
3 study and will be discussed further, later in the
4 presentation.

5 You can see from this graph that the phase 3
6 baseline *Acinetobacter* isolates were highly
7 antibiotic resistant. In fact, nearly all were
8 carbapenem resistant, as shown by the green
9 imipenem line on this graph. Overall they were
10 96 percent multidrug-resistant, 85 percent
11 extensively drug resistant, and 15 percent percent
12 pan drug resistant. In contrast, 4.6 percent of
13 strains were considered non-susceptible to
14 sulbactam-durlobactam based on the preliminary
15 breakpoint of 4 microgram per mL.

16 The susceptibility to individual antibiotics
17 is shown in the legend on the right. Again,
18 sulbactam-durlobactam was by far the most active,
19 with over 95 percent susceptibility observed. The
20 next most active antibiotic in vitro was colistin
21 with 83 percent susceptibility. However, that
22 means that 17 percent were resistant to colistin,

which is notably higher than what we observed in surveillance studies, which was 4 percent colistin resistance.

Moving to non-clinical safety, we found that durlobactam was well tolerated in rat and dog toxicology studies out to 28 days of consecutive administration. Safety margins based on human dose equivalency ranged from 1.4 to 24.8-fold in rats and 8.3 to 16.6-fold in dogs. Durlobactam was devoid of any genotoxicity and no adverse findings were observed in a full battery of reproductive toxicology and safety pharmacology studies.

13 The pharmacokinetics of sulbactam and
14 durlobactam are similar to other beta-lactams.
15 Both sulbactam and durlobactam had linear, dose
16 proportional pharmacokinetics, low protein binding,
17 and low volume of distribution, exceeding plasma
18 volume, indicating distribution to extravascular
19 space. In a phase 1 study, sulbactam-durlobactam
20 demonstrated good distribution into the lungs.

Both sulbactam and durlobactam are primarily renally eliminated as unchanged drug and have a low

1 potential for drug-drug interaction. Population
2 PK analyses were used throughout the clinical
3 development of sulbactam-durlobactam, and the final
4 population PK model incorporated clinical data from
5 Phase 1, 2, and 3 trials. The model showed that
6 dose adjustments are needed based on renal
7 function. No dose adjustments are warranted based
8 on other covariates, including age, sex, race,
9 weight, and site of infection. The population PK
10 models were considered robust for the probability
11 of target attainment analyses.

12 Sulbactam-durlobactam was found to be
13 efficacious in murine neutropenic thigh and lung
14 models of *Acinetobacter* infection. These models
15 have an established track record of their clinical
16 translatability in antibiotic drug development.
17 In vitro and in vivo studies support that the PK/PD
18 driver of efficacy for sulbactam is time above MIC
19 or the percentage of time unbound concentrations
20 remain above the MIC. A magnitude of 50 percent is
21 required for a 1 log reduction in bacterial
22 colony-forming units, or CFU, over 24 hours. For

1 durlobactam, the PK/PD driver of efficacy is AUC
2 over MIC or the ratio of the area under the curve
3 from time zero to 24 hours to the MIC. A magnitude
4 of 10 is required for a 1-log reduction CFU when
5 sulbactam also reaches its PK/PD target.

6 Using these PK/PD targets and population PK
7 modeling, probability of target attainment
8 analyses, or PTA, were conducted for the purposes
9 for the proposed doses. The results for these
10 analyses are summarized on this slide. The graph
11 on the left shows the PTA in plasma and the graph
12 on the right shows it in epithelial lining fluid or
13 ELF.

14 An important component of these analyses is
15 the overall sulbactam-durlobactam susceptibility of
16 isolates from multiple global surveillance studies.
17 The sulbactam-durlobactam MIC distribution for
18 7,026 global *Acinetobacter* isolates is shown in gray
19 bars. The Y-axis on the right of both graphs
20 corresponds to the frequency each MIC was observed
21 for this collection of strains. Overall,
22 99 percent of isolates had an MIC of less than or

1 equal to 4 microgram per mL. The Y-axis on the
2 left of both graphs corresponds to the PTA for
3 sulbactam-durlobactam, with each renal function
4 category shown in different colors.

5 These graphs show that the PTA across renal
6 function categories exceeds 90 percent in both
7 plasma and ELF, as indicated by the horizontal
8 dashed line at MICs of less than or equal to
9 4 microgram per mL, as indicated by the vertical
10 dashed line. Ninety percent is a well known and
11 accepted PTA cutoff value that correlates with
12 clinical efficacy.

13 In summary, this robust, nonclinical,
14 microbiology, toxicology, and pharmacology package
15 supports the sulbactam-durlobactam clinical
16 development program, including the proposed
17 indication and dosing regimen. Thank you. I'll
18 turn the presentation to Dr. Altarac.

19 **Applicant Presentation - David Altarac**

20 DR. ALTARAC: Thank you, Dr. Miller.

21 I'm David Altarac, and I'm the chief medical
22 officer at Entasis. Today I'll review the outcomes

1 and efficacy analyses from our pivotal phase 3
2 trial that demonstrate the clinically meaningful
3 impact that treatment with sulbactam-durlobactam
4 provides for patients with hospital-acquired and
5 ventilator-associated pneumonia infections caused
6 by *Acinetobacter*. The global, pivotal phase 3 trial
7 enrolled patients with infections caused by
8 *Acinetobacter*, including resistant *Acinetobacter*.

1 the open-label portion of the trial that included
2 patients who are intolerant of colistin or had
3 infections with *Acinetobacter* resistant to colistin.
4 This also permitted enrollment of patients with
5 infections in other sites.

6 At the time of the phase 3 trial, colistin
7 was selected as the comparator, as there were no
8 newly approved treatment options, and colistin was
9 one of the few available options for treating
10 serious resistant *Acinetobacter* infections. Despite
11 the known toxicities, colistin still remains an
12 often prescribed antibiotic, either alone or in
13 combination to treat these serious, life-
14 threatening infection.

15 Patients were assessed at end of treatment,
16 test of cure, and late follow-up. Test of cure
17 visit was to be completed 7 days after the last
18 dose plus or minus 2 days, and survival was
19 assessed at day 28. Adult patients were eligible
20 for the trial if they had a known infection caused
21 by *Acinetobacter* as either a single pathogen or
22 member of a polymicrobial infection based on a

1 culture.

2 The rapid diagnostic test allowed for early
3 detection and enrollment, but had to be confirmed
4 by a positive culture. To be eligible, patients
5 needed to have either no more than 48 hours of
6 potentially effective antimicrobial therapy before
7 their first dose or the clinically failing prior
8 treatment. Clinical failure was defined as either
9 clinical deterioration or failure to improve after
10 at least 48 hours of antibiotic treatment. In
11 addition, patients needed to have an APACHE 2 score
12 between 10 and 30 or a SOFA score between 1 and 11.

13 For Part A, patients were excluded if they
14 had an infection known to be resistant to colistin
15 or polymyxin B. For both Part A and B, patients
16 were excluded if they had a hypersensitivity or
17 allergic reaction to any beta-lactam or any
18 contraindication to the use of imipenem or
19 cilastatin. Patients with pulmonary diseases that
20 would preclude evaluation of a therapeutic response
21 in patients with deep-seated infections were
22 excluded.

1 I'd like to now discuss the endpoints for
2 the trial. The primary efficacy endpoint was
3 28-day all-cause mortality in Part A evaluated in
4 the carbapenem-resistant, *Acinetobacter*,
5 microbiologic modified intent-to-treat population,
6 which I will refer to as the primary efficacy
7 analysis population.

8 The primary analysis was a non-inferiority
9 assessment of 28-day all-cause mortality rates
10 between sulbactam, durlobactam, and colistin.
11 Non-inferiority was concluded if the upper limit of
12 the two-sided 95 percent confidence interval was
13 less than 20 percent. The sample size and
14 20 percent non-inferiority margin were selected
15 based on several discussions and in agreement with
16 the FDA. Calculation of the sample size assumed a
17 41 percent mortality rate in the colistin arm, a
18 36 percent mortality rate in the
19 sulbactam-durlobactam arm, a 1-to-1 randomization,
20 and an 80 percent power with a two-sided
21 significance level of 0.05.

22 Based on the unmet need of this population

1 and through comprehensive literature review of
2 hospital-acquired and ventilator-associated
3 pneumonia trials in patients with serious
4 *Acinetobacter* infections treated with colistin or
5 delayed or no therapy, both FDA and Entasis
6 independently determined a 20 percent
7 non-inferiority margin for the study. We also
8 assessed several prespecified, all-cause mortality
9 endpoints at 14 days and 28 days in the
10 intent-to-treat and microbiologic intent-to-treat
11 populations. In addition, clinical cure and
12 microbiologic favorable assessments were evaluated.
13 I will come back to describe some of these
14 endpoints in more detail.

15 Moving next to patient disposition,
16 181 patients were randomized and included in the
17 intent-to-treat population. Ninety-eight percent
18 of these patients received any amount of study
19 drug, defined as the safety population for the
20 study. Most patients in the intent-to-treat
21 population had a confirmed infection caused by
22 *Acinetobacter* at baseline and were included in the

1 microbiologic modified intent-to-treat population
2 for efficacy analyses. More than 80 percent of
3 this population was confirmed to have an infection
4 caused by *Acinetobacter* that was carbapenem
5 resistant, which, as defined earlier, was the
6 primary efficacy analysis population.

7 Demographics and baseline characteristics
8 were generally comparable between treatment groups
9 across Parts A and B. These were critically ill
10 patients, and this is consistent with the previous
11 hospital-acquired and ventilator-associated
12 pneumonia trials and, importantly, consistent with
13 the likely populations seen with resistant
14 *Acinetobacter* infections.

15 Age and gender distributions were similar.
16 Nearly all patients were enrolled outside of the
17 United States and predominantly from Eastern Europe
18 or Asia Pacific. This is consistent with
19 enrollment in some similar types of trials in
20 hospital-acquired and ventilator-associated
21 pneumonia. APACHE scores were slightly higher in
22 the colistin arm, whereas more patients with

1 ventilator-associated pneumonias were randomized to
2 the sulbactam-durlobactam arm. In Part B, patients
3 were younger and more likely to have a bloodstream
4 infection. A higher percentage of patients had a
5 monomicrobial infection versus a polymicrobial
6 infection in both treatment groups.

7 Now looking at the baseline isolates, as
8 Dr. Miller previously described, most isolates were
9 carbapenem and multidrug-resistant. Eighty-five
10 percent of isolates were extensively drug
11 resistant, meaning they were non-susceptible to all
12 but two antibiotic classes used to treat
13 *Acinetobacter*, and 15 percent were pan drug
14 resistant or non-susceptible to all tested
15 antibiotic classes approved for use to treat
16 *Acinetobacter*. Over 90 percent of the *Acinetobacter*
17 isolates were susceptible to less than or equal to
18 4 micrograms per mL of sulbactam-durlobactam even
19 in the colistin-resistant, extensively drug
20 resistant, and pan drug resistant subset.

21 Now let's look at the results.

22 Sulbactam-durlobactam met the primary efficacy

1 endpoint of non-inferiority in 28-day all-cause
2 mortality compared to colistin in the primary
3 efficacy analysis population. The mortality rate
4 in the sulbactam-durlobactam group was 19 percent
5 compared to 32 percent in the colistin group. The
6 treatment difference was minus 13 percent and the
7 upper limit of the 95 percent confidence interval
8 was 3.5. This result was well within the
9 20 percent non-inferiority margin and would have
10 met a narrower non-inferiority margin of
11 10 percent.

12 To further assess mortality rates, we looked
13 at all-cause mortality in several ways, and it was
14 consistently lower with sulbactam-durlobactam than
15 colistin across prespecified trial populations and
16 endpoints. This forest plot shows the primary
17 endpoint in the top row and the secondary endpoints
18 that captured all-cause mortality, including 28-
19 and 14-day all-cause mortality and across various
20 analysis populations. All of these assessments
21 favored sulbactam-durlobactam.

22 Shown here are data from some clinically

1 relevant subgroups. These data were consistent
2 with the primary efficacy analysis, demonstrating a
3 lower 28-day all-cause mortality in the
4 sulbactam-durlobactam compared to colistin. Now,
5 looking at mortality rates in age and gender, there
6 were numerically higher mortality rates in the
7 SUL-DUR arm in patients 65 to 75 and female;
8 however, the sample sizes in these subgroups were
9 small and did not suggest that the study
10 conclusions were driven by any random imbalances in
11 the baseline characteristics.

12 Clinical cure was defined as complete
13 resolution or significant improvement of baseline
14 signs and symptoms and no new symptoms such that no
15 additional gram-negative antimicrobial therapy was
16 warranted. At the test-of-cure visit, the clinical
17 cure rate for the sulbactam-durlobactam group was
18 62 percent compared to 40 percent for the colistin
19 group. The treatment difference was 21.6 in favor
20 of sulbactam-durlobactam.

21 Moving to microbiologic response,
22 sulbactam-durlobactam also demonstrated a

1 significant difference in microbiologic outcome
2 compared to colistin, and microbiologic favorable
3 assessment included eradication and presumed
4 eradication. In the primary efficacy analysis
5 population, microbiologic favorable rates were
6 68 percent for sulbactam-durlobactam and 42 percent
7 for the colistin group. The treatment difference
8 was 26 percent. Overall, the consistent results
9 across endpoints and analyses populations
10 demonstrated the robustness of the sulbactam-
11 durlobactam efficacy data.

12 Turning to Part B, results in Part B
13 patients who are intolerant to colistin or had
14 *Acinetobacter* infections that were resistant to
15 colistin were similar to patients in Part A treated
16 with sulbactam-durlobactam. The consistency of
17 these data further support sulbactam-durlobactam
18 efficacy in resistant *Acinetobacter*.

19 In summary, sulbactam-durlobactam
20 demonstrated efficacy in patients with serious lung
21 infections caused by resistant *Acinetobacter*.
22 Sulbactam-durlobactam achieved the primary efficacy

1 endpoint of non-inferiority for 28-day all-cause
2 mortality in the primary efficacy analysis
3 population. Prespecified secondary endpoints of
4 clinical cure and microbiologic favorable
5 assessments in the sulbactam-durlobactam arms were
6 consistently greater than colistin at all time
7 points and in all analysis populations. Overall,
8 in the pivotal phase 3 trial, sulbactam-durlobactam
9 demonstrated clinically meaningful efficacy.

10 Thank you, and I will now turn the
11 presentation over to Dr. Lewis to review the safety
12 data.

13 **Applicant Presentation - Drew Lewis**

14 DR. LEWIS: Thank you, Dr. Altarac.

15 Good morning. I'm Drew Lewis, vice
16 president of clinical development at Entasis
17 Therapeutics. Here, we'll discuss the safety data
18 that support the benefit-risk assessment of
19 sulbactam-durlobactam to address this critical
20 unmet need. These data demonstrate that across the
21 clinical development program, sulbactam-durlobactam
22 was generally well tolerated and demonstrated a

1 safety profile similar to the established class of
2 beta-lactam/beta-lactamase inhibitor combinations.

3 The clinical safety profile for sulbactam-
4 durlobactam has been characterized in eight
5 clinical studies with 380 patients exposed to
6 durlobactam either alone or in combination with
7 sulbactam. 181 individuals have received
8 sulbactam-durlobactam at the proposed dose of
9 1-gram sulbactam/1 gram durlobactam every 6 hours,
10 adjusted for renal function, and 158 individuals
11 have received sulbactam-durlobactam at the proposed
12 dose for at least 7 days.

13 The clinical program includes six phase 1
14 studies contributing to the understanding of the
15 clinical pharmacokinetics of durlobactam, allowing
16 for the dose selection in the phase 2 and phase 3
17 trials. The phase 2 safety and tolerability trial
18 further characterized the safety profile in
19 patients with complicated urinary tract infections,
20 leading the way to the pivotal phase 3 trial.
21 Phase 3 trial provides safety data in critically
22 ill patients where sulbactam-durlobactam achieved

1 the primary safety objective of a lower incidence
2 of nephrotoxicity and showed an overall favorable
3 safety profile.

4 I'll first review the overall adverse event
5 profile in the phase 3 trial. In the
6 phase 3 trial, most patients were reported to have
7 experienced an adverse event consistent with the
8 degree of illness in the enrolled patients.

9 Compared to the colistin-treated patients, patients
10 treated with sulbactam-durlobactam had a lower
11 overall incidence of adverse events, adverse events
12 assessed as treatment related, serious adverse
13 events, and adverse events leading to drug
14 discontinuation or death.

15 No deaths were assessed as related to study
16 drug in the sulbactam-durlobactam group. One death
17 due to pneumonia was assessed as study drug related
18 in the colistin group. We also see here on the
19 right part of the slide the open-label Part B
20 sulbactam-durlobactam data that was generally
21 similar to the Part A sulbactam-durlobactam group.

22 Turning to specific common adverse events,

1 the most common adverse events in the phase 3 trial
2 were consistent with the patient population and the
3 classes of antibiotics in the treatment groups.
4 Most patients in the trial experienced at least one
5 adverse event. Without regard to causality,
6 diarrhea, anemia, and hypokalemia were the most
7 frequently reported events in the subbactam-
8 durlobactam group. In the colistin group, the most
9 frequently reported events were anemia, acute
10 kidney injury, diarrhea, and hypokalemia. Acute
11 kidney injury was seen in 13 percent of patients
12 treated with colistin compared to 4 percent in the
13 subbactam-durlobactam group.

14 Next, we'll turn to serious adverse events.
15 Overall, there was a lower incidence of serious
16 adverse events in the subbactam-durlobactam group
17 compared with the colistin group. This table shows
18 the serious adverse events regardless of causality
19 that occurred in two or more patients in any
20 treatment group. Of the serious adverse events in
21 Part A, the most common was septic shock. This
22 occurred in the same number of patients in both

1 treatment groups. All other SAEs reported in the
2 sulbactam-durlobactam group occurred in one or two
3 patients.

4 Turning next to the primary safety objective
5 of the trial, the incidence of nephrotoxicity was
6 sulbactam-durlobactam and colistin based on the
7 modified RIFLE criteria. This was the primary
8 safety objective. This was considered a relevant
9 measure given the frequency with which colistin is
10 used in this population. Sulbactam-durlobactam
11 achieved the primary safety objective,
12 demonstrating a statistically significant lower
13 incidence of nephrotoxicity compared with patients
14 treated with colistin.

15 Adverse events in the renal and urinary
16 disorders system organ class are consistent with
17 the finding in the primary safety objective. Most
18 of these events when occurring in the sulbactam-
19 durlobactam group were mild or moderate in
20 severity. In Part A of this study, 1 percent of
21 patients in the sulbactam-durlobactam group had a
22 severe event compared to 8 percent in the colistin

1 group.

2 In summary, sulbactam-durlobactam has
3 demonstrated a safety profile similar to the
4 established class of beta-lactam/beta-lactamase
5 inhibitor combinations. In the clinical trials,
6 sulbactam-durlobactam was generally well tolerated
7 in severely ill patients, and no new safety signals
8 were identified. In the phase 3 trial, sulbactam-
9 durlobactam achieved the primary safety objective
10 of significantly lower incidence of nephrotoxicity
11 compared to colistin, commonly used in the
12 treatment of *Acinetobacter* infections. The phase 1
13 and phase 2 safety data provides supportive
14 information in characterizing the safety profile
15 for sulbactam-durlobactam.

16 We acknowledge that the safety data set from
17 this pathogen-focused development program is
18 smaller than what is typically provided in
19 traditional development programs. Given the
20 seriousness of these infections, the limited
21 available treatments, and the safety profile
22 review, the benefit-risk profile is favorable.

1 Overall, the data support that if approved,
2 subbactam-durlobactam could be an important,
3 well-tolerated treatment option for patients with
4 these serious and life-threatening infections due
5 to susceptible strains of *Acinetobacter*. Thank you,
6 and I'll turn the presentation to Dr. Patrik
7 Hornak.

8 **Applicant Presentation - Patrik Hornak**

9 DR. HORNAK: Good morning. I'm Dr. Patrik
10 Hornak, and I'm on the faculty as an assistant
11 professor of medicine at the University of Texas
12 Medical Branch, where I'm actively involved in
13 clinical Care, medical education, and research. In
14 my infectious disease practice, I care for patients
15 with serious infections due *Acinetobacter*, many of
16 whom are afflicted with hospital-acquired or
17 ventilator-associated pneumonia, including
18 multidrug-resistant strains.

19 As a clinical ID specialist with a long
20 career ahead of me, I expect that terms like
21 "extensively drug resistant, pan resistant," and
22 "difficult to treat" will probably grow more and

1 more common by the season. The development of new
2 antibiotics generally has not kept pace with the
3 growing threat of antibacterial resistance, and
4 nowhere is this more accurate than with
5 *Acinetobacter* infections. Thus, I'm excited to be
6 here today to share my clinical experience with
7 sulbactam-durlobactam.

8 In the current environment of rapidly
9 increasing antimicrobial resistance and complex
10 patient populations, both physicians and patients
11 need new treatment options for drug-resistant
12 bacterial infections. Those infections caused by
13 *Acinetobacter* are some of the most difficult to
14 treat. They consume vast healthcare resources and
15 confer significant morbidity and mortality. As
16 Professor Paterson reviewed earlier, our current
17 treatment options for *Acinetobacter* infection are
18 limited, and they all lack the type of clinical
19 evidence that we physicians need to best inform our
20 treatment decisions.

21 I want to walk you through a case from my
22 own practice. This was a patient with

1 ventilator-associated pneumonia due to
2 *Acinetobacter*, which we described in the Journal of
3 Antimicrobial Agents and Chemotherapy in 2021.
4 This case illustrates the challenge that we
5 physicians frequently face caring for patients with
6 serious *Acinetobacter* infections when there may be
7 few or even no effective treatment options.
8 Thankfully, my patient was fortunate to receive
9 sulbactam-durlobactam through an expanded access
10 program and experienced a positive outcome. Let me
11 review the time course of treatment in greater
12 detail.

13 She, like many others, acquired
14 *Acinetobacter* pneumonia during a hospital admission
15 for some other initial problem. My patient
16 happened to be admitted for respiratory failure due
17 to severe COVID-19 pneumonia and was in the ICU
18 receiving mechanical ventilation. She initially
19 did well at first, improving over several days.
20 She had no other superimposed infectious process at
21 the time and did well enough to be extubated on
22 hospital day 13.

1 Unfortunately, she rapidly deteriorated soon
2 after, and within 24 hours of extubation, she
3 developed fevers, leukocytosis, respiratory
4 distress, a significant productive cough, abnormal
5 chest X-ray findings, which altogether supported a
6 new diagnosis of ventilator-associated pneumonia.
7 Her condition rapidly worsened to sensor septic
8 shock and fulminant respiratory collapse, which
9 required repeat intubation. And while a new
10 diagnostic workup was being performed, the patient
11 was started on empiric antibiotics with vancomycin
12 and meropenem. Then the pulmonary respiratory
13 culture results came back detecting *Acinetobacter*,
14 and she remained intubated and still required a
15 vasopressor for blood pressure support.

16 By day 16, our culture result showed a
17 completely pan-resistant *Acinetobacter*, and our team
18 attempts an optimized salvage regimen of high-dose
19 ampicillin sulbactam, extended infusion meropenem,
20 and polymyxin B; and despite these best efforts,
21 our patient continued to worsen. Even after adding
22 a fourth antibiotic, eravacycline, she failed to

1 show any signs of meaningful improvement.

2 At this point, the patient seemed destined
3 for a disastrous outcome. Our team worked
4 tirelessly, continuing to explore any and all
5 treatment options, including those that were still
6 under investigation, and this led us to
7 sulbactam-durlobactam. We requested and quickly
8 obtained the drug through the expanded access
9 program.

10 We wanted to maximize our patient's chances,
11 especially without any sensitivity results at the
12 time, so we opted to use sulbactam-durlobactam
13 within 24 hours of initiation of another
14 antibiotic, cefiderocol, and we were thrilled when
15 she demonstrated a clear and profound response
16 after the addition of sulbactam-durlobactam, so
17 profound, in fact, that her vasopressor
18 requirement, fevers, tracheal secretions, and
19 leukocytosis, all of which had been ongoing for
20 10 days, completely resolved in the next 72 hours.
21 Two weeks later, the patient completed her
22 sulbactam-durlobactam course without any incident

1 or adverse event, and was discharged from the
2 hospital after 38 days. She ultimately recovered
3 fully and without any relapse of her *Acinetobacter*
4 infection.

5 I'd like to believe that I'll never see a
6 case this challenging again in my career; however,
7 that's highly unlikely, and in fact, in this era of
8 rapidly increasing drug resistance amongst
9 *Acinetobacter*, I expect to encounter more and more
10 of these demanding and dangerous infections. Even
11 though my patient had a positive outcome, many do
12 not, and that is why I am so encouraged by the data
13 presented today on sulbactam-durlobactam, and I
14 look forward to having it available to treat my
15 patients.

16 Thanks for your attention. I'll now turn
17 the presentation back to Dr. Rege for concluding
18 remarks.

19 **Applicant Presentation - Shruta Rege**

20 DR. REGE: Thank you, Dr. Hornak.

21 Looking at the snapshot of some of the
22 efficacy data that Dr. David Altarac shared

1 earlier, the phase 3 results were robust,
2 demonstrating clinically important benefits in
3 patients with serious infections caused by
4 *Acinetobacter*. Sulbactam-durlobactam met the
5 primary efficacy, non-inferiority endpoint of
6 28-day all-cause mortality when compared to
7 colistin. Clinical cure rates and microbiologic
8 favorable rates were also consistently greater in
9 the sulbactam-durlobactam group at all time points
10 and in all analyses populations.

11 Regarding the safety profile, sulbactam-
12 durlobactam was well tolerated and provides a clear
13 benefit over the currently available treatment
14 options for patients with infections due to
15 *Acinetobacter*. Polymyxins like colistin, which was
16 used in our phase 3 trial, have well-known risks of
17 nephrotoxicity and neurotoxicity, and we just heard
18 from Dr. Drew Lewis that sulbactam-durlobactam had
19 a significantly lower incidence of nephrotoxicity
20 when compared to colistin. Further, the
21 treatment-emergent adverse events in the phase 3
22 trial were consistent with the expectations for

1 this population of critically ill patients who
2 typically have many comorbidities.

3 In conclusion, with multidrug resistance
4 increasing, the limited treatment options are
5 simply inadequate to help patients survive and
6 recover from the serious infections due to drugs
7 resistant to *Acinetobacter*. When combined with the
8 beta-lactam/sulbactam, durlobactam restores its
9 intrinsic activity and efficacy against resistant
10 strains of *Acinetobacter*.

11 The efficacy data for sulbactam-durlobactam
12 for the proposed indication are from the randomized
13 assessor-blinded, active-controlled phase 3 trial
14 in patients with serious infections caused by
15 carbapenem resistant *Acinetobacter*. Confirmatory
16 evidence is provided from the robust in vitro and
17 animal data, demonstrating activity of sulbactam-
18 durlobactam against *Acinetobacter*. The safety
19 profile is consistent with the beta-lactam/beta-
20 lactamase inhibitor class, and no one expected
21 safety signals that I identified during our
22 development program.

1 Overall, the totality of data with
2 subbactam-durlobactam demonstrate a favorable
3 benefit-risk profile for a pathogen-targeted
4 therapy that has the potential to address the
5 critical unmet need and help physicians better care
6 for patients. Thank you. I'll now take your
7 questions.

8 **Clarifying Questions**

9 DR. BADEN: Thank you for a terrific
10 presentation, covering a lot of very important
11 data.

12 We will now take clarifying questions for
13 the applicant. To the panel members, please use
14 the raise-hand icon to indicate that you have a
15 question, and remember to lower your hand by
16 clicking the raise-hand icon again after you have
17 asked your question. When acknowledged, please
18 remember to state your name for the record before
19 you speak and direct your question to a specific
20 presenter, if you can. If you wish for a specific
21 slide to be displayed, please let us know the slide
22 number, if possible.

1 Finally, it will be helpful to acknowledge
2 the end of your question with a thank you and the
3 end of your follow-up question with, "This is all
4 for my questions," so we can move on to the next
5 panel member.

6 I see that Dr. Green has a question.

7 DR. GREEN: Yes. Thank you, Dr. Baden.

8 This is Michael Green. I have two questions
9 relating to resistance, and these likely go to
10 Dr. Miller and probably also Dr. Altarac.

11 To Dr. Miller, she stated that they did not
12 see spontaneous resistance to SUL-DUR in the
13 laboratory, but I'm wondering if there was any
14 effort to use selective methods in the laboratory
15 to get emergence of resistance. Then the follow-up
16 to Dr. Altarac resistance question is, we got data
17 on the presence of resistance at onset of treatment
18 and entering into the trial, but I'm wondering if
19 there was any testing of subsequent isolates,
20 particularly those that had positive microbiologic
21 testing at the test-to-cure evaluation or
22 subsequent isolates on treated patients down the

1 line. Thank you very much.

2 DR. REGE: Sure. I'll turn it over to
3 Dr. Alita Miller to address both your questions.

4 Thank you.

5 DR. MILLER: Alita Miller, Entasis. We did
6 get some resistant mutants in the lab. We had to
7 try real hard, but we did get some, and when we
8 isolated those, we found that they mapped primarily
9 to the target of sulbactam, which is PBP3 in
10 *Acinetobacter*. So in surveillance studies, the
11 resistance is also associated with strains that
12 express metallo beta-lactamases. We didn't see any
13 of those in our clinical trial, but we did find
14 some of those in our surveillance studies.

15 For your second question about resistance
16 emergence during the clinical trial, of the
17 patients that received sulbactam-durlobactam, there
18 are 105 in total. The vast majority had favorable
19 microbiological outcomes, meaning those were either
20 eradicated or presumed eradicated. There was one
21 patient that did have increase in sulbactam-
22 durlobactam MIC values over the course of the

1 study, and I'll show you that data.

2 This patient started out with an MIC value
3 of 4 at the screen, and the infection was
4 persistent. On day 7 it was an MIC of 32, and then
5 on test of cure, it was an MIC of 8. So this
6 particular isolate was also extensively drug
7 resistant, and even though it was an MIC of 8, the
8 infection was cleared by late follow-up.

9 We did characterize this isolate, and you
10 can see that it's the same isolate that was
11 infectious throughout the study. The only genetic
12 difference that we found between the baseline
13 isolate and this test-of-cure isolate was a
14 mutation in a gene associated with the efflux, so
15 we're continuing to study that, but we haven't
16 found anything in particular that shows there's a
17 difference in efflux potential between these
18 isolates. Thank you.

19 DR. BADEN: Dr. Murphy?

20 DR. MURPHY: Richard Murphy, VA Medical
21 Center. In the proposed indication, you're seeking
22 approval for the drug in certain indications, but

1 it's not mentioned specifically to be used as part
2 of combination therapy. However, in the clinical
3 trial, all patients received the drug in
4 combination with imipenem, and that makes sense
5 because, frequently, this pathogen can be a
6 colonizer, and there could be another active
7 pathogen driving ventilator- or hospital-acquired
8 pneumonia.

9 So my question is, what's the actual
10 spectrum of the drug outside of *Acinetobacter*
11 *baumannii* complex in the event that this drug was
12 deployed accidentally or for another reason as
13 monotherapy? Thanks.

14 DR. REGE: Sure. I will turn it over to
15 Dr. Alita Miller to answer your question.

16 DR. MILLER: Alita Miller, Entasis.
17 Sulbactam is what provides the targeted therapy
18 against *Acinetobacter*. As we described, sulbactam
19 has limited antibacterial activity against
20 *Acinetobacter* and a handful of other strains.
21 Durlobactam is a beta-lactamase inhibitor that also
22 has some intrinsic activity against other bacteria,

1 primarily enterobacterales such as *E coli*. This
2 activity is driven by inhibition of PBP2, so it's
3 similar to drugs like selenium. So if sulbactam-
4 durlobactam were administered by itself, you would
5 get intrinsic activity of durlobactam against some
6 species of enterobacterales. However, the
7 intrinsic activity of durlobactam is unrelated to
8 its beta-lactamase inhibitory activity, so
9 durlobactam is able to restore beta-lactam activity
10 against strains, whether or not they're susceptible
11 to the intrinsic activity of durlobactam, if that
12 makes sense. Thank you.

13 DR. MURPHY: So it would make more sense to
14 seek an indication for the drug as combination
15 therapy for these disease processes?

16 DR. MILLER: I'll let Dr. Altarac answer.

17 DR. ALTARAC: I will come back to Dr. Miller
18 in a minute, but I think it's important, again, as
19 you stated, that the combination of imipenem was
20 done in the trial, in both arms of the trial, to
21 cover these polymicrobial infections. We believe
22 that the agent that is acting to treat the

1 underlying *Acinetobacter* infection is the sulbactam-
2 durlobactam, and as a result, we're seeking an
3 indication for *Acinetobacter* with sulbactam-
4 durlobactam. And I think the data that we'd like
5 to show, we'll go back to Dr. Miller to show you
6 what combining carbapenems to sulbactam-durlobactam
7 did in the lab. Thank you.

8 DR. MILLER: Alita Miller, Entasis. Just to
9 answer the question about how much does imipenem
10 contribute to the activity of sulbactam-durlobactam
11 against *Acinetobacter*, we have this slide. This is
12 characterization of the baseline isolates from the
13 phase 3 trial. Again, it's the percent cumulative
14 inhibition as the function of MIC. You can see
15 here sulbactam-durlobactam is shown in the blue
16 solid line with and without imipenem. If you add
17 imipenem, it's the green solid line, and they're
18 pretty much superimposed. That means that imipenem
19 addition to sulbactam-durlobactam against
20 *Acinetobacter* doesn't help or hurt its activity, and
21 also a combination of sulbactam-imipenem or
22 imipenem-durlobactam are less effective than

1 sulbactam-durlobactam. Thank you.

2 DR. MURPHY: Let me just leave with a final
3 thought, is that we don't know how effective it
4 would be as monotherapy because it hasn't been
5 studied in that way, and I think that the way the
6 clinical trial was designed made sense, but we
7 don't know if it's effective alone. Thanks.

8 DR. BADEN: Thank you, Dr. Murphy.

9 So I'll ask the next question, and this is
10 for Dr. Altarac and Dr. Lewis. In looking at the
11 data, there's the efficacy benefit on mortality,
12 13 percentage points; there's also the
13 nephrotoxicity at 24 points. How do we know that
14 SUL-DUR is active versus colistin is harmful?

15 Can you help me tease out the benefit of the
16 one versus the risk of the other as we try to
17 ascribe the good outcomes to the benefit, where it
18 may be substantial harm related to the comparator?
19 Can we tease that out or can you help me understand
20 that?

21 DR. REGE: Sure. I will turn it over to
22 Dr. David Altarac to address your question.

1 DR. ALTARAC: David Altarac. Let me focus
2 on your point about efficacy. We did select
3 colistin as the comparator for this trial, as
4 colistin was then, as it is now, a frequently used
5 antibiotic for the serious and life-threatening
6 conditions, and at the time of the trial, no other
7 clear standard of care. But we do know that based
8 on the literature review that we use to inform the
9 non-inferiority margin, colistin-based therapies
10 have mortality rates that range anywhere from
11 25-to-57 percent versus no therapy or delayed
12 treatment therapies, which range from
13 65-to-87 percent; and therefore, colistin does
14 work, although, as we know, it does have the known
15 toxicities, which do not make it a favorite
16 antibiotic for many clinicians.

17 So when we look at the known or the
18 literature, which demonstrates a mortality rate
19 that ranges 25-to-57 percent, and we look at the
20 data from our clinical trial with rates overall
21 that range from 19 percent, overall, to lower
22 numbers, and other populations, and consistently

1 across populations, we do feel that we have
2 demonstrated a clear efficacy of sulbactam-
3 durlobactam on these types of infections.

4 With respect to safety, I'd turn that over
5 to Dr. Lewis.

6 DR. LEWIS: Good morning. Drew Lewis
7 Entasis Therapeutics. In looking at the the risky
8 part of the equation for the benefit-risk, what
9 we've demonstrated is t hat the side effect
10 profile is similar to that of the established class
11 of beta-lactam/beta-lactamase inhibitors, and
12 number two, no new safety signals were identified.
13 Thank you.

14 DR. BADEN: Thank you.

15 Dr. Perez?

16 DR. PEREZ: Thank you. I have a question
17 regarding the polymicrobial infections that were
18 shown here [indiscernible]. Do you have
19 information on the co-pathogens that occurred in
20 *Acinetobacter baumannii*, and then the outcomes
21 thereof??

22 Thank you. This is for Dr. Miller or

1 Dr. Altarac.

2 DR. REGE: Sure. So just to clarify, you
3 asked about the co-infecting pathogens in our
4 phase 3 trial and the outcomes related to that.
5 I'll turn it over to Dr. Alita Miller to answer
6 your question. Thank you.

7 DR. MILLER: Alita Miller, Entasis. To
8 answer your first question, the most common
9 co-infecting, gram-negative pathogens in the trial
10 were *Klebsiella* and *Pseudomonas*, and this slide
11 shows the pie chart, basically a breakdown of the
12 different species that were co-infecting in the
13 CRABC mITT population. You can see most of them.
14 Forty-four percent were *Klebsiella* species. The
15 next most prevalent were *Pseudomonas*. We also had
16 things like *Achromobacter*, *E. coli*,
17 *Stenotrophomonas*; *Proteus*; and *Serratia*.

18 In terms of the outcomes, for the
19 polymicrobial versus monomicrobial infections, we
20 have that data slide, and I'll hand it over to
21 Dr. Altarac.

22 DR. ALTARAC: David Altarac. When you look

1 at the monomicrobial infections at the 28-day
2 all-cause mortality of the primary endpoint, in the
3 sulbactam-durlobactam arm, monomicrobial was
4 17 percent compared to 35 percent in the colistin
5 arm -- I'll bring that slide up now -- versus in
6 the polymicrobial, it was 22 percent versus
7 26 percent. So in both monomicrobial and
8 polymicrobial infections, sulbactam-durlobactam
9 demonstrated a lower mortality rate than compared
10 to colistin. Thank you.

11 DR. PEREZ: And that is irrespective of the
12 pathogen?

13 DR. ALTARAC: Can you repeat the question,
14 please?

15 DR. PEREZ: My question was whether this was
16 irrespective of the co-pathogen that occurred in
17 the setting of polymicrobial infections?

18 DR. ALTARAC: Yes, our assessment was that
19 it was irrespective of the pathogen, the
20 co-pathogen.

21 DR. PEREZ: Thank you.

22 DR. ALTARAC: Thank you.

1 DR. BADEN: Dr. Swaminathan?

2 DR. SWAMINATHAN: Yes. Hi. Thanks. I'm
3 not sure to whom this question is best addressed,
4 but sulbactam has good penetration into the CSF.
5 Is there any data on durlobactam distribution into
6 the CNS, and is there any animal data on any
7 propensity to induce seizures? Thank you.

8 DR. REGE: Sure. I will turn it over to
9 Mr. John O'Donnell to answer your question. Thank
10 you.

11 MR. O'DONNELL: Good morning. John
12 O'Donnell, Entasis Therapeutics. In our pivotal
13 GLP toxicology studies, we didn't see any evidence
14 of CNS effects, including the safety pharmacology
15 study in terms of any adverse events with
16 penetration into the CNS. I will say in terms of
17 distribution into CSF, we have not studied that
18 directly with durlobactam, but we have had some
19 experience with treating patients with CNS type of
20 infections, and maybe Dr. Altarac could follow up
21 with that.

22 DR. ALTARAC: David Altarac. We have seen

1 the product used in our expanded access program.
2 The expanded access program, for the purposes of
3 this discussion, is primarily related to those
4 patients in our safety database; however, we did
5 have one patient who did have a post-surgical
6 hemicraniectomy, developed multidrug-resistant
7 *Acinetobacter*, wound infection, mental status
8 changes, and a presumed meningitis, who did receive
9 sulbactam-durlobactam in combination with another
10 antibiotic, and did not have any adverse events,
11 completed treatment, and resolved their infection.
12 Thank you.

13 DR. BADEN: Dr. Patel?

14 DR. PATEL: Good morning. Nimish Patel,
15 UC San Diego. I had a question about the use of
16 the drug, and I apologize if the detail was
17 presented. My understanding is there's a 3-hour
18 infusion q6, so over half the day is consumed just
19 administering SUL-DUR.

20 Can you clarify how imipenem was sequenced?
21 Was it given simultaneously or was it given
22 sequentially with SUL-DUR in the trial?

1 DR. REGE: Sure. I will hand it over to
2 Dr. David Altarac.

3 DR. ALTARAC: David Altarac. In the trial,
4 it was not specified whether the imipenem had to be
5 given at the same time points as the
6 sulbactam-durlobactam, although it was likely that
7 it was just based on how it's done in the clinic.
8 So we did not specify that it had to be done that
9 way. Imipenem was also dosed q6.

10 I would like to turn it over to Dr. Hornak,
11 who can describe for you how it was done in the
12 real world and how it might be used if approved.

13 DR. HORNAK: Patrik Hornak. For my patients
14 that I use sulbactam-durlobactam for through the
15 expanded access program, this patient was in the
16 ICU and was receiving multiple other ICU type
17 medications. He was in the ICU for the duration of
18 their sulbactam-durlobactam course, which was
19 14 days, in addition to another antibiotics, and
20 there were no issues from a pharmacy standpoint,
21 from a nursing standpoint, medical standpoint with
22 regards to overburdensome logistics or maintenance

1 of extra IV lines, et cetera. Thanks.

2 DR. BADEN: Dr. Green?

3 DR. GREEN: Thank you, Dr. Baden. This is
4 sort of a follow-up, and I had put the green check.
5 I thought that's what we were doing to agree for a
6 follow-up. But earlier when they talked about the
7 co-pathogens, I was wondering whether the protocol
8 allowed for additional treatments to be added to
9 the regimen if a co-pathogen was identified that
10 was resistant to imipenem-cilastatin.

11 For instance if you had a *Pseudomonas* that
12 was carbapenem resistant, and you weren't expecting
13 SUL-DUR to be effective against it, was the
14 treating center allowed to add yet another agent to
15 try to cover a co-pathogen? Thank you.

16 DR. REGE: Sure. I would like to hand it
17 over to Dr. David Altarac to answer your question.

18 DR. ALTARAC: David Altarac. If the
19 co-pathogen was another gram negative, it was not
20 part of the protocol to add another agent; however,
21 if the co-pathogen was gram-positive or a fungi,
22 additional therapy for those infections was

1 allowed. Thank you.

2 DR. BADEN: Dr. Hilton?

3 DR. HILTON: Thank you. This is Joan
4 Hilton, University of California San Francisco,
5 biostatistics. I would like to ask a little more
6 about slide CO-35. It's the sample size
7 calculation.

8 I saw that there was an assumed 41 percent
9 mortality rate in the colistin arm, but a
10 32.5 percent mortality rate was observed in the
11 component of the study that we've focused on. Can
12 you explain the difference in the assumed and
13 observed mortality rates, and also, can you tell me
14 what the original sample size calculation was? I
15 know that you negotiated a new sample size with FDA
16 part way through the study.

17 DR. REGE: I would like to turn it over to
18 Dr. David Altarac to answer your question.

19 DR. ALTARAC: David Altarac. Actually, if
20 we can bring up the colistin slide, again, we
21 estimated the mortality rate based on what we read
22 in the literature or what we know about the

1 treatment effect of colistin, which, as I mentioned
2 earlier, ranged between 25 and 57 percent versus no
3 treatment or delayed treatment, which have clearly
4 much higher mortality rates. So based on this, the
5 literature does show that the range, depending on
6 the care within the institution, depending on other
7 co-factors, depending on how they're treated,
8 depending on how quickly antibiotic coverage is
9 initiated, could determine rates anywhere within
10 that range.

11 So again, a mortality rate in the colistin
12 arm in the study of 32 percent is not unreasonable,
13 especially in a well-controlled study, where
14 patients are in an intensive care unit being
15 monitored so closely and getting every opportunity
16 to maximize their care a lower rate than what one
17 would hypothesize based on the literature is not
18 unexpected.

19 In terms of your question around the
20 discussion on the non-inferiority margin, Entasis
21 had approached the FDA early on, and looking at
22 this literature did believe that a 20 percent

1 non-inferiority margin was acceptable and within
2 spectrum, and consistent with the FDA guidance on
3 unmet medical need for serious infections. Based
4 on these estimates, FDA looked at the same
5 literature and determined from their perspective
6 that a 19-percent non-inferiority margin would be
7 their preferred non-inferiority margin.

8 Entasis agreed with that, but then as the
9 study was undergoing and COVID-19 challenges were
10 upon us, we approached the FDA, had a discussion
11 with them, and they agreed that going back to our
12 proposed 20 percent non-inferiority margin would
13 retain the statistical rigor of the trial, and we
14 agreed the 20 percent non-inferiority margin and
15 updated all of our statistical analysis plans well
16 before completion of the study and any database
17 block or analysis. Thank you.

18 DR. HILTON: Excuse me.

19 DR. ALTARAC: Sure. Go ahead.

20 DR. HILTON: I agree with your comments
21 about the well-controlled trials probably explain
22 why you're at the lower end, and I wonder if

1 restricting the literature to well-controlled
2 trials might have been a better way to target that.
3 But you didn't answer one part of my question,
4 which was, what was the original sample size
5 calculation? I know the number randomized in the
6 observed study was 181.

7 DR. ALTARAC: Yes. So I will turn your
8 question over to Dr. Close. Thank you.

9 DR. HILTON: Thank you.

10 DR. CLOSE: Nicole Close, Entasis. The
11 power calculations and sample size was focused on
12 the CRABC population. The original sample size for
13 the CRABC population was a sample size of
14 126 subjects. With the information that
15 Dr. Altarac presented about the non-inferiority,
16 the discussions with the FDA, that 20 percent
17 non-inferiority margin reduced our sample size to
18 120 in the CRABC population, and in the end, the
19 trial did enroll 128 into the CRABC population.

20 DR. HILTON: Thank you.

21 DR. BADEN: Thank you.

22 We are at the time for a break. I suspect

1 there are many more questions from committee
2 members. We can resume clarifications after we go
3 through the remaining presentations, but first
4 we'll take a 10-minute break. Panel members,
5 please remember there should be no chatting or
6 discussion of the meeting topic with other panel
7 members during the break. We will resume at 10:59,
8 in 10 minutes for the FDA's presentation.

9 Thank you. We're now on break.

10 (Whereupon, at 10:49 p.m., a recess was
11 taken, and the meeting resumed at 10:59 a.m.)

12 DR. BADEN: It is now 10:59 and we will
13 resume the meeting. We will now proceed with the
14 FDA presentations, starting with Dr. Qi.

15 Dr. Qi?

16 **FDA Presentation - Karen Qi**

17 DR. QI: Good morning. I'm Karen Qi. I'm
18 the statistical reviewer for this NDA. I'm going
19 to present the efficacy assessment for sulbactam
20 and durlobactam.

21 (Pause.)

22 DR. QI: Sorry. We're having some technical

1 issues here.

2 (Pause.)

3 DR. SHERWAT: Dr. Baden, this is Adam
4 Sherwat. Could we have a couple of minutes? We
5 have a couple of technical issues here.

6 DR. BADEN: Of course. We'll leave it to
7 our AV crew to get this back on track.

8 DR. SHERWAT: Okay. Thank you.

9 (Pause.)

10 DR. QI: Sorry. Let me continue.

11 The proposed indication for sulbactam and
12 durlobactam is for treatment of HABP and VABP that
13 is caused by susceptible strains of ABC complex.
14 The efficacy data to support the proposed
15 indication was from a phase 3 trial, which was
16 conducted in two parallel parts, Part A and Part B.
17 Part A was the randomized investigator unblinded,
18 assessor-blinded, non-inferiority portion. It
19 compares sulbactam ABC and durlobactam with
20 colistin for treatment of HABP, VABP, ventilated
21 pneumonia, or bacteremia caused by ABC. Part B
22 has a single arm for evaluation of sulbactam and

1 durlobactam for treatment of ABC-infected subjects
2 who were resistant to colistin or who were
3 ineligible for Part A due to other factors.

4 Because Part B was single arm, efficacy assessment
5 of sulbactam-durlobactam was based on Part A. I'm
6 going to present the study design and efficacy
7 results for Part A.

8 In Part A, subjects were randomized in a
9 1-to-1 ratio to receive either sulbactam and
10 durlobactam, or colistin. Randomization was
11 stratified by three factors: infection type,
12 including HABP, VABP, VP, or bacteremia; baseline
13 disease severity, including APACHE score,
14 SOFA score, or qSOFA score; and by region, mainland
15 China or the rest of the world. Subjects in both
16 groups received imipenem or cilastatin as
17 background therapy. The study duration was
18 7-to-14 days of treatment and 14 days of follow-up
19 after the treatment.

20 The primary efficacy endpoint in Part A was
21 28 days all-cause mortality. This was assessed
22 using a 20 percent non-inferiority margin. The

1 secondary efficacy endpoint included clinical cure
2 and microbiological favorable assessment at
3 visits, including an end-of-treatment visit; the
4 test-of-cure visit 7 days after the end of
5 treatment; and late follow-up visit 14 days after
6 the end of treatment.

7 To evaluate whether sulbactam and
8 durlobactam was non-inferior to colistin for the
9 primary endpoint of 28-day all-cause mortality, we
10 need to determine whether sulbactam and durlobactam
11 had an unacceptably higher mortality rate than
12 colistin based on a prespecified NI margin of
13 20 percent. As shown in this figure, if the upper
14 95 percent confidence limits of treatment
15 difference in mortality rate is below the margin of
16 20 percent, then sulbactam and durlobactam is
17 non-inferior to colistin.

18 This table shows the result of the
19 literature review conducted during the design stage
20 to justify the NI margin in study with relatively
21 high rate of HABP, VABP, or bacteremia due to ABC
22 pathogen. The 28-day mortality rate for subjects

1 treated with colistin-based therapy was estimated
2 to be 41 percent with the upper 95 percent
3 confidence limit of 47 percent. The mortality
4 rates for subjects treated with delayed or
5 inadequate antibacterial therapy was estimated to
6 be 76 percent, with the lower 95 percent confidence
7 limit of 66 percent.

8 The estimate of the effect of a
9 colistin-based regimen versus inadequate or delayed
10 therapy, in terms of reducing mortality rates, was
11 the difference, between 66 percent and 47 percent.
12 This estimate was consistent with the difference in
13 mortality rates between effective and ineffective
14 antibacterial therapy justified in the FDA guidance
15 documents on developing drugs for HABP and VABP.
16 Therefore, considering the high unmet medical need
17 for antibacterial drug to treat HABP, VABP, CRABC,
18 and trial feasibility due to COVID-19 pandemic, an
19 NI margin of 20 percent was used.

20 Multiple analyses population was used to
21 analyze the efficacy endpoint and included the
22 intent to treat, or ITT, population, which

1 consisted of all randomized objects in Part A. The
2 microbiologically-modified ITT, or m-MITT, was a
3 subset of ITT. It included the ITT subjects who
4 received any amount of study drug and who had a
5 baseline ABC organism isolated as the qualifying
6 culture specimen, as confirmed by the central or
7 local lab.

16 A total of 181 subjects were randomized,
17 with 92 subjects in the sulbactam and durlobactam
18 group and 89 in the colistin group. These subjects
19 were included in the ITT population. The m-MITT
20 population included about 85 percent of the ITT
21 subjects in the sulbactam and durlobactam group and
22 89 percent in the colistin group. The primary

1 reason for exclusion from m-MITT was some subjects
2 were positive by BPP rapid test for ABC, but
3 subsequently found to be culture negative by the
4 central or local lab.

5 The CRABC m-MITT population included about
6 70 percent ITT subjects. The most common reason
7 for exclusion from CRABC m-MITT was subjects were
8 excluded from m-MITT due to BPP positive but
9 culture negative. The second most common reason
10 was the baseline ABC organism was resistant to
11 colistin.

12 In the ITT population, 26 percent of
13 sulbactam and durlobactam subjects and 35 percent
14 of colistin subjects discontinued study treatment.
15 The two most common reasons for discontinuation of
16 sulbactam and durlobactam were adverse events and
17 no growth of ABC, and the two most common reasons
18 for discontinuation of colistin were adverse events
19 and treatment failure. Twenty-two percent
20 sulbactam and durlobactam subjects and 32 percent
21 colistin subjects discontinued from the study. In
22 both groups, the primary reason for discontinuation

1 from the study was death. Also, one subject per
2 group was transferred to Part B because they were
3 resistant to colistin.

4 This table displays some important
5 demographic and baseline clinical factors. The
6 average age was 62 years old for sulbactam and
7 durlobactam subjects and 65 for colistin. The
8 majority of subjects in both groups were males and
9 were enrolled in the rest of the world other than
10 mainland China. In terms of infection type, in
11 total, only 3 subjects had bacteremia. Regarding
12 baseline disease severity, 73 percent of subjects
13 in the sulbactam and durlobactam group and 69
14 percent in the colistin group had APACHE score
15 between 10 and 19 or SOFA score between 7 and 9, or
16 qSOFA score of 2.

17 For the primary analysis, sulbactam and
18 durlobactam were shown to be non-inferior to
19 colistin for the primary endpoint of 28-day
20 all-cause mortality in the CRABC m-MITT population.
21 The mortality rate was 19 percent for sulbactam and
22 durlobactam versus 32 percent for colistin. The

1 treatment difference was negative 13.2 percent,
2 with the upper 95 percent confidence limit for a
3 difference of 3.5 percent. This was below both the
4 20 percent NI margin specified for this trial and
5 the 10 percent NI margin specified in the FDA
6 guidance for general HABP/VABP indication. The
7 analysis excluded 3 subjects who did not have data
8 for 28-day survival status. All were due to
9 withdrawal of consent.

10 To evaluate the impact of missing survival
11 status at day 28 and receipt of prohibited
12 medication before day 28 on the primary endpoint,
13 we conducted the sensitivity analyses. We
14 considered subjects who missed survival status or
15 who received prohibited medication as events in the
16 sulbactam and durlobactam group and non-events in
17 the colistin group; therefore, our analyses are
18 relatively conservative.

19 This table shows the results for CRABC
20 m-MITT and ITT populations. The upper 95 percent
21 confidence limit for 28-day all-cause mortality
22 rates were below 10 percent in all three

1 populations. Thus, the sensitivity analysis
2 provided similar conclusions to the prespecified
3 primary analysis.

4 For the secondary endpoint of clinical cure,
5 the cure rates for sulbactam and durlobactam were
6 higher than colistin on end-of-treatment,
7 test-of-cure, and late follow-up visits. There was
8 no prespecified statistical testing for this
9 endpoint to control for false positive from
10 multiple comparisons, but the treatment difference
11 and end of treatment and test of cure were
12 nominally significant.

13 The secondary endpoint of microbiological
14 favorable assessment included microbiological
15 eradication and presumed eradication.
16 Microbiological favorable assessment was higher for
17 sulbactam and durlobactam at each visit, and the
18 treatment differences were nominally significant in
19 end-of-treatment and test-of-cure visit. The
20 differences in favor of sulbactam and durlobactam
21 at all visits were driven by presumed eradication,
22 which was based on clinical response.

1 In summary, Part A in the phase 3 study
2 demonstrated that sulbactam and durlobactam was
3 noninferior to colistin for a primary endpoint of
4 28-day all-cause mortality in the CRABC m-MITT
5 population, as the upper 95 percent confidence
6 limit for the treatment difference in mortality was
7 3.5 percent, meeting both 20 and 10 percent
8 margins. About 96 percent of subjects in the CRABC
9 m-MITT had either HABP or VABP, and only 3 subjects
10 had bacteremia. Consequently, we concluded that
11 the sulbactam and durlobactam was non-inferior to
12 colistin for treatment of HABP or VABP, caused by
13 CRABC.

14 This is the end of my presentation. Thank
15 you. Now I would like to turn the presentation to
16 Dr. Ghosh.

17 DR. SHERWAT: Dr. Baden, hi. This is Adam
18 Sherwat. If you could give us just 2 or 3 minutes
19 to be able to switch our slide deck, that would be
20 great.

21 DR. STEVENSON: Yes. Hi. Good morning.
22 This is Takyiah Stevenson speaking, DFO. Yes,

1 Apologies. We're going to take a quick five-minute
2 break to address technical issues. Thank you.

3 DR. BADEN: So we'll resume at 11:20. Thank
4 you.

5 (Pause.)

6 DR. KIM: Hi, Dr. Baden. This is Peter Kim.
7 We're ready to start when you're ready.

8 DR. BADEN: Perfect. So the technical issues
9 are resolved, so let me ask Dr. Ghosh to continue
10 with the agency's presentations. Thank you.

11 **FDA Presentation - Mayurika Ghosh**

12 DR. GHOSH: Good morning. My name is
13 Mayurika Ghosh, and I'm a clinical reviewer in the
14 Division of Anti-Infectives, FDA. I will present
15 the clinical safety assessment for new drug
16 application sulbactam and durlobactam.

17 Sulbactam is a beta-lactam antibacterial and
18 beta-lactamase inhibitor. Durlobactam is a
19 non-beta-lactam beta-lactamase inhibitor.
20 Sulbactam has intrinsic activity against
21 *Acinetobacter* species. The proposed indication is
22 treatment of hospital-acquired bacterial pneumonia

1 and ventilator-associated bacterial pneumonia
2 caused by susceptible isolates of ABC complex in
3 adults. The proposed dose is 1 gram sulbactam and
4 1 gram durlobactam co-packaged together,
5 administered intravenously every 6 hours for a
6 duration of 7-to-14 days, as guided by the
7 patient's clinical status.

8 The safety data for sulbactam and
9 durlobactam was derived primarily from the phase 2
10 complicated urinary tract infection and the single
11 pivotal hospital-acquired bacterial pneumonia and
12 ventilator-acquired bacterial pneumonia phase 3
13 study.

14 The phase 2 study was randomized 2 to 1 to
15 sulbactam-durlobactam and placebo. All
16 80 subjects, including the 53 subjects on the
17 sulbactam-durlobactam group, received background
18 imipenem-cilastatin therapy to cover for
19 co-infecting pathogens in patients with
20 polymicrobial *Acinetobacter* infections in the
21 sulbactam-durlobactam group. No *Acinetobacter*
22 infections were enrolled in this phase 2 study;

1 therefore, data from this study was used to assess
2 safety of sulbactam-durlobactam.

3 The phase 3 study consisted of a comparative
4 part, Part A, where subjects were randomized 1 to 1
5 to sulbactam-durlobactam and colistin with
6 background independent cilastatin therapy. Part A
7 was comprised primarily of HABP, VABP subjects.
8 Part B of the phase 3 study was non-randomized and
9 included 28 subjects with inclusion criteria of
10 colistin-resistant pathogens, complicated urinary
11 tract infections, and surgical post-traumatic
12 infections.

13 These 28 subjects received
14 sulbactam-durlobactam with background independent
15 cilastatin therapy. The study drugs were not
16 masked for logistic reasons, and the treating
17 physician and other healthcare providers were not
18 blinded in the trial, except for the outcome
19 assessor who evaluated criteria for clinical
20 outcomes, conducted causality assessment for
21 adverse events, and assessed clinical signs and
22 symptoms at study visits. The safety population

4 This slide gives you an overview of the size
5 of the clinical safety database. Durlobactam up to
6 8 grams was studied in phase 1 subjects and
7 10 subjects received sulbactam and durlobactam at
8 the proposed dose and duration. Fifty-one subjects
9 in phase 2 and 97 subjects in phase 3 received
10 sulbactam and durlobactam at the proposed dose and
11 duration.

21 There were no deaths in phase 1 or phase 2
22 studies. The mortality rates on the

1 subbactam-durlobactam arm at 26 percent were
2 numerically lower than colistin at 35 percent of
3 the phase 3 study. The deaths were related to
4 underlying comorbidities, complications in
5 critically ill subjects, or progression of the
6 presenting pneumonia without apparent biologic
7 plausibility or causal assignment to subbactam and
8 durlobactam. The most common etiologies of death
9 in both subbactam-durlobactam and colistin groups
10 were septic shock and sepsis. The mortality rates
11 were generally consistent with those in HABP/VABP
12 trials and in *Acinetobacter* infections reported in
13 the literature.

14 This slide gives an overview of the adverse
15 events in the phase 3 safety population. The
16 overall incidence of treatment-emergent adverse
17 events was 88 percent in the subbactam-durlobactam
18 arm and 94 percent in the colistin arm. There were
19 lower incidences of serious adverse events,
20 40 percent versus 49 percent, and drug-related,
21 treatment-emergent adverse events, 13 percent
22 versus 30 percent, in the subbactam-durlobactam arm

1 compared to colistin.

2 There were 24 deaths on sulbactam-
3 durlobactam and 30 deaths on the colistin arm.
4 Four deaths were noted in Part B of the study.
5 There was one subject with related TEAE of
6 anaphylaxis, which led to treatment discontinuation
7 with sulbactam and durlobactam. A greater
8 proportion of subjects in both arms experienced
9 severe TEAEs, but moderate and severe TEAEs were
10 less frequent in the sulbactam-durlobactam arm as
11 compared to colistin. In Part B, 9 subjects had a
12 serious adverse event, and of them, one subject had
13 a drug-related serious adverse event.

14 This slide gives you an overview of selected
15 treatment-emergent adverse events occurring at more
16 than 5 percent incidence in the safety population
17 of the phase 3 study. Of note, diarrhea,
18 hypokalemia, and thrombocytopenia occurred at more
19 than 5 percent in the sulbactam-durlobactam arm, as
20 well as abnormal liver function tests. Acute
21 kidney injury was higher in the colistin arm, about
22 36 percent, compared to sulbactam and durlobactam

1 arm, which was 5.5 percent. The most common
2 drug-related, treatment-emergent adverse event in
3 subjects who received sulbactam-durlobactam was
4 liver function tests and diarrhea.

5 Hypersensitivity, pseudomembranous colitis,
6 convulsions, acute kidney injury, and drug-related
7 hepatic disorders were adverse events of special
8 interest, which were monitored during the clinical
9 treatment program. Hypersensitivity reactions were
10 more frequent in the sulbactam-durlobactam group at
11 16.5 percent compared with the colistin group at
12 11.5 percent, which would be expected with
13 penicillin derivatives.

14 The most common drug-related reaction was
15 rash. One subject who received sulbactam-
16 durlobactam had anaphylactic shock. This subject
17 had treatment discontinued and treated with
18 steroids. The *C. difficile* colitis was noted in
19 both groups and less frequently on sulbactam-
20 durlobactam. The incidence of seizure was higher
21 in the colistin arm, 6 subjects, 7 percent,
22 compared with sulbactam-durlobactam arm, which was

1 one subject at 0.8 percent.

2 In conclusion, the safety database was
3 limited; however, the safety profile of sulbactam-
4 durlobactam is consistent with the pharmacologic
5 class. Hypersensitivity reactions were more
6 frequent in the sulbactam-durlobactam group.
7 Diarrhea, including *C. difficile* infections were
8 noted among both treatment groups. Liver function
9 tests elevations were comparable between treatment
10 groups, and no specific hepatotoxicity signal was
11 noted. No additional safety signals were noted
12 from the phase 2 study.

13 I would again like to thank the advisory
14 committee for their participation in today's
15 meeting, and thank you for your attention. I will
16 now invite Dr. Simone Shurland to provide the
17 clinical microbiology assessment for this
18 application. Thank you.

19 **FDA Presentation - Simone Shurland**

20 DR. SHURLAND: Thank you, Dr. Ghosh.

21 My name is Simone Shurland, and I will
22 present the clinical microbiology assessment of

1 subbactam-durlobactam. *Acinetobacter baumannii* has
2 the ability to develop resistance through several
3 diverse mechanisms. Both intrinsic- and acquired-
4 resistance mechanisms have very limited options for
5 treatment of multidrug-resistant ABC isolates.
6 This may be due to *Acinetobacter* ability to exchange
7 genetic material, which are encoded on
8 extra-chromosomal DNA, such as plasmids,
9 transposons, and insertion sequences that give this
10 bacterial an advantage to adapt and develop rapid
11 resistance mechanisms to many classes of
12 antibacterial agents. Current treatment options
13 for ABC isolates are limited due to high resistant
14 rates of resistance, including the first-line
15 agents such as carbapenems. These resistant
16 organisms have been associated with very poor
17 outcomes.

18 An important feature of *Acinetobacter*
19 species is the intrinsic resistance to multiple
20 antibacterial agents. The most common resistant
21 mechanism in *Acinetobacter* species is the production
22 of beta-lactamases intrinsic to a majority of ABC

1 isolates or the AmpC beta-lactamases, which is
2 chromosomally encoded cephalosporinases, referred
3 to as the *Acinetobacter* derived cephalosporinases or
4 ADCs.

5 Such beta-lactamases have a low level of
6 expression when expressed within certain sequence
7 next to the AmpC gene increases beta-lactamase
8 production, causing resistance to penicillin such
9 as ampicillin, cephalosporins, and the
10 carbapenem-ertapenem. More importantly, the major
11 mechanism of carbapenem resistance in ABC isolates
12 is the production of Ambler class D beta-lactamase,
13 often referred to as oxacillinases or OXAs. Less
14 common carbapenemases found in *Acinetobacter* are the
15 class A such as *Klebsiella pneumonia carbapenemase*
16 or KPC. And depending on the region, the class B,
17 or often referred to as metallo beta-lactamases,
18 like the New Delhi metallo beta-lactamase, often
19 referred to as NDMs.

20 Overexpression of bacterial efflux pump can
21 also decrease or impede the drug penetration to its
22 target by accumulating the drug in the periplasmic

1 space. The most common efflux pump found in
2 *Acinetobacter* is the AdeDE efflux pump, which
3 affects trimethoprim, fosfomycin, and to some
4 extent the aminoglycosides, chloramphenicol and
5 fluoroquinolones. Also in concert with all these
6 mechanisms of resistance discussed, *Acinetobacter*
7 showed low permeability of some antibacterial
8 agents through its outer membrane due to the
9 expression of conductance of porins like OmpA.

10 Similar to beta-lactams, sulbactam has a
11 beta-lactam core that is able to covalently bind to
12 penicillin-binding proteins, the enzymes required
13 for bacterial cell wall synthesis. It is often
14 used as a class A beta-lactamase inhibitor as in
15 the formulation of ampicillin-sulbactam. As stated
16 earlier, the presence of the ADCs often inactivate
17 ampicillin. Most of the activities are attributed
18 to sulbactam, which inhibits the penicillin-binding
19 proteins PBP1 and PBP3.

20 Durlobactam is a novel, non-beta-
21 lactam/beta-lactamase inhibitor that does not
22 contain a beta-lactam core, though durlobactam

1 binds to a catalytic site of the serine beta-
2 lactamases, resulting in opening the cyclic urea
3 ring of susceptible beta-lactamases. Durlobactam
4 alone does not have activity against the ABC
5 isolates, and as shown by the applicant,
6 durlobactam inactivates ABC isolates expressing
7 serine beta-lactam patients, including class A,
8 class C, and class D. Durlobactam does not have
9 any activity against the MBLs.

10 This graphical presentation shows the
11 minimum inhibitory concentration through MICs of
12 sulbactam, shown in gray, and the MICs of the
13 combination of sulbactam-durlobactam, shown in
14 green. The activity of sulbactam alone had MIC
15 modal values of 16 milligrams per liter, whereas
16 the addition of durlobactam at a fixed
17 concentration of 4 milligrams per liter lowered
18 sulbactam value to about 1 to 2 milligrams per
19 liter, which is at least an 8-to-16 fold shift in
20 the sulbactam MIC value.

21 Approximately 98.2 percent of the ABC
22 isolates based on these surveillance studies were

1 shown to have sulbactam-durlobactam less than
2 4 milligrams per liter, as the applicant has shown.
3 There were no difference in sulbactam-durlobactam
4 activity against different species that make up the
5 ABC grouping, nor did the MIC differ by infection
6 source or over the period of study time.

7 In different resistance genotype
8 subpopulations, sulbactam-durlobactam maintained
9 activity against carbapenemases associated with
10 meropenem-resistant isolates and ESBL-producing
11 isolates. Isolates classified as colistin
12 non-susceptible, as well as multidrug resistant,
13 defined as isolates that remains susceptible to one
14 or two antimicrobial categories, sulbactam-
15 durlobactam showed MICs less than 4 milligrams per
16 liter.

17 The applicant has shown in the global
18 surveillance and resistance studies that isolates
19 that had sulbactam-durlobactam with MICs greater
20 than 4 milligram per liter correlated with amino
21 acid changes near the active site of sulbactam or
22 PBP3 in *Acinetobacter*. Since these changes likely

1 affect sulbactam binding to its target, changing
2 the relative concentration of durlobactam would not
3 be expected to fully restore sulbactam's
4 susceptibility.

5 In addition, as discussed earlier,
6 durlobactam is not active against isolates that
7 express NDM-1 or any other MBLs. Isolates that
8 encode the MBLs show that sulbactam-durlobactam MIC
9 values were greater than 32 milligrams per liter,
10 demonstrating no significant shift in the MIC for
11 sulbactam when tested alone. It is likely that
12 there will be multiple factors that will contribute
13 to higher sulbactam-durlobactam MIC values,
14 including isolates that produce 1, 2, or even
15 7 beta-lactamases at different and varying degrees
16 of expression levels, or in combination with PBP
17 mutations or other resistant mechanisms such as
18 efflux pumps. However, based on the applicant's
19 global surveillance studies, it shows that
20 2-to-4 percent of the ABC isolates had sulbactam-
21 durlobactam MICs greater than 4 milligrams. It was
22 recommended that the applicant evaluated isolates

1 in and outside the susceptibility range in in vitro
2 studies and animal models of infection studies.

3 Though the applicant has evaluated the
4 activity of sulbactam-durlobactam in murine thigh
5 or lung infection models against at least
6 10 *A. baumannii* isolates, these isolates were well
7 characterized based on its beta-lactamase activity,
8 as well as other resistant mechanisms. The tested
9 isolates had sulbactam-durlobactam MICs that ranged
10 from 0.5 to 16 milligrams per liter and
11 sulbactam MICs of 2 to 64 milligrams per liter.
12 The models showed that durlobactam alone
13 demonstrated minimal to no activity, and sulbactam
14 administered at a fixed concentration and varying
15 concentrations of durlobactam showed a dose
16 proportional reduction in bacterial burden.

17 In the next few slides, I will show some
18 examples of at least two different ABC isolates
19 with mechanisms of resistance patterns for
20 sulbactam-durlobactam. This graphical presentation
21 shows the results of two isolates tested in the
22 neutropenic murine thigh infection models. Animals

1 were infected by muscular injection of an inoculum
2 of 10^5 or 10^8 CFUs into the dorsal thighs.
3 Treatment commenced at 2 hours post-infection. In
4 these models, subcutaneous injections of a fixed
5 concentration of sulbactam and varying
6 concentrations of durlobactam were administered
7 every 3 hours for up to 24 hours. At the end of
8 the study, animals were humanely euthanized, and
9 the bacteria burden was enumerated from the
10 infected thigh.

11 Untreated animals at the start of treatment
12 showed at least a 1-log increase in CFUs, as shown
13 in the graphical presentation on the Y-axis. The
14 green bars above the line show an increase in
15 growth and bacteria, and bars below the line show a
16 decrease in CFUs or increased killing of bacteria.
17 As a positive control, animals were treated with
18 40 milligrams per kilogram of colistin, which
19 showed greater than a 2-log decrease in CFUs,
20 depending on the isolate.

21 The graph on the left evaluated the ARC 3486
22 strain, which has a class C or ADC-30; class A,

1 TEM-1; and two class D's, OXA-66 and OXA-72. The
2 isolate had a sulbactam MIC of 32 milligrams per
3 liter and a sulbactam-durlobactam MIC of
4 1 milligram per liter. Durlobactam alone dosed at
5 15 mgs per kg showed an increase in CFUs, almost
6 similar to the untreated animals. Incremental
7 increasing in durlobactam concentration showed a
8 dose proportional reduction in bacterial burden.

9 The graph on the right shows an isolate
10 ARC5950, which contained a class C, ADC-11, and two
11 class D's, OXA-23 and OXA-69, as well as mutation
12 in the PBP3, which affects sulbactam resistance.
13 The sulbactam MIC was 64 milligram per liter, and
14 the sulbactam-durlobactam was 4 milligrams per
15 liter. As shown in the graphic, higher sulbactam
16 doses at 150 mgs per kg alone and durlobactam at
17 50 mgs per kg alone was not sufficient to reduce
18 the bacterial load.

19 As compared to ARC3486, treatment of animals
20 infected with ARC5950 strain not only required a
21 higher sulbactam dose at 150 mgs per kgs, as well
22 as an increase in the durlobactam concentration to

1 show a dose proportional reduction in the bacterial
2 burden.

3 Similar results were shown in in vitro
4 hollow fiber infection model against the same two
5 strains. The model simulated steady-state unbound
6 plasma concentration of 1 gram sulbactam and 1 gram
7 durlobactam, administered every 6 hours over a
8 24-hour period. The Y-axis shows the average CFUs
9 and the X-axis shows the change in CFUs over time.
10 Against the ARC3486, as shown in this graphic, the
11 purple or mauve line shows the growth control. The
12 red line shows the ARC isolate when treated with
13 1 gram sulbactam alone, demonstrating no difference
14 in growth when compared to the growth control. The
15 blue line shows the combination of 1-gram sulbactam
16 and 1 gram durlobactam, showing greater than 3-log
17 bacteria killing, demonstrating bactericidal
18 activity.

19 Similar bactericidal activity was observed
20 when sulbactam-durlobactam was used in combination
21 with meropenem or imipenem. In fact, the killing
22 curve lines were on top of each other, suggesting

1 no difference in bacterial killing between the
2 different combinations tested. Against the ARC5950
3 strain, the purple and mauve lines show the growth
4 control. The red line shows isolates treated with
5 1 gram sulbactam alone, demonstrating no difference
6 compared to the growth control. The blue line
7 shows the combination of 1 gram sulbactam and
8 1 gram durlobactam, showing greater than 2-log
9 killed up to 10 to 12 hours, and then a regrowth
10 that occurred.

11 A limitation was the study was done in an
12 in vitro system, which eliminates the innate
13 killing mechanisms as if it was done in an animal
14 study. It is assumed that the overgrowth of
15 isolates may be due to the presence of the PBP3
16 mutation, which durlobactam is unable to restore
17 sulbactam binding to its target. It is important
18 to note that all isolates in the phase 3 trials, as
19 shown by the applicant, had sulbactam-durlobactam
20 MICs less than 4 milligrams per liter.

21 I thank you for your attention. Dr. Tracey
22 Wei will present the clinical pharmacology

1 assessment.

2 **FDA Presentation - Xiaohui Wei**

3 DR. WEI: My name is Tracey Wei. On behalf
4 of the clinical pharmacology review team from the
5 FDA, I will present the clinical pharmacology
6 assessment on this NDA of sulbactam-durlobactam.

7 This slide highlights the key PK
8 characteristics of sulbactam and durlobactam. Both
9 sulbactam and durlobactam penetrate into the lung
10 with the ratio of total drug AUC in epithelial
11 lining fluid, ELF, to plasma of 0.5 for sulbactam
12 and 0.37 for durlobactam in healthy human subjects.

13 Excretion is the primary elimination pathway
14 for both sulbactam and durlobactam. Renal function
15 had a significant impact on the PK of sulbactam and
16 durlobactam compared to human subjects with normal
17 renal function who have creatinine clearance at or
18 above 90 mL per minute. The dose normalized AUC is
19 approximately 2-fold higher in subjects with
20 moderate renal impairment and approximately 4-fold
21 higher in subjects with severe renal impairment;
22 therefore, dose adjustment is needed in patients

1 with renal impairment.

2 In terms of PK-based drug-drug interaction,
3 results from a phase 1 study demonstrated no
4 interaction among sulbactam-durlobactam
5 imipenem-cilastatin in healthy subjects. Results
6 from in vitro studies suggest that sulbactam and
7 durlobactam are both substrates of OAT1
8 transporter, a renal organic anion transporter to
9 uptake the substrates from the blood into renal
10 proximal tubular cells. Hence, the concomitant
11 administration of OAT1 inhibitors such as
12 probenecid will increase the drug exposure in
13 plasma.

14 Clinical pharmacology assessments include
15 the evaluation of the proposed dose regimens, but
16 reviewing the probability of PK/PD target
17 attainment for sulbactam-durlobactam, the
18 assessment of renal function-based dose
19 adjustments, and the assessment of the effect of
20 body weight on the PK of sulbactam and durlobactam.

21 Sulbactam and durlobactam PK/PD targets were
22 determined from murine thigh and lung infection

1 models using a collection of 10 *A. baumannii*
2 isolates. Among them, 9 isolates are sulbactam and
3 carbapenem resistant. Consistent to other
4 beta-lactams, the percentage of the time during a
5 dosing interval, that frees sulbactam plasma
6 concentration, remains above MIC and was identified
7 to be the PK/PD driver for the efficacy of
8 sulbactam, and a magnitude of 50 percent is
9 associated with 1-log kill in the murine infection
10 model against the resistant *A. baumannii* strength.

11 For durlobactam, the free drug AUC from
12 dosing to 24-hour post-dose to MIC ratio was
13 identified to be the PK/PD driver to restore the
14 bactericidal activity of sulbactam, with a ratio of
15 10 associated with 1-log kill and a ratio of 30
16 associated with 2-log kill against the resistant
17 *A. baumannii* strain.

18 The proposed dose regimens is 1 gram
19 sulbactam and 1 gram durlobactam given every
20 6 hours by IV infusion over 3 hours, for
21 7-to-14 days, in patients with creatinine clearance
22 between 45 to 129 mL per minute. Dose adjustments

1 are required for patients with a creatinine
2 clearance less than 45 mL per minute and for
3 patients with a creatinine clearance at or above
4 130 mL per minute.

5 Dose selection was facilitated by performing
6 the probability of PK/PD target attainment, PTA,
7 analysis, using the joint sulbactam and durlobactam
8 PK/PD targets to achieve at least 1-log kill
9 against the resistant *A. baumannii* strain. In this
10 PTA analysis, simulated patients were generated to
11 resemble the distributions of demographic variable
12 of the phase 3 patient population with ABC
13 infection. PTA analysis was conducted at a
14 proposed renal function-based dose regimen based on
15 unbound plasma concentration or total drug
16 concentration in epithelial lining fluid, ELF.

17 The curves in the figure show the percentage
18 of the simulated patients who achieved the PK/PD
19 targets across a range of MIC values. The PTA
20 results indicate that the applicant's proposed dose
21 regimen can generate drug concentration in plasma
22 or ELF to achieve the PK/PD associated with 1-log

1 kill from a list of 90 percent of simulated
2 patients at MIC value up to 4 microgram per mL.
3 MIC up to 4 microgram per mL covers the MIC levels
4 of greater than 98 isolates from global
5 surveillance study in the phase 3 study.

6 Drug exposures were estimated at the
7 proposed dose adjustment in the simulated patients,
8 representing each of eight renal function
9 categories covering creatinine clearance from
10 0-to-200 mL per minute. As shown in this figure
11 for sulbactam and durlobactam, respectively, the
12 predicted plasma AUC of sulbactam and durlobactam
13 at a steady state were generally comparable across
14 renal function categories and were within the range
15 of exposures for subjects with normal renal
16 function.

17 PTA at a proposed dose adjustment was also
18 conducted in the simulated patients from each of
19 eight renal function categories, based on free drug
20 plasma concentration or total drug concentration in
21 ELF. As shown in these figures, the proposed dose
22 adjustments resulted in at least 90 percent PTA in

1 achieving PK/PD targets corresponding to 1-log kill
2 at MIC up to 4 micrograms per mL across each renal
3 function category, supporting the proposed dose
4 adjustment by renal function.

5 The population PK covariate analysis
6 identified the body weight to be the statistically
7 significant predictor of the variability in
8 clearance in central volume distribution for
9 sulbactam-durlobactam, and sulbactam and
10 durlobactam exposures decreased as the body weight
11 increased. Based on the observed Cmax and AUC
12 values from phase 2 and phase 3 patients, this
13 table summarizes the fold changes in the mean AUC
14 and the Cmax values. Compared to those from
15 patients with body weight from 51 to 90 kilograms,
16 Cmax and AUC levels on day 3 were approximately
17 2-fold higher in patients with body weight lower
18 than 50 kilograms and approximately 25 percent
19 reduction in Cmax and AUC on day 1 was observed in
20 patients with a body weight greater than 90
21 kilograms.

22 The number of patients with body weight less

1 than 50 kilograms is limited from the phase 3
2 study, but higher exposures observed in the low
3 body weight subjects is not considered to be a
4 safety concern since the incidence of the rare
5 adverse events and the treatment discontinuations,
6 due to adverse events following sulbactam-
7 durlobactam treatment, was similar between the
8 patients with a body weight lower than 50 kilograms
9 and the patients with a body weight greater than
10 50 kilograms from the phase 3 study.

11 Since the lower drug exposures in subjects
12 with a high body weight might lead to reduced
13 efficacy, PTA was conducted in the simulated
14 subjects at various body weights, ranging from
15 35-to-150 kilograms, as well as at three body mass
16 index categories across each renal function group,
17 based on the proposed dosing regimen.

18 The figures on the slide show the
19 representative PK results from patients with normal
20 renal function. In general, the PK/PD targets of
21 sulbactam and durlobactam associated with 1-log
22 kill achieved at least 90 percent of simulated

1 patients at MIC up to 4 micrograms per mL,
2 including those subjects in the highest body weight
3 and from 120 kilograms to 150 kilograms, either
4 based on the free plasma concentration or total
5 drug concentration in ELF across the various renal
6 function groups.

7 To streamline dose regimens of sulbactam-
8 durlobactam, the applicant further revised the dose
9 adjustments by standardizing the doses to 1 gram
10 sulbactam and 1 gram durlobactam in all renal
11 function categories and adjusting the dosing
12 frequency for patients with a creatinine clearance
13 at or above 130 mL per minute and for patients with
14 a creatinine clearance less than 30 mL per minute
15 groups so that the predicted drug exposure from
16 each renal function category are still comparable
17 to those from patients with normal renal function.

18 Taking the dose amount to 1 gram sulbactam
19 and 1 gram durlobactam across all renal function
20 groups will allow the use of one standard dosing
21 kit in all patients and simplify the process of
22 dosing preparation and drug administration. The

1 applicant's proposed revision in dose adjustments
2 is still under our review.

3 In summary, results of population PK and
4 probability of PK/PD target attainment analysis
5 generally support the proposed dose regimens in the
6 patient population for the target indication. The
7 applicant's proposed revisions on the dose
8 adjustments in patients with altered renal function
9 is under our review.

10 This concludes the presentation from the
11 FDA. Thank you for the participation of all the
12 advisory committee members. Thank you for your
13 attention, and I will turn it over to the
14 chairperson.

15 **Clarifying Questions**

16 DR. BADEN: Thank you. I'd like to thank
17 all of the agency presenters for, once again,
18 presenting a lot of data from many different angles
19 and making it very accessible and understandable.

20 We will now take clarifying questions for
21 FDA presenters. Panel members, please use the
22 raise-hand icon to indicate that you have a

1 question, and remember to lower your hand by
2 clicking the raise-hand icon again after you have
3 asked your question. When acknowledged, please
4 remember to state your name for the record before
5 you speak and direct your questions to a specific
6 presenter, if you can. If you wish for a specific
7 slide to be displayed, please let us know the slide
8 number, if possible.

9 Finally, it would be helpful to acknowledge
10 the end of your question with a thank you and the
11 end of your follow-up question with, "That is all
12 my questions," so we can move on to the next panel
13 member.

14 I will just note to the committee and to the
15 community that we will have 15 minutes of Q&A with
16 the agency till 12:15. We will break for lunch.
17 At 1:00, we will have the open public hearing
18 session. When that is concluded, we will resume
19 with clarifying questions for both the applicant
20 and agency, but we need to carefully manage the
21 time to allow the different elements to be
22 represented in this meeting and discussion.

1 Dr. Siberry, first question, please.

2 DR. SIBERRY: Thank you, Chair, and I think
3 this question is for Dr. Qi.

4 I noticed that there was almost double the
5 number of participants in the comparison arm who
6 were aged 75 and older. Not surprisingly, they had
7 the highest mortality rate, and I wanted to see if
8 there was a way to understand how that imbalance in
9 the age, with a much higher number and proportion
10 in that greater than 75 group, could have distorted
11 the apparent point estimate and confidence interval
12 for the difference in mortality between the arms,
13 and if there's some way to estimate what that
14 difference would be if you had the same background
15 age band structure. Thank you.

16 (Pause.)

17 DR. QI: This is Karen Qi. I'm a
18 statistical reviewer. So yes, there's some
19 imbalance in terms of age distribution between the
20 two treatment arms. This is a subgroup analysis by
21 age. As you see here in the first block, you see a
22 patient below 65 years old and above 75 years old.

1 The mortality rate for sulbactam-durlobactam is
2 numerically lower than colistin. Between the 65
3 and 75-year-old subgroup, the mortality rate for
4 sulbactam-durlobactam was higher than colistin, but
5 you see the sample size in this subgroup was small.
6 It's inconclusive.

7 I hope I answered your question.

8 DR. SIBERRY: Thanks, Dr. Qi. I think
9 you've reviewed that, and I just want to confirm
10 that from your perspective, the relatively high
11 number of people in the greater than 75 and the
12 relative high number of deaths in that group,
13 especially in the colistin arm, aren't leading to
14 what looks like a more favorable performance of the
15 study drug than might actually be the case if those
16 age distributions were better matched.

17 DR. QI: Yes.

18 DR. SIBERRY: Okay. Thanks. That's all.
19 Thank you.

20 DR. QI: You're welcome.

21 DR. BADEN: Dr. Green?

22 DR. GREEN: Thank you. Michael Green. This

1 is also for Dr. Qi.

2 It's just that I wondered -- and maybe I
3 missed this in my preparation reading. Can you
4 provide us the definition of presumed eradication?
5 On your slide, on page 25 of the FDA presentation,
6 a substantial number of the SUL-DUR group had
7 presumed eradication compared to colistin, but I'm
8 wondering what that means since it does impact the
9 superior aspect or at least saying a more favorable
10 outcome. Presumed eradication, how is that
11 defined? Thank you.

12 DR. IARIKOV: Hi. It's Dmitri Iarikov,
13 cross-discipline team leader of this application.
14 I turn this question over to Dr. Shurland.

15 DR. SHURLAND: I will attempt to answer the
16 question, but I will defer to the applicant.
17 Presumed eradication means that they did not get an
18 isolate, and based on the patient's feeling,
19 function, and survival, it was based on clinical
20 outcome. But again, I will defer to the applicant.

21 DR. GREEN: So just to clarify -- and then
22 hopefully in the afternoon when we do clarifying

1 questions for the applicant, they can confirm
2 this -- these are individuals that don't have a
3 follow-up culture, but because they did well
4 clinically, we presume that they had eradication,
5 but it doesn't mean that they had an endotracheal
6 aspirate culture that doesn't grow it. It means
7 that they didn't get the culture.

8 (No response.)

9 DR. GREEN: I guess it's better that we'll
10 just have to have the applicant address this
11 question.

12 DR. BADEN: I will ask the applicant, if
13 their mic is on, to give Dr. Green a targeted
14 answer.

15 DR. REGE: That is correct. Thank you.

16 DR. BADEN: Thank you.

17 Dr. Siberry?

18 DR. SIBERRY: Thanks again, Chair. This
19 question I think is for Dr. Wei.

20 I saw that the FDA proposed dosing for
21 creatinine clearance greater than 130 is 1 gram per
22 kilo q4 hours. If that's still a 3-hour infusion,.

1 I wanted to ask whether it wouldn't make sense to
2 make that a continuous infusion, since you'll
3 barely have time to take down one before you have
4 to put up the next one to start it, if I'm
5 understanding the q4-hour/3-hour duration. Thanks.

6 DR. WEI: Yes. Thank you. Yes, good
7 question. We also took this into consideration
8 when we recommended duration to the every 4-hour
9 infusion. But considering that the targeted
10 patients are very sick patients in the ICU,
11 patients most of the time are on multiple IV
12 infusion lines, so I think that may be supported
13 for this proposed dose regimen. But I will defer
14 to our clinical reviewer if they have more clinical
15 experience or practice experience for this
16 question, but thank you.

17 DR. SIBERRY: Thanks very much.

18 DR. BADEN: Any further comment from the
19 clinical reviewer to Dr. Siberry's question about
20 the infusion duration?

21 DR. IARIKOV: Hi again. It's Dmitri
22 Iarikov. I think it's a good question, and it

1 might be more beneficial under some circumstances
2 to have continuous infusion, but I don't think it's
3 been tested in the trial. So it's probably an
4 issue and a question for additional discussion, if
5 a pump for continuous infusion would be more
6 beneficial and practical in certain settings.
7 Over.

8 DR. BADEN: Thank you.

9 I'll ask the next question, and then we have
10 Dr. Hunsberger on deck; and to the other panel
11 members, please do use the hand icon.

12 These safety data, Dr. Ghosh, it looks like
13 there was one anaphylaxis, and it's a small number.
14 And whether that's out of the 60 or the under 200
15 who have received the target dose and interval, we
16 know that anaphylaxis hypersensitivity is a problem
17 with beta-lactams, but in such a small number, how
18 should we think about that on the safety
19 standpoint? That is a severe allergic reaction,
20 and is it a 1 percent rate, or a 0.5 percent rate?
21 I know the numbers are small, but the degree of
22 hypersensitivity seemed a little higher than what

1 at least I'm used to for beta-lactams.

2 DR. IARIKOV: And this is a question to
3 Dr. Ghosh?

4 DR. BADEN: Ghosh or to any of the agency
5 who would like to comment. It's the safety issue;
6 is how should we think about the hypersensitivity
7 in the anaphylaxis, given the small numbers?

8 DR. IARIKOV: Let me try to answer this
9 question. Hypersensitivity is a known reaction
10 associated with beta-lactams. All patients
11 received imipenem as a background, and it's also a
12 beta-lactam, so there are two beta-lactams.

13 It's a well-known safety data on sulbactam.
14 It's been for many years. The drug is not known to
15 be specifically associated with anaphylaxis
16 compared to other beta-lactams, but it's a
17 recognized adverse reaction. Whether durlobactam
18 has an increased risk of anaphylaxis, it's just
19 hard to answer overall. We have some experience
20 from the phase 2 data. We have some experience
21 from phase 1 data and, in general, anaphylaxis
22 would be expected with the initial dose. You don't

1 need to have sometimes proposed dosage duration.

2 So in terms of anaphylaxis, it might be
3 somewhat more reassuring as compared to 150
4 patients, but it's going to be investigated in the
5 postmarketing setting through pharmacovigilance,
6 for instance. So yes, it's a good question, but
7 additional data might provide more clarity on this.

8 DR. BADEN: Thank you.

9 Dr. Hunsberger?

10 DR. HUNSMERGER: Yes. I wanted to follow up
11 on Dr. Siberry's question about the age effects.
12 It is a little odd that in the 65 to 75, and then
13 older than 75, the mortality kind of goes in
14 opposite directions. It could be attributed to
15 other covariates and how those groups are made up.

16 So I'm wondering if you did any kind of
17 logistic regression where you controlled for other
18 covariate effects to see if there was still that
19 discrepancy in the age groups once you control for
20 other covariate effects.

21 DR. IARIKOV: Thank you for the question. I
22 will turn it over to our statistical team.

1 Dr. Daniel Rubin, the statistical team leader, will
2 address this question.

3 DR. RUBIN: Hello. I'm Dan Rubin. I'm a
4 secondary statistical reviewer for FDA. Thank you,
5 Dr. Hunsberger, for your question.

6 I think we viewed these results as due to
7 mainly noise from chance variation, but to
8 specifically answer your question, we did not
9 specifically look at other potential covariates
10 that might be influencing these results, but thank
11 you for that suggestion.

12 DR. HUNSMERGER: Thank you.

13 DR. BADEN: I have several more questions,
14 but I want to give my colleague ample time to ask
15 as well.

16 One aspect of the data -- the pivotal
17 phase 3 trial, granted it was small, 120 in the
18 final analytic set -- is a single individual was
19 enrolled in the U.S. How does the agency look at
20 those types of data and on those types of inclusion
21 in relation to practice patterns in the U.S. where
22 there may be different background care, and does it

1 have implications in generalizability?

2 Granted, it's a very difficult infection to
3 identify, as the applicant has demonstrated, so it
4 is heroic work to be able to identify 100, 150,
5 180 individuals who may be appropriate to enroll,
6 but we do know there are tremendous variations in
7 background care. So how does the agency look at
8 that issue, and how should the committee think
9 about it in relation to generalizability to broad
10 use in the US?

11 DR. IARIKOV: Thank you for the question,
12 Dr. Baden. In general, use of data from foreign
13 sites might be acceptable to support an application
14 when there are sufficient similarities in the
15 disease process, pathogens, clinical care,
16 et cetera, and across geographic regions that
17 enrolled in the trial. We believe that in terms of
18 *Acinetobacter*, HABP/VABP infections, there's
19 sufficient similarity to leverage the data from
20 foreign sites.

21 DR. BADEN: Thank you.

22 Given that it is 12:15, or 12:14 and soon to

1 be 12:15, we will break for lunch.

2 Dr. Green, you are noted, and after the OPH
3 session, we will resume clarifying questions to
4 both the applicant and the agency, and I encourage
5 the panel members to prepare those questions.

6 So we will now break for lunch. We'll
7 reconvene sharp at 1:00 p.m. Eastern time. Panel
8 members, please remember that there should be no
9 chatting or discussion of the meeting topics with
10 other panel members during the lunch break.

11 Additionally, you should plan to reconvene at about
12 12:50 to ensure you are connected before we
13 reconvene at 1:00 p.m. Thank you. We are now on
14 the lunch break.

15 (Whereupon, at 12:16 p.m., a lunch recess was
16 taken, and the meeting resumed at 1:00 p.m.)

17

18

19

20

21

22

A F T E R N O O N S E S S I O N

(1 : 00 p.m.)

Open Public Hearing

4 DR. BADEN: It is now 1:00 p.m. Eastern
5 time, and we shall resume the advisory committee
6 meeting. We will begin with the open public
7 hearing session.

8 Both the FDA and the public believe in a
9 transparent process for information gathering and
10 decision making. To ensure such transparency at
11 the open public hearing session of the advisory
12 committee meeting, FDA believes that it is
13 important to understand the context of an
14 individual's presentation.

15 For this reason, FDA encourages you, the
16 open public hearing speaker, at the beginning of
17 your written or oral statement to advise the
18 committee of any financial relationships that you
19 may have with the applicant, its product, and if
20 known, its direct competitors. For example, this
21 financial information may include the applicant's
22 payment of your travel, lodging, or other expenses

1 in connection with your participation in the
2 meeting.

3 Likewise, FDA encourages you, at the
4 beginning of your statement, to advise the
5 committee if you do not have any such financial
6 relationships. If you choose not to address this
7 issue of financial relationships at the beginning
8 of your statement, it will not preclude you from
9 speaking. The FDA and this committee place great
10 importance on the open public hearing process. The
11 insights and comments provided can help the agency
12 and this committee in their consideration of the
13 issues before them.

14 That said, in many instances and for many
15 topics, there will be a variety of opinions. One
16 of our goals for today is for this open public
17 hearing to be conducted in a fair and open way, and
18 where every participant is listened to carefully
19 and treated with dignity, courtesy, and respect;
20 therefore, please speak only when recognized by the
21 chairperson. Thank you for your cooperation.

22 Speaker number 1, please unmute and turn on

1 your webcam. Will speaker number 1 begin and
2 introduce yourself? Please state your name and any
3 organization you're representing for the record.
4 You have five minutes. Please go ahead, speaker
5 number 1.

6 DR. MERCURO: Hello. My name is Nick
7 Mercuro. I'm an infectious disease pharmacist at
8 Maine Medical Center. First, I'd like to thank the
9 committee for allowing me to share my perspective
10 and experience with sulbactam-durlobactam. I don't
11 have materials to share. I'll just be reading my
12 testimony, and I have no conflicts of interest to
13 disclose, and I've not received any funds to speak
14 here.

15 My background in ID includes a doctoral
16 degree in pharmacy, four years of residency and
17 fellowship, three of which were specifically in
18 infectious disease, and several years of practicing
19 as an ID pharmacist and adjunctive clinical faculty
20 at teaching institutes and medical centers. Every
21 day I review microbiologic and therapeutic data
22 with patients, as well as clinicians, on

1 antimicrobial properties, optimal selection, dose
2 duration of therapy, and failure to recognize risks
3 in presence of multidrug-resistant pathogens, and
4 subsequently initiate an optimal antibiotic because
5 of enormous consequences for patients.

6 Sulbactam-durlobactam feels a critical need
7 for patients, as the failure and toxicity rates
8 associated with antibiotics; therefore,
9 carbapenem-resistant *Acinetobacter* infections are
10 unacceptable.

11 I'd like to review a patient's case that
12 highlights the importance of reliable
13 antimicrobials against MDR *Acinetobacter*, and while
14 these indications of sulbactam-durlobactam in this
15 case doesn't pertain to pneumonia as we discussed
16 today, we found the role of sulbactam-durlobactam
17 to be essential in this critically ill patient with
18 a neurosurgical infection that Dr. Altarac briefly
19 alluded to today in the Q&A session of the clinical
20 data.

21 Last year, an elderly female suffered a
22 traumatic fall overseas leading to a subdural

1 hematoma. She was hospitalized in Europe and
2 underwent the hemicraniectomy. The patient
3 subsequently developed a subgluteal fluid
4 collection, and that required a drain to be placed.
5 She was then transferred to our hospital in the
6 U.S. Neurological status remained poor, and the
7 patient demonstrated nuance at heart failure, and
8 several days into therapy in her hospital stay, she
9 developed fever, increased size of fluid
10 collection, and worsening mental status. She was
11 empirically started on nichomycin, cef-taz [ph],
12 avibactam, and on [indiscernible], given the
13 concern for infection caused by a multidrug
14 resistant pathogen.

15 The patient was taken to the OR for incision
16 and drainage of the surgical site. Fluid was
17 cultured and gram stain showed gram-negative rods.
18 Molecular diagnostics identified in OXA-producing
19 carbapenemase for *Acinetobacter baumannii*. The
20 patient was then switched to polymyxin and
21 cefiderocol. Final susceptibility showed that the
22 *Acinetobacter* was only susceptible to cefiderocol

1 and intermediate to colistin and minocycline. At
2 this point, we filed an EIND for sulbactam-
3 durlobactam, again, as promising preliminary
4 results of the ATTACK trial for *Acinetobacter*
5 infection, and we were also concerned of the safety
6 and efficacy of the current regimen based on the
7 patient's clinical state and published literature.

8 Her mental status remained poor.
9 Leukocytes, creatinine, and BUN began to rise. She
10 was having oxygen desaturation caused by a large
11 pleural effusion. The polymyxin was then
12 discontinued after 3 days, given the concern for
13 toxicity, and low likelihood of being beneficial,
14 given the site of infection. The subgluteal
15 collection had continued to increase, and it was
16 tapped through the [indiscernible] with significant
17 inflammation of about 1700 leukocytes.

18 It was consistently documented that this
19 patient's prognosis was highly guarded due to
20 nonverbal and unable to follow commands. Once
21 sulbactam-durlobactam was approved after a few
22 days, she was initiated on a combination with

1 cefiderocol and minocycline, based on
2 susceptibility and synergy testing that was
3 performed at the Entasis laboratory, with a planned
4 28-day course, which was eventually extended to
5 42 days.

6 We elected to use its most potent
7 combination, which demonstrated an MIC of
8 0.5 milligrams per liter since it was studied in
9 combination in the trial with another beta-lactam
10 and for a more prolonged course for the
11 osteomyelitis presumed central nervous infection.
12 After 5 days of this combination, leucocytosis
13 begin to normalize, and she was becoming more
14 interactive.

15 After the second week she was answering
16 varying questions and was oriented to self and
17 place. After a month, she continued to make
18 significant progress and was able to be transferred
19 out of intermediary care. By the time of
20 discharge, she was ambulatory and conversive,
21 nearly back to her baseline mental state with no
22 signs of septic pathophysiology. No adverse events

1 were suspected to be directly attributable to
2 sulbactam-durlobactam or cefiderocol, although we
3 believed she developed side effects related to
4 polymyxin, vancomycin, and minocycline. She was
5 discharged to rehab, where it is documented that
6 she had made remarkable recovery and continues to
7 progress.

8 While conclusions can't be made from a
9 single case report, and multiple and antimicrobials
10 were used in this particular case, I do feel that
11 if sulbactam-durlobactam was not available, they
12 likely would have either succumbed to this
13 infection or suffered from debilitating
14 consequences of progressive neurosurgical infection
15 or antibiotic-related harms related to either
16 polymyxin or other antimicrobials.

17 Our pipeline's in desperate need of an agent
18 with reliable activity in efficacy against
19 multidrug-resistant *Acinetobacter* infection. I
20 think this case highlights the potential importance
21 of sulbactam-durlobactam as an option even for
22 off-label use. Thank you for your time.

1 DR. BADEN: Thank you.

2 Will speaker number 2 please unmute and turn
3 on your webcam. Will speaker number 2 begin and
4 introduce yourself? Please state your name and any
5 organization you're representing for the record.

6 You have five minutes. Thank you.

7 DR. MALEK: Good afternoon, esteemed
8 chairperson and advisory committee members. My
9 name is Alexandre Malek. I'm an assistant
10 professor of medicine in the Division of Infectious
11 Disease at LSU Health, Shreveport Louisiana. I
12 want to thank FDA for allowing me time and giving
13 me the opportunity today to share my personal and
14 independent clinical perspective. I do not have a
15 financial relationship with the sponsor or its
16 competitors, and I'm not being compensated for my
17 current brief testimony.

18 I want to share my experience with the FDA
19 committee regarding the use of sulbactam-
20 durlobactam as a cornerstone treatment for
21 ventilated-associated pneumonia with invasive
22 disease septicemia, secondary to extensively

1 resistant *A. baumannii* complex. Our patient was a
2 44-year-old male who presented with sustained burn
3 injury, involving full-thickness burns covering
4 more than 70 percent, up to 90 percent, of the
5 total body surface area, and was intubated upon
6 admission. The patient has a prolonged hospital
7 course in the intensive care unit, which was
8 complicated by ventilator-associated pneumonia and
9 bacteremia, and skin and soft tissue infections,
10 again, related to carbapenem-resistant *A. baumannii*.

11 Our patient developed multiple organ failure
12 and was on renal replacement therapy, CRRT.
13 Despite being on the standard treatment for
14 carbapenem *A. baumannii*, polymyxin, and
15 cefiderocol-based regimen, the bacterial strain
16 becomes intermediate to polymyxin and resistant to
17 cefiderocol. Under the emergency investigational
18 new drug application, EIND 163424, we used
19 sulbactam-durlobactam as compassionate, along with
20 high-dose tigecycline 100 milligram twice a day and
21 meropenem, and subsequently, meropenem was
22 transitioned to cefiderocol.

1 Our patient was in septic shock and required
2 two pressors to maintain his blood pressure. Both
3 pressors were discontinued in 36 hours after
4 initiating the sulbactam-durlobactam-based
5 antibiotic regimen. Of interest, our patient was
6 dependent on CRRT for 23 days and was weaned off on
7 day 9 of investigational antibiotic treatment. The
8 dose of sulbactam-durlobactam was adjusted
9 according to the creatinine clearance and CRRT as
10 instructed by Entasis Therapeutics' protocol.

11 During the treatment course, our patient
12 developed nausea and increased LFTs, AST, and ALT,
13 but remained less than 3 times the upper normal
14 limit, and had thrombocytopenia at 37,000. The
15 codes was deemed multifactorial in origin, and
16 tigecycline high dose was considered the most
17 likely culprit agent. Patient has clinically
18 improved, and the antibiotic treatment was
19 discontinued after 23 days of investigational
20 antibiotic therapy after amendment of the protocol.
21 The patient was discharged from the hospital to a
22 rehab center and remains alive and recovering.

1 In summary, the beneficial effect of the use
2 of sulbactam-durlobactam-based regimen in this case
3 were the following: controlled the septicemia and
4 cleared the bacteremia, which has impacted and
5 protected the kidney function; expedited the
6 removal of the indwelling hemodialysis catheter and
7 reduced catheter-related complication, in
8 particular in the setting of extensive burns;
9 expedited the discharge from ICU; and has certainly
10 impacted on survival. Thank you.

11 DR. BADEN: Thank you for sharing.

12 Speaker number 3, please unmute and turn on
13 your webcam. Please begin and introduce yourself.
14 State your name and any organization you're
15 representing for the record. You have five
16 minutes.

17 DR. BONOMO: Thank you very much for this
18 opportunity. My name is Dr. Robert Bonomo. I am a
19 professor of medicine, pharmacology, molecular
20 biology, and bioinformatics at Case Western Reserve
21 University. I'm an infectious diseases physician
22 with both interests in clinical, as well as basic

1 molecular sciences of resistance. I have 25 years
2 of background in antimicrobial resistance.

3 My laboratory's had the privilege to test
4 more than 200 beta-lactamase inhibitors from
5 industry, as well as from the private sector. I've
6 published 153 manuscripts on *Acinetobacter*, looking
7 at the different mechanisms of resistance, and my
8 laboratory has received financial support from
9 Entasis for some of the work we did; from
10 Vernatorx; from Merck; and Lockhart, all in the
11 area of preclinical testing of beta-lactamase
12 inhibitors. I've also worked with the IDSA
13 guidance on the treatment of multidrug-resistant
14 infections, as well as worked with ESCMID
15 guidelines on the treatment of multidrug-resistant
16 infections.

17 My experience with compounds dates way back
18 when it was in its preclinical stages, and I've
19 watched very carefully as the field has developed,
20 and most recently with the results of the ATTACK
21 trial. Our laboratory did some of the fundamental
22 studies looking at the kinetics and molecular

1 biology of the interactions of durlobactam with its
2 targets both in the cephalosporin ASA [ph]
3 *Acinetobacter*, as well as the OXA beta-lactamases.
4 We were able to test 72 highly drug-resistant
5 strains from legacy collections, where the
6 combination of sulbactam-durlobactam compared
7 extremely favorably.

8 I think those studies set the groundwork by
9 which the subsequent five phase 1 trials, and
10 phase 2, and the phase 3 ATTACK trial were
11 conducted. I was very pleased with the results of
12 the ATTACK trial showing how much better
13 sulbactam did than comparative clinical therapy.
14 The patients did well clinically. They did a lot
15 better than the comparator. There was less adverse
16 side effects and there was significant
17 microbiologic, as well as clinical cure.

18 I think at no other time -- with the
19 emergence of multidrug-resistant *Acinetobacter*
20 occurring, according to reports of the CDC, an
21 increasing importance as a result of COVID -- is
22 that we have better therapies available to treat

1 our patients with this drug. I think overall it
2 would be a very, very important addition to our
3 therapeutic armamentarium, particularly for this
4 pathogen that has a significantly higher mortality
5 rate and is significantly much more difficult to
6 treat than any other gram-negative pathogen. Thank
7 you.

8 DR. BADEN: Thank you.

9 Speaker number 4, please unmute and turn on
10 your webcam. Introduce yourself. Please state
11 your name and any organization you're representing
12 for the record. You have five minutes.

13 DR. NAZINITSKY: Hi. My name is Allison
14 Nazinitsky. I'm an MD. I'm an infectious disease
15 physician. I work for myself. I do mostly
16 telemedicine. I cover a lot of hospitals across
17 the United States and have 15 state licenses. I do
18 not have any financial disclosures, and I am
19 speaking simply because I had a bad outbreak of
20 pan-resistant *Acinetobacter* at one of the hospitals
21 I covered and have lost several patients, and was
22 able to use this drug as compassionate use for one

1 of our patients, and he is doing well, and I have
2 no financial disclosures.

3 Let me get to my screen here. I don't know
4 why it won't let me get back to my screen.

5 Well, my patient, he came in. He's a
6 73-year-old male. He was discharged to a nursing
7 facility after a catastrophic stroke and had been
8 there for about a month, and came back in with a
9 stage 4 sacral decubitus ulcer and was septic; was
10 taken to the operating room and debrided and
11 diverted, and had a G-tube placed for feeding and
12 nutrition.

13 Our initial cultures did grow polymicrobial
14 flora, including a pan-resistant *Acinetobacter*, and
15 due to formulary issues, we had him on a
16 combination of antibiotics initially, and continued
17 to progress, and had multiple debridements. We had
18 VRE pan-resistant *Acinetobacter* and several other
19 gram-negative organisms. Over the course of
20 several more debridements, the *Acinetobacter* became
21 the predominant organism, and I reached out to get
22 compassionate use for this drug, and we started a

1 combination of therapies, including eravacycline,
2 sulbactam-durlobactam, and we actually did
3 continuous infusions of cefepime, and this was due
4 to formulary issues at this very small hospital
5 that I was covering.

6 Over the course of the next 4 weeks, with
7 aggressive wound care, and aggressive nutrition,
8 and offloading, we did 4 weeks of therapy. He did
9 have a breakthrough VRE bacteremia about 1 week
10 into our therapy, and I added linezolid, and after
11 about a 6-week hospitalization and 4 weeks of our
12 combination therapy, he was discharged back to a
13 different nursing facility, and we got a photo on
14 Easter Sunday that he's doing well and he's
15 improving clinically.

16 We did not have any other major drug side
17 effects during this treatment course. The only
18 issue we ran into is we did have that breakthrough
19 VRE bacteremia, and after another debridement, his
20 cultures -- a week after the VRE bacteremia, they
21 did another bedside debridement, and his cultures
22 were actually negative. They did not grow the

1 *Acinetobacter*, just some other organisms. So we had
2 a microbiological response as well after a
3 combination approach.

4 So after having several patients pass away
5 from this unfortunate pan-resistant organism, it
6 was wonderful to have a therapeutic modality that I
7 truly believe saved this patient's life, and that's
8 why I'm here speaking today.

9 DR. BADEN: Thank you.

10 Will speaker number 5 please unmute and turn
11 on your webcam. Begin and introduce yourself.
12 Please state your name and any organization you're
13 representing for the record. You have five
14 minutes.

15 MS. RELKO: Good morning. My name is
16 Consuelo Relko, and I do not have any financials
17 for anybody. Good morning to the FDA.

18 Thank you for allowing me to testify my
19 story. It all started on August 3, 2020. I was in
20 the hospital for 85 days, up to October 27 2020,
21 and I was in three different hospitals. Today I
22 can speak, walk, and take care of myself. You'd

1 never know by looking at me now how far I came. If
2 it weren't for my son, daughter, and husband
3 fighting for me, I would not be here.

4 I sort of remember being in the hospital and
5 could not talk, walk, and was kind of out of it.
6 There were too many machines and too much
7 medication. My doctor had given up hope for me.
8 They had nothing more to offer. It was a new
9 disease, and my son, and daughter, and husband,
10 however, never gave up on me. They wanted to
11 transfer me to a different hospital, but my doctor
12 would not release me. My doctor thought that I
13 would not make it.

14 My daughter and son in fighting, transferred
15 me -- through argument -- to a different hospital.
16 They wanted a new opportunity for me to fight and
17 get a chance to send me to a different hospital.
18 Thank God they won. My son had to pay \$10,000 to
19 transfer me by plane and ambulance almost 400 miles
20 away to another hospital. The move, as expensive
21 as it was, saved my life. I remember laying in my
22 bed at the new hospital. Even though I was out of

1 it, I barely remember my new doctor. He said he
2 would try to give me a new medication that was not
3 made for most of the patients yet, then things
4 turned around, and I got the medicine, and started
5 to get better.

6 Several of my life [indiscernible] -- but it
7 was a long time before I was independent again. I
8 did not know if I was able to walk again, and talk
9 again, any eat and drink. I was transferred to a
10 rehab center to get better. I went through hell
11 and came back. I wonder why so many people have
12 passed away and left the kids and little ones, but
13 why I was able to get better.

14 I have decided it was because I had people
15 fighting for me. Even though I was out of it, my
16 daughter, and son, and husband fought to get me to
17 a new hospital. My doctor joined the fight to get
18 me the medicine. Without all them, I would not be
19 here. I was a miracle, and I think God for it, but
20 not every patient has so many people fighting for
21 them. I'm here today to ask you to join the fight
22 and help other people who are sick as I was and

1 need this medication. Thank you. Sincerely,
2 Consuelo Relko.

3 DR. BADEN: Thank you for sharing.

4 Will speaker number 6 please unmute and turn
5 on your screen. Begin and introduce yourself.
6 Please state your name and any organization you're
7 representing the record. You have five minutes.

8 MS. O'TOOLE: Hi, everyone. My name is
9 Rebecca O'Toole, and I am from Fort Washington,
10 Pennsylvania. Thank you so much for allowing me to
11 speak today. I have no conflicts of interest, and
12 I'm representing myself. I also have no financial
13 disclosures.

14 I am passionate about the development of new
15 antibiotics designed to fight multidrug-resistant
16 infections because I have witnessed the life-saving
17 power that they wield. About two years ago, my mom
18 fell into septic shock due to an unknown
19 antibiotic-resistant bacterial infection, and she
20 spent over a month in the ICU on several different
21 forms of life support. Luckily, thanks to her
22 amazing international care team and the life-saving

1 power of antibiotics, she is still with us today.

2 As a pharmacy student, I am proud to
3 advocate for the development of novel antibiotics
4 and proper use of our existing therapies to help
5 other patients just like my mom. Infections caused
6 by the carbapenem-resistant *Acinetobacter* are a
7 major threat to the health and safety of
8 hospitalized patients. These bacteria frequently
9 colonize healthcare facility services and are
10 responsible for multiple outbreaks in hospitals and
11 nursing homes. They cause a variety of infections,
12 including bloodstream infections and serious
13 pneumonias.

14 *Acinetobacter* is also one of the most
15 antibiotic-resistant bacteria in clinical medicine
16 because it has developed resistance to one of our
17 last lines of defense, a class of antibiotics
18 called carbapenems. *Acinetobacter* can also develop
19 resistance to multiple antibiotics classes at the
20 same time, which further complicates treatment.
21 *Acinetobacter* that are resistant to multiple
22 antibiotic classes are known as multidrug resistant

1 and extensively drug resistant.

2 Recent work completed by the Providence VA
3 Medical Center and the University of Rhode Island
4 evaluated the clinical outcomes of patients with
5 *Acinetobacter* infections across the national VA
6 health system. Clinical outcomes such as death in
7 the hospital and longer hospital stays were worse
8 in patients with multidrug-resistant infections
9 versus non-multidrug-resistant *Acinetobacter*
10 infections, and outcomes were worse among patients
11 who had carbapenem-resistant *Acinetobacter*
12 infections versus non-carbapenem-resistant
13 *Acinetobacter* infections.

14 Other work also completed by the Providence
15 VA Medical Center team and the University of Rhode
16 Island looked back at all *Acinetobacter* cultures
17 collected as part of normal clinical practice from
18 VA patients who were treated in VA hospitals,
19 long-term care facilities, and outpatient clinics
20 nationally from 2010 to 2018. They used their data
21 to describe carbapenem resistance, multidrug
22 resistance, and extensive drug resistance in their

1 national collection of almost 20,000 *Acinetobacter*
2 clinical cultures. The most common source of
3 resistant *Acinetobacter* infections was the lung.
4 Among lung cultures, carbapenem resistance was seen
5 in 43 percent of cultures, multidrug resistance was
6 seen in 49 percent of cultures, and extensive drug
7 resistance was seen in 21 percent of cultures.

8 While the overall incidence of *Acinetobacter*
9 cultures consistently decreased by about 12 percent
10 per year throughout the study period,
11 multidrug-resistant *Acinetobacter* and
12 carbapenem-resistant *Acinetobacter* remain common.
13 In 2018, carbapenem resistance was seen in
14 28 percent of *Acinetobacter* cultures collected in VA
15 hospitals and 36 percent of *Acinetobacter* cultures
16 collected in VA long-term care facilities.
17 Multidrug resistance was seen in 31 percent of
18 *Acinetobacter* cultures collected in VA hospitals and
19 36 percent of cultures collected in VA long-term
20 care facilities. Based on their data, better
21 treatment options are necessary to improve clinical
22 outcomes in patients with these resistant

1 infections.

2 The compilation of work done at the
3 Providence VA Medical Center demonstrates that
4 multidrug-resistant and carbapenem-resistant
5 *Acinetobacter* infections should be a focus of
6 stewardship efforts in drug development. Ensuring
7 that carbapenem resistance does not spread to other
8 organisms is also a priority. By effectively
9 treating carbapenem-resistant infections, we can
10 preserve the effectiveness of carbapenems and limit
11 the spread of carbapenem resistance among other
12 organisms.

13 Based on available information regarding
14 sulbactam-durlobactam, if it is approved, it will
15 provide a new, potentially life-saving avenue of
16 treatment for carbapenem-resistant *Acinetobacter*
17 infections to a population that currently does not
18 have many treatment options to pick from. I am
19 hopeful that if approved, this medication will
20 provide life-saving treatments across the country
21 and positively impact appropriate patients and
22 their families. Thank you so much for your time.

1 Clarifying Questions (continued)

2 DR. BADEN: Thank you for sharing.

3 This concludes the open public hearing
4 portion of the meeting. We'll no longer take
5 comments from the audience, but we greatly
6 appreciate the six OPH speakers and their diverse,
7 varied viewpoints to help inform our deliberations
8 and thought processes.

9 We will now go back to clarifying questions
10 for both the applicant and the agency. Please
11 display M1 slide 5. To panel members, please use
12 the raise-hand icon to indicate that you have a
13 question, and remember to put your hand down after
14 you've asked your question. Please remember to
15 state your name for the record before you speak and
16 direct your question to a specific presenter, if
17 you can. If you wish for a specific slide to be
18 displayed, please let us know the slide number, if
19 possible.

20 As a gentle reminder, it would be helpful to
21 acknowledge the end of your question with a thank
22 you and the end of your follow-up question with,

1 "That is all for my questions," so we can move on
2 to the next panel member.

3 Panel members, please raise your hands.

4 Dr. Stevenson, did the applicant have a
5 comment they wanted to make as we resume our
6 clarifying question session?

7 DR. STEVENSON: Hi, Dr. Baden. I believe
8 so, yes.

9 DR. BADEN: Dr. Rege?

10 DR. REGE: Thank you, Dr. Baden. We just
11 wanted to clarify a point, and I would like to call
12 on Mr. John O'Donnell to discuss that.

13 MR. O'DONNELL: Good afternoon.
14 Dr. Shurland presented some work with the in vitro
15 hollow fiber infection model at Entasis with a few
16 representative strains. We just want to clarify
17 that the PB3 mutant, ARC5950, that was utilized in
18 this study, has an MIC of 8 mg per liter, not as
19 opposed to 4. So based upon that data set, we
20 believe that the time course that you can observe
21 with that study in the panel I've shown here is
22 representative of SUL-DUR activity, but with an MIC

1 that's slightly outside of the susceptible range.
2 We do see in vivo that these strains are readily
3 treatable, and we see very good cidal killing
4 against these strains even though they have the PB3
5 mutants. Thank you.

6 DR. BADEN: Thank you for clarifying.

7 To both the applicant and the agency, if
8 discussion comes up where you can bring in
9 clarifying information, please let me know so we
10 can understand the issues as clearly as possible
11 because there is much depth and complexity here.

12 Dr. Green?

13 DR. GREEN: Thank you, Dr. Baden. This is
14 Michael Green. I think my question can be both
15 with the sponsor, and perhaps with the sponsor's
16 speaker, Dr. Paterson, if he's still available, but
17 then I'm interested in the agency's response.

18 One of the challenges we have in looking at
19 these data is that it's really a small study.
20 Maybe that's even the reason why the AMDAC has been
21 asked to opine on this. But even in this small
22 study, if I understood the presented data

1 correctly, approximately 1 patient in the SUL-DUR
2 treatment arm did evolve resistance on treatment;
3 that's 1 patient for less than 100 treated patient
4 courses, which might be 1 percent.

5 So what do we think about the durability of
6 efficacy of SUL-DUR, if it's approved, given the
7 data as we have it available at this time? Thank
8 you.

9 DR. REGE: Sure. I would like to call on
10 Dr. David Paterson.

11 DR. PATERSON: Thank you. David Paterson.
12 Thank you very much, Professor Green, for the
13 comment, and I think it's important to firstly put
14 all of this into a little bit of context.

15 First of all, we know that *Acinetobacter*
16 infections in the United States have a very high
17 mortality, so when we've looked at data from the
18 NIH-sponsored OVERCOME study, in people from the
19 U.S., 27.9 percent who had *Acinetobacter* and were
20 treated with colistin either as combination therapy
21 or monotherapy died within 28 days. Maybe apart
22 from out-of-hospital cardiac arrest, I do not know

1 any other disease process that kills almost
2 30 percent of Americans once it occurs. So I think
3 live, die, heal, function, survive, survive is the
4 most important aspect in our discussions.

5 Next, really, is looking at the
6 microbiological issues, and when we have looked at
7 cefiderocol, tetracycline derivatives, and of
8 course colistin-based therapies, all of those we've
9 seen emergence of resistance during therapy, and we
10 know that with any antibiotic, this is something
11 that we're going to see over time. So I think it
12 is something that needs surveillance, but it also
13 needs to be put into context that it will only be
14 seen in survivors. Almost a third of people who
15 die of *Acinetobacter* infections who are treated with
16 colistin will never have the opportunity, of
17 course, to develop subsequent infections that are
18 resistant because they're, unfortunately, no longer
19 alive. So I think that's our biggest priority, but
20 it is certainly something that needs to be
21 addressed, of course, during the course of an
22 antibiotic's lifespan. Thank you.

1 DR. BADEN: Thank you. I will recognize
2 myself.

3 As Dr. Murphy said early in clarifying
4 questions to the applicant, this medication will be
5 used in combination; not SUL-DUR, but in
6 combination with other antibacterials, given the
7 nature of the infection these patients have is
8 likely to be complex, and *Acinetobacter* may be a
9 very important organism but may not be the
10 exclusive organism. An interesting attribute of
11 SUL-DUR, despite its impressive activity against
12 resistant organism *Acinetobacter*, it's fairly
13 selective.

14 So how do we think about this in terms of
15 the combination used with other antibacterials in
16 this study, or as imi-cilastatin? But one may
17 imagine it being used with beta-
18 lactam/beta-lactamase inhibitors of other flavors.
19 The multiple beta-lactamase inhibitors, do we need
20 some guidance in how to use this agent with other
21 combination antibacterials, especially other
22 beta-lactamase inhibitors? Any data on the safety

1 or any guidance on how we should be thinking about
2 that, any data to guide us? To the applicant, to
3 the agency.

4 DR. REGE: We would like to call on
5 Dr. David Paterson again.

6 DR. PATERSON: Thanks very much. It's David
7 Paterson. This is such a clinically important
8 question, but it's pretty much a data-free zone,
9 unfortunately. I do know that the sponsor has
10 looked at the potential of combination therapy
11 in vitro. Clearly, sulbactam-durlobactam is going
12 to be a high target for antimicrobial stewardship
13 programs across the country and across the world
14 because we want to preserve it. How it is used in
15 practice is going to very much be determined by our
16 guidelines, but I would like Dr. Miller to review
17 the company's in vitro testing for combinations
18 because that could be quite informative for us.
19 Thank you.

20 DR. MILLER: Alita Miller, Entasis. I do
21 have a slide to summarize the studies that we've
22 done in vitro in combination with sulbactam-

1 durlobactam. We basically did these in
2 checkerboard assays with a wide variety of
3 different agents. They're listed here. These are
4 gram-negative agents, so I won't read them off, but
5 it did include ceftazidime-avibactam, as well as a
6 number of gram-positive agents, antifungals, and
7 metronidazole. And we didn't actually see any
8 effect on any of these agents, either on the
9 activity of sulbactam-durlobactam or the reverse,
10 that sulbactam-durlobactam affected the activity of
11 these agents against their target organisms. So
12 just based on this in vitro alone, we don't see any
13 worrying signals.

14 DR. BADEN: But to follow up -- thank
15 you -- on the efficacy side, there's no data to be
16 worried that there's interference. But how about
17 on the toxicity side if somebody's on ceftaz-avi or
18 pip-tazo, and for other organisms of concern in a
19 polymicrobial infection, and on SUL-DUR, do we have
20 toxicity or side effects that we have to be mindful
21 of? And maybe we have no data yet, and this will
22 be something that requires active monitoring if

1 this is authorized or approved, but we are in novel
2 territory in terms of combination antimicrobial use
3 in complicated patients, whereby mechanism, there
4 may be overlap that we have to better understand.

5 Am I capturing some of the issues properly?
6 It sounds like there are not data to inform us, at
7 this point.

8 DR. REGE: That is correct.

9 DR. BADEN: And I don't know if the agency
10 has any comment on this type of use because this is
11 very likely to be used with many different
12 antimicrobial combinations, including other
13 beta-lactamase inhibitors.

14 DR. IARIKOV: Thank you, Dr. Baden, for that
15 question. I'll turn it over to our clinical
16 reviewer, Dr. Ghosh.

17 DR. GHOSH: Hi. This is Mayurika Ghosh,
18 clinical reviewer, Division of Anti-Infectives,
19 FDA. The question was whether a combination of
20 sulbactam-durlobactam with other beta-lactams or
21 concomitant antibacterials could result in certain
22 toxicities?

1 The data that is in the application shows
2 that the subjects were on several concomitant
3 medications, and as you know, in the comparative
4 Part A of the phase 3 study, both arms had
5 background imipenem therapy. Now, the Part B,
6 which was the open-label part, had only sulbactam
7 and imipenem-cilastatin, and the safety profile was
8 reviewed earlier in the day.

9 The 12 subjects who were on the expanded
10 access program, they were on multiple salvage
11 regimens -- imipenem, cefoperazone, cefiderocol,
12 ceftazidime-avibactam, and several antimicrobials,
13 both recently approved, as well as older
14 beta-lactam/beta-lactamase inhibitors. And again,
15 these are very critically ill patients in the
16 intensive care unit, and about 6 patients of the
17 12 subjects had an outcome of death, and 8 patients
18 cured their infections.

19 There was nothing that was noted in the
20 narratives of the patients which showed that it was
21 out of the ordinary. Now, we do think about the
22 combination of beta-lactam/beta-lactamase

1 inhibitors, we think about bone marrow suppression,
2 and we think about other effects on organ systems,
3 but certainly those would be something to be
4 monitored down the road. Certainly, this is a very
5 small database, but there was nothing that was
6 suggestive of bone marrow suppression or anything
7 of that nature. Thank you.

8 DR. BADEN: Thank you.

9 Dr. Hilton?

10 DR. HILTON: Yes. Thank you. I wonder if
11 the follow-up time of this study is actually
12 adequate, and I wonder if there might be subsequent
13 follow-up data.

14 I'm looking at the FDA slide 24 that shows
15 the test-of-cure rates at three different time
16 points, and I see that they're diminishing in both
17 treatment arms, but the treatment effect by this
18 endpoint is also diminishing with time, and that
19 caused me some concern, then I see similar findings
20 when I look at the microbiological endpoint. So I
21 just wonder if we've really seen the full story.
22 Thank you.

1 DR. BADEN: Any responses from the applicant
2 on the longer term follow-up or do we have what the
3 study was designed to capture?

4 DR. REGE: Sure. I would like to call on
5 Dr. David Altarac to answer your question.

6 DR. ALTARAC: David Altarac, Entasis. What
7 I'd like to bring up now is a comparison of our
8 trial compared to some recently completed other
9 trials in similar populations. What you can see in
10 these trials, including our trial, REPROVE -- which
11 was ceftazidime-avibactam versus meropenem and
12 CREDIBLE-CR -- is that this finding that you're
13 describing is seen throughout. These types of
14 trials, it's not an unusual finding. It is by
15 nature, as you go further out, the probability of a
16 patient succumbing to their underlying disease
17 process increases. But what I think is most
18 meaningful, again, is that our findings are
19 consistent with these other findings, but we have
20 demonstrated at 28 days, and 14 days, and in
21 various other endpoints that sulbactam-durlobactam
22 did achieve the primary efficacy objectives. Thank

1 you.

2 DR. BADEN: If no follow-up, then Dr. Hardy.

3 DR. HARDY: Hi. This is Dr. David Hardy
4 from Los Angeles. I just want to touch back on a
5 point that Dr. Baden made earlier in our
6 discussion, and my questions are both to the
7 applicant as well as to the agency.

8 It was a bit of a surprise to me to see that
9 only one of the study participants from the ATTACK
10 phase 3 trial was in the U.S., with the majority
11 being from China and from Europe. Was there a
12 strategy or a reason that you were using to enroll
13 most of the patients in this study ex-US?

14 DR. REGE: We did, and I'd like to call on
15 Dr. David Altarac again to answer your question.

16 DR. ALTARAC: David Altarac, Entasis. Our
17 strategy to enroll in this trial, which was a
18 global trial, was to enroll equally in any
19 geography for which there were sites that were
20 open. We had 5 sites that were open in the United
21 States. Those sites reflected various geographies
22 within the United States, as well as reflected the

1 diversity of the country. These sites were in
2 Chicago, Memphis, Shreveport, Cincinnati, and
3 Houston. The challenges with enrolling in this
4 trial were mainly focused on the underlying
5 condition, which you can't predict. You don't know
6 when you're going to have a case of
7 multidrug-resistant *Acinetobacter*, so our strategy
8 was to maximize the probability that we would find
9 those infections by selecting these sites, and they
10 included sites in the U.S., as well as global.

11 It is important to note that in our overall
12 development program, which included our phase 1,
13 phase 2, and phase 3 trials, over 20 percent of the
14 participants were from the United States, so we
15 tried to make sure that it represented the U.S. and
16 used those data to inform decisions moving into the
17 the phase 3 trial. And the numbers that you see in
18 the enrollment in our study are reflective both of
19 the global epidemiology of multidrug-resistant
20 *Acinetobacter*, which is highest in Asia Pacific,
21 Eastern Europe, and Latin America, followed by
22 North America.

1 Then finally, as you may know, experts at
2 the FDA published an article in 2021, Part
3 [indiscernible] et al., where they described the
4 four most recent phase 3 clinical trials, and in
5 their data, our demographics were consistent with
6 enrollment in those trials as well. So overall,
7 our strategy was to be equally selective in all
8 countries. Thank you.

9 DR. HARDY: Thank you very much.

10 I guess just to go back to the question that
11 Dr. Baden opened, my question is to the agency to
12 say does the epidemiology of this medical problem,
13 being much less apparently in the U.S., affect in
14 any way the decision-making process by the FDA or
15 the question to the committee?

16 DR. IARIKOV: Thank you for the question.

17 FDA approves drugs to be used in the United States,
18 so we'll always pay attention to adequate
19 representation and the possibility to extrapolate
20 collected data to the U.S. population. We also
21 looked at this closely, and we believe that, based
22 on resistant patterns observed in *Acinetobacter*

1 isolates, and based on standards of clinical care
2 that were used in the trial to enroll subjects, we
3 feel confident that these data would be
4 extrapolatable to the United States population, but
5 there are probably more -- it's not a single
6 explanation why sometimes it's more difficult, and
7 it's a subject for another conversation why it
8 might be more difficult to enroll in the clinical
9 trials in this serial population in the United
10 States. But back to the data that we have, we
11 think they do reflect current epidemiology and
12 standards that would be used in the United States.

13 DR. HARDY: So you do believe that this
14 still represents a large unmet need in the U.S., as
15 well as internationally.

16 DR. IARIKOV: Yes, we do believe, but
17 acknowledge that, fortunately, the number of
18 patients with carbapenem with *Acinetobacter*,
19 including multidrug-resistant *Acinetobacter*, in the
20 United States proportionally may be lower than in
21 other geographies. And again, it's a fortunate
22 finding, but we do have patients. And for the

1 individual patient, it's absolutely an unmet
2 medical need, thinking about the mortality, and
3 it's very hard to predict how resistance will
4 spread and emerge.

5 DR. HARDY: Thank you.

6 DR. BADEN: Thank you.

7 I see Dr. Murphy has a checkmark we are not
8 using at this time, but I assume that's a raised
9 hand and you have a question; so please, and then
10 we'll get back to the other raised hands.

11 DR. MURPHY: Thanks, Dr. Baden. It's a
12 follow-up for Dr. Hardy's question.

13 The sad irony, I guess, is that the burden
14 of MDR bacterial infections is probably greatest in
15 countries that are least equipped to identify them
16 and treat them. So excuse me, as this is a little
17 bit beyond the purview of the FDA, but I have to
18 ask, has the sponsor thought about access to the
19 drug in low-income countries outside of the U.S.,
20 Europe, that otherwise will find this to be
21 unaffordable? Thanks.

22 DR. REGE: Sure. I would like to call on

1 Dr. David Altarac to answer your question.

2 DR. ALTARAC: David Altarac. We are fully
3 committed to providing sulbactam-durlobactam to
4 patients in need globally. We actually have
5 enrolled 2 patients in our expanded access program
6 in Europe and made that drug available, and we'll
7 continue to look at opportunities to provide drugs
8 outside of the United States if the drug is
9 approved, and we'll be looking to work with
10 partners to facilitate further development in other
11 countries, but we don't have any specific plans at
12 this time and are focusing on the United States.
13 We do have an ongoing application pending with our
14 partner, Zai Laboratory, for review and approval in
15 China, but beyond that, we are looking at other
16 opportunities to make the drug available. Thank
17 you.

18 DR. BADEN: Dr. Siberry?

19 DR. SIBERRY: Thank you, Chair. I think
20 this question will be for the pharmacology speakers
21 from the applicant and the agency.

22 In the applicant's presentation, I note that

1 there would be no required dose adjustments for
2 weight, and then in the agency review, I think
3 there were 10 participants who fell into the
4 35-to-under-50-kilo body weight group, but the
5 pharmacokinetic modeling suggested that PK targets
6 would be met and that there wouldn't be concerned
7 for toxicity.

8 So I just wanted some confirmation that
9 based on who was represented as participants in
10 that modeling, is the suggestion that no dose
11 adjustment is needed for a weight of at least
12 35 kilos or some different minimum? That's my
13 question.

14 DR. REGE: I would like to call on Dr. Kajal
15 Larson to answer your question.

16 DR. LARSON: Kajal Larson, Entasis. Based
17 on our population PK model, which included data
18 from phase 1, 2, and 3, we did look at the effect
19 of weight on PK exposures, as well as other
20 covariate effects and demographics, but body weight
21 was not a clinically relevant covariate in the
22 model, and we do not expect any dose adjustment

1 based on weight.

2 DR. SIBERRY: And I'm sorry. What lower
3 weight limit do you mean by that? Down to
4 20 kilos, or 30 kilos, 35?

5 DR. LARSON: We had looked down to the
6 exposures that we had captured in the model, and we
7 will try to get you the exact data shortly. Thank
8 you.

9 DR. SIBERRY: Great. Thank you so much.

10 Perhaps the agency can comment if they had a
11 lower weight that went into their analyses for what
12 they thought would be covered by the available data
13 modeling or both? Dr. Wei perhaps.

14 DR. WEI: Thank you. Based on our review of
15 the data submitted by the applicant, just based on
16 the summarized data, I think the body weight is at
17 35 kilograms at the lower limit, but my
18 pharmacometrics colleague, Dr. Xiaolei Pan, if she
19 can also provide input from her pharmacometrics
20 review.

21 DR. PAN: Hello. I think the body weight is
22 from 35 kg and higher, but what we see is that for

1 patients with lower body weight, they have higher
2 exposure. Also, from an efficacy endpoint, we
3 don't have much issue, so that's more of a
4 consideration from a safety perspective. But I
5 think from the safety aspect, we don't see too much
6 safety concern.

7 DR. SIBERRY: Okay. That's very helpful,
8 and I'll just end by saying I think it's helpful to
9 think maybe about using this down to 35 kilos
10 rather than down to an arbitrary age of 18, that
11 which is a social event, not a biologic event. And
12 for treating severe disease for which there may not
13 be any alternatives, that just may give some
14 reassurance and guidance to pediatricians faced
15 with adolescents who have these. I've noted at
16 least one 18 and one 19 year old were reflected
17 among the participants, which was good to see.

18 Thanks very much, Chair.

19 DR. BADEN: Thank you.

20 Dr. Green?

21 DR. GREEN: Thank you, Dr. Baden. This is a
22 question for the sponsor, I think for Dr. Altarac.

1 I'm wondering if you did any analysis
2 looking at differences in outcome based on the
3 primary reason for the initial hospitalization. We
4 know that many of these infections are nosocomially
5 commonly acquired in people that were admitted for
6 other reasons. And in particular, a lot of the
7 study was done during the COVID pandemic, and we
8 know that this organism was a particularly horrible
9 problem as a secondary cause of pneumonia during
10 that pandemic, and it may be that outcomes are
11 different when you are in hospital and have other
12 underlying problems that then are associated with
13 infection. Thank you very much.

14 DR. REGE: Yes. I would like to call on
15 Dr. David Altarac to answer your question.

16 DR. ALTARAC: David Altarac. I'm not sure
17 this answers your question. We didn't do specific
18 analyses looking at comorbid conditions that were
19 underlying the hospitalization or presumably led to
20 their hospital-acquired or ventilator-associated
21 pneumonia, so I don't think that's totally
22 answering your question, but we do show that there

1 were, in many of these patients, multiple and
2 significant comorbid conditions in both the
3 sulbactam-durlobactam arm, and what we show in this
4 slide is that they were generally comparable
5 between the two treatment groups.

6 DR. BADEN: Thank you.

7 I'd like to just ask a question of the
8 agency that I asked of the applicant at the
9 beginning. Do you have any techniques to help us
10 understand how much of the benefit we've seen is
11 due to the benefit of SUL-DUR versus negative
12 attributes of its comparator, colistin, or are we
13 left with a sum total integration of benefit? Is
14 there any way to tease apart benefit-risk, given
15 that the different agents have different
16 characteristics in both spaces?

17 (Pause.)

18 DR. BADEN: Thank you, Dr. Rubin, for being
19 willing to take on my impossible to answer
20 question, but I would be grateful for your
21 perspectives.

22 DR. IARIKOV: Could you confirm that you see

1 the slide that we're projecting?

2 DR. BADEN: No, I see the two of you at the
3 podium. We can always use our mind's eye if you're
4 not able to have technology be our friend.

5 DR. IARIKOV: Okay. Let's try one more
6 time. What about now?

7 DR. BADEN: Yes, a slide has come through.

8 DR. IARIKOV: Okay.

9 DR. RUBIN: Thank you for that question,
10 Dr. Baden. It's a difficult question, but in terms
11 of teasing out the benefit over colistin as
12 attributed to efficacy due to rather than a
13 possible harm from colistin, I guess I would like
14 to share some of the data we used for the
15 non-inferiority margin justification. Here are
16 mortality rates for patients treated with
17 colistin-based therapy or in combination with
18 carbapenems.

19 Is it possible to go to backup slide 10?
20 And here are mortality rates for patients treated
21 with inappropriate therapy or delayed treatment,
22 and the non-inferiority margin was basically a

1 comparison of mortality between colistin-based
2 regimens and delayed or inadequate therapy. And
3 based on that analysis, we thought that there would
4 be a fairly dramatic impact of colistin over not
5 giving anything or giving inappropriate therapy.
6 So we did think that colistin had some benefit over
7 the absence of therapy.

8 That being said, it still is kind of
9 difficult to tease out your question. I think
10 mortality encompasses both efficacy and safety, and
11 it's obviously very important, and was one reason
12 why it was chosen for the primary efficacy
13 endpoint, but I'm not sure if we can say more than
14 that. I don't know if my colleagues have anything
15 to add. Thanks.

16 DR. IARIKOV: We don't have anything to add
17 to Dr. Rubin's response. Thank you.

18 DR. BADEN: Dr. Rubin, thank you. That was
19 incredibly helpful because it's an impossible
20 question. Just like creating the non-inferiority
21 margin is based on characteristics that you just
22 discussed, which are imperfect, but it's the best

1 we can do, so thank you for sharing the thought
2 process.

3 Dr. Sidberry?

4 DR. SIDBERRY: Thanks very much. This is a
5 focus question for both. I noted that preclinical
6 studies and repro-tox studies were described as
7 reassuring, so I just want a confirmation from the
8 applicant that they didn't see any reason to
9 withhold this drug from a pregnant person who was
10 in need of it like a non-pregnant person would be,
11 and that the agency didn't see any reason that we
12 needed to consider language discouraging use in
13 pregnancy if criteria was otherwise met. Thanks.

14 DR. REGE: Sure. I would like Mr. John
15 O'Donnell to discuss the nonclinical data.

16 MR. O'DONNELL: John O'Donnell, Entasis
17 Therapeutics. We did indeed do a full battery of
18 reproduction toxicology studies and developmental
19 toxicology studies, and found no findings, and this
20 is up to a limit dose of 1,000 mg per kg in all of
21 these studies. We currently are in the middle of
22 doing our juvenile toxicology studies in suckling

1 pups and rats, so we're doing this in preparation
2 for our pediatric development for the program. But
3 based upon the nonclinical safety data set, we see
4 no issues with regard to reproductive toxicology.

5 Thank you.

6 DR. IARIKOV: I'd like to invite
7 Dr. McMaster, a pharmacology-toxicology reviewer
8 for this NDA.

9 DR. McMASTER: Good afternoon. I would like
10 to note that we have looked at the data, and we're
11 going to add to the label some descriptions of
12 delayed ossifications that we saw in some of the
13 rat studies. These are developmental delays and
14 malformations, but we will add that to the label.

15 Thanks.

16 DR. SIBERRY: Thanks for that. And just to
17 clarify before you go, will that be enough to
18 discourage use where otherwise deemed needed in
19 pregnancy?

20 DR. IARIKOV: We wouldn't comment on the
21 ongoing labeling language. It continues to be
22 under review, but we definitely will look at all

1 these issues. Thank you.

2 DR. SIBERRY: Thanks very much. Thank you,
3 Chair.

4 DR. BADEN: Just to amplify Dr. Siberry's
5 point, and I don't want to discuss anything about
6 the labeling, but data such as that, that may
7 influence the labeling, would be important to get
8 in the public domain so that thoughtful people have
9 a chance to understand the strength of the evidence
10 and the imperfections in the evidence as they try
11 to make tough clinical decisions in managing
12 patients with very difficult infections.

13 So thank you for sharing that, and look
14 forward to as much data being in the public square
15 as possible when complete.

16 Dr. Green?

17 DR. GREEN: Thank you, Dr. Baden. This is
18 actually a follow-up to your previous question
19 which you asked of both the sponsor, but more
20 recently of the agency. And to the agency, I
21 wonder if we are able to get at some of Dr. Baden's
22 query about benefit of SUL-DUR as opposed to

1 avoidance of colistin by looking at the Part B
2 data, where the 28-day mortality endpoint was
3 essentially the same and no one got colistin. So
4 they seemed to mass up SUL-DUR in Part B and
5 Part A.

6 Does that really help us to understand that
7 it is efficacy from the drug rather than avoidance
8 of toxicity from colistin or at least a substantial
9 component?

10 DR. IARIKOV: Would you like the agency to
11 respond or the applicant would take it?

12 DR. BADEN: Dr. Green --

13 DR. GREEN: No, I asked the question to the
14 agency.

15 DR. BADEN: The agency. Okay, to the
16 agency.

17 DR. IARIKOV: Oh, to the agency. Again, I'm
18 inviting my statistical colleague, Dr. Rubin.

19 DR. RUBIN: Thank you for the question.
20 It's an interesting analysis approach, but I would
21 say that by and large in our analyses, we did not
22 emphasize Part B just because there was no

1 randomized comparison. And in particular, there
2 was no randomization between subjects in Part A and
3 subjects in Part B, and due to the complexities of
4 the patients and possible confounding, we thought
5 that it would be difficult to interpret those types
6 of comparisons. Thank you.

7 DR. BADEN: Thank you.

8 I have one last targeted question and last
9 call to my panel members, so please raise your hand
10 to clarify information.

11 My targeted question to either the applicant
12 or agency -- and it's something that
13 Dr. Swaminathan mentioned earlier -- has to do with
14 penetration two key sanctuary sites, the CNS, the
15 prostate. Are there data that can help us
16 understand how this penetrates certain sanctuary
17 sites so that we can understand the potential use
18 if infection occurs in those spaces? And
19 obviously, sulbactam, there's a much bigger
20 experience, but for the newer agent.

21 To the applicant, you're on mute.

22 DR. REGE: Can you hear us now?

1 DR. BADEN: Yes.

2 DR. REGE: I would like to call on Mr. John
3 O'Donnell to answer your question.

4 MR. O'DONNELL: John O'Donnell, Entasis
5 Therapeutics. The evidence we provided is mainly
6 in our nonclinical data sets. As you know, with
7 the lung model, we've utilized our neutropenic
8 model in mice looking at pneumonia. We've also
9 looked at the neutropenic thigh model as more of an
10 indicator in terms of distribution for other sites
11 of infections, particularly soft tissue skin
12 structure and other potential sites of infection.
13 So we believe these models are pretty robust.
14 They've been used throughout the history of anti-
15 infectives, quite frankly.

16 We are looking to understand drug
17 concentrations at these sites. We have looked at
18 ELF concentrations both in mice and humans in ELF,
19 and we also look at concentrations in the urine.
20 So in terms of distribution and potential use for
21 other indications, we feel we're gathering more and
22 more data to understand the actual drug

1 concentrations at these types of infections, but we
2 have a pretty good understanding from the main
3 models that we have, in neutropenic thigh and lung,
4 as far as adequate distribution of both sulbactam
5 and durlobactam into tissues, and potentially for
6 other sites for indications. Thank you.

7 DR. BADEN: Thank you.

8 If this is to move forward, I would
9 encourage the applicant to generate the analogous
10 human data when possible for sanctuary sites, but
11 one can only generate those data when the
12 opportunity arises, but that kind of information
13 will be useful as we think about potential use in
14 complex infection.

15 DR. REGE: Thank you.

16 DR. BADEN: Any other questions from panel
17 members?

18 (No response.)

19 DR. BADEN: Seeing none, then we'll now
20 proceed with the charge to the committee from
21 Dr. Peter Kim.

22 Dr. Kim?

Charge to the Committee - Peter Kim

2 DR. KIM: Good afternoon. My name is Peter
3 Kim. I'm the director of the Division of
4 Anti-Infectives in the Office of Infectious
5 Diseases at CDER, FDA, and I will be providing the
6 charge to the committee, but first some
7 considerations to frame the question, so some key
8 considerations.

As you have heard this morning and during our discussions this afternoon, this is a streamlined development program targeting a high unmet need pathogen. Part A of the phase 3 trial demonstrated that sulbactam-durlobactam was non-inferior to colistin for 28-day all-cause mortality in the CRABC m-MITT primary analysis population that mainly consisted of HABP/VABP patients. The safety profile of sulbactam-durlobactam appears to be generally consistent with other beta-lactam/beta-lactamase inhibitor drugs; however, the safety data set is limited to less than 200 patients who received sulbactam-durlobactam at the proposed dose and duration.

1 And now the question for the committee,
2 please vote yes or no to the following. Is the
3 overall benefit-risk assessment favorable for the
4 use of sulbactam-durlobactam for the treatment of
5 patients with hospital-acquired bacterial pneumonia
6 and ventilator-associated bacterial pneumonia
7 caused by susceptible strains of *Acinetobacter*
8 *baumannii-calcoaceticus* complex organisms? If yes,
9 please provide your rationale. If no, please
10 provide your rationale and describe what additional
11 studies or trials are needed. Thank you.

12 Dr. Baden, I'll now turn it back over to
13 you.

14 **Questions to the Committee and Discussion**

15 DR. BADEN: Thank you, Dr. Kim.

16 The committee will now turn its attention to
17 address the task at hand, the careful consideration
18 of the data before the committee, as well as the
19 public comments. We'll now proceed with the
20 question to the committee and panel discussion.
21 I'd like to remind public observers that while this
22 meeting is open for public observations, public

1 attendees may not participate, except at the
2 specific request of the panel.

3 Dr. Stevenson will provide the instructions
4 for the voting.

5 DR. STEVENSON: Thank you, Dr. Baden.

6 This is Takyiah Stevenson, DFO. We have one
7 question, which is a voting question. Voting
8 members will use the Zoom platform to submit their
9 vote for this meeting. If you are not a voting
10 member, you will be moved to a breakout room while
11 we conduct the vote.

12 After the chairperson has read the voting
13 question into the record and all questions and
14 discussions regarding the wording of the vote
15 question are complete, we will announce that the
16 voting will begin. A voting window will appear
17 where you can submit your vote. There will be no
18 discussion during the voting session. You should
19 select the radio button that is the round circular
20 button in the window that corresponds to your vote,
21 yes, no, or abstain. Please note that once you
22 click the submit button, you will not be able to

1 change your vote.

2 Once all voting members have selected their
3 vote, I will announce that the vote is closed.

4 Please note there will be a momentary pause as we
5 tally the vote results and return non-voting
6 members into the meeting room. Next, the vote
7 results will be displayed on the screen. I will
8 read the vote results from the screen into the
9 record. Thereafter, the chairperson will go down a
10 list, and each voting member will state their name
11 and their vote into the record. You should also
12 address any subparts of the voting question which
13 includes the rationale for your vote.

14 Are there any questions about the voting
15 process before we begin?

16 (No process.)

17 DR. STEVENSON: Since there are no
18 questions, I will hand it back to Dr. Baden, and we
19 can begin.

20 DR. BADEN: Okay. The voting question reads
21 as follows. Is the overall benefit-risk assessment
22 favorable for the use of sulbactam-durlobactam for

1 the treatment of patients with hospital-acquired
2 bacterial pneumonia and ventilator-associated
3 bacterial pneumonia caused by susceptible strains
4 of *Acinetobacter baumannii* complex organisms? If
5 yes, please provide your rationale. If no, please
6 provide your rationale and describe what additional
7 studies are needed.

8 Are there any questions about the wording of
9 the question?

10 (No response.)

11 DR. BADEN: If there are no questions or
12 comments concerning the wording of the question, we
13 will now begin the voting.

14 DR. STEVENSON: We will now move non-voting
15 participants to the breakout room.

16 (Voting.)

17 DR. STEVENSON: Voting has closed and is now
18 complete. The voting results will be displayed.

19 (Pause.)

20 DR. BADEN: Thank you. We'll now go down
21 the list --

22 DR. STEVENSON: I'm sorry, Dr. Baden. One

1 moment.

2 DR. BADEN: Please.

3 DR. STEVENSON: There are 12 yeses, zero
4 noes, and zero abstentions.

5 I'm handing it back to you, Dr. Baden.

6 Thank you.

7 DR. BADEN: Thank you.

8 We'll now go down the list and have everyone
9 who voted state their name and vote into the
10 record. You should address the subparts of the
11 voting question, including your rationale if you
12 voted no -- which did not happen -- but if you
13 voted yes, you can still add what additional data
14 would be highest priority to generate.

15 We'll start with the first person on the
16 list. Dr. Green?

17 DR. GREEN: Yes. Thank you, Dr. Baden.
18 This is Michael Green. I voted yes, and this
19 decision was really driven by the clear clinical
20 need for an effective treatment for an organism
21 that's often extremely drug resistant, if not
22 pan resistant. I think there is no real doubt that

1 at least in comparison with colistin-based therapy,
2 but in combination with imipenem-cilastatin, in a
3 population with either either hospital-acquired
4 bacterial pneumonia or ventilator-associated
5 bacterial pneumonia, that outcomes were improved,
6 particularly 28-day mortality.

7 Clearly, there are concerns with the
8 relatively small size of the study population,
9 which impacts our ability to fully understand the
10 safety profile and signal, but I agree that it
11 seems beta-lactam-based analysis is appropriate,
12 but I hope that the company would be mandated to
13 continue to capture safety data going forward, even
14 if it gets approval for this indication.

15 I also think there's a great need to enforce
16 surveillance for development of resistance, and if
17 and when it occurs, to try to understand it, and
18 also how easily it might be spread. As was
19 mentioned by one of the speakers -- I think
20 actually from the public comment -- I think clearly
21 this is an important target for antimicrobial
22 stewardship, particularly to protect the durability

1 of this very needed agent, and I even wonder if the
2 FDA might discuss, as they're thinking about
3 labeling, whether at some point we should be
4 encouraging stewardship type language into our
5 labels as a novel strategy to help support
6 stewardship.

7 I do have a concern regarding the
8 microbiologic cure, particularly when they include
9 those that had no test as a cure. Many patients
10 that have endotracheal tube or tracheostomy in play
11 will get better critically but still have the
12 organism present, which would represent an ongoing
13 reservoir for recurrent infection in that patient
14 or spread to others, especially if it becomes
15 resistant. And I would hope that in the labeling
16 language that that language and illusions towards
17 efficacy, based on microbiologic data, be limited
18 to those where they have evidence, and not those
19 where absence of test is assumed to be a positive
20 result just because the patient did fine.

21 Then my last point would be to support the
22 comment made by Dr. Sidberry, to think about

1 approval based on weight rather than age, given
2 that there are teenagers and actually younger
3 children who also can have pan-resistant infection
4 with this organism and who would need to have
5 benefit, and could use that approval, encouraging
6 them to give it to them as well, as soon as
7 possible. Thank you very much.

8 DR. BADEN: Thank you.

9 Dr. Murphy?

10 DR. MURPHY: I see a global unmet need for
11 drugs with action against highly resistant
12 *Acinetobacter*. The efficacy and safety data are
13 reassuring. I was concerned that the number of
14 patients studied was small, but this is a difficult
15 disease process to study, and it's very unlikely
16 that the efficacy is lower than colistin, a drug
17 that's clearly less safe.

18 Since it was proven efficacious only as
19 combination therapy, it should not be used as
20 monotherapy in most situations, as we really have
21 no idea how it would perform as monotherapy, and
22 the FDA should consider this in the labeling. In

1 real life, in actuality, it'll be used with a
2 variety of companion drugs, and we need to track
3 safety in patients receiving various combination
4 therapies that include sulbactam-durlobactam.

5 Thank you.

6 DR. BADEN: Thank you.

7 Dr. Hardy?

8 DR. HARDY: Hi. This is Dr. Hardy from Los
9 Angeles. I voted yes, and just --

10 DR. BADEN: We're not able to hear you.

11 Your connection --

12 DR. HARDY: -- have already said about this
13 drug being used in combination with [inaudible].

14 DR. BADEN: Dr. Hardy, it may be best if you
15 turn off your video. We're not able to hear you.

16 DR. HARDY: -- at least one other broad-
17 spectrum antibiotic. Mechanisms have been also
18 covered very well. I was a bit concerned, as I
19 mentioned during the discussion, that it was so
20 difficult to find patients for this trial in the
21 U.S., where, at least in my experience, this has
22 been a major problem in intensive care units for

1 many years. But I think it does certainly address
2 a very great unmet need, and it's good to see that
3 this kind of drug is being developed, and that's
4 the reason I voted yes. But continued safety
5 monitoring will need to be done as the FDA normally
6 does, but particularly because of the small number
7 of patients involved in this trial, and most of
8 them being outside the U.S., where standards of
9 care oftentimes are different than what happens in
10 the U.S., the FDA still has an important job to do
11 with this medication. That's it.

12 DR. BADEN: Thank you.

13 DR. HARDY: Thank you.

14 DR. BADEN: Dr. Block?

15 DR. BLOCK: Hi. Yes, because without this
16 agent, the alternative for a significant portion of
17 patients could be death. But I would add
18 additional active surveillance, the point being
19 that in an adverse event, a surveillance program
20 similar to V-Safe that we did with COVID, which we
21 needed to roll out before we tested it as much as
22 we wanted to -- I still remember when Trovan was

1 launched, trovafloxacin, and we had over 5,000
2 patient exposures at the time of approval. It was
3 the largest trial of its time, and we were all
4 surprised as heck when we started seeing liver
5 failure with its use post-approval. But with
6 ongoing active surveillance like we had with
7 V-Safe, we're all making well-informed decisions
8 with very up-to-date data that's available to us.
9 Thank you.

10 DR. BADEN: Thank you.

11 Dr. Patel?

12 DR. PATEL: Good afternoon. I think the
13 applicant did a really good job presenting their
14 data. The data looked very strong for
15 *Acinetobacter*. I think some of the things that the
16 applicant should consider in their phase 4 plan is
17 looking at other infection types. It's very clear,
18 based on the OPH testimony, that there are other
19 infection types where the drug could potentially be
20 useful and also trying to figure out whether
21 there's a way to hit that PTA without giving a
22 3-hour infusion, whether it be a load or something

1 else.

2 DR. BADEN: Thank you.

3 Dr. Siberry?

4 DR. SIBERRY: George Siberry, USAID. I
5 voted yes for many of the same reasons expressed.
6 If you look at these mortality rates from the
7 study, it reminds you how starkly high the risk of
8 death is in patients who get these infections, and
9 that's the reason for this expedited, my vote, yes.
10 In this limited data set, I think that they met the
11 criteria well enough. I didn't see any major
12 problems to suggest that it was at least as
13 efficacious as colistin, and it's certainly much
14 friendlier to kidneys to use than that.

15 I do think that there should be some
16 enhanced surveillance because we have such a
17 limited data set in terms of safety, at least for
18 the durlobactam component, and I'd like to make
19 sure that we don't have any barriers to use in
20 pregnancy but that we also collect safety and PK
21 information in pregnant people of this drug as we
22 go forward. Thanks very much.

1 DR. BADEN: Thank you.

2 Dr. Perez?

3 DR. PEREZ: Yes. Thank you. Federico Perez
4 from Cleveland. I voted yes, and I claim
5 [indiscernible] all the comments from before
6 because this is an organism of critical importance
7 in terms of public health and because of the
8 incredible difference that the availability of this
9 compound will make for the individual patients who
10 have to suffer infection by *Acinetobacter baumannii*
11 complex in a landscape where therapeutic options
12 are extremely limited. The trial itself
13 demonstrates the shortcomings of colistin in terms
14 of its limited efficacy and nephrotoxicity.

15 Adding to what has been said, I would also
16 say that durlobactam is a [indiscernible], meaning
17 that it's a beta-lactam [indiscernible], and we
18 collectively have accumulated experience with this
19 drug, negative infections, and have learned about
20 the mutations but also the benefits on overall
21 safety. And notwithstanding this, there clearly
22 are many areas where questions remain.

1 To what has been said about safety, I would
2 emphasize the challenge of managing the
3 co-pathogens in these typically polymicrobial
4 infections and the intricacies of the different
5 combinations that become possible. They have to be
6 sorted out both in terms of safety, but also
7 efficacy. In this aspect, I would be very
8 interested in seeing what durlobactam adds to other
9 beta-lactams in terms of activity against organisms
10 like *Pseudomonas aeruginosa* as part as pan
11 resistant and [indiscernible]. Thank you very
12 much.

13 DR. BADEN: Thank you.

14 Dr Hunsberger?

15 DR. HUNSMERGER: This is Sally Hunsberger.
16 I voted yes. The study clearly met the primary
17 endpoint, and the secondary endpoints were all very
18 consistent, so I think that was really crucial.
19 One thing I think would be very important would be
20 to do some logistic regression analyses so that you
21 could understand the treatment benefit while
22 controlling for other covariates. That could also

1 help with potentially using this treatment for
2 younger children. But everything else people have
3 said, I totally agree with, so I don't have
4 anything more to add.

5 DR. BADEN: Thank you.

6 Dr. Baden Lindsey Baden. I voted yes.
7 Several key observations, it's a very small data
8 set, which is probably why the committee was called
9 together and has made all of us a little
10 uncomfortable; however, this is a tremendous unmet
11 need. It's an impressive mortality benefit. It
12 does have some unique attributes, this agent, in
13 terms of its spectrum of activity, which is
14 advantageous and concerning at the same time, so we
15 have to better understand how best to use it for
16 treating polymicrobial infection with polymicrobial
17 pharmacy.

18 The safety database is very thin, as has
19 been mentioned, and real-world data will need to be
20 collected to augment our understanding of safety.
21 Lots more data are needed: other sites of
22 infection; other comorbid conditions; other organ

1 insufficiency; other polypharmacy; other
2 populations. So we need to know much more;
3 however, it did demonstrate important efficacy in a
4 target population that is an unmet need, so I voted
5 yes. Thank you.

6 Dr. Swaminathan?

7 DR. SWAMINATHAN: Yes. Sankar Swaminathan
8 here. I voted yes. This is a disease with very
9 high morbidity and mortality, and the current
10 available treatment, as has been pointed out, has
11 significant toxicity and other issues. The
12 possibility of uncommon side-effects is, I think,
13 not ruled out by the limited study set that we have
14 available, so postmarketing surveillance will be
15 essential to identify these and to understand what
16 the risk factors for those are, as well as
17 drug-drug interactions, given the number of drugs
18 that these patients are likely to be on, not just
19 antibiotics.

20 But I also think that this type of data
21 really is not going to be obtained in perspective
22 randomized trials, given that there won't be a

1 placebo-controlled trial, and some of the things
2 we're looking for in a fairly uncommon disease, at
3 least in the U.S., will only become apparent after
4 some significant use in the community. But I also
5 think there's a possibility that it will have
6 potential utility in collecting data on CNS
7 penetration and its efficacy in CNS infections,
8 which occur. And where colistin has very poor CNS
9 penetration, it opens the door, at least, to
10 possible treatments of CNS infections, so that's
11 why I voted yes.

12 DR. BADEN: Thank you.

13 Dr. Hilton?

14 DR. HILTON: Joan Hilton. I voted yes
15 because I was very impressed by the 19 percent
16 versus 33 percent mortality rates, combined with
17 the relatively good safety data. I did have some
18 concerns. There are about 30 percent of randomized
19 subjects who were not included in the primary
20 analysis, and I think that an alternative might
21 have been to use the post-randomization
22 confirmation of the disease as a baseline covariate

1 and do a formal ITT analysis instead. But that
2 said, the loss of a 30 percent really bothered me,
3 but I was really glad that both the sponsor and the
4 FDA also did ITT analyses of the primary endpoint,
5 and they hardly changed at all, so that was quite
6 convincing to me.

7 The last thing that I'm concerned about is I
8 think that rather than using a 28-day mortality
9 endpoint, a survival time to event outcome would
10 have been much more powerful and informative, and
11 also might pick up the trends that we saw in the
12 declining efficacy of the secondary variables
13 during the study period. That's it. Thank you.

14 DR. BADEN: Thank you.

15 Dr. Walker?

16 DR. WALKER: Hi. Dr. Roblena Walker, and I
17 echo the sentiments of all of my colleagues. I
18 voted yes due to the great clinical need for the
19 resistance of this particular pathogen that has
20 aided in decreased mortality rates, specifically
21 among patients who are presented in such cases. I
22 do agree that ongoing safety surveillance is

1 needed, but overall, I believe the applicant
2 presented the data. And to the individuals who
3 provided public feedback, I think that was well
4 received as well. Thank you.

5 DR. BADEN: Thank you.

6 So I'd like to summarize the comments.
7 Twelve panel members, all 12 voted yes. The
8 benefit-risk assessment is favorable. Several
9 elements went into the summative discussion.
10 Tremendous unmet need and impressive mortality
11 benefit has led to a strong view that this agent
12 has a place in treatment; however, there is much
13 more we need to know. A very small sample size, so
14 the safety database needs to be expanded; perhaps a
15 V-Save for some other mechanism that the agency can
16 leverage to better collect more data, the agency
17 and the applicant, because it's in all of our
18 interests to collect the additional data to
19 understand how best to use this medication.

20 The issue of emergent resistance needs to be
21 monitored as well. Some aspects of the data
22 presented could benefit from some reflection,

1 including the microbiologic endpoints and how to
2 assess the test of cure. Some of the analytic
3 issues raised by our statistical colleagues, in
4 terms of other analyses that can help us better
5 understand the data from a formal ITT, to risk
6 factor, to logistic regression, time to event.

7 I don't think any of these in what we've
8 seen changes the primary finding, but allows
9 greater insight into what we learn. We need to, as
10 this gets rolled out, if it gets rolled out,
11 understand how this agent behaves in the U.S.
12 hospital environment and how it is used in
13 combination antimicrobial therapy, with other
14 agents besides imipenem.

15 Practical issues need to be weighed such as
16 how it's delivered, and if it's delivered 3 out of
17 4 hours in certain patients, do we need to think
18 through certain delivery features to make sure that
19 how we deliver it makes sense to patient care and
20 patient flow. Additional data on sites of
21 infection, penetration, and raised by some of the
22 members, how this beta-lactamase interacts with

1 other organisms that have a beta-lactamase, is
2 worth better understanding. But overall, the
3 risk-benefit ratio was seen as favorable.

4 I will open it to any other panel members if
5 I missed any core concepts in the summation for the
6 agency.

7 (No response.)

8 DR. BADEN: If not, then I would like to,
9 before we adjourn, make a few comments, and then
10 ask the agency to make a few closing comments.

11 I would like to thank both the agency, and
12 the applicant, and the open public hearing speakers
13 for sharing a tremendous amount of data and
14 real-world wisdom about this infection and the
15 unmet need. The committee valued all of the shared
16 information and greatly appreciated the tremendous
17 amount of information shared in such an
18 easy-to-understand manner, so thank you.

19 Now let me ask the FDA if you have any final
20 comments.

21 DR. SHERWAT: It's Adam Sherwat. I wanted
22 to also thank you very much and the committee for

1 all of the help today. We greatly appreciate your
2 time and the effort at the AC, and your input will
3 be strongly considered in our deliberations, and
4 thank you again.

Adjournment

6 DR. BADEN: Thank you.

7 So then I will now adjourn the meeting.

8 | Thank you all.

11

12

13

14

15

15