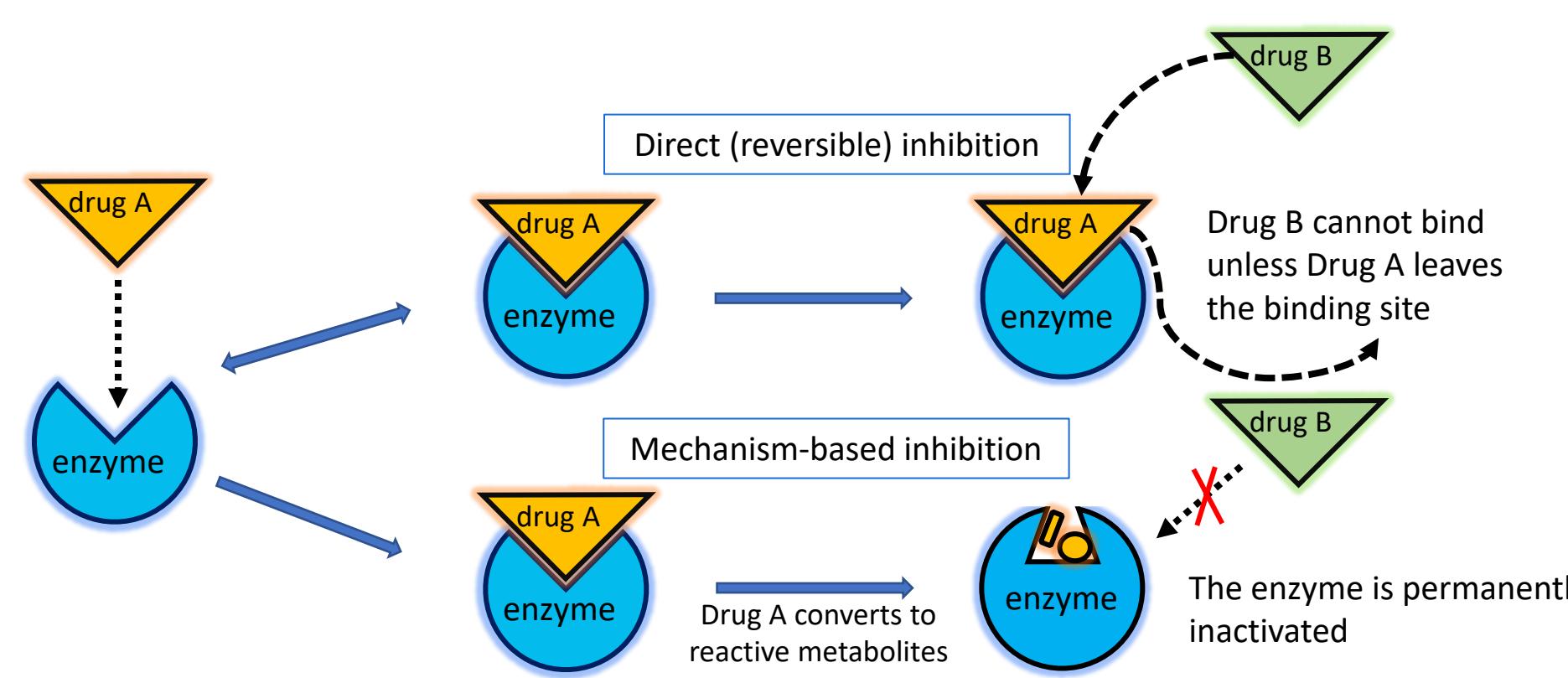


Novel QSAR Models for Prediction of Reversible and Time-Dependent Inhibition of Cytochrome P450 Enzymes

S. Faramarzi¹, X. Yang¹, A. Bassan², K. P. Kross², G.J. Myatt², D.A. Volpe¹, L. Stavitskaya¹¹Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA; ²InStem Inc., Columbus, Ohio, USA


Abstract

FDA's *in vitro* drug interaction guidance¹ states that *in vivo* drug-drug interaction (DDIs) caused by metabolites may be possible even if *in vitro* studies suggest that the parent drug alone does not inhibit any major cytochrome P450 (CYP) enzymes. As a result, the guidance recommends that sponsors evaluate certain metabolites *in vitro* for their inhibitory effects on a panel of CYP enzymes. Considerations for testing metabolites include inhibitory potency of metabolite(s), *in vivo* metabolite-to-parent exposure, and the presence of a possible mechanism-based inhibition (MBI) alert, since such inhibition leads to a higher risk of DDI due to prolonged inhibition effect compared to reversible inhibition.

To facilitate identification of metabolites that are most likely to be inhibitors, five quantitative structure-activity relationship (QSAR) models for reversible inhibition of CYP3A4, 2C9, 2C19 and 2D6, and MBI of CYP3A4 were developed. The non-proprietary training sets for the models were harvested from FDA drug approval packages and published literature to give a total of 10,286 chemical structures. The cross-validation performance statistics for the models range from 79% to 83% in concordance and 77% to 83% negative predictivity. Additionally, the performance of the newly developed models was assessed using external validation sets. Overall performance statistics showed up to 85% in concordance and up to 97% in negative predictivity. The newly developed models will provide a faster and more effective evaluation of potential DDIs caused by metabolites.

Introduction

CYP enzymes are a family of heme containing enzymes that catalyze the oxidative metabolism of endogenous and exogenous compounds. Drugs may inhibit CYP enzymes, and therefore alter the metabolism of co-administered drugs. This phenomenon makes up the majority of pharmacokinetic DDI.

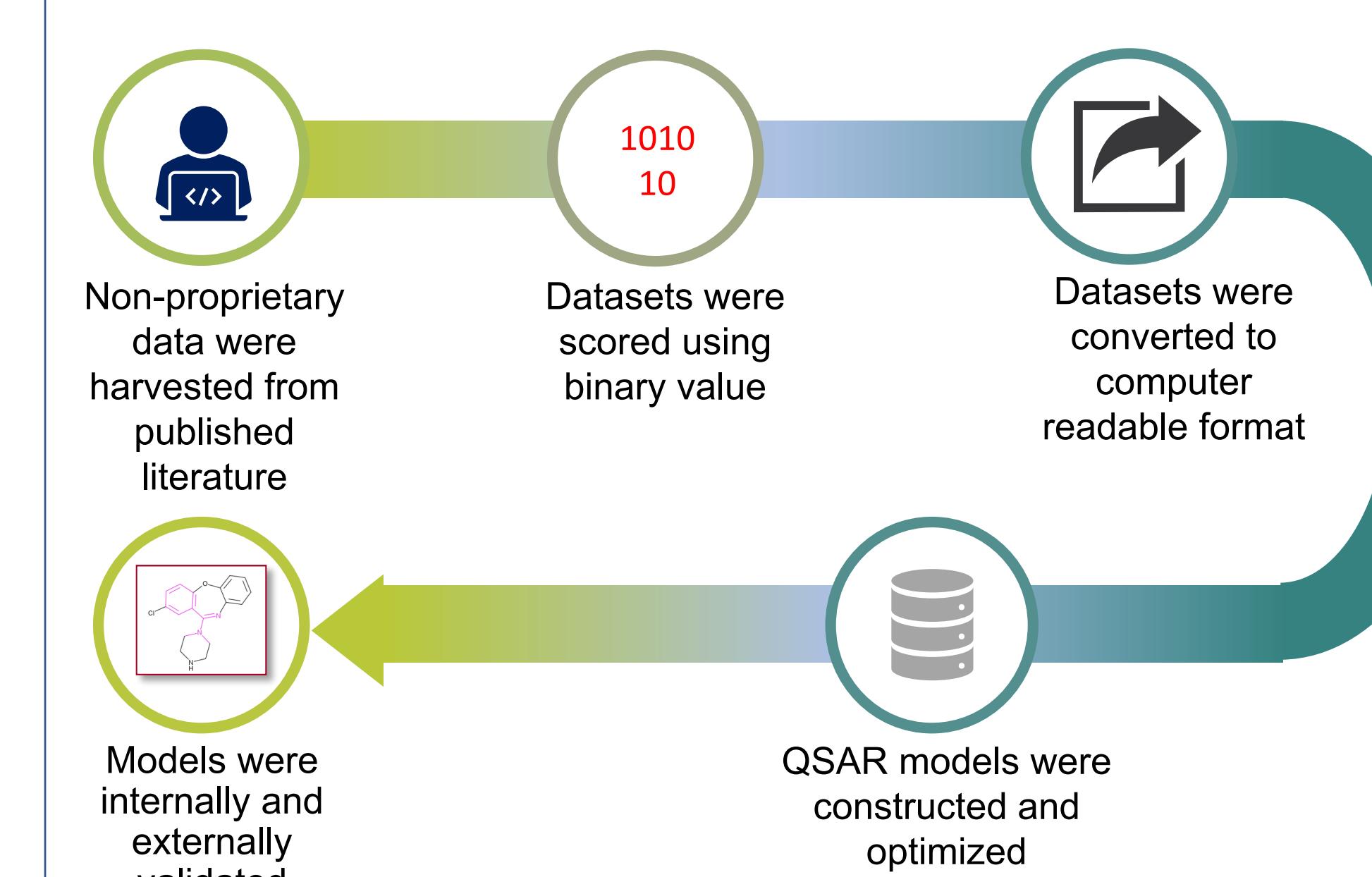
There are at least 57 CYP enzymes in human body, among which 12 are involved in drug metabolism². Drugs are routinely evaluated as substrates and inhibitors of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A1.

52% of small molecule drugs approved by the FDA from 2015-2020 are metabolized by CYP3A4, making it the major CYP subtype³. Other important CYP subtypes include CYP2C9, CYP2C19, and CYP2D6 which are involved in metabolism of drugs containing polar acidic groups, hydrogen bond donors/acceptors, and amines, respectively⁴.

QSAR models provide a rapid assessment of CYP inhibition of a molecule based solely on its chemical structure. These models can identify structural alerts and mitigating features in drugs.

In a regulatory environment, high sensitivity and negative predictivity are important characteristics of QSAR models used to support drug safety decisions, thereby minimizing risk to patients.

Objectives


Develop inhibition datasets for major CYP enzymes

Construct and optimize QSAR models

Assess the performance of models

Materials and Methods

Construction of the Models

Data Collection

Experimental CYP inhibition data for 10,287 unique chemicals were collected from publicly available literature and databases (Table 1).

Experimental data consisted of studies conducted using human liver microsomes or recombinant CYP enzymes.

Table 1. CYP enzyme inhibition database

Enzyme type	Inhibition type	Number of compounds	Number of positives	Number of negatives
CYP2D6	direct	4163	1697	2466
CYP3A4	direct	7044	2668	4376
CYP2C9	direct	4065	1387	2678
CYP2C19	direct	2847	789	2058
CYP3A4	MBI	623	306	317

To determine if a compound is a direct or mechanism-based inhibitor of CYP enzymes, criteria listed in Table 2 was used⁵.

The predictive performance of the CYP models was assessed using proprietary external validation set harvested from drugs reviews (Table 3).

Table 2. Thresholds for identification of direct and mechanism-based inhibitors

Inhibition type	Parameters and thresholds		
	IC ₅₀ (μM)	K _i (μM)	R ₁
Direct	10	5	1.02
Mechanism based	IC ₅₀ fold shift Change in inhibition (%)	k _{obs} (min ⁻¹) R ₂	1.5 20 0.01 1.25

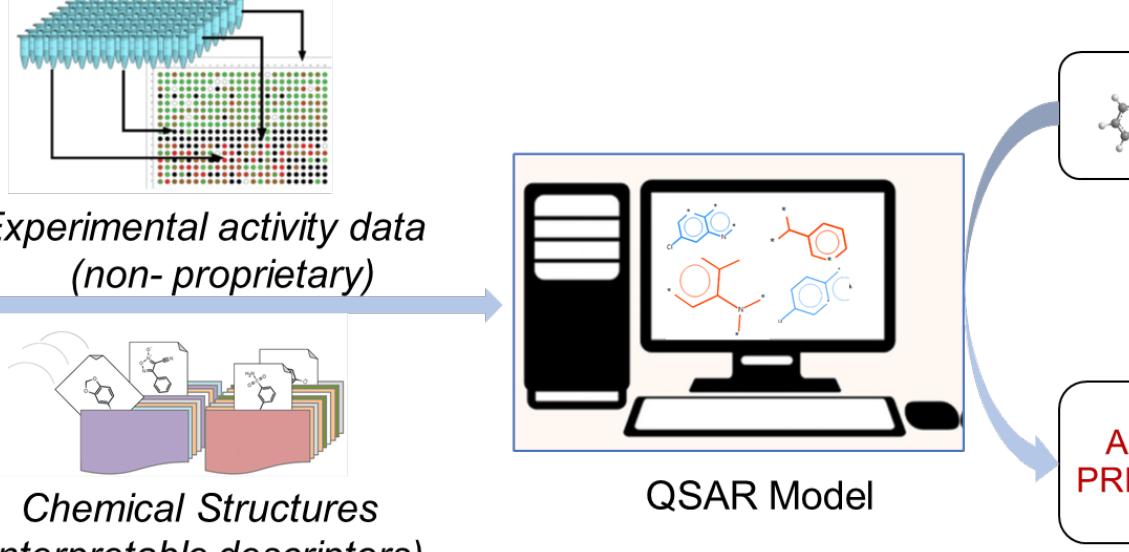

*From the FDA guidance¹.

Table 3. External validation sets composed of drugs approved in 2006-2021.

Enzyme	Inhibition type	Number of compounds	Number of positives	Number of negatives
2D6	direct	221	24	197
3A4	direct	221	43	178
2C9	direct	224	28	196
2C19	direct	222	19	203
3A4	MBI	109	52	57

QSAR Modeling

Leadscape (LS) Enterprise v4.9.3-2 (InStem Inc., USA) was used for model building and testing.

Novel QSAR Models for Prediction of Reversible and Time-Dependent Inhibition of Cytochrome P450 Enzymes

S. Faramarzi¹, X. Yang¹, A. Bassan², K. P. Kross², G.J. Myatt², D.A. Volpe¹, L. Stavitskaya¹¹Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA; ²InStem Inc., Columbus, Ohio, USA

Results and Discussion

Evaluation of Molecular Properties

Table 4 shows the functional groups present in the training sets with corresponding activities. Degrees of red and blue shading indicates the extent of the positive and negative chemicals, respectively. Ethers and amines are among mechanism-based inhibition alerts. Carboxylic acids and carbonyls are among the groups with lowest activities for all enzymes.

Table 4. Functional groups analysis for each training set. Numbers are activities (z-scores)

Compound Feature	alcohol	aldehyde	alke	alkyne	amide	amine	azide	carbamate	carboxyl	ether	halide	hydrazine	hydroxylamine	imine	iminomethyl	ketone	nitrile	quinones	sulfide	sulfonamide	sulfone	sulfoxide	urea			
CYP3A4	4.673	-1.657	1.259	-0.5551	-2.915	5.568	1.027	97	0.22	3.645	1.812	-8.268	-3.206	4.486	3.258	-1.178	4.696	-1.171	0.2793	2.299	2.656	-2.057	-2.223	4.487		
CYP3A4 MBI	0.6763	-2.048	0.8933	-1.348	1.111	0.5651	-1.025	1.066	1.124	3.508	3.305	2.279	-0.2916	1.03	-1.762	0.0924	-1.184	-0.185	0.7485	-0.8378	-1.71	-0.779				
CYP2C9	-1.714	-1.019	0.5386	-1.888	-0.4591	1.956	0.673	-1.943	-1.749	-2.057	1.877	2.274	-3.064	0.9572	1.215	-0.9967	-2.176	1.688	-1.019	0.5739	5.121	5.445	-1.431	-1.766		
CYP2C19	-2.273	-1.076	2.028	-1.003	0.6657	-0.6112	0.9863	-2.395	-2.235	-0.02369	-3.314	0.04706	-1.89	2.443	0.2077	0.062	-1.207	-3.293	-0.1098	1.859	4.388	-0.701	-2.874	-2.715	3.454	
CYP2D6	5.566	-1.377	-3.444	-3.224	-2.803	10.12	-0.9736	-1.175	16.24	-7.684	-2.954	-1.159	-0.9727	-2.91	-4.197	-1.804	0.6502	-3.126	-2.019	-0.9496	-1.377	3.191	-4.559	-3.354	-1.54	1.906

Figure 1 shows physicochemical properties present in direct CYP inhibition training sets

Panel A, shows that CYP3A4 is inhibited by large molecules when compared to other CYP enzymes.

Panel B shows that CYP2D6 inhibitors are on average less polar than the rest of the enzymes.

Identification of Structural Alerts Responsible for CYP Inhibition

Structural features with highest direct inhibition activities were identified and evaluated for each average model (Table 5).

Overall, planar aromatic rings and secondary amines are among top direct inhibition alerts for all CYP enzymes.

Figure 2 shows representative compounds containing alerts with high and low activity scores and their frequency in CYP3A4 MBI training set.

Features consist of newly identified alerts as well as chemical moieties which are known to be associated with CYP inhibition. For example, cyclopropylamines are reported to cause MBI of CYP enzymes through heme alkylation⁶.

Carboxylic acids are already oxidized and therefore have the lowest MBI activity.

Table 5. Examples of structural features with highest direct inhibition activities for each model.

CYP3A4		1-alkyl,3-halo benzene. Z-score: 7.65, frequency: 114
		1,3-dihydroxy ethane. Z-score: 5.4, frequency: 34
CYP2C9		Cyclopropylamine. MBI through heme alkylation. Z-score: 5.3, frequency: 57
		1-alkoxy benzene. Z-score: 4, frequency: 197
CYP2C19		Pyridine, carbonyl. Z-score: 3.1, frequency: 33
		Pyridine. Z-score: 3.6, frequency: 26
CYP2D6		Carboxylic acid. Z-score: -3.7, frequency: 42
		Aryl carbonyl. Z-score: -4.8, frequency: 170