SRP-9001 (delandistrogene moxeparvovec) for Treatment of Duchenne Muscular Dystrophy

May 12, 2023

Cellular Tissue and Gene Therapy Advisory Committee
Sarepta Therapeutics
Introduction

Patrick O’Malley
Vice President, Regulatory Affairs
Sarepta Therapeutics
SRP-9001 Proposed Indication and Dosing

SRP-9001 is indicated for the treatment of ambulatory patients with Duchenne muscular dystrophy (DMD) with a confirmed mutation in the DMD gene.

SRP-9001 is contraindicated in patients with any deletion that fully includes exons 9 – 13 in the DMD gene.

Dosing & Administration

SRP-9001 administered intravenously as one-time infusion at dose of 1.33×10^{14} vector genomes (vg) per kg of body weight.

SRP-9001 administration is not recommended in patients with elevated anti-AAVrh74 total binding antibody titers ($\geq 1:400$).
SRP-9001 Meets Criteria for Accelerated Approval

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Support</th>
<th>Result</th>
</tr>
</thead>
</table>
| Treats serious condition | • DMD is serious, devastating, and fatal condition with high unmet need
• Progression is inevitable and irreversible and leads to early mortality | ✔️ |
| Provides meaningful advantage over available therapies | • Current treatment options that introduce functional dystrophin limited to specific DMD mutations
• Standard of care has recognized limitations and does not address underlying cause of disease | ✔️ |
| Demonstrates effect on an endpoint reasonably likely to predict clinical benefit | • SRP-9001 dystrophin protein expression is reasonably likely to predict clinical benefit (product design, biological, and empirical data showing direct change in underlying pathophysiology of disease, combined with durable functional effect over 4 years of follow-up) | ✔️ |
| Confirmatory study (SRP-9001-301) | • Phase 3 study ongoing in same population as Studies 101, 102, and 103 (cohort 1)
• Fully enrolled as of Sept 2022 | ✔️ |
Phase 3 Confirmatory Study Fully Enrolled

- Study 301
 - Global, double-blind, randomized, placebo-controlled, two-part study
 - 125 patients, 4 – 7 years old
 - Informed by previous studies
 - Primary endpoint change in NSAA from Baseline to Week 52
 - NSAA well recognized clinical endpoint for standard approval\(^1\)
 - Part 1 study report expected early 2024

Study status provides reassurance of achieving timely completion

NSAA = North Star Ambulatory Assessment

1. Duchenne Muscular Dystrophy and Related Dystrophinopathies: Developing Drugs for Treatment Guidance for Industry, February 2018
SRP-9001 Dystrophin Protein Expression Is Reasonably Likely to Predict Benefit

<table>
<thead>
<tr>
<th>Biological Plausibility</th>
<th>Empirical Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Monogenic disease where low levels of residual or restored dystrophin shown to confer significant benefit</td>
<td>▪ Demonstration of:</td>
</tr>
<tr>
<td>▪ Functional shortened dystrophins that conserve key structural domains observed in nature</td>
<td>▪ Transduction</td>
</tr>
<tr>
<td>▪ SRP-9001 dystrophin rationally designed based on observations in nature and decades of research and development</td>
<td>▪ Expression</td>
</tr>
<tr>
<td></td>
<td>▪ Localization</td>
</tr>
<tr>
<td></td>
<td>▪ Biological function</td>
</tr>
<tr>
<td></td>
<td>▪ Relationship with motor function and clinical outcomes</td>
</tr>
</tbody>
</table>

SRP-9001 dystrophin expression is surrogate endpoint and therapeutic agent
SRP-9001 Clinical Studies Supporting Accelerated Approval

BLA Core Studies

STUDY 101
N = 4
Open-label
4 – 7 years old
Ambulatory

STUDY 102
N = 41
Double-blind, randomized, placebo-controlled
4 – 7 years old
Ambulatory

STUDY 103
N = 40
Open-label
3 – 20 years old
Ambulatory and Non-ambulatory

External Control
Comparator pools drawn from 3 external sources to contextualize trial results according to pre-specified analysis plan
Disease Background and Unmet Need

Jerry Mendell, MD
Professor of Pediatrics and Neurology
Nationwide Children’s Hospital and The OSU College of Medicine

Louise Rodino-Klapac, PhD
Executive Vice President, Head of R&D, and Chief Scientific Officer
Sarepta Therapeutics

Evidence for Surrogacy

Stefanie Mason, MD
Clinical Development Lead SRP-9001
Sarepta Therapeutics

Clinical Trial Results

James Signorovitch, PhD
Co-Founder, Collaborative Trajectory Analysis Project (cTAP) in Duchenne
Managing Principal, Analysis Group

External Control Analyses

Craig McDonald, MD
Professor and Chair, Department of Physical Medicine and Rehabilitation
Professor of Pediatrics, Director MDA Neuromuscular Disease Clinics,
University of California Davis Health

External Control Results

Eddie Darton, MD, JD
Executive Medical Director, Safety Evaluation & Risk Management
Sarepta Therapeutics

Summary of Safety

Clinical Perspective

Craig McDonald, MD
External Responders

Francesco Muntoni, MD, FRCPCH
Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Diseases
UCL Great Ormond Street Institute of Child Health
Great Ormond Street Hospital for Children

Howard Worman, MD
Professor of Medicine and Pathology and Cell Biology
Vagelos College of Physicians and Surgeons
Columbia University

Kay Davies, PhD
Dr Lee’s Professor of Anatomy, Emerita
Department of Physiology, Anatomy, and Genetics
University of Oxford

Chris Mullin, MS
Director, Global Strategy Services
NAMSA

Kan Hor, MD
Director of Cardiac MRI at The Heart Center
Nationwide Children’s Hospital
Associate Professor of Clinical Pediatrics
The Ohio State University College of Medicine
Disease Background and Unmet Need

Jerry Mendell, MD

Curran-Peters Chair of Pediatric Research
Professor of Neurology and Pediatrics
Nationwide Children’s Hospital and The Ohio State University College of Medicine in Columbus, Ohio
Well-characterized, rare, fatal, X-linked monogenic neuromuscular disease
- Affecting ~1 in 5,000 newborn males
- Caused by mutations in DMD gene leading to lack of functional dystrophin

Lack of functional dystrophin is sole cause of DMD
- Dystrophin is key structural protein that protects against muscle damage during normal contraction
- Without functional dystrophin, normal activity leads to muscle cell damage, inflammation, fibrosis, and irreversible muscle loss

DMD: Most Common Childhood Form of Muscular Dystrophy

Al-Zaidy SA, et al. 2017
Children with Duchenne Suffer Irreparable Harm Highlighting Urgent Need for Effective Therapies

Based on US incidence and prevalence

- ~400 lose ambulation each year
- 2,000 more will lose ambulation over 5 years

Median survival 28 years
- >400 patients in US die each year
- 2,228 patients will die over 5 years

McDonald et al. 2018; Passamano et al. 2012; Broomfield et al. 2021; Paramsothy et al. 2022
Damage Starts In Utero, Is Progressive, and Leads to Early Death

Birth – 2 years of age
- Birth
 - Creatine Kinase > 2,000 (U/L)
- Poor head control
- Can’t sit without support
- Standing, cruising late
- Walk
 - 15 – 18 months
- Autistic spectrum, delayed speech

3 – 4 yoa
- Increased CK
- Genetic diagnosis

5 – 7 yoa
- Motor delay
- Toe walking
- Difficulty stair climbing
- Positive Gowers’ sign

8 – 11 yoa
- Walking difficulty
- Tires easier
- Wheelchair at times
- Frequent falls

Early Teens
- Loss of ambulation
- Full-time wheelchair use
- Increased arms weakness

Teens
- Reduced forced vital capacity
- Need for ventilatory support
- Reduced activities of daily living

Teens to Twenties
- Cardiac dysfunction
- Heart failure
- Death
NSAA: Well-Established and Validated Measure of Global Function

- Composite evaluation of motor function across 17 test items with increasing difficulty
- Healthy boys obtain score of 34 by 4 years of age
- Boys with DMD achieve peak score of 26 around age 6 years

Zambon et al. 2022
Change of 1 Point Is Clinically Meaningful

Example NSAA Item: Rise from Floor

- **NSAA Score = 2**
 - Stands easily

- **NSAA Score = 1**
 - Stands with difficulty

- **NSAA Score = 0**
 - Cannot stand

Videos shown with patient consent
Unmet Needs Remain Challenging Due to Limited Treatment Options

- DMD is progressive and universally fatal disease
- Supportive care is mainstay of treatment
- Corticosteroids delay time to loss of ambulation, but do not address underlying cause of DMD and associated with significant side effects
- RNA-based treatment provide small increases in dystrophin related only to specific mutations amenable to exon skipping (30%)
- Supportive care and medical intervention have improved life expectancy, but quality of life severely compromised

Gene therapy addresses underlying cause of DMD and has potential to stabilize disease progression
Evidence for Surrogacy

Louise Rodino-Klapac, PhD

Executive Vice President, Head of R&D, and Chief Scientific Officer
Sarepta Therapeutics
Key DMD, AAV, and SRP-9001 Milestones

- **1965**: AAV discovered
- **1960s**: DMD Research
 - **1984**: 1st AAV vector
 - **1986**: DMD gene isolated, cloned
 - **1990**: Discovery of shortened dystrophin; publication of ambulant 61-yr-old patient missing half DMD gene
- **1980s**: Gene Therapy Development
- **1990s**: Gene Therapy Development
- **2005**: Nonclinical studies initiated with precursors to SRP-9001
- **2005**: rh74 and SRP-9001 Development
- **2018**: Study 101: 1st patient dosed
- **2020**: Study 103: 1st patient dosed
- **2020**: Study 301: 1st patient dosed
- **2022**: BLA submitted

AAV = adeno-associated virus
Dystrophin: Essential Muscle Protein

Image adapted from Biga et al. 2020

- **Dystrophin Function**
 - Flexible link between contractile machinery within muscle fiber and extracellular matrix
 - Protects against contraction-induced injury to muscle fibers
Anatomy of Dystrophin: Key Functional Domains

- αDG = α-dystroglycan
- ABD = actin binding domain
- βDG = β-dystroglycan
- CR = cystine rich
- CT = C terminus
- Dbr = dystrobrevin
- H = hinge
- nNOS = neuronal nitric oxide synthase
- R = repeat
- SG = sarcoglycan
- Syn = syntrophin

Adapted from Zhao et al. 2016
Natural History Demonstrates that Large Portions of Dystrophin Protein Are Less Critical

- First discovered by Professor Kay Davies in 1990
 - Mild Becker muscular dystrophy (BMD) patient who, surprisingly, could still ambulate at age 61
- Genetic testing confirmed patient missing nearly half their dystrophin protein
 - Missing 46% of dystrophin coding region (Del 17 – 48)\(^1\), specifically large stretch of spectrin-like repeats in middle

1. England et al. 1990
Evidence includes 2 additional mildly affected individuals in the pedigree
Shortened Dystrophins Leading to Sustained Ambulation and/or Increased Survival

Full-length dystrophin

<table>
<thead>
<tr>
<th>KE Davies Patient</th>
<th>Still ambulant at age 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>Age of loss of ambulation unknown</td>
</tr>
<tr>
<td></td>
<td>Alive at 68</td>
</tr>
<tr>
<td>Patient 2</td>
<td>Age of loss of ambulation unknown</td>
</tr>
<tr>
<td></td>
<td>Alive at 64</td>
</tr>
<tr>
<td>Patient 3</td>
<td>Still ambulant at age 37</td>
</tr>
<tr>
<td>Patient 4</td>
<td>Age of loss of ambulation unknown</td>
</tr>
<tr>
<td></td>
<td>Alive at 46</td>
</tr>
<tr>
<td>Patient 5</td>
<td>Still ambulant at age 26</td>
</tr>
</tbody>
</table>

SRP-9001 Dystrophin Design Follows Structure of Natural, Highly Functional, Shortened Dystrophins

61 yo Ambulatory BMD Patient

Includes key functional regions

SRP-9001 Dystrophin

Iterative experiments to find optimal structure

Efficacy demonstrated nonclinically and clinically

Image adapted from Zhao et al. 2016
Nonclinical Studies Reinforce Key Domains Important for Dystrophin Function

<table>
<thead>
<tr>
<th>Construct Candidates</th>
<th>Tetanic Force (N/cm²)</th>
<th>Mean (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type (full dystrophin protein)</td>
<td>21.5</td>
<td>(0.5)</td>
</tr>
<tr>
<td>DysΔR4-23/ΔCT-mdx</td>
<td>20.4</td>
<td>(0.9)</td>
</tr>
<tr>
<td>DysΔH2-R19/ΔCT- mdx</td>
<td>20.3</td>
<td>(0.9)</td>
</tr>
<tr>
<td>DysΔR2-R15/ΔR18-23/ΔCT- mdx</td>
<td>19.7</td>
<td>(0.8)</td>
</tr>
<tr>
<td>DysΔH2-R15- mdx</td>
<td>17.8</td>
<td>(0.8)</td>
</tr>
<tr>
<td>mdx</td>
<td>13.1</td>
<td>(0.5)</td>
</tr>
</tbody>
</table>

Nelson et al. 2018
SRP-9001 Dystrophin Resulted in Superior Specific Force Compared to Other Tested Constructs

<table>
<thead>
<tr>
<th>Construct Candidates</th>
<th>Specific Force (mN/mm²), Mean (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type (full dystrophin protein)</td>
<td>284.2 (14.2)</td>
</tr>
<tr>
<td>SRP-9001</td>
<td>232.7 (12.3)</td>
</tr>
<tr>
<td>MCK.micro-dys</td>
<td>195.5 (15.6)</td>
</tr>
<tr>
<td>Micro-dys C-term</td>
<td>163.7 (19.7)</td>
</tr>
<tr>
<td>Dual vector</td>
<td>188.8 (21.0)</td>
</tr>
<tr>
<td>Untreated mdx</td>
<td>154.7 (10.1)</td>
</tr>
</tbody>
</table>

Potter et al. 2019
MHCK7 = alpha-myosin heavy-chain creatine kinase 7 promoter/enhancer; MCK = muscle creatine kinase
SRP-9001: AAV-Based Investigational Gene Transfer Therapy for Treatment of DMD¹,²

*ITRs are required for genome replication and packaging; †PolyA signals the end of the transgene to the cellular machinery that transcribes (ie, copies) it.

AAV = adeno-associated virus; AAVrh74 = recombinant human adeno-associated virus 74; ITR = information transfer rate; ssDNA = single-stranded DNA

Empirical Evidence for Surrogacy

Nonclinical
Biological Cascade Through Which SRP-9001 Exerts Effect Is Demonstrable Through Series of Well-Validated Endpoints

** Biological Endpoints **

<table>
<thead>
<tr>
<th>Transduction Efficiency</th>
<th>SRP-9001 Dystrophin Expression</th>
<th>SRP-9001 Dystrophin Localization and Restoration of DAPC</th>
<th>Normalization of Muscle Microenvironment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Genome Copy Number</td>
<td>Western Blot % Normal Expression</td>
<td>IF Fiber Intensity and PDPF</td>
<td>Muscle Histology and Serum CK</td>
</tr>
</tbody>
</table>

** Relationship to Functional Benefit **

Functional Benefit: NSAA

CK = creatine kinase; DAPC = dystrophin associated protein complex; IF = immunofluorescence; PDPF = percent dystrophin positive fibers
SRP-9001 Protein Expression Stabilizes Sarcolemma Leading to DAPC Restoration in DMDMDX Mice

Images at 20X magnification
Membrane Stabilization Leads to Improved Muscle Health, Reduced CK, and Functional Improvement

Normalization of Muscle Microenvironment

Muscle Histology

DMD^{MDX} Untreated

SRP-9001

Improved Function

Increased Specific Force

- **TA**
- **Diaphragm**

<table>
<thead>
<tr>
<th></th>
<th>MDX</th>
<th>1.33 × 10<sup>14</sup> vg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Force (nN/mm<sup>2</sup>)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphragm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.33 × 10¹⁴ vg/kg clinical dose is statistically significant compared to DMD^{MDX} untreated cohorts: * p < 0.05; ** p < 0.0001

TA = tibialis anterior
Empirical Evidence for Surrogacy

Clinical
Consistent and Robust Biological Response at 12 Weeks

<table>
<thead>
<tr>
<th>Mean Change from Baseline (SD)</th>
<th>Study 101 N = 4</th>
<th>Study 103 Cohort 1 N = 20</th>
<th>Study 102 Part 1 SRP-9001 N = 20</th>
<th>Study 102 Part 1 Placebo N = 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector genome copy number</td>
<td>5.7 (4.1)</td>
<td>3.4 (2.4)</td>
<td>1.6 (1.5)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>SRP-9001 dystrophin expression (western blot, % of normal)</td>
<td>70.5* (76.1)</td>
<td>54.2 (42.6)</td>
<td>23.8 (39.8)</td>
<td>0.1 (1.2)</td>
</tr>
<tr>
<td>IF fiber intensity (% of control)</td>
<td>93.6 (43.9)</td>
<td>66.5 (64.1)</td>
<td>25.8 (46.2)</td>
<td>-0.5 (6.3)</td>
</tr>
<tr>
<td>PDPF (%)</td>
<td>81.2 (10.2)</td>
<td>48.3 (25.4)</td>
<td>23.9 (25.6)</td>
<td>5.1 (13.0)</td>
</tr>
</tbody>
</table>

Western blot method used for Study 101 was not adjusted to muscle content
CK Reductions Due to Muscle Membrane Stabilization

Study 101
- SRP-9001: N = 4, Mean Change = -11094.8

Study 102 Part 1
- SRP-9001: N = 20, Mean Change = -11533.4
- Placebo: N = 21, Mean Change = -3801.1

Study 103 Cohort 1
- SRP-9001: N = 20, Mean Change = -7636.2

Mean Change in CK from Baseline to Week 12 LSM (± SE)
Reduced Collagen Deposition Improves Muscle Health

Picosirius red staining of Baseline and Day 90 biopsies from Study 101

Mean decrease in collagen 26.7% after SRP-9001

Mendell et al. 2020; Images at 40X magnification
SRP-9001 Biomarker to Functional Relationship
Like Endogenous Dystrophin, SRP-9001 Dystrophin Is Correlated with Improved Function that Is Saturable

1. Adapted from Van Putten et al. 2014

2. Box plot shows median, interquartile and range of observed data from 0.0443 to 4.01×10^{14} vg/kg

3. Relative specific force = muscle contraction from diaphragm and tibialis anterior

Endogenous Dystrophin & Function\(^1\) (DMD\(^{MDX}\) Mouse Model)

$R_{Spearman} = 0.464, p = 0.019$

SRP-9001 Dystrophin & Function\(^2\) (DMD\(^{MDX}\) Mouse Model)

$R_{Spearman} = 0.42, p < 0.00001$

1. Adapted from Van Putten et al. 2014

2. Box plot shows median, interquartile and range of observed data from 0.0443 to 4.01×10^{14} vg/kg

3. Relative specific force = muscle contraction from diaphragm and tibialis anterior
Positive and Statistically Significant Association Between SRP-9001 Dystrophin and NSAA 1-Year Change

\[R_{\text{Spearman}} = 0.38, \ p = 0.001 \]

Includes Study 102 and 103 Cohort 1 age 4 – 7 years old
Dystrophin is protein that acts as link between extracellular matrix and intracellular cytoskeleton in muscle cells

Evidence of nature informed rational design of SRP-9001 to include key components needed for function

SRP-9001 restores biological cascade that is downregulated in absence of dystrophin
 - DAPC restoration, normalization of muscle microenvironment, and decreased CK

SRP-9001 protein expression correlated with improved function in nonclinical and clinical studies

Evidence supports Accelerated Approval criteria that SRP-9001 is reasonably likely to predict clinical benefit
Clinical Trial Results

Stefanie Mason, MD
Senior Medical Director, Clinical Development
Sarepta Therapeutics
DMD Disease Progression Is Heterogenous but Predictable

Consistent Pattern Over Time

Percent Ambulatory (%)

Risk Group
1 2 3 4 5

Validated predictive model based on Time to Rise and 10 meter walk/run

Muntoni et al. 2019
McDonald et al. 2022
Disease Modification Across Ambulatory Trajectory

Figure adapted from Muntoni et al. 2019
Study 101: Design

Key inclusion/exclusion criteria:
- 4 – 7 years of age
- Stable oral corticosteroids x 12 weeks
- Antibody titers ≤ 1:400

<table>
<thead>
<tr>
<th>Median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Weight (kg)</td>
</tr>
<tr>
<td>Height (cm)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
</tr>
</tbody>
</table>
Study 101: Stable NSAA Scores 1 – 4 Years After SRP-9001 Infusion

*Patient 2: 3-year NSAA value and Patient 4: 2-year NSAA value was from a remote assessment due to COVID-19 related restrictions at the site. Mendell et al. 2021; BL = Baseline; Y = Year
Key inclusion/exclusion criteria:

- 4 – 7 years of age
- Stable oral corticosteroids x 12 weeks
- Antibody titers ≤ 1:400
Study 102: Baseline Demographics

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Age 4 – 5</th>
<th>Age 6 – 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SRP-9001</td>
<td>Placebo</td>
</tr>
<tr>
<td></td>
<td>N = 8</td>
<td>N = 8</td>
</tr>
<tr>
<td>Age, mean (years)</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td>Years since corticosteroid treatment started</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Corticosteroid type, deflazacort, n (%)</td>
<td>1 (13%)</td>
<td>2 (25%)</td>
</tr>
<tr>
<td>Dosing weight, mean (kg)</td>
<td>20.1</td>
<td>19.8</td>
</tr>
<tr>
<td>NSAA total score, mean</td>
<td>20.1</td>
<td>20.4</td>
</tr>
<tr>
<td>Time to Rise, mean (seconds)</td>
<td>3.6</td>
<td>3.8</td>
</tr>
<tr>
<td>10 m walk run, mean (seconds)</td>
<td>5.0</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Age was only stratification factor for randomization
Study 102: ITT Population Primary Result

NSAA Change from Baseline = +1.7 in SRP-9001 vs +0.9 in placebo (p = 0.37)
Study 102: Primary Analysis by Pre-Specified Age Stratum

4–5-Year-Old Stratum

- SRP-9001
- Placebo

6–7-Year-Old Stratum

- SRP-9001
- Placebo

LSM Change from Baseline, Starting from Mean NSAA Score at Baseline (± SE)

Week: 0 4 8 12 24 36 48

SRP-9001 (n): 8 8 7 8 6 5 8
Placebo (n): 8 8 8 8 7 8 8

\[\Delta = 2.5 \quad p = 0.0172 \]

\[\Delta = -0.7 \quad p = 0.5384 \]
Study 103: Design

Key inclusion/exclusion criteria:
- 4 – 7 years of age
- Stable oral corticosteroids x 12 weeks
- Antibody titers ≤ 1:400
- NSAA score > 17 and ≤ 26
NSAA Improvement Over 1 Year

Cohort 1
N = 20

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Mean (SD)</td>
<td>5.81 (1.14)</td>
</tr>
<tr>
<td>4 to 5 years, n (%)</td>
<td>11 (55.0%)</td>
<td></td>
</tr>
<tr>
<td>6 to 7 years, n (%)</td>
<td>9 (45.0%)</td>
<td></td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>15 (75.0%)</td>
<td></td>
</tr>
<tr>
<td>Non-white</td>
<td>5 (25.0%)</td>
<td></td>
</tr>
<tr>
<td>Weight, kg</td>
<td>Mean (SD)</td>
<td>21.15 (4.23)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>Mean (SD)</td>
<td>17.76 (2.26)</td>
</tr>
</tbody>
</table>
External Control Analyses

James Signorovitch, PhD

Co-Founder, Collaborative Trajectory Analysis Project (cTAP) in Duchenne
Managing Principal, Analysis Group
Pre-Specified External Control Analyses

Purpose

- Contextualize clinical outcomes of SRP-9001 in trials versus natural history
- Further test reasonably likely surrogacy of SRP-9001 expression for effects on clinical outcomes

Risks

- Potential for bias when comparing across non-randomized groups
Primary Risks Considered for External Controls

<table>
<thead>
<tr>
<th>Sources of Potential Bias</th>
<th>Questions We Asked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes</td>
<td>▪ As a performance-based measure, do NSAA outcomes vary across data sources?</td>
</tr>
<tr>
<td></td>
<td>▪ Do differences in patient motivation or assessment processes bias outcomes measured in trials vs external controls?</td>
</tr>
<tr>
<td>Background standards of care</td>
<td>▪ How different are trials and external controls in terms of standards of care, geography and time periods?</td>
</tr>
<tr>
<td></td>
<td>▪ Do these differences impact outcomes?</td>
</tr>
<tr>
<td>Prognosis</td>
<td>▪ How predictable is the disease course?</td>
</tr>
<tr>
<td></td>
<td>▪ Are important prognostic factors balanced between trials and external controls?</td>
</tr>
</tbody>
</table>
Large collection of NSAA data from diverse sources
- N = 569 patients
- 7 data sources
- > 20 countries
- Years 2005 to 2018
- Double-blind placebo
- Natural history data

No evidence of significantly better NSAA outcomes in double-blind placebo vs natural history

Difference in Mean 48-week ∆NSAA (95% CI)

Placebo vs Natural History

Unadjusted

Propensity score matching*

*Adjusted for: age, steroid type, height, weight, BMI, and baseline function (NSAA, 10 m walk run, Time to Rise)
SRP-9001 EC Selection Driven by Assessment of Quality and Type of Data Available to Sponsor at Patient Level

From high-quality study with patients treated in line with current standard of care

Studies = 9

Rights are or can be obtained to use patient level data in a regulatory submission

Studies = 5

Moderate or better sample size with relevant endpoints

Studies = 3

- CINRG Natural History Study
- Lilly Tadalafil DMD Trial
- FOR-DMD Trial (daily steroid arms)

Subject-level inclusion / exclusion

- Meet steroid and age inclusion criteria for the SRP-9001 trials
- Have baseline function (NSAA, TTR, 10MWR) within baseline ranges of SRP-9001 trials

- N = 131 available as candidate external controls
- > 90% were drawn from clinical trials

*CINRG = Cooperative International Neuromuscular Research Group
EC = external control; TTR = Time to Rise; 10MWR = 10 Meter Walk Run*
SRP-9001 Pre-Specified Analyses for External Controls

Primary Analysis

Propensity score weighted external controls

<table>
<thead>
<tr>
<th>Population</th>
<th>Integrated Summary of Efficacy sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>SRP-9001 at target dose</td>
</tr>
<tr>
<td>Outcome</td>
<td>1-year change from baseline in NSAA</td>
</tr>
<tr>
<td>Comparator</td>
<td>External control sample</td>
</tr>
<tr>
<td>Methods</td>
<td>Propensity score weighting based on age group (4 – 5, 6 – 7, 8 yrs), NSAA, 10MWR, and TTR</td>
</tr>
<tr>
<td></td>
<td>Additional weighted regression adjustment for age group and NSAA by age group</td>
</tr>
<tr>
<td></td>
<td>Estimate the average treatment effect among the treated (ATT)</td>
</tr>
</tbody>
</table>

Key Sensitivity Analysis

Predicted controls for NSAA trajectory

- Used different data sources and methods than the primary analysis
- Independently developed prediction model (cTAP)
- Based on different data sources than primary external controls
- Key predictors included in model: age, steroid type, height, weight, BMI, NSAA, 10MWR, TTR

cTAP = Collaborative Trajectory Analysis Project; TTR = Time to Rise; 10MWR = 10 Meter Walk Run
Baseline Balance in Key Prognostic Factors

<table>
<thead>
<tr>
<th></th>
<th>SRP-9001 Treated (Pooled) N = 52</th>
<th>External Controls Before PS Weighting N = 131</th>
<th>External Controls After PS Weighting N = 105</th>
<th>Standardized Mean Difference After PS Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>6.44 (1.32)</td>
<td>6.75 (1.08)</td>
<td>6.67 (0.68)</td>
<td>-0.19</td>
</tr>
<tr>
<td>Height, cm</td>
<td>112.08 (7.71)</td>
<td>113.53 (7.88)</td>
<td>113.33 (5.01)</td>
<td>-0.16</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>22.81 (4.66)</td>
<td>22.52 (5.24)</td>
<td>22.70 (3.78)</td>
<td>0.02</td>
</tr>
<tr>
<td>BMI</td>
<td>18.03 (2.40)</td>
<td>17.27 (2.30)</td>
<td>17.46 (1.72)</td>
<td>0.24</td>
</tr>
<tr>
<td>NSAA</td>
<td>22.1 (3.8)</td>
<td>23.8 (4.3)</td>
<td>21.4 (3.1)</td>
<td>0.18</td>
</tr>
<tr>
<td>10 m Walk Run, sec</td>
<td>5.14 (1.10)</td>
<td>5.38 (1.06)</td>
<td>5.17 (0.7)</td>
<td>-0.03</td>
</tr>
<tr>
<td>Time to Rise, sec</td>
<td>4.48 (1.83)</td>
<td>5.02 (2.03)</td>
<td>4.49 (1.15)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Means (standard deviations) shown unless otherwise indicated
PS = Propensity Score
Consistency of External Controls vs Internal Controls

NSAA Total Score Change from Baseline at 1 Year
LSM (95% CI)

- Placebo vs External Control
 p = 0.3227

- Placebo vs Predicted Control*
 p = 0.7005

*Derived from fully independent EC datasets than primary analysis
Role of External Controls for SRP-9001 Clinical Data

- A well-designed, randomized, placebo-controlled trial is the gold standard, and will be provided by the fully enrolled confirmatory trial 301
- External controls require careful assessment of bias. In this case, multiple lines of evidence indicate bias is likely smaller than expected treatment effects
 - Independently published consistency in NSAA across multiple care settings and data sources
 - Demonstrated consistency between Study 102 placebo and two distinct external control analyses
- SRP-9001 pre-specified external controls pass key tests of reliability, and can add further weight to the evaluation of reasonable likelihood of predicted benefit
External Control Results

Craig M. McDonald, MD
Director, Neuromuscular Disease Clinic
University of California, Davis Children’s Hospital
Study Chair, CINRG Duchenne Natural History Study
Primary Integrated External Control Analyses

Integrated Analysis
All patients who received 1.33×10^{14} vg/kg
N = 52

- Study 103 Cohort 1
 N = 20

- Study 101
 N = 4

Excluded

- Did not receive 1.33×10^{14} vg/kg based on retrospective titer methodology change
 12
- Incomplete NSAA data
 1
Primary Integrated External Control Analysis: Treatment Effect Across Ages 4 – 8 Years

Primary Analysis

- NSAA Total Score Change from Baseline at 1 Year LSM (SE)
- Δ 2.4
- p < 0.0001

- 2.3 (0.4)
- -0.1 (0.4)

Key Sensitivity Analysis

- Δ 1.8
- p = 0.0042

- 2.3 (0.4)
- 0.5 (0.5)

Derived from fully independent EC datasets than primary analysis
Study 103: Patients Have Greater Functional Gain vs External Controls

Baseline Mean

<table>
<thead>
<tr>
<th></th>
<th>SRP-9001 N = 20</th>
<th>EC N = 91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>5.8</td>
<td>6.2</td>
</tr>
<tr>
<td>NSAA Total Score</td>
<td>22.1</td>
<td>21.9</td>
</tr>
<tr>
<td>Time to Rise</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Time of 10MWR</td>
<td>5.1</td>
<td>5.1</td>
</tr>
</tbody>
</table>

LSM Change from Baseline to 1-Year in NSAA Total Score (± SE)

Δ 3.2
p < 0.0001

10MWR = 10 Meter Walk Run
Study 102: Similar Treatment Effect Across Ages

1. Muntoni F et al. 2019
Study 101: NSAA Scores Over 4 Years vs External Controls

SRP-9001 vs External Control

LSM Δ 9.4; p = 0.0125

Mean NSAA Total Score (± SE)

- BL = Baseline
- Y = Year

<table>
<thead>
<tr>
<th></th>
<th>BL</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRP-9001 (n)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>EC (n)</td>
<td>21</td>
<td>21</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
</tbody>
</table>

SRP-9001 vs Individual Predictions

Based on Predicted Control

- **Patient 1**
- **Patient 2**
- **Patient 3**
- **Patient 4**

Actual vs Predicted Scores

1. Muntoni F et al., 2019
Consistent Relationship of SRP-9001 Expression Seen Across Ambulatory DMD Patients

<table>
<thead>
<tr>
<th>Subgroup, n</th>
<th>SRP-9001</th>
<th>Western Blot (Percent of Normal) Mean Change from Baseline (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 4 to 5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Age 6 to 8</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>NSAA baseline ≤ 22</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>NSAA baseline > 22</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>1.33 × 10^{14} vg/kg*</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

*Patients from Study 101 were not included as the western blot method differed

Data extraction date: Study 102: 31 January 2022; Study 103 and Integrated Summary: 09 February 2022
Consistent Relationship of SRP-9001 and Functional Gain Seen Across Ambulatory DMD Patients

<table>
<thead>
<tr>
<th>Subgroup, n</th>
<th>SRP-9001</th>
<th>External Control</th>
<th>NSAA LSM Change Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 4 to 5</td>
<td>19</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Age 6 to 8</td>
<td>33</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>NSAA baseline ≤ 22</td>
<td>28</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>NSAA baseline > 22</td>
<td>24</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>1.33 x 10^{14} vg/kg</td>
<td>52</td>
<td>105</td>
<td></td>
</tr>
</tbody>
</table>

Consistent functional effect data further supports robust empirical evidence of surrogacy.

Data extraction date: Study 102: 31 January 2022; Study 103 and Integrated Summary: 09 February 2022
Summary of Safety

Eddie Darton, MD, JD

Executive Medical Director, Safety Evaluation & Risk Management
Sarepta Therapeutics
Overview of Adverse Events (AEs)

- Safety database of 85 patients
 - 183 patient-years of exposure
 - Mean follow-up time of 2.2 years (min 0.5, max 4.8)
- 98.5% of all TEAEs were mild to moderate in severity
- 95% of patients first had TEAE within 90 days of SRP-9001 infusion
- AEs comparable across studies

<table>
<thead>
<tr>
<th>All Patients</th>
<th>N = 85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of TEAEs</td>
<td>1,230</td>
</tr>
<tr>
<td>Mild, n (%)</td>
<td>759 (61.7%)</td>
</tr>
<tr>
<td>Moderate, n (%)</td>
<td>453 (36.8%)</td>
</tr>
<tr>
<td>Severe, n (%)</td>
<td>18 (1.5%)</td>
</tr>
<tr>
<td>Number of SAEs, n (%)</td>
<td>13 (1.1%)</td>
</tr>
<tr>
<td>AEs Leading to Discontinuation</td>
<td>0</td>
</tr>
<tr>
<td>Deaths</td>
<td>0</td>
</tr>
</tbody>
</table>

SAE = serious adverse event; TEAE = treatment emergent adverse events

Data lock date of 17 October 2022 for Study 101, 01 April 2022 for Study 102 (Part 1 only), 03 October 2022 for Study 102 (all available data), and 19 September 2022 for Study 103
Most Frequent Adverse Reactions (Incidence ≥ 5%)

<table>
<thead>
<tr>
<th>Preferred Term, n (%)</th>
<th>All Patients N = 85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vomiting</td>
<td>52 (61%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>34 (40%)</td>
</tr>
<tr>
<td>Liver function test increased(^1)</td>
<td>31 (37%)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>20 (24%)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>10 (12%)</td>
</tr>
</tbody>
</table>

- Adverse reactions medically adjudicated based upon
 - Meeting frequency of ≥ 5% and ≥ 2 percentage points higher than placebo
 - OR
 - Assessed as SAE and related by Investigator

1. Includes: AST increased, ALT increased, GGT increased, GLDH increased, hepatic enzyme increased, transaminases increased, blood bilirubin increased

Data lock date of 17 October 2022 for Study 101, 01 April 2022 for Study 102 (Part 1 only), 03 October 2022 for Study 102 (all available data), and 19 September 2022 for Study 103
Serious Treatment Emergent Adverse Events

All Patients

<table>
<thead>
<tr>
<th>Total SAEs</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with SAEs, n (%)</td>
<td>11 (12.9%)</td>
</tr>
</tbody>
</table>

Preferred term events, n (%)

<table>
<thead>
<tr>
<th>Event</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertransaminasaemia / Liver injury</td>
<td>3 (3.5%)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>2 (2.4%)</td>
</tr>
<tr>
<td>Rhabdomyolysis</td>
<td>2 (2.4%)</td>
</tr>
<tr>
<td>Immune-mediated myositis</td>
<td>1 (1.2%)</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>1 (1.2%)</td>
</tr>
<tr>
<td>Femur fracture</td>
<td>3 (3.5%)</td>
</tr>
<tr>
<td>Appendicitis</td>
<td>1 (1.2%)</td>
</tr>
</tbody>
</table>

Data lock date of 17 October 2022 for Study 101, 01 April 2022 for Study 102 (Part 1 only), 03 October 2022 for Study 102 (all available data), and 19 September 2022 for Study 103
Potential Risks Associated with AAV Gene Therapy

- Hepatotoxicity
- Immune-mediated myositis
- Myocarditis
- Complement activation
- Oncogenicity
- Antibody formation post-exposure potentially limiting future AAV dosing
Hepatotoxicity/Acute Liver Injury (ALI)

- Acute Liver Injury defined as:
 - GGT > 3 × ULN
 - GLDH > 2.5 × ULN
 - ALP > 2 × ULN
 - ALT > 3 × BL when BL is elevated

<table>
<thead>
<tr>
<th>n (%)</th>
<th>All Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 85</td>
</tr>
<tr>
<td>ALI patients</td>
<td>31 (36.5%)</td>
</tr>
<tr>
<td>GGT > 3 × ULN</td>
<td>15 (17.5%)</td>
</tr>
<tr>
<td>GLDH > 2.5 × ULN</td>
<td>22 (25.9%)</td>
</tr>
<tr>
<td>ALP > 2 × ULN</td>
<td>0</td>
</tr>
<tr>
<td>ALT > 3 × BL</td>
<td>14 (16.5%)</td>
</tr>
<tr>
<td>Total Bilirubin > 2 × ULN</td>
<td>3 (3.5%)</td>
</tr>
</tbody>
</table>

- Events observed 4 – 8 weeks post SRP-9001 infusion with no cases after 90 days
 - No acute liver failure
 - No elevation in INR
 - All recovered to baseline spontaneously or with corticosteroid treatment

- Risk Mitigation: Pre- and post-infusion monitoring of liver enzymes

GGT = gamma-glutamyl transferase; GLDH = glutamate dehydrogenase; ALP = alkaline phosphatase; ALT = alanine aminotransferase; BL = baseline; ULN = upper limit of normal; INR = international normalized ratio
Immune-Mediated Myositis

- 1 SAE in 9-year-old patient with exon 3 – 43 deletion mutation (Study 103 Cohort 2)
 - Presented with muscle weakness, dysphagia, dysphonia, difficulty sitting, and walking 4 weeks after SRP-9001 infusion
 - During hospitalization, treated with corticosteroids and plasmapheresis
 - Started on tacrolimus prior to discharge
 - Patient remains ambulatory with residual muscle weakness
 - 1-year cMRI showed normal cardiac function
 - Suspected mechanism of action is an immune response to the transgene
 - Patient’s mutation deletes a highly immunogenic region contained within the SRP-9001 transgene, leading to lack of self-tolerance to the transgene protein
 - Immunological investigations and clinical experience indicate patients with full deletions of exons 9 – 13 at highest risk
- **Risk Mitigation**: Proposed contraindication for patients with any deletion mutation that fully includes exons 9 – 13

\[cMRI = \text{cardiac magnetic resonance imaging}\]
Myocarditis

- 1 SAE* in 11-year-old patient, Study 103 Cohort 2
 - Patient initially hospitalized for management of vomiting during which troponin-I elevation detected
 - Transient chest pain with no ECG or echocardiogram changes
 - No acute cardiac dysfunction
 - Troponin-I returned to baseline
 - cMRI changes relative to exam one year prior to SRP-9001 infusion resulting in adjustment of pre-existing cardiac modifying therapy

- **Risk Mitigation:** Weekly troponin-I monitoring during first month following treatment

*Additional 1 in ongoing blinded Study 301
Complement Activation / Thrombocytopenia

- Clinically significant complement activation not observed during SRP-9001 development program
- Transient decreases in complement (C3 and C4)
 - Observed at Week 1 without any associated symptoms
 - No cases of thrombotic microangiopathy (TMA) or atypical hemolytic uremic syndrome (aHUS)
- Transient decreases in platelet counts
 - Within first 7 – 16 days
 - Lowest value 51,000 at Week 2 (baseline of 153,000; no clinical complication and returned to baseline without intervention)
- Both complement and platelet counts resolved spontaneously
- **Risk Mitigation:** Weekly platelet monitoring during first 2 weeks
Oncogenicity

- Theoretical risk with missing information
- No AEs observed
- **Risk Mitigation:** Long-term proposed studies with up to 10 years
SRP-9001 Safety Summary

- Well tolerated and favorable safety profile
- AEs monitorable and manageable with majority occurring within first 90 days after SRP-9001 infusion
- No deaths
- Proposed risk mitigations
 - Pre- and post-infusion monitoring of liver enzymes
 - Weekly troponin monitoring during first month following treatment
 - Weekly platelet monitoring during first 2 weeks
 - Proposed contraindication for patients with any deletion mutation that fully includes exons 9 – 13
 - Long-term follow-up to better characterize safety concerns
Clinical Perspective on Risk/Benefit Profile of SRP-9001

Craig M. McDonald, MD
Director, Neuromuscular Disease Clinic
University of California, Davis Children’s Hospital
Study Chair, CINRG Duchenne Natural History Study
What Patients with DMD Need

- Effective, safe therapies which modify this devastating disease
- Treatment goal of stabilization supported by patient community\(^1\)
- Modification of key milestones linked to quality and duration of life
- Maintain muscle function, including ambulation, and upper limb function
- Preserve respiratory function and cardiac function

1. Peay HL et al., 2019
SRP-9001 Has Favorable Safety Profile

- Experienced, organized centers with sufficient infrastructure to administer SRP-9001
 - Neuromuscular disease centers based on experience with AAV gene therapy in spinal muscular atrophy
- Important risks have been identified
 - AEs monitorable and manageable
- Reassuring that no TMA or serious thrombocytopenia has occurred with SRP-9001
- Genetic inclusion criteria mitigates risk of immune-mediated myositis

TMA = Thrombotic microangiopathy
SRP-9001 Produces Clinically Meaningful Benefits to Patients with DMD and Their Families

Videos shown with patient consent
6 Months Post-SRP-9001 Gene Therapy in Same 6-Year-Old Boy

Videos shown with patient consent
Today Marks Important Opportunity to Advance Treatment for DMD Which Is Relentlessly Progressive

✓ **Surrogacy**: Sufficient evidence SRP-9001 dystrophin is surrogate endpoint reasonably likely to predict clinical benefit

✓ **Clinical Meaningfulness**: Totality of clinical evidence with appropriate clinical trial comparators sufficient to support accelerated approval

✓ **Positive Benefit-Risk**: Risks monitorable and manageable; magnitude of likely benefits outweighs risks

✓ **Confirmatory Study**: Fully enrolled, Part 1 report early 2024

Time is muscle
Waiting for confirmatory data guarantees irreparable loss of muscle
SRP-9001 (delandistrogene moxeparvovec) for Treatment of Duchenne Muscular Dystrophy

May 12, 2023

Cellular Tissue and Gene Therapy Advisory Committee
Sarepta Therapeutics