SRP-9001 (delandistrogene moxeparvovec) for Treatment of Duchenne Muscular Dystrophy May 12, 2023

Cellular Tissue and Gene Therapy Advisory Committee

Sarepta Therapeutics

Introduction

Patrick O'Malley

Vice President, Regulatory Affairs Sarepta Therapeutics

SRP-9001 Proposed Indication and Dosing

SRP-9001 is indicated for the treatment of ambulatory patients with Duchenne muscular dystrophy (DMD) with a confirmed mutation in the DMD gene

SRP-9001 is contraindicated in patients with any deletion that fully includes exons 9 – 13 in the DMD gene

Dosing & Administration

SRP-9001 administered intravenously as one-time infusion at dose of 1.33×10^{14} vector genomes (vg) per kg of body weight

SRP-9001 administration is not recommended in patients with elevated anti-AAVrh74 total binding antibody titers (\geq 1:400)

SRP-9001 Meets Criteria for Accelerated Approval

Criteria	Support	Result
Treats serious condition	 DMD is serious, devastating, and fatal condition with high unmet need Progression is inevitable and irreversible and leads to early mortality 	\checkmark
Provides meaningful advantage over available therapies	 Current treatment options that introduce functional dystrophin limited to specific DMD mutations Standard of care has recognized limitations and does not address underlying cause of disease 	
Demonstrates effect on an endpoint reasonably likely to predict clinical benefit	 SRP-9001 dystrophin protein expression is reasonably likely to predict clinical benefit (product design, biological, and empirical data showing direct change in underlying pathophysiology of disease, combined with durable functional effect over 4 years of follow-up) 	
Confirmatory study (SRP-9001-301)	 Phase 3 study ongoing in same population as Studies 101, 102, and 103 (cohort 1) Fully enrolled as of Sept 2022 	

Phase 3 Confirmatory Study Fully Enrolled

- Study 301
 - Global, double-blind, randomized, placebo-controlled, two-part study
 - 125 patients, 4 7 years old
 - Informed by previous studies
 - Primary endpoint change in NSAA from Baseline to Week 52
 - NSAA well recognized clinical endpoint for standard approval¹
 - Part 1 study report expected early 2024

Study status provides reassurance of achieving timely completion

NSAA = North Star Ambulatory Assessment

1. Duchenne Muscular Dystrophy and Related Dystrophinopathies: Developing Drugs for Treatment Guidance for Industry, February 2018

SRP-9001 Dystrophin Protein Expression Is Reasonably Likely to Predict Benefit

Biological Plausibility

- Monogenic disease where low levels of residual or restored dystrophin shown to confer significant benefit
- Functional shortened dystrophins that conserve key structural domains observed in nature
- SRP-9001 dystrophin rationally designed based on observations in nature and decades of research and development

Empirical Evidence

- Demonstration of:
 - Transduction
 - Expression
 - Localization
 - Biological function
 - Relationship with motor function and clinical outcomes

SRP-9001 dystrophin expression is surrogate endpoint and therapeutic agent

SRP-9001 Clinical Studies Supporting Accelerated Approval

External Control

Comparator pools drawn from 3 external sources to contextualize trial results according to pre-specified analysis plan

Disease Background and Unmet Need

Evidence for Surrogacy

Clinical Trial Results

External Control Analyses

External Control Results

Summary of Safety

Professor of Pediatrics and Neurology Nationwide Children's Hospital and The OSU College of Medicine

Louise Rodino-Klapac, PhD

Executive Vice President, Head of R&D, and Chief Scientific Officer Sarepta Therapeutics

Stefanie Mason, MD

Clinical Development Lead SRP-9001 Sarepta Therapeutics

James Signorovitch, PhD

Co-Founder, Collaborative Trajectory Analysis Project (cTAP) in Duchenne Managing Principal, Analysis Group

Craig McDonald, MD

Professor and Chair, Department of Physical Medicine and Rehabilitation Professor of Pediatrics, Director MDA Neuromuscular Disease Clinics, University of California Davis Health

Eddie Darton, MD, JD

Executive Medical Director, Safety Evaluation & Risk Management Sarepta Therapeutics

Clinical Perspective Craig McDonald, MD

External Responders

Francesco Muntoni, MD, FRCPCH

Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Diseases UCL Great Ormond Street Institute of Child Health Great Ormond Street Hospital for Children

Kay Davies, PhD

Dr Lee's Professor of Anatomy, Emerita Department of Physiology, Anatomy, and Genetics University of Oxford

Kan Hor, MD

Director of Cardiac MRI at The Heart Center Nationwide Children's Hospital Associate Professor of Clinical Pediatrics The Ohio State University College of Medicine

Howard Worman, MD

Professor of Medicine and Pathology and Cell Biology Vagelos College of Physicians and Surgeons Columbia University

Chris Mullin, MS

Director, Global Strategy Services NAMSA

CO-10

Disease Background and Unmet Need

Jerry Mendell, MD

Curran-Peters Chair of Pediatric Research Professor of Neurology and Pediatrics Nationwide Children's Hospital and The Ohio State University College of Medicine in Columbus, Ohio

DMD: Most Common Childhood Form of Muscular Dystrophy

- Well-characterized, rare, fatal, X-linked monogenic neuromuscular disease
 - Affecting ~1 in 5,000 newborn males
 - Caused by mutations in DMD gene leading to lack of functional dystrophin
- Lack of functional dystrophin is sole cause of DMD
 - Dystrophin is key structural protein that protects against muscle damage during normal contraction

CO-11

 Without functional dystrophin, normal activity leads to muscle cell damage, inflammation, fibrosis, and irreversible muscle loss

Children with Duchenne Suffer Irreparable Harm Highlighting Urgent Need for Effective Therapies

Based on US incidence and prevalence

~ 400 lose ambulation each year

2,000 more will lose ambulation over 5 years

Median survival 28 years

CO-12

> 400 patients in US die each year

2,228 patients will die over 5 years

McDonald et al. 2018; Passamano et al. 2012; Broomfield et al. 2021; Paramsothy et al. 2022

Damage Starts In Utero, Is Progressive, and Leads to Early Death

NSAA: Well-Established and Validated Measure of Global Function

CO-14

- Composite evaluation of motor function across 17 test items with increasing difficulty
- Healthy boys obtain score of 34 by 4 years of age
- Boys with DMD achieve peak score of 26 around age 6 years

Change of 1 Point Is Clinically Meaningful

Example NSAA Item: Rise from Floor

NSAA Score = 1 Stands with difficulty

NSAA Score = 0 Cannot stand

CO-15

Videos shown with patient consent

Unmet Needs Remain Challenging Due to Limited Treatment Options

CO-16

- DMD is progressive and universally fatal disease
- Supportive care is mainstay of treatment
- Corticosteroids delay time to loss of ambulation, but do not address underlying cause of DMD and associated with significant side effects
- RNA-based treatment provide small increases in dystrophin related only to specific mutations amenable to exon skipping (30%)
- Supportive care and medical intervention have improved life expectancy, but quality of life severely compromised

Gene therapy addresses underlying cause of DMD and has potential to stabilize disease progression

Evidence for Surrogacy

Louise Rodino-Klapac, PhD

Executive Vice President, Head of R&D, and Chief Scientific Officer Sarepta Therapeutics

Key DMD, AAV, and SRP-9001 Milestones

CO-18

AAV = adeno-associated virus

Dystrophin: Essential Muscle Protein

IMMUNOFLUORESCENCE

CO-19

Dystrophin Function

- Flexible link between contractile machinery within muscle fiber and extracellular matrix
- Protects against contractioninduced injury to muscle fibers

Anatomy of Dystrophin: Key Functional Domains

 α DG = α -dystroglycan; ABD = actin binding domain; β DG = β -dystroglycan; CR = cystine rich; CT = C terminus; Dbr = dystrobrevin; H = hinge; nNOS = neuronal nitric oxide synthase; R = repeat; SG = sarcoglycan; Syn = syntrophin Adapted from Zhao et al. 2016

Natural History Demonstrates that Large Portions of Dystrophin Protein Are Less Critical

- First discovered by Professor Kay Davies in 1990
 - Mild Becker muscular dystrophy (BMD) patient who, surprisingly, could still ambulate at age 61
- Genetic testing confirmed patient missing nearly half their dystrophin protein
 - Missing 46% of dystrophin coding region (Del 17 48)¹, specifically large stretch of spectrin-like repeats in middle

1. England et al. 1990 Evidence includes 2 additional mildly affected individuals in the pedigree

Shortened Dystrophins Leading to Sustained Ambulation and/or Increased Survival

CO-22

1. England et al. 1990; 2. Unpublished case; 3. Passos-Bueno 1994; 4. Morandi 1993; 5. Koenig 1989

SRP-9001 Dystrophin Design Follows Structure of Natural, Highly Functional, Shortened Dystrophins

CO<u>-23</u>

Nonclinical Studies Reinforce Key Domains Important^{co-24} for Dystrophin Function

	Tetanic Force (N/cm ²) Mean (SE)	Construct Candidates
Wild-type (full dystrophin protein)	21.5 (0.5)	ABD H1 R1 R2 R3 H2 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 H3 R20 R21 R22 R23 R24 H4 CR CT
Dys ^{∆R4-23/∆CT} - <i>mdx</i>	20.4 (0.9)	
Dys ^{∆H2-R19/∆CT} - <i>mdx</i>	20.3 (0.9)	
Dys ^{∆R2-R15/∆R18-23/∆CT} -mdx	19.7 (0.8)	
Dys ∆H2-R15- <i>mdx</i>	17.8 (0.8)	ABD H1 R1 R2 R3 R16 R17 R18 R19 H3 R20 R21 R22 R23 R24 H4 CR CT
mdx	13.1 (0.5)	No dystrophin

SRP-9001 Dystrophin Resulted in Superior Specific^{CO-25} Force Compared to Other Tested Constructs

	Specific Force (mN/mm ²), Mean (SE)	Construct Candidates
Wild-type (full dystrophin protein)	284.2 (14.2)	ABD H1 R2 R3 H2 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 H3 R20 R21 R22 R23 R24 H4 CR CT
SRP-9001	232.7 (12.3)	MHCK7 Promotor ABD H1 R1 R2 R3 H R24 H4 CR
MCK.micro-dys	195.5 (15.6)	MCK Promotor ABD H1 R1 R2 R3 H 2 R24 H4 CR
Micro-dys C-term	163.7 (19.7)	MHCK7 Promotor ABD H1 R1 R24 H4 CR CT
Dual vector	188.8 (21.0)	MHCK7 Promotor ABD H1 R1 R2 R3 R16 R17 H R20 R21 R22 R23 R24 H4 CR CT
Untreated mdx	154.7 (10.1)	

SRP-9001: AAV-Based Investigational Gene Transfer Therapy for Treatment of DMD^{1,2}

CO-26

*ITRs are required for genome replication and packaging; [†]PolyA signals the end of the transgene to the cellular machinery that transcribes (ie, copies) it. AAV = adeno-associated virus; AAVrh74 = recombinant human adeno-associated virus 74; ITR = information transfer rate; ssDNA = single-stranded DNA 1. Asher et al. 2020; 2. US National Library of Medicine 2013; 3. Zheng and Baum 2008; 4. Chandler and Venditti 2016; 5. Mendell et al. 2020

Empirical Evidence for Surrogacy *Nonclinical*

Biological Cascade Through Which SRP-9001 Exerts Effect Is Demonstrable Through Series of Well-Validated Endpoints

CK = creatine kinase; DAPC = dystrophin associated protein complex; IF = immunofluorescence; PDPF = percent dystrophin positive fibers

SRP-9001 Protein Expression Stabilizes Sarcolemma Leading to DAPC Restoration in DMD^{MDX} Mice

CO-29

Images at 20X magnification

Membrane Stabilization Leads to Improved Muscle Health, Reduced CK, and Functional Improvement

cohorts: * p < 0.05; ** p < 0.001

CO-30

TA = tibialis anterior

Empirical Evidence for Surrogacy *Clinical*

Consistent and Robust Biological Response at 12 Weeks

	Study 101	Study 103 Cohort 1	Study 102 Part 1 SRP-9001	Study 102 Part 1 Placebo
Mean Change from Baseline (SD)	N = 4	N = 20	N = 20	N = 21
Vector genome copy number	5.7 (4.1)	3.4 (2.4)	1.6 (1.5)	0 (0)
SRP-9001 dystrophin expression	70.5 * (76.1)	54.2 (42.6)	23.8 (39.8)	0.1 (1.2)
(western blot, % of normal)			p < 0.0001	
IF fiber intensity (% of control)	93.6 (43.9)	66.5 (64.1)	25.8 (46.2)	-0.5 (6.3)
PDPF (%)	81.2 (10.2)	48.3 (25.4)	23.9 (25.6)	5.1 (13.0)

CO-32

*Western blot method used for Study 101 was not adjusted to muscle content

CK Reductions Due to Muscle Membrane Stabilization

p = 0.004

Reduced Collagen Deposition Improves Muscle Health

Mean decrease in collagen 26.7% after SRP-9001

Mendell et al. 2020; Images at 40X magnification

SRP-9001 Biomarker to Functional Relationship

Like Endogenous Dystrophin, SRP-9001 Dystrophin Is Correlated with Improved Function that Is Saturable

CO-36

1. Adapted from Van Putten et al. 2014

2. Box plot shows median, interquartile and range of observed data from 0.0443 to 4.01 x 10¹⁴ vg/kg

3. Relative specific force = muscle contraction from diaphragm and tibialis anterior

Positive and Statistically Significant Association Between SRP-9001 Dystrophin and NSAA 1-Year Change

Includes Study 102 and 103 Cohort 1 age 4 – 7 years old

Summary of Rational Design and Evidence for Surrogacy of SRP-9001

- Dystrophin is protein that acts as link between extracellular matrix and intracellular cytoskeleton in muscle cells
- Evidence of nature informed rational design of SRP-9001 to include key components needed for function
- SRP-9001 restores biological cascade that is downregulated in absence of dystrophin
 - DAPC restoration, normalization of muscle microenvironment, and decreased CK
- SRP-9001 protein expression correlated with improved function in nonclinical and clinical studies
- Evidence supports Accelerated Approval criteria that SRP-9001 is reasonably likely to predict clinical benefit

Clinical Trial Results

Stefanie Mason, MD

Senior Medical Director, Clinical Development Sarepta Therapeutics

DMD Disease Progression Is Heterogenous but Predictable

Disease Modification Across Ambulatory Trajectory

Time

Figure adapted from Muntoni et al. 2019

Study 101: Design

Key inclusion/exclusion criteria:

- 4 7 years of age
- Stable oral corticosteroids x 12 weeks
- Antibody titers \leq 1:400

	Median (range)
Age (years)	4.8 (4 – 6)
Weight (kg)	18.1 (13.7 – 21.4)
Height (cm)	107.1 (95.7 – 110.0)
BMI (kg/m ²)	16.3 (15.0 – 17.7)

Study 101: Stable NSAA Scores 1 – 4 Years After SRP-9001 Infusion

*Patient 2: 3-year NSAA value and Patient 4: 2-year NSAA value was from a remote assessment due to COVID-19 related restrictions at the site. Mendell et al. 2021; BL = Baseline; Y = Year CO<u>-43</u>

Study 102: Design

Key inclusion/exclusion criteria:

- 4 7 years of age
- Stable oral corticosteroids x 12 weeks
- Antibody titers \leq 1:400

Study 102: Baseline Demographics

	Age 4 – 5		Age 6 – 7		
Baseline	SRP-9001 N = 8	Placebo N = 8	SRP-9001 N = 12	Placebo N = 13	
Age, mean (years)	5.0	5.2	7.2	6.9	_
Years since corticosteroid treatment started	1.2	1.0	0.9	1.5	
Corticosteroid type, deflazacort, n (%)	1 (13%)	2 (25%)	6 (50%)	5 (39%)	
Dosing weight, mean (kg)	20.1	19.8	25.4	22.7	Imbalanced
NSAA total score, mean	20.1	20.4	19.6	24.0	at Baseline p < 0.05
Time to Rise, mean (seconds)	3.6	3.8	5.9	3.4	
10 m walk run, mean (seconds)	5.0	5.2	5.6	4.6	

Age was only stratification factor for randomization

Study 102: ITT Population Primary Result

NSAA Change from Baseline = +1.7 in SRP-9001 vs +0.9 in placebo (p = 0.37)

Study 102: Primary Analysis by Pre-Specified Age Stratum

Study 103: Design

Key inclusion/exclusion criteria:

- 4 7 years of age
- Stable oral corticosteroids x 12 weeks
- Antibody titers \leq 1:400
- NSAA score > 17 and \leq 26

NSAA Improvement Over 1 Year

External Control Analyses James Signorovitch, PhD

Co-Founder, Collaborative Trajectory Analysis Project (cTAP) in Duchenne Managing Principal, Analysis Group

Pre-Specified External Control Analyses

Purpose

 Contextualize clinical outcomes of SRP-9001 in trials versus natural history

CO-51

 Further test reasonably likely surrogacy of SRP-9001 expression for effects on clinical outcomes

Risks

Potential for bias when comparing across non-randomized groups

Primary Risks Considered for External Controls

Sources of Potential Bias	Questions We Asked
	As a performance-based measure, do NSAA outcomes vary across data sources?
Outcomes	 Do differences in patient motivation or assessment processes bias outcomes measured in trials vs external controls?
Background standards of	 How different are trials and external controls in terms of standards of care, geography and time periods?
care	Do these differences impact outcomes?
Prognosis	 How predictable is the disease course? Are important prognostic factors balanced between trials and external controls?

*Adjusted for: age, steroid type, height, weight, BMI, and baseline function (NSAA, 10 m walk run, Time to Rise)

SRP-9001 EC Selection Driven by Assessment of Quality and Type of Data Available to Sponsor at Patient Level

From high-quality study with patients treated in line with current standard of care Studies = 9

Rights are or can be obtained to use patient level data in a regulatory submission Studies = 5

Moderate or better sample size with relevant endpoints *Studies* = 3

- CINRG Natural History Study
- Lilly Tadalafil DMD Trial
- FOR-DMD Trial (daily steroid arms)

Subject-level inclusion / exclusion

 Meet steroid and age inclusion criteria for the SRP-9001 trials

CO-54

- Have baseline function (NSAA, TTR, 10MWR) within baseline ranges of SRP-9001 trials
- N = 131 available as candidate external controls
- > 90% were drawn from clinical trials

CINRG = Cooperative International Neuromuscular Research Group EC = external control; TTR = Time to Rise; 10MWR = 10 Meter Walk Run

SRP-9001 Pre-Specified Analyses for External Controls

Primary Analysis

Propensity score weighted external controls

Population	 Integrated Summary of Efficacy sample 		
Intervention	 SRP-9001 at target dose 		
Outcome	 1-year change from baseline in NSAA 		
Comparator	 External control sample 		
Methods	 Propensity score weighting based on age group (4 – 5, 6 – 7, 8 yrs), NSAA, 10MWR, and TTR 		
	 Additional weighted regression adjustment for age group and NSAA by age group 		
	 Estimate the average treatment effect among the treated (ATT) 		

Key Sensitivity Analysis

Predicted controls for NSAA trajectory

- Used different data sources and methods than the primary analysis
- Independently developed prediction model (cTAP)
- Based on different data sources than primary external controls
- Key predictors included in model: age, steroid type, height, weight, BMI, NSAA, 10MWR, TTR

cTAP = Collaborative Trajectory Analysis Project; TTR = Time to Rise; 10MWR = 10 Meter Walk Run

Baseline Balance in Key Prognostic Factors

	SRP-9001 Treated (Pooled) N = 52	External Controls Before PS Weighting N = 131	External Controls After PS Weighting N = 105	Standardized Mean Difference After PS Weighting
Age, years	6.44 (1.32)	6.75 (1.08)	6.67 (0.68)	-0.19
Height, cm	112.08 (7.71)	113.53 (7.88)	113.33 (5.01)	-0.16
Weight, kg	22.81 (4.66)	22.52 (5.24)	22.70 (3.78)	0.02
BMI	18.03 (2.40)	17.27 (2.30)	17.46 (1.72)	0.24
NSAA	22.1 (3.8)	23.8 (4.3)	21.4 (3.1)	0.18
10 m Walk Run, sec	5.14 (1.10)	5.38 (1.06)	5.17 (0.7)	-0.03
Time to Rise, sec	4.48 (1.83)	5.02 (2.03)	4.49 (1.15)	0.00

Means (standard deviations) shown unless otherwise indicated PS = Propensity Score

Consistency of External Controls vs Internal Controls

*Derived from fully independent EC datasets than primary analysis

Role of External Controls for SRP-9001 Clinical Data

- A well-designed, randomized, placebo-controlled trial is the gold standard, and will be provided by the fully enrolled confirmatory trial 301
- External controls require careful assessment of bias. In this case, multiple lines of evidence indicate bias is likely smaller than expected treatment effects
 - Independently published consistency in NSAA across multiple care settings and data sources
 - Demonstrated consistency between Study 102 placebo and two distinct external control analyses
- SRP-9001 pre-specified external controls pass key tests of reliability, and can add further weight to the evaluation of reasonable likelihood of predicted benefit

External Control Results Craig M. McDonald, MD

Director, Neuromuscular Disease Clinic University of California, Davis Children's Hospital Study Chair, CINRG Duchenne Natural History Study

Primary Integrated External Control Analysis: Treatment Effect Across Ages 4 – 8 Years

*Derived from fully independent EC datasets than primary analysis

CO<u>-61</u>

Study 103: Patients Have Greater Functional Gain vs External Controls

Study 102: Similar Treatment Effect Across Ages

1. Muntoni F et al. 2019

Study 101: NSAA Scores Over 4 Years vs External Controls

SRP-9001 vs External Control LSM \triangle 9.4; p = 0.0125

SRP-9001 vs Individual Predictions Based on Predicted Control

Consistent Relationship of SRP-9001 Expression Seen Across Ambulatory DMD Patients

CO-65

*Patients from Study 101 were not included as the western blot method differed

Data extraction date: Study 102: 31 January 2022; Study 103 and Integrated Summary: 09 February 2022

Consistent Relationship of SRP-9001 and Functional Gain Seen Across Ambulatory DMD Patients

CO-66

Subgroup, n	SRP-9001	External Control	NSAA LSM Change Difference (95% CI)
Age 4 to 5	19	31	· · · · · · · · · · · · · · · · · · ·
Age 6 to 8	33	74	
NSAA baseline ≤ 22	28	47	
NSAA baseline > 22	24	58	
1.33 × 10 ¹⁴ vg/kg	52	105	
			-2 0 2 4

Consistent functional effect data further supports robust empirical evidence of surrogacy

Data extraction date: Study 102: 31 January 2022; Study 103 and Integrated Summary: 09 February 2022

Summary of Safety

Eddie Darton, MD, JD

Executive Medical Director, Safety Evaluation & Risk Management

Sarepta Therapeutics

Overview of Adverse Events (AEs)

- Safety database of 85 patients
 - 183 patient-years of exposure
 - Mean follow-up time of 2.2 years (min 0.5, max 4.8)
- 98.5% of all TEAEs were mild to moderate in severity
- 95% of patients first had TEAE within 90 days of SRP-9001 infusion
- AEs comparable across studies

	All Patients N = 85
Number of TEAEs	1,230
Mild, n (%)	759 (61.7%)
Moderate, n (%)	453 (36.8%)
Severe, n (%)	18 (1.5%)
Number of SAEs, n (%)	13 (1.1%)
AEs Leading to Discontinuation	0
Deaths	0

SAE = serious adverse event; TEAE = treatment emergent adverse events

Data lock date of 17 October 2022 for Study 101, 01 April 2022 for Study 102 (Part 1 only), 03 October 2022 for Study 102 (all available data), and 19 September 2022 for Study 103

Most Frequent Adverse Reactions (Incidence ≥ 5%)

Preferred Term, n (%)	All Patients N = 85
Vomiting	52 (61%)
Nausea	34 (40%)
Liver function test increased ¹	31 (37%)
Pyrexia	20 (24%)
Thrombocytopenia	10 (12%)

- Adverse reactions medically adjudicated based upon
 - Meeting frequency of ≥ 5% and ≥ 2 percentage points higher than placebo
 - OR
 - Assessed as SAE and related by Investigator

1. Includes: AST increased, ALT increased, GGT increased, GLDH increased, hepatic enzyme increased, transaminases increased, blood bilirubin increased Data lock date of 17 October 2022 for Study 101, 01 April 2022 for Study 102 (Part 1 only), 03 October 2022 for Study 102 (all available data), and 19 September 2022 for Study 103

Serious Treatment Emergent Adverse Events

	All Patients N = 85	
Total SAEs	13	
Patients with SAEs, n (%)	11 (12.9%)	
Preferred term events, n (%)		
Hypertransaminasaemia / Liver injury	3 (3.5%)	
Vomiting	2 (2.4%)	9 considered
Rhabdomyolysis	2 (2.4%)	related to SRP-9001 by
Immune-mediated myositis	1 (1.2%)	Investigator
Myocarditis	1 (1.2%)	
Femur fracture	3 (3.5%)	
Appendicitis	1 (1.2%)	

Data lock date of 17 October 2022 for Study 101, 01 April 2022 for Study 102 (Part 1 only), 03 October 2022 for Study 102 (all available data), and 19 September 2022 for Study 103

Potential Risks Associated with AAV Gene Therapy

- Hepatotoxicity
- Immune-mediated myositis
- Myocarditis
- Complement activation
- Oncogenicity
- Antibody formation post-exposure potentially limiting future AAV dosing

CO-72

Hepatotoxicity/Acute Liver Injury (ALI)

- Acute Liver Injury defined as:
 - GGT > 3 × ULN
 - GLDH > 2.5 × ULN
 - ALP > 2 × ULN
 - ALT > 3 × BL when BL is elevated

n (%)	All Patients N = 85
ALI patients	31 (36.5%)
$GGT > 3 \times ULN$	15 (17.5%)
$GLDH > 2.5 \times ULN$	22 (25.9%)
$ALP > 2 \times ULN$	0
$ALT > 3 \times BL$	14 (16.5%)
Total Bilirubin > 2 × ULN	3 (3.5%)

- Events observed 4 8 weeks post SRP-9001 infusion with no cases after 90 days
 - No acute liver failure
 - No elevation in INR
 - All recovered to baseline spontaneously or with corticosteroid treatment
- Risk Mitigation: Pre- and post-infusion monitoring of liver enzymes

GGT = gamma-gluatamyl transferase; GLDH = glutamate dehydrogenase; ALP = alkaline phosphatase; ALT = alanine aminotransferase; BL = baseline; ULN = upper limit of normal; INR = international normalized ratio

Immune-Mediated Myositis

- 1 SAE in 9-year-old patient with exon 3 43 deletion mutation (Study 103 Cohort 2)
 - Presented with muscle weakness, dysphagia, dysphonia, difficulty sitting, and walking
 4 weeks after SRP-9001 infusion
 - During hospitalization, treated with corticosteroids and plasmapheresis
 - Started on tacrolimus prior to discharge
 - Patient remains ambulatory with residual muscle weakness
 - 1-year cMRI showed normal cardiac function
- Suspected mechanism of action is an immune response to the transgene
 - Patient's mutation deletes a highly immunogenic region contained within the SRP-9001 transgene, leading to lack of self-tolerance to the transgene protein
 - Immunological investigations and clinical experience indicate patients with full deletions of exons 9 – 13 at highest risk
- Risk Mitigation: Proposed contraindication for patients with any deletion mutation that fully includes exons 9 – 13

cMRI = cardiac magnetic resonance imaging

Myocarditis

- I SAE* in 11-year-old patient, Study 103 Cohort 2
 - Patient initially hospitalized for management of vomiting during which troponin-I elevation detected

CO-74

- Transient chest pain with no ECG or echocardiogram changes
- No acute cardiac dysfunction
- Troponin-I returned to baseline
 - cMRI changes relative to exam one year prior to SRP-9001 infusion resulting in adjustment of pre-existing cardiac modifying therapy
- Risk Mitigation: Weekly troponin-I monitoring during first month following treatment

Complement Activation / Thrombocytopenia

- Clinically significant complement activation not observed during SRP-9001 development program
- Transient decreases in complement (C3 and C4)
 - Observed at Week 1 without any associated symptoms
 - No cases of thrombotic microangiopathy (TMA) or atypical hemolytic uremic syndrome (aHUS)
- Transient decreases in platelet counts
 - Within first 7 16 days
 - Lowest value 51,000 at Week 2 (baseline of 153,000; no clinical complication and returned to baseline without intervention)
- Both complement and platelet counts resolved spontaneously
- **Risk Mitigation:** Weekly platelet monitoring during first 2 weeks

Oncogenicity

- Theoretical risk with missing information
- No AEs observed
- **Risk Mitigation:** Long-term proposed studies with up to 10 years

SRP-9001 Safety Summary

- Well tolerated and favorable safety profile
- AEs monitorable and manageable with majority occurring within first 90 days after SRP-9001 infusion

CO-77

- No deaths
- Proposed risk mitigations
 - Pre- and post-infusion monitoring of liver enzymes
 - Weekly troponin monitoring during first month following treatment
 - Weekly platelet monitoring during first 2 weeks
 - Proposed contraindication for patients with any deletion mutation that fully includes exons 9 – 13
 - Long-term follow-up to better characterize safety concerns

Clinical Perspective on Risk/Benefit Profile of SRP-9001 Craig M. McDonald, MD

Director, Neuromuscular Disease Clinic University of California, Davis Children's Hospital

Study Chair, CINRG Duchenne Natural History Study

What Patients with DMD Need

- Effective, safe therapies which modify this devastating disease
- Treatment goal of stabilization supported by patient community¹
- Modification of key milestones linked to quality and duration of life
- Maintain muscle function, including ambulation, and upper limb function
- Preserve respiratory function and cardiac function

SRP-9001 Has Favorable Safety Profile

- Experienced, organized centers with sufficient infrastructure to administer SRP-9001
 - Neuromuscular disease centers based on experience with AAV gene therapy in spinal muscular atrophy
- Important risks have been identified
 - AEs monitorable and manageable
- Reassuring that no TMA or serious thrombocytopenia has occurred with SRP-9001
- Genetic inclusion criteria mitigates risk of immune-mediated myositis

SRP-9001 Produces Clinically Meaningful Benefits to Patients with DMD and Their Families

Pre-treatment

6 months Post-Gene Transfer Therapy

Videos shown with patient consent

6 Months Post-SRP-9001 Gene Therapy in Same 6-Year-Old Boy

CO-82

Videos shown with patient consent

Today Marks Important Opportunity to Advance Treatment for DMD Which Is Relentlessly Progressive

- Surrogacy: Sufficient evidence SRP-9001 dystrophin is surrogate endpoint reasonably likely to predict clinical benefit
- Clinical Meaningfulness: Totality of clinical evidence with appropriate clinical trial comparators sufficient to support accelerated approval
- Positive Benefit-Risk: Risks monitorable and manageable; magnitude of likely benefits outweighs risks
- ✓ Confirmatory Study: Fully carcilled; Pact 1 report early 2024

Time is muscle

Waiting for confirmatory data guarantees irreparable loss of muscle

SRP-9001 (delandistrogene moxeparvovec) for Treatment of Duchenne Muscular Dystrophy May 12, 2023

Cellular Tissue and Gene Therapy Advisory Committee

Sarepta Therapeutics