

Environmental Assessment

1. **Date:** December 28, 2022
2. **Name of Applicant/Petitioner:** PTT MCC Biochem Company Limited
3. **Address:** All communications on this matter are to be sent in care of Counsel for the Notifier:

Pamela L. Langhorn, Partner
Keller and Heckman LLP
1001 G Street, N.W., Suite 500 West
Washington, D.C. 20001
Telephone: 202-434-4291
E-mail: langhorn@khlaw.com

4. **Description of the Proposed Action**

The action requested in this Notification is to permit the use of the Notifier's food-contact substance (FCS), poly[(butylenesuccinate)-co-adipate] cross-linked with malic acid, in the manufacture of food-contact materials intended to contact all foods, excluding alcoholic foods and infant formula and human milk, under Conditions of Use C ("Hot filled or pasteurized above 150°F") through G ("Frozen or refrigerated storage (no thermal treatment in the container)").¹ Uses of the FCS include films, coatings, molded articles, and thermoformed articles. Examples of food packaging materials that may be prepared from the FCS include stand-alone films used as food wraps, coatings on paper and paperboard, laminated seals for flexible packaging, injection molded food-contact articles, and thermoformed food-contact articles such as food trays. In paper and paperboard specifically, the FCS is intended to provide a protective layer that prevents food from penetrating the paper and paperboard structure, leading to soaking and reduced structural strength. The FCS will be used in single-use food-contact applications.

The Notifier does not intend to produce finished food-contact materials containing the FCS. Rather, the FCS that is the subject of this Notification will be sold to manufacturers engaged in the production of food-contact materials. Food-contact materials containing the FCS will be utilized in patterns corresponding to the national population density and will be widely distributed across the country. Therefore, it is anticipated that disposal of food contact materials containing the FCS will occur nationwide, with the material being land disposed, combusted, or recycled in quantities similar to those reported for municipal solid waste (MSW) generally.²

¹ FDA's Food Types and Conditions of Use for FCNs are set forth at <https://www.fda.gov/food/packaging-food-contact-substances-fcs/food-types-conditions-use-food-contact-substances>.

² See *Advancing Sustainable Materials Management: 2018 Fact Sheet. Assessing Trends in Materials Generation and Management in the United States*, U.S. Environmental Protection

According to U.S. Environmental Protection Agency (EPA) data for 2018, approximately 50.0% of MSW is currently deposited in land disposal sites, 11.8% is combusted, 23.6% is recycled, 8.5% is composted, and 6.1% is directed to other food management pathways.³ As the FCS is expected to be primarily disposed of through combustion or land-filling (*i.e.*, not recycled, composted, or handled through other food management pathways), we recalculate the disposal pattern based on only the quantities of MSW that are land disposed or combusted. On this basis, we estimate that 19.1% of food-contact materials containing the FCS will be combusted annually.⁴

5. Identification of the Substance that is the Subject of the Proposed Action

The FCS that is the subject of this Notification is poly[(butylenesuccinate)-co-adipate], cross-linked with malic acid. The FCS is prepared by the reaction of 1,4-butanediol, succinic acid, adipic acid, and malic acid. The FCS is a high molecular weight condensation polyester. The Notifier produces several grades of the FCS with varying molecular weight profiles.

6. Introduction of Substances into the Environment

Under 21 C.F.R. § 25.40(a), an environmental assessment ordinarily should focus on relevant environmental issues relating to the use and disposal from use, rather than the production, of FDA-regulated materials. Moreover, information available to the Notifier does not suggest that there are any extraordinary circumstances in this case indicative of any significant adverse environmental impact as a result of the manufacture of the FCS. Consequently, information on the manufacturing site and compliance with relevant emissions requirements is not provided here.

No significant adverse environmental release is expected upon the use of the subject FCS in food-contact materials. The FCS will be used as a polymer film, coating, or article to fabricate food-contact materials, will be entirely incorporated into the finished food-contact material, and is expected to remain with these materials throughout use of the FCS in the food-contact applications and use/disposal by the consumer. Any waste materials generated in this process, *e.g.*, plant scraps, are expected to be disposed of as part of the packaging manufacturer's overall nonhazardous solid waste in accordance with established procedures. The annual projected market volume of the FCS is provided in the confidential attachment to the EA.

Disposal by the ultimate consumer of food-contact materials containing the subject FCS will be by conventional rubbish disposal (*i.e.*, sanitary landfill or incineration). For food-contact

Agency, Office of Land and Emergency Management, Dec. 2020, *available at* [Advancing Sustainable Materials Management: 2018 Fact Sheet \(epa.gov\)](https://www.epa.gov/advancing-sustainable-materials-management-2018-fact-sheet).

³ *Id.*

⁴ By assuming that none of the FCS is recycled, we recalculate the fraction of FCS that is combusted as follows: 11.8% combusted ÷ (11.8% combusted + 50.0% land disposed) = 19.1% combusted. The remaining 80.9% will be land-disposed.

materials that contain the FCS that are determined to be recyclable, recycling processes will compete with conventional rubbish disposal and, therefore, reduce the amount of the FCS that is landfilled or incinerated. ASTM standard number D7611 “Standard Practice for Coding Plastic Manufactured Articles for Resin Identification” provides a guide for plastics manufacturers to mark the final plastic article with an identification code that informs users/recyclers of the identity of the resin with which the final plastic article is made.⁵ We anticipate the articles manufactured with the FCS would be so marked and, thus, coded for recycling.

The FCS consists of carbon, hydrogen, and oxygen. When properly incinerated, the combustion products are expected to be carbon dioxide and water. The carbon content of the FCS has been used to calculate the potential greenhouse gas (GHG) emissions derived from combustion of the confidential annual market volume of the FCS (available in the confidential attachment to the EA) and is below 25,000 metric tons carbon dioxide equivalent (CO₂-e) emission per MSW combustor (MSWC) on an annual basis.⁶ Thus, the concentration of carbon dioxide in the environment will not be significantly altered by the proper incineration of the polymers in the amounts utilized for food packaging applications. Furthermore, to evaluate the significance of the environmental impact, we considered whether the action threatens a violation of Federal, State, or local laws or requirements imposed for the protection of the environment (*i.e.*, 40 CFR Part 60, 40 CFR Part 98.2, and/or relevant state and local laws). In this context, the U.S EPA, under 40 CFR 98, “establishes mandatory GHG reporting requirements for owners and operators of certain facilities that directly emit GHG.” This regulation describes that facilities must report GHG emissions and sets an annual 25,000 metric ton CO₂-e threshold for required reporting (40 CFR 98.2) and identifies MSWCs as an included stationary fuel combustion source under 40 CFR 98.30(a). As the estimated GHG emissions are below the threshold for mandatory reporting, no significant environmental adverse impacts are anticipated resulting from combustion of the FCS in MSW combustion facilities. Therefore, incineration of the FCS will not cause MSW combustors to threaten a violation of applicable emission laws and regulations.

Only extremely small amounts, if any, of the FCS constituents are expected to enter the environment as a result of the landfill disposal of food-contact materials, in light of the EPA regulations governing MSW landfills. EPA’s regulations require new MSW landfill units and lateral expansions of existing units to have composite liners and leachate collection systems to prevent leachate from entering ground and surface water, “to have ground water monitoring systems and to take corrective action as appropriate (40 CFR Part 258).” These requirements are enforced by state solid-waste management programs. Therefore, based on MSW landfill regulations preventing leaching and state enforcement of these requirements, the FCS is not expected to reach the aquatic or terrestrial environment when disposed of via landfill.

⁵ ASTM, Standard Practice for Coding Plastic Manufactured Articles for Resin Identification, 2020. D7611/D7611M-20.

⁶ U.S. estimated 75 MSWCs. See US EPA: Energy Recovery from the Combustion of Municipal Solid Waste (MSW), available at <https://www.epa.gov/smm/energy-recovery-combustion-municipal-solid-waste-msw>.

7. Fate of Emitted Substances in the Environment

A. Air

No significant effect on the concentrations of and exposures to any substances in the atmosphere are anticipated due to the proposed use of the FCS. Because the FCS is a high molecular weight polymer, the FCS is not expected to readily volatize. Thus, no significant quantities of any substances will be released upon the use and disposal of food-contact materials manufactured with the FCS.

As indicated above in Item 6, the FCS will replace a portion of the total MSW currently combusted. Therefore, combustion of the FCS will not significantly alter the emissions from properly operating MSW combustors, and the incineration of food-contact materials containing the FCS will not cause MSW combustors to threaten a violation of applicable emissions laws and regulations.

B. Water

No significant effects on the concentrations of and exposures to any substances in fresh water, estuarine, or marine ecosystems are anticipated due to the proposed use of the FCS. No significant quantities of any substance will be added to these water systems upon the proper incineration of the FCS, nor upon its disposal in landfills. Similarly, no significant effects on the concentrations of and exposures to any substances are anticipated as a result of the proposed use of the subject FCS. Thus, the fate of finished food-contact materials containing the FCS in the aqueous environment does not need to be addressed because no significant introductions of substances into the environment were identified in Item 6.

C. Land

Considering the factors discussed above, no significant effects on the concentrations of and exposures to any substances in terrestrial ecosystems are anticipated as a result of the proposed use of the subject FCS. In particular, the polymeric nature of the FCS is expected to result in virtually no leaching of components of the finished FCS under normal environmental conditions when these substances are disposed. Furthermore, the estimated production of finished food-contact materials with the FCS, as discussed in the corresponding confidential attachment, precludes any substantial release to the environment of its components. Thus, there is no expectation of any meaningful exposure to terrestrial organisms of these substances as a result of the proposed use of the FCS.

Considering the foregoing, we respectfully submit that there is no reasonable expectation of a significant impact on the concentration of any substance in the environment due to the proposed use of the FCS in the manufacture of food-contact materials.

8. Environmental Effects of Released Substances

No information is needed to address the environmental effects of substances released into the environment as a result of the use and disposal of the subject substance in landfills and by combustion because, as discussed under Item 6 above, only very small quantities of substances,

if any, are expected to be introduced into the environment due to the intended use of the FCS. The use and disposal of the subject substance in landfills or by combustion are not expected to threaten a violation of applicable laws and regulation, *e.g.*, the EPA's regulations in 40 C.F.R. Part 60 ("Standards of Performance for New Stationary Sources") that pertain to MSW combustors and Part 258 ("Criteria for Municipal Solid Waste Landfills") that pertain to landfills.

9. Use of Resources and Energy

As is the case with other food-contact materials, the production, use, and disposal of the FCS involves the use of natural resources. However, the use of the subject FCS in the fabrication of food-contact materials is not expected to result in a net increase in the use of energy and resources because the FCS will used in place of other food packaging materials.

Manufacture of the FCS and the final conversion to finished food-contact materials will consume energy and resources in amounts comparable to the manufacture of chemically related resins. Articles and packaging materials produced from the FCS are expected to be disposed of according to the same patterns when used in place of currently marketed materials. Thus, there will be no impact on current recycling programs.

10. Mitigation Measures

As shown above, no significant adverse environmental impacts are expected to result from the use and disposal of food-contact materials fabricated using the subject FCS. This is primarily due to the minute levels, if any, of leaching of components of the FCS from finished materials employing the FCS, the insignificant impact on environmental concentrations of combustion products of the FCS, and the similarity of the subject FCS to the material it is intended to replace (*i.e.*, competitive polyester resins). Thus, no significant adverse impacts were identified that require mitigation measures.

11. Alternatives to the Proposed Action

No significant potential adverse environmental effects are identified herein that would necessitate alternative actions to those proposed in this Notification. The alternative of not approving the action proposed herein would simply result in the continued use of the materials that the subject FCS would otherwise replace; such action would have no anticipated environmental impact.

12. List of Preparers

Pamela L. Langhorn, Partner, Keller and Heckman LLP, 1001 G Street, N.W., Suite 500 West, Washington D.C. 20001. Ms. Langhorn has over 20 years of experience counseling and representing corporate entities on Food Contact Notifications, including Environmental Assessments.

Steven J. Manning, Ph.D. in Chemistry, Staff Scientist, Keller and Heckman LLP, 1001 G Street, N.W., Suite 500 West, Washington D.C. 20001. Dr. Manning has over six years of experience drafting FCN submissions and Environmental Assessments.

13. Certification

The undersigned official certifies that the information provided herein is true, accurate, and complete to the best of her knowledge.

Date: December 28, 2022

Pamela L. Langhorn
Counsel for PTT MCC Biochem Company Limited

14. References

1. FDA's Food Types and Conditions of Use for FCNs are set forth at <https://www.fda.gov/food/packaging-food-contact-substances-fcs/food-types-conditions-use-food-contact-substances>.
2. *Advancing Sustainable Materials Management: 2018 Fact Sheet. Assessing Trends in Materials Generation and Management in the United States*, U.S. Environmental Protection Agency, Office of Land and Emergency Management, Dec. 2020, available at https://www.epa.gov/sites/production/files/2021-01/documents/2018_ff_fact_sheet_dec_2020_fnl_508.pdf.
3. ASTM, Standard Practice for Coding Plastic Manufactured Articles for Resin Identification, 2020. D7611/D7611M-20.
4. US EPA: Energy Recovery from the Combustion of Municipal Solid Waste (MSW), available at <https://www.epa.gov/smm/energy-recovery-combustion-municipal-solid-waste-msw>.

15. Attachment

1. Confidential Environmental Attachment – **Attachment 14**