

#### In Vitro Assessments that Support In Vitro Binding Studies in Demonstrating Bioequivalence of Locally Acting Gastrointestinal Drugs

#### SBIA 2022: Advancing Generic Drug Development: Translating Science to Approval

Day 2, Session 5: In Vitro Binding Study for Locally Acting GI Drug Products

#### Manar Al-Ghabeish

Staff Fellow
Office of Research and Standards, Office of Generic Drugs
CDER | U.S. FDA
September 21st , 2022

#### Learning Objectives



You will learn to:

- Describe the rationale behind the in vitro assessments that support the binding studies for locally acting gastrointestinal (GI) drugs
- ☐ Identify examples of in vitro assessment for locally acting GI drugs recommended in product-specific guidances (PSGs)
- ☐ Describe key case study: sucralfate

### Locally Acting GI Drugs



They are not intended to be absorbed into the bloodstream



- The bioavailability of GI drugs is assessed by measurements that reflect the rate and extent to which the therapeutic ingredient is available in the GI tract
- Bioequivalence (BE) determination is based on product specific factors and the drugs' mechanism of action

### In Vitro Binding Study



 Several locally acting GI drugs bind to phosphate or bile acid in the GI tract to exert their therapeutic efficacy

Examples: lanthanum carbonate and cholestyramine

- In vitro BE binding studies are a practical BE approach to assess the performance of the drug product at the site of action
- The binding study involves equilibrium and kinetic studies

#### In Vitro BE Assessments



- Due to the complexity of locally acting GI drugs, other assessments may be needed to demonstrate BE:
  - ➤ Active pharmaceutical ingredient (API) sameness
  - ➤ Additional In vitro BE studies

E.g., Dissolution, enzyme activity, viscosity



# Example of In Vitro BE Assessments: Dissolution



- Commonly recommended in PSGs
- Different from and in addition to the quality control dissolution testing
- Measures rate and extent of the active binding moiety or related moiety released from the dosage form using biorelevant conditions

## Dissolution Rationale: Case-By-Case



#### Ferric citrate tablet:

- In addition to demonstrating API sameness, dissolution may be used in lieu of binding studies when the test product formulation is Q1\* and Q2\* the same as reference
- Rationale: Formulation and manufacturing process may impact the release of the drug

## Dissolution Rationale: Case-By-Case



#### Lanthanum carbonate chewable tablet:

- Dissolution determines the release of the active binding moiety (Li) in two extreme conditions representative of chewing (whole and crushed tablet)
- Provides supportive evidence for the binding study of fully disintegrated tablet

#### **Sucralfate tablet and suspension:**

 Release of aluminum (Al) in acidic media is related to the activation of the drug (binding is not the only mechanism of action)

## Dissolution Conditions to Support BE Determination



- Dissolution test conditions are found in the PSG
- Selection of appropriate pH should consider the pH ranges where drug dissolution occurs in the GI tract
- Selection of appropriate types of buffers should not confound analysis of analyte. E.g., a phosphate buffer should not be selected for phosphate binders
- For Q1/Q2 formulation, dissolution should be able to discriminate the effect of formulation and manufacturing process variability

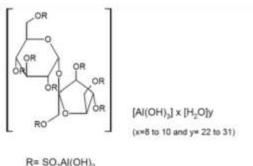
### Challenge Question #1



## Which of the following is TRUE regarding in vitro assessments for BE determination of locally acting GI drugs (binders):

- A. In vitro binding is the only in vitro BE assessment for binders
- B. They are part of drug product quality control specifications
- They are neither based on the drugs' mechanism of action nor product specific
- D. They may include dissolution or release of active binding moiety




In vitro assessments of

## **Sucralfate products**

#### Sucralfate



- Al salt of sucrose octasulphate
- Minimally absorbed from the GI tract
- An antiulcer locally acting agent
- Administered orally (tablet or suspension)1 g four times per day up to 8 weeks
- Should be administered on an empty stomach (critical for mechanism)



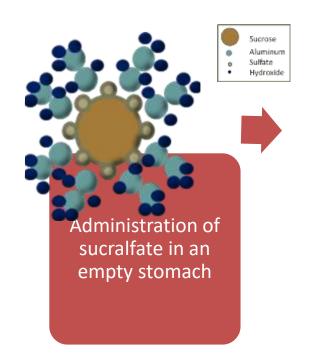
Structure of Sucralfate



## **Approved Sucralfate Products**



| Product                    | Strength    | Proprietary<br>name | NDA    | Approval<br>date | Generic                            | PSG date recommended |
|----------------------------|-------------|---------------------|--------|------------------|------------------------------------|----------------------|
| Sucralfate oral tablet     | 1 gm        | Carafate            | 018333 | 10/30/1981       | A070848*<br>A074415<br>A215576     | 09/2019              |
| Sucralfate oral suspension | 1 gm/ 10 mL | Carafate            | 019183 | 12/16/1993       | <u>A209356</u> *<br><u>A211884</u> | 10/2017              |


<sup>\*</sup>First generic approved for tablet was 1996 and the suspension was approved in 2019

## Previous BE Recommendations for Sucralfate Products

- Previous recommendations of the PSG included in vivo BE study with comparative clinical endpoints using patients with active duodenal ulcer disease
- A BE study with comparative clinical endpoints is difficult to conduct
  - ➤ Resulted in need for development of an alternative in vitro method for BE evaluation of sucralfate products

#### Mechanism of Action of Sucralfate







#### Activation in acidic media (pH 1.2)

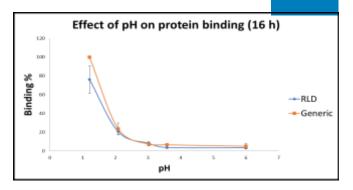
- Release of Al and formation of PAC\*
- Formation of negatively charged sucralfate
- Formation of aggregate

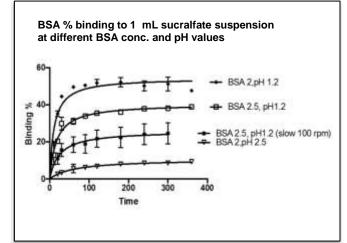


#### Anti-ulcer activity

- Protein binding and barrier against hydrogen ions
- Inhibition of pepsin
- Bile acid binding
- Acid neutralizing (Weak)

\*PAC: Poly aluminum chloride


Drugs@FDA, NDA 018333 and NDA 019183, Labeling-Package insert Sucralfate: From basic science to the bedside. 1995. Edited by D. Hollander and G. Tanger


#### BE Recommendations for Sucralfate Products

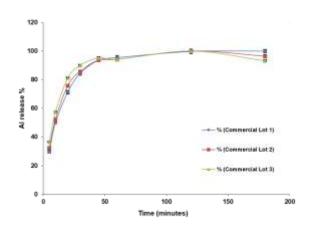


Based on the mechanism of action of sucralfate the BE recommendations include:

- Bioassays that are related to binding such as protein binding, bile acid binding, and pepsin activity
- Other in vitro assessments are included such as acid neutralizing capacity



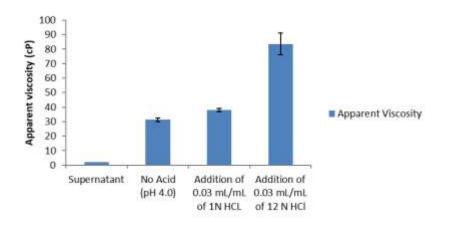



Al-Ghabeish, et al.. In Vitro Evaluation of the Performance of a Locally Acting Gastrointestinal Drug, Sucralfate.(Poster).AAPS Annual Meeting, San Diego, CA, Nov 11-15, 2017
Feng, X., et al. *Development of In Vitro Protein Binding Method for Bioequivalence Evaluation for Sucralfate Suspension*. .(Poster).AAPS Annual Meeting, San Diego, CA, Nov 11-15, 2017.

BSA: Bovine serum albumin RLD: Reference listed drug






#### Al release at pH 1.2 (suspension and tablet)



The release of Al reaches equilibrium after 1 hour

www.fda.gov

#### Apparent viscosity with addition of acid (Suspension)



Addition of acid resulted in an increase in the apparent viscosity of the suspension

## Challenge Question #2



# Which of the following is **NOT** included for BE determination of sucralfate products?

- A. In vitro protein binding study
- B. Pharmacokinetic study
- C. Pepsin activity
- D. Aluminum release (dissolution)

### Summary



- In vitro BE binding is a practical BE approach to assess the performance of locally acting GI drugs at the site of action
- Due to the complexity of locally acting GI drugs, other in vitro assessments may be needed to demonstrate BE
- Dissolution is a commonly recommended in vitro assessment that can measure the rate and extent of the active binding moiety at the site of action
- Demonstrating BE for sucralfate products, locally acting GI drug, can be done using several in vitro assessments



## Questions?

#### **Manar Al-Ghabeish**

Staff Fellow
Office of Research and Standards, Office of Generic Drugs
CDER | U.S. FDA

### Closing Thought



The more effort to understand complex drugs such as locally acting GI drugs the closer industry gets to develop more generics of complex drugs

