

An Overview of In Vitro BE Studies

Monica Javidnia, Ph.D.

Staff Fellow Division of Generic Drug Study Integrity, Office of Study Integrity and Surveillance, Office of Translational Sciences CDER | US FDA

Office of Study Integrity and Surveillance (OSIS) Workshop 2022 – July 19, 2022

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Learning Objectives

- Understand why an in vitro study may be used to establish bioequivalence (BE)
- Identify resources to aid with in vitro BE study selection and development
- Describe types of in vitro BE studies

Why In Vitro?

- In vivo BE studies
 - Expensive
 - Time-consuming
- In vitro BE studies
 - Can reduce risk of harm
 - May be the best method to determine BE

Key Resources

www.fda.gov

Product-Specific Guidances (PSG)

- <u>PSGs</u> provide recommendations to support ANDA drug development
- Over 2000 PSGs available

Total number of curre	ently p	oubli	she	d P	SG	s: 2	003	5																			
	Pro	duc	t-S	pec	ific	: G	uid	an	ces	s fo	or S	spe	cifi	c Pi	rod	uct	s A	rra	ng	ed	by	Act	ive	Ing	gree	dier	nt
	A	В	С	D	E	F	G	Η	l	J	K	L	Μ	N	0	Ρ	Q	R	S	Т	U	۷	W	X	Y	Z	
					Se	arc	:h b	oy A	Act	ive	e In	gre	die	nt o	or b	y R) or	RS	5 N	um	ber					
							Ent	er a	t lea	ast 3	3 cha	arac	ters						Se	arch	ı						

Reference Standard

Identify the appropriate reference listed drug (RLD) from the <u>Orange</u>
 <u>Book</u>

– See also: <u>Purple Book</u>

 Can use a different reference standard in some cases Approved Drug Products with Therapeutic Equivalence Evaluations | Orange Book

Purple Book Database of Licensed Biological Products

FDA

Types of In Vitro BE Studies

Common In Vitro BE Studies

- In vitro permeability testing (IVPT)
- In vitro release testing (IVRT)
- In vitro binding testing
- Size distribution studies
 - In vitro globule size distribution study
 - Particle size distribution/determination (PSD) study
 - In vitro liposome size distribution study
- In vitro aerosol studies (5- or 6-test battery)

Other In Vitro Studies

- FDA
- In vitro dissolution testing for BE determination
- BCS dissolution testing
- BCS solubility testing
- BCS permeability testing
- In vitro NG/G tube study
- In vitro microbial kill rate study

BCS-based biowaiver

www.fda.gov

FDA

- Semi-solid topical dermatological drugs
 - In vitro BE approaches:
 IVRT and IVPT
 - In vivo BE approach:
 clinical endpoint
 - IVRT can be used for other formulations

IVRT

- Synthetic membrane
- Consistent
- Infinite dose
- Release rate
- Not expected to correlate or predict vivo BA/BE

IVPT

- Human skin
- Variable
- Finite dose
- Flux profile
- Expected to have in vitro-in vivo correlation

- Both
 - Method development
 - Method validation
- IVRT
 - Study

Α	В	А	В	А	В
В	A	В	А	В	А

- IVPT
 - Pilot study
 - Pivotal study

- Example: acyclovir 5% topical cream
 - In vitro
 - Q1 and Q2 sameness
 - Q3 physical and structural tests
 - IVRT <u>and</u> IVPT
 - In vivo
 - Clinical endpoint

- Resources
 - United States Pharmacopeia (USP) General Chapter
 <1724>, Semisolid Drug Products Performance
 Tests
 - FDA/CRCG 2021 workshop
 - In Vitro Bioequivalence Data for a Topical Product: Bioequivalence Review Perspective (Dr. Suman Dandamudi, 2017)

In Vitro Binding Testing

www.fda.gov

FDA

In Vitro Binding Testing

- 21 CFR §320.23(b)(2)
- Phosphate or bile acid-binding drugs (GI)
- Equilibrium (pivotal) and kinetic testing
- Measure unbound analyte(s) in filtrate

In Vitro Binding Testing

Equilibrium

- ± acid pre-treatment*
- 8+ concentrations of phosphate/bile salts
- Incubate till equilibrium

Kinetic

- or ± acid pre-treatment*
- 2 concentrations of phosphate/bile salts
- 8+ lengths of time

In Vitro Binding Testing

FDA

- Example: sucralfate oral suspension
 - Only in vitro recommended
 - Equilibrium binding study with bovine or human serum albumin
 - Equilibrium binding study with bile salts
 - Kinetic binding study with bile salts
 - In vitro enzyme (pepsin) activity study

In Vitro Aerosol Studies

In Vitro Aerosol Studies

Inhaled

- 1. Single actuation content (SAC)
- 2. Aerodynamic particle size distribution (APSD)
- 3. Spray pattern
- 4. Plume geometry
- 5. Priming and repriming

Nasal

1. SAC

- 2. Droplet size distribution by laser defraction
- 3. Drug in small particles/droplets
- 4. Spray pattern
- 5. Plume geometry
- 6. Priming and repriming

Draft Guidance

In Vitro Aerosol Studies

- Both in vitro <u>and</u> in vivo commonly recommended
- <u>Example</u>: albuterol sulfate, aerosol, metered; inhalation
 - In vitro: 5-test battery for inhaled aerosols
 - In vivo: PK study

Size Distribution Studies

Size Distribution Studies

- Globule, particle, or liposome size distribution studies
- Help ensure uniformity and consistent dosing
- Different formulation types
- Varying methods

Size Distribution Studies

FDA

- <u>Example</u>: Cyclosporine ophthalmic emulsion
 - In vitro
 - Q1 and Q2 sameness
 - Q3 comparable
 - Globule size distribution, viscosity, pH, zeta potential, osmolality, surface tension
 - In vivo
 - Clinical endpoint
- Resource: <u>Assessment of Complex Drug Product Physicochemical</u> <u>Characteristics to Support In Vitro BE Studies</u> (Dr. Asif Rasheed, 2020)

Challenge Questions

Challenge Question #1

Which of the following statements is <u>NOT</u> true?

- A. Reference standards can be identified using the Yellow Book.
- B. Acceptable study types are described in the product specific guidances.
- C. If a reference listed drug is unavailable, FDA may select a new one to serve as a reference standard.
- D. The Purple Book details licensed biological products.

Challenge Question #2

Which of the following are components of in vitro aerosol studies?

- A. Single actuation content
- B. Spray pattern
- C. Plume geometry
- D. All of the above

Summary

- In vitro BE studies
 - can be conducted with or instead of in vivo BE studies
 - can vary greatly and are highly dependent upon the drug and formulation

Closing Thought

FDA

Questions?

Monica Javidnia, Ph.D.

Staff Fellow Division of Generic Drug Study Integrity Office of Study Integrity and Surveillance Office of Translational Sciences CDER | US FDA