

1 FOOD AND DRUG ADMINISTRATION

2 CENTER FOR DRUG EVALUATION AND RESEARCH

3

4

5 PULMONARY-ALLERGY DRUGS ADVISORY COMMITTEE MEETING

6 (PADAC)

7

8

9

10 Virtual Meeting

11

12

13

14

15

16 Wednesday, November 9, 2022

17 9:00 a.m. to 4:51 p.m.

18

19

20

21

22

Meeting Roster

DESIGNATED FEDERAL OFFICER (Non-Voting)

Takyiah Stevenson, PharmD

4 Division of Advisory Committee and

5 Consultant Management

6 Office of Executive Programs, CDER, FDA

7

PULMONARY-ALLERGY DRUGS ADVISORY COMMITTEE MEMBERS

9 | (Voting)

David H. Au, MD, MS

11 (Chairperson)

12 Professor of Medicine

13 University of Washington

14 Director

15 Center of Innovation for Veteran-Centered and

16 | Value-Driven Care

17 VA Puget Sound Health Care System

18 Seattle, Washington

19

30

21

1 **Scott E. Evans, MD, FCCP, ATSF**

2 Professor & Chairman ad interim

3 Department of Pulmonary Medicine

4 Rebecca Meyer Brown and Joseph Mellinger Brown

5 Chair in Basic Science Research

6 University of Texas MD Anderson Cancer Center

7 Houston, Texas

8

9 **Edwin H. Kim, MD, MS**

10 Associate Professor

11 Division of Pediatric Allergy and Immunology

12 University of North Carolina School of Medicine

13 Chapel Hill, North Carolina

14

15

16

17

18

19

20

21

22

1 **Janet S. Lee, MD, ATSF**

2 Professor of Medicine

3 Director, Acute Lung Injury Center of Excellence

4 University of Pittsburgh Medical Center Chair in

5 Acute Lung Injury

6 Division of Pulmonary, Allergy, and Critical Care

7 Medicine

8 University of Pittsburgh School of Medicine

9 Pittsburgh, Pennsylvania

10

11 **Susanne May, PhD**

12 Director

13 University of Washington Clinical Trials Center

14 Professor, Department of Biostatistics

15 University of Washington

16 Seattle, Washington

17

18

19

20

21

22

1 **PULMONARY-ALLERGY DRUGS ADVISORY COMMITTEE MEMBER**2 **(Non-Voting)**3 **Dawn M. Carlson, MD, MPH**4 *(Industry Representative)*

5 Vice President

6 Clinical Pharmacology

7 Abbvie, Inc

8 North Chicago, Illinois

9

10 **TEMPORARY MEMBERS (Voting)**11 **Lindsey R. Baden, MD**

12 Director of Clinical Research

13 Division of Infectious Diseases

14 Brigham and Women's Hospital

15 Director, Infectious Disease Service

16 Dana-Farber Cancer Institute

17 Professor of Medicine

18 Harvard Medical School

19 Boston, Massachusetts

20

21

22

1 **CAPT Daniel S. Chertow, MD, MPH, FCCM, FIDSA**

2 United States Public Health Service

3 Tenure-Track Investigator

4 Head, Emerging Pathogens Section

5 Critical Care Medicine Department

6 National Institutes of Health

7 Clinical Center and Laboratory of Immunoregulation

8 National Institute of Allergy and

9 Infectious Diseases

10 Bethesda, Maryland

11

12 **Daniel L. Gillen, PhD**

13 Chancellor's Professor and Chair

14 Department of Statistics

15 University of California, Irvine

16 Irvine, California

17

18 **Jennifer A. Schwartzott, MS**

19 *(Patient Representative)*

20 North Tonawanda, New York

21

22

1 Nitin Seam, MD

2 Associate Chief and Director of Fellowship

3 Critical Care Medicine Department

4 National Institutes of Health Clinical Center

5 Clinical Professor of Medicine

6 George Washington University

7 Bethesda, Maryland

8

9 Steven D. Shapiro, MD

10 Senior Vice President for Health Affairs

11 University of Southern California

12 Professor of Medicine

13 Keck School of Medicine of University of Southern

14 California

15 Los Angeles, California

16

17 Pamela Shaw, PhD

18 Senior Investigator

19 Biostatistics Division

20 Kaiser Permanente Washington Health Research

21 Institute

22 Seattle, Washington

1 **Roblena E. Walker, PhD**

2 *(Acting Consumer Representative)*

3 Chief Executive Officer

4 EMAGAHA, INC.

5 Atlanta, Georgia

6

7 **FDA PARTICIPANTS (Non-Voting)**

8 **Joseph G. Toerner, MD, MPH**

9 Deputy Director (Acting)

10 Office of Immunology and Inflammation (OII)

11 Office of New Drugs (OND)

12 CDER, FDA

13

14 **Banu A. Karimi-Shah, MD**

15 Deputy Director

16 Division of Pulmonology, Allergy, and Critical

17 Care (DPACC)

18 OII, OND, CDER, FDA

19

20 **Robert Busch, MD, MMSc**

21 Medical Officer

22 DPACC, OII, OND, CDER, FDA

1 **Rebecca Rothwell, PhD**

2 Lead Mathematical Statistician

3 Division of Biometrics III (DBIII)

4 Office of Biostatistics (OB)

5 Office of Translational Science (OTS)

6 CDER, FDA

7

8 **Karen Higgins, PhD**

9 Supervisory Mathematical Statistician

10 DBIII, OB, OTS, CDER, FDA

11

12 **Sai Dharmarajan, PhD**

13 Senior Mathematical Statistician

14 Division of Biometrics VII (DBVII)

15 OB, OTS, CDER, FDA

16

17

18

19

20

21

22

	C O N T E N T S	
2	AGENDA ITEM	PAGE
3	Call to Order	
4	David Au, MD, MS	12
5	Introduction of Committee	
6	Takyiah Stevenson, PharmD	12
7	Conflict of Interest Statement	
8	Takyiah Stevenson, PharmD	17
9	FDA Opening Remarks	
10	Banu Karimi-Shah, MD	22
11	Applicant Presentations - Veru Inc.	
12	Introduction	
13	Mitchell Steiner, MD	32
14	Efficacy and Safety	
15	K. Gary Barnette, PhD	50
16	Sensitivity Analysis	
17	Lee-Jen Wei, PhD	74
18	Benefit/Risk Assessment	
19	Christian Sandrock, MD, MPH	86
20	Concluding Remarks	
21	Mitchell Steiner, MD	99
22	Clarifying Questions to the Applicant	101

1	C O N T E N T S (continued)	
2	AGENDA ITEM	PAGE
3	FDA Presentations	
4	Overview of the Clinical Program and	
5	Review of Safety	
6	Robert Busch, MD, MMSc	147
7	Statistical Review of Efficacy	
8	Sai Dharmarajan, PhD	176
9	Uncertainties and Clinical Considerations	
10	Sai Dharmarajan, PhD	187
11	Robert Busch, MD, MMSc	191
12	Clarifying Questions to the FDA	215
13	Open Public Hearing	
14	Clarifying Questions (continued)	227
15	Charge to the Committee	
16	Banu Karimi-Shah, MD	233
17	Questions to the Committee and Discussion	265
18	Adjournment	278
19		
20		
21		
22		

1 P R O C E E D I N G S

2 (9:00 a.m.)

3 **Call to Order**

4 DR. AU: Good morning, and welcome. I would
5 first like to remind everyone to please mute your
6 line when you are not speaking. For the media and
7 press, the FDA contact is Chanapa Tantibanchachai.
8 Her email and phone number are currently displayed.

9 My name is David Au, and I will be chairing
10 this meeting. I will now call the November 9, 2022
11 Pulmonary-Allergy Drug Advisory Committee meeting
12 to order. Dr. Takyiah Stevenson is the designated
13 federal officer for this meeting and will begin
14 with introductions.

15 **Introduction of Committee**

16 DR. STEVENSON: Good morning. My name is
17 Takyiah Stevenson, and I am the designated federal
18 officer for this meeting. When I call your name,
19 please introduce yourself by stating your name and
20 affiliation.

21 Dr. David Au?

22 DR. AU: Good morning. David Au. I am with

1 the VA Puget Sound Health Care System and the
2 University of Washington.

3 DR. STEVENSON: Dr. Carlson?

4 DR. CARLSON: Hi. I'm Dawn Carlson. I'm
5 the industry representative, and I currently work
6 at Abbvie.

7 DR. STEVENSON: Dr. Evans?

8 DR. EVANS: Good morning. I am Scott Evans.
9 I'm a pulmonologist at the University of Texas
10 MD Anderson Cancer Center in Houston.

11 DR. STEVENSON: Dr. Kim?

12 DR. KIM: Edwin Kim, allergist/immunologist
13 at the University of North Carolina Chapel Hill.

14 DR. STEVENSON: Dr. Lee?

15 DR. LEE: Janet Lee from the University of
16 Pittsburgh.

17 DR. STEVENSON: Dr. May?

18 DR. MAY: Susanne May, professor of
19 biostatistics at the University of Washington in
20 Seattle, and director of the University of
21 Washington Clinical Trials Center.

22 DR. STEVENSON: Dr. Baden?

1 DR. BADEN: Lindsey Baden. I'm an
2 infectious diseases physician at Brigham and
3 Women's Hospital, Dana-Farber Cancer Institute,
4 Harvard Medical School in Boston, Massachusetts.

5 DR. STEVENSON: Dr. Chertow?

6 CAPT CHERTOW: Dan Chertow. I'm a critical
7 care and infectious disease physician at the NIH
8 Clinical Center in Bethesda, Maryland.

9 DR. STEVENSON: Dr. Gillen?

10 DR. GILLEN: Yes. Dan Gillen, professor and
11 chair of statistics at University of California at
12 Irvine.

13 DR. STEVENSON: Ms. Schwartzott?

14 MS. SCHWARTZOTT: Jennifer Schwartzott. I'm
15 your patient representative.

16 DR. STEVENSON: Dr. Seam?

17 DR. SEAM: Nitin Seam, pulmonary and
18 critical care medicine, NIH, Bethesda, Maryland.

19 DR. STEVENSON: Dr. Shapiro?

20 DR. SHAPIRO: Hi. Steve Shapiro, senior
21 vice president for Health Affairs, University of
22 Southern California.

1 DR. STEVENSON: Dr. Shaw?

2 DR. SHAW: Hello. Pamela Shaw. I'm senior
3 investigator of biostatistics at the Kaiser
4 Permanente Washington Health Research Institute in
5 Seattle, Washington.

6 DR. STEVENSON: Dr. Walker?

7 DR. WALKER: Good morning. Roblena Walker,
8 acting consumer representative, chief executive
9 officer, EMAGAHA, INC.

10 DR. STEVENSON: I will now introduce the FDA
11 participants.

12 DR. Toerner?

13 DR. TOERNER: Yes. Good morning. This is
14 Joe Toerner. I'm the acting deputy director in the
15 Office of Immunology and Inflammation at CDER, FDA.

16 DR. STEVENSON: Dr. Karimi-Shah?

17 DR. KARIMI-SHAH: Hi. Good morning,
18 everyone. This is Banu Karimi-Shah. I'm the
19 deputy director of the Division of Pulmonology,
20 Allergy, and Critical Care in the Office of
21 Immunology and Inflammation in CDER at FDA.

22 DR. STEVENSON: Dr. Busch?

1 DR. BUSCH: Hi. This is Robert Busch. I'm
2 the medical officer in the Division of Pulmonology,
3 Allergy, and Critical Care at FDA.

4 DR. STEVENSON: Dr. Rothwell?

5 DR. ROTHWELL: Hi. This is Rebecca
6 Rothwell, statistical team leader in the Office of
7 Biostatistics at the FDA.

8 DR. STEVENSON: Dr. Higgins?

9 DR. HIGGINS: Hi. This is Karen Higgins.
10 I'm a supervisory mathematical statistician in the
11 Division of Biometrics III, Office of
12 Biostatistics, FDA, CDER.

13 DR. STEVENSON: Dr. Dharmarajan?

14 DR. DHARMARAJAN: Hey. This is Sai
15 Dharmarajan, statistical reviewer at the Office of
16 Biostatistics at CDER, FDA.

17 DR. STEVENSON: Thank you, everyone. I
18 will turn it back to the chair.

19 DR. AU: For topics such as those being
20 discussed at this meeting, there are often a
21 variety of opinions, some of which are quite
22 strongly held. Our goal is that this meeting will

1 be a fair and open forum for discussion of these
2 issues and that individuals can express their views
3 without interruption. As a gentle reminder,
4 individuals will be allowed to speak into the
5 record only if recognized by the chairperson. We
6 look forward to a productive meeting.

7 In the spirit of the Federal Advisory
8 Committee Act and the Government in the Sunshine
9 Act, we ask that advisory committees members take
10 care that their conversations about the topic at
11 hand take place in the open forum of the meeting.

12 We are aware that members of the media are
13 anxious to speak with the FDA about these
14 proceedings, however, FDA will refrain from
15 discussing the details of this meeting with the
16 media until its conclusion. Also, the committee is
17 reminded to please refrain from discussing the
18 meeting topics during breaks or lunch. Thank you.

19 Dr. Takyiah Stevenson will read the Conflict
20 of Interest Statement for the meeting.

Conflict of Interest Statement

22 DR. STEVENSON: The Food and Drug

1 Administration, FDA, is convening today's meeting
2 of the Pulmonary-Allergy Drugs Advisory Committee
3 under the authority of the Federal Advisory
4 Committee Act, FACA, of 1972. With the exception
5 of the industry representative, all members and
6 temporary voting members of the committee are
7 special government employees, SGEs, or regular
8 federal employees from other agencies and are
9 subject to federal conflict of interest laws and
10 regulations.

11 The following information on the status of
12 this committee's compliance with federal ethics and
13 conflict of interest laws, covered by but not
14 limited to those found at 18 U.S.C. Section 208, is
15 being provided to participants in today's meeting
16 and to the public.

17 FDA has determined that members and
18 temporary voting members of this committee are in
19 compliance with federal ethics and conflict of
20 interest laws. Under 18 U.S.C. Section 208,
21 Congress has authorized FDA to grant waivers to
22 special government employees and regular federal

1 employees who have potential financial conflicts
2 when it is determined that the agency's need for a
3 special government employee's services outweighs
4 his or her potential financial conflict of interest
5 or when the interest of a regular federal employee
6 is not so substantial as to be deemed likely to
7 affect the integrity of the services which the
8 government may expect from the employee.

9 Related to the discussion of today's
10 meeting, members and temporary voting members of
11 this committee have been screened for potential
12 financial conflicts of interests of their own as
13 well as those imputed to them, including those of
14 their spouses or minor children and, for purposes
15 of 18 U.S.C. Section 208, their employers. These
16 interests may include investments; consulting;
17 expert witness testimony; contracts, grants,
18 CRADAs; teaching, speaking, writing; patents and
19 royalties; and primary employment.

20 Today's agenda involves discussion of the
21 request for Emergency Use Authorization, EUA, 113,
22 for sabizabulin oral capsule, a tubulin

1 polymerization inhibitor, submitted by Veru Inc.,
2 for the treatment of SARS-CoV-2 infection in
3 hospitalized patients with moderate to severe
4 COVID-19 infection who are at high risk of acute
5 respiratory distress syndrome. A focus of the
6 discussion will include the treatment effect size
7 in the context of the high placebo mortality rate,
8 the limited size of the safety database, and
9 identifying the proposed population.

10 This is a particular matters meeting during
11 which specific matters related to Veru's EUA will
12 be discussed. Based on the agenda for today's
13 meeting and all financial interests reported by the
14 committee members and temporary voting members, no
15 conflict of interest waivers have been issued in
16 connection with this meeting. To ensure
17 transparency, we encourage all standing committee
18 members and temporary voting members to disclose
19 any public statements that they have made
20 concerning the product at issue.

21 With respect to FDA's invited industry
22 representative, we would like to disclose that

1 Dr. Dawn Carlson is participating in this meeting
2 as a non-voting industry representative acting on
3 behalf of regulated industry. Dr. Carlson's role
4 at this meeting is to represent industry in general
5 and not any particular company. Dr. Carlson is
6 employed by Abbvie.

7 We would like to remind members and
8 temporary voting members that if the discussions
9 involve any other products or firms not already on
10 the agenda for which an FDA participant has a
11 personal or imputed financial interest, the
12 participants need to exclude themselves from such
13 involvement, and their exclusion will be noted for
14 the record.

15 FDA encourages all participants to advise
16 the committee of any financial relationships that
17 they may have with the firm at issue.

18 Thank you, and I will hand it back to the
19 chair.

20 DR. AU: Thank you.

21 We will now proceed with the FDA opening
22 remarks from Dr. Banu Karimi-Shah.

FDA Opening Remarks - Banu Karimi-Shah

DR. KARIMI-SHAH: Thank you, Dr. Au.

Good morning to you, esteemed committee members, the Veru team, my FDA colleagues, and members of the audience. My name is Banu Karimi-Shah, and I'm a pulmonary critical care physician and the deputy director in the Division of Pulmonology, Allergy, and Critical Care here at FDA. On behalf of the agency, I would like to welcome you to this Pulmonary-Allergy Drugs Advisory Committee meeting, where we will discuss the emergency use authorization request for VERU-111, for the treatment of adult patients hospitalized with COVID-19. I will now provide some brief opening remarks to begin our meeting.

VERU-111 is an oral tubulin inhibitor, not approved for any indication. It is a new molecular entity or NME. Veru Incorporated has submitted a request for emergency use authorization, or EUA, for VERU-111 for the proposed use of treatment of SARS-CoV-2 infection in hospitalized patients with moderate to severe COVID-19 and who are at high

1 risk for developing acute respiratory distress
2 syndrome or ARDS. The proposed dose is
3 9 milligrams once daily for 21 days or until
4 hospital discharge, to be administered orally or
5 via nasogastric tube.

6 The FDA's authority to authorize a product
7 for emergency use is a result of the declaration
8 enabling FDA to issue EUAs as a part of the U.S.
9 government response to the COVID-19 public health
10 emergency. Based on this declaration, FDA may
11 issue an EUA after determining that certain
12 statutory requirements are met. These statutory
13 requirements are outlined here.

14 The FDA may issue an EUA if, based on the
15 totality of scientific evidence available,
16 including data from adequate and well-controlled
17 trials, if available, it is reasonable to believe
18 that the product may be effective in diagnosing,
19 treating, or preventing a serious or
20 life-threatening disease or condition that can be
21 caused by SARS-CoV-2, and that the known and
22 potential benefits of the product outweigh the

1 known and potential risks; additionally, there is
2 no adequate approved and available alternative to
3 the product for diagnosing, preventing, or treating
4 the disease or condition.

5 Further, the FDA may require appropriate
6 conditions with respect to collection and analysis
7 of information concerning the safety and
8 effectiveness of the product with respect to the
9 use of such products during the period when the
10 authorization is in effect and a reasonable time
11 following such period. For example, FDA can
12 require additional trials as a condition of
13 authorization, and this will be an area in which we
14 will seek your input and I will outline in a later
15 slide.

16 First, a few words about the COVID-19
17 pandemic. We acknowledge that there is a continued
18 unmet medical need despite current standard-of-care
19 therapy, including vaccination and the medications
20 listed here. The World Health Organization reports
21 over 600 million cases and over 6 million deaths
22 worldwide. In the U.S., the Centers for Disease

1 Control report close to 100 million cases and over
2 1 million deaths since early 2020, with over
3 35,000 new cases, over 3,000 new hospital
4 admissions, and over 300 deaths per day as of
5 mid-October.

6 It is in this light that we bring this
7 emergency use authorization request from Veru
8 Incorporated to this advisory committee for
9 discussion and input.

10 The sponsor conducted two trials in
11 COVID-19, Trials V0211901 and V3011902, which the
12 agency will refer to as Studies 901 and 902,
13 respectively. This table summarizes the
14 characteristics of both trials, and you will see
15 this again in the agency's presentation. You will
16 note that Study 901 enrolled a total of only
17 39 subjects, therefore, the agency will focus our
18 discussion and review primarily on Study 902, which
19 was a 2 to 1 randomized, double-blind,
20 placebo-controlled, parallel group study in 204
21 adults hospitalized with COVID-19. The primary
22 endpoint was all-cause mortality at day 60.

1 The primary endpoint results are summarized
2 in this table. We see that when looking at the
3 proportion of subjects alive at day 60, both at the
4 interim analysis and when considering all
5 204 subjects, that the odds ratio for staying alive
6 was 3.2 in favor of COVID-19 VERU-111 treatment at
7 interim, and for all subjects, the odds ratio for
8 staying alive was 2.77 in favor of treatment, with
9 the corresponding 95 percent confidence intervals
10 as listed in this table.

11 Secondary endpoints included proportion of
12 patients alive and without respiratory failure at
13 various time points, days on mechanical
14 ventilation, and days in ICU. Because of the
15 influence of the mortality results on these
16 secondary endpoints and the importance of the
17 all-cause mortality endpoint to the overall
18 regulatory decision making regarding VERU-111, the
19 agency's briefing materials and presentations focus
20 primarily on the analyses of all-cause mortality.

21 The FDA review team acknowledges that
22 Study 902 met its prespecified primary endpoint of

1 all-cause mortality at day 60. We believe that
2 all-cause mortality is an important and clinically
3 meaningful endpoint in hospitalized patients with
4 COVID-19, however, we also note several
5 uncertainties with the data provided in the
6 VERU-111 development program.

7 We will go over these in detail during the
8 course of our presentations today, but to briefly
9 summarize here, these include a high placebo
10 mortality for baseline severity; potential
11 unblinding events with enteral tube administration;
12 differences in application of standard-of-care
13 therapies; differences in timing of enrollment
14 between treatment arms; uncertainties around the
15 effects of goals of care decision making on
16 all-cause mortality; and that the efficacy results
17 of other microtubule disruptors do not support the
18 finding in the VERU-111 program. There's also an
19 uncertainty around how the study population was
20 defined.

21 In addition to the uncertainties in the
22 efficacy is the limited safety database for this

1 new molecular entity. To be clear, many of these
2 issues might not influence the overall
3 interpretation in a very large trial but lead to
4 uncertainty in this small trial with a 2 to 1
5 randomization ratio, where any effect on the
6 mortality of even a few subjects in the placebo
7 group may have exerted an exaggerated effect on the
8 overall results.

9 So as you listen to the presentations today,
10 we ask you to focus on how these uncertainties
11 influence the robustness and reliability of the
12 treatment effect; the patient population in whom
13 this might be appropriate if authorized; and
14 whether the data we have is enough to conclude that
15 the known and potential benefits of the product
16 outweigh the known and potential risks for the EUA
17 statutory requirements.

18 As I mentioned earlier, even with
19 authorization, additional clinical trials can be
20 required as a condition of authorization, and we
21 will ask you to discuss what such a study should
22 look like. To help with this discussion, I have

1 provided some considerations for an additional
2 trial in this slide. These include the study
3 population, the proposed study design, and
4 additional study elements to deal with the
5 uncertainties that we have raised with the VERU-111
6 data. I will revisit these discussion points
7 during my charge to the committee, but I preview it
8 here to set the stage as you listen to the
9 presentations this morning.

10 Before I conclude my opening remarks, I
11 would also like to share the questions which we
12 will be asking you to discuss this afternoon. I
13 will go over them now and present them again during
14 my charge to the committee.

15 Question 1 is a discussion question. We ask
16 the committee to discuss the strength of the
17 all-cause mortality data, specifically considering
18 the uncertainties raised by the agency in
19 Study 902, including those that I have outlined in
20 the previous slide.

21 Question 2 is also a discussion question.
22 We ask the committee to discuss your level of

1 concern regarding the limited size of the safety
2 database for this new molecular entity.

Finally, Question 4 is also a discussion question. We ask, if authorized, the agency believes that additional data are necessary to understand the benefit-risk assessment as a condition of authorization. Please discuss the proposed design aspects of a study to provide this additional data.

20 Thank you for your attention. I will now
21 turn the meeting back to Dr. Au as we proceed with
22 today's meeting.

1 DR. AU: Thank you.

2 Both the FDA and the public believe in a
3 transparent process for information gathering and
4 decision making. To ensure such transparency at
5 the advisory committee meeting, FDA believes that
6 it is important to understand the context of an
7 individual's presentation.

8 For this reason, FDA encourages all
9 participants, including the applicant's
10 non-employee presenters, to advise the committee of
11 any financial relationships that they may have with
12 the sponsor, such as consulting fees, travel
13 expenses, honoraria, and interest in the sponsor,
14 including equity interests and those based on the
15 outcome of the meeting.

16 Likewise, FDA encourages you at the
17 beginning of your presentation to advise the
18 committee if you do not have such financial
19 relationships. If you choose not to address this
20 issue of financial relationships at the beginning
21 of your presentation, it will not preclude you from
22 speaking.

1 We will now proceed with Veru's
2 presentation.

3 **Applicant Presentation - Mitchell Steiner**

4 DR. STEINER: Good morning. I'm
5 Dr. Mitchell Steiner. I'm the CEO and CMO of Veru.
6 I'm a urologic/oncologic surgeon, and I've been in
7 drug development now for the past 25 years,
8 including in oncology and gene therapy.

9 When the COVID-19 pandemic started,
10 sabizabulin, the novel agent that targets
11 microtubules, was a phase 3 clinical study to
12 advance prostate cancer. Dr. Barnette, who's our
13 chief scientific officer, and I knew that
14 microtubules also play a critical role in viral
15 infections and the overexaggerated immune response
16 responsible for ARDS and death, suggesting that
17 sabizabulin could be a novel therapeutic against
18 COVID-19.

19 In the face of a public health emergency, we
20 felt duty-bound to redirect our company's efforts
21 to prove out this hypothesis. I'm so glad we were
22 persistent, and we really, really appreciate the

1 FDA's guidance in the development of sabizabulin in
2 hospitalized COVID-19 patients at high risk for
3 ARDS and death, and I'm pleased today to have the
4 opportunity to share with you our sabizabulin
5 COVID-19 program.

6 This is the agenda for this morning. First,
7 I will provide an overview of the program, and
8 furthermore, I will discuss some of the company's
9 perspective with some of the points raised by the
10 FDA. Next, Dr. Gary Barnette will provide a
11 summary of efficacy and safety of the COVID-19
12 program, and then that will be followed by
13 Dr. Lee-Jen Wei, who will provide a robust analysis
14 of the primary and secondary endpoint. Dr. Wei is
15 a professor of biostatistics at Harvard University.
16 Dr. Wei has extensive working experience in
17 regulatory science with developing and evaluating
18 new drugs.

19 Next, Dr. Christian Sandrock is a division
20 vice chief of internal medicine, director of
21 critical care, and professor of medicine at the
22 University of California, Davis. Dr. Sandrock is

1 on the frontline of managing severe COVID-19
2 patients. His specialties include emergency
3 infectious diseases, outbreak management, sepsis,
4 and critical care medicine. He will go over the
5 benefit-risk assessment of our program, and then
6 I'll come back and end with some concluding
7 remarks.

8 As you heard, over a million people have
9 died from COVID-19 in the United States, and even
10 with current standard care treatments, COVID-19
11 infection is responsible for over 350 deaths each
12 day. This is unacceptable. We can do better.
13 Another surge in new COVID-19 cases is expected
14 this fall and winter in the United States and has
15 already begun in Europe. We need effective and
16 safe treatments to reduce deaths in the hospital,
17 the greatest threat of the COVID-19 pandemic.

18 By way of background, Veru is a
19 biopharmaceutical company focused on developing
20 novel medicines for infectious disease and
21 oncology. Sabizabulin, as you heard also referred
22 to as VERU-111, is a novel oral microtubule

1 depolymerization agent, and sabizabulin was in
2 phase 3 clinical development for advanced prostate
3 cancer when the COVID-19 pandemic started. As I
4 mentioned in my comments, the mechanism of action
5 suggests that sabizabulin could be both an
6 antiviral and an anti-inflammatory agent, and a
7 novel treatment for COVID-19.

8 Based on this, we initiated a COVID-19
9 program. We worked closely with the FDA to design
10 the phase 2 and phase 3, and you can imagine the
11 chaos that was going on when thousands of companies
12 were scrambling to figure out what is the best way
13 to go after something that we didn't know much
14 about, and how do you study it. The FDA was the
15 best source because it had the best access to new
16 and developing and emerging information, and that's
17 how we designed our phase 2 and phase 3.

18 Based on the positive phase 2 study in
19 hospitalized, critical COVID-19 patients, we
20 received fast-track designation. Ultimately, we
21 ended up with a completed phase 3 study, and
22 sabizabulin treatment in the phase 3 study

1 demonstrated clear clinical benefit in hospitalized
2 COVID-19 patients at high risk for ARDS and death,
3 and was published in the New England Journal of
4 Medicine Evidence.

5 How is it that a single agent could have
6 both dual antiviral and anti-inflammatory
7 activities to treat COVID-19? Well, the mechanism
8 of action is actually central. Sabizabulin targets
9 and disrupts rapidly forming microtubules, and
10 that's why we were developing it in oncology
11 because it can arrest dividing cancer cells, but it
12 can also halt virus transport and suppress cytokine
13 production release, and let me show you how that's
14 done.

15 If you look at the cartoon to your left,
16 this is a viral infection of SARS-CoV-2 in a lung
17 cell. What you see is that the microtubules play a
18 critical role throughout the viral replication
19 lifecycle, and you'll see SARS-CoV-2 being
20 internalized, and it has to latch onto the
21 microtubule to move within the cell -- and that's
22 called microtubule trafficking -- to get to the

1 endoplasmic reticulum. And the endoplasmic
2 reticulum is where the virus replicates, gets
3 packaged -- the new viruses get packaged -- go
4 through the Golgi, and then it is placed onto the
5 microtubules for export, for release, and spread.

6 Furthermore, what's important about this
7 process, where you see the microtubules play a key
8 role, this is not the virus itself. The drug is
9 not attacking the virus itself. The drug is
10 attacking a cellular process, and that cellular
11 process allows even greater advantage, and that is
12 that this mechanism is variant independent,
13 agnostic, and furthermore, potentially other
14 viruses can be treated with VERU-111, sabizabulin.

15 Let's turn our attention now to the immune
16 response. In the immune response, you see a
17 T-cell, and even though we're using microtubules,
18 it's a very different process. What you see is the
19 most important component of the immune response is
20 the innate immune system that's trying to fight off
21 a pathogen it just doesn't understand. And the way
22 that's done, and central to that, is the

1 inflammasome. But the inflammasome has to be put
2 together, and it's sample.

3 As soon as its virus triggers the innate
4 immune response, the individual components of the
5 inflammasome come together by microtubules to be
6 assembled. When it's assembled, it then sets off a
7 cascade of activating inflammatory proteins, and
8 these activated inflammatory proteins have
9 packaged, put back onto microtubules, export
10 release, and are a part of that cytokine storm that
11 leads to ARDS, and death.

12 So as you can see now, even though it has
13 what appears to be different end and activities,
14 sabizabulin had dual antiviral and
15 anti-inflammatory activities by going after the
16 same central process, which is the microtubule.

17 Now, we have evidence from preclinical
18 studies that confirm sabizabulin's dual mechanism
19 of action against COVID-19. We have an antiviral
20 activity that was observed in an infectious viral
21 titer assay in SARS-CoV-2 infected cells in vitro.
22 We have an anti-inflammatory activity that was

1 demonstrated in a septic shock model in vitro, and
2 I'll show you these data.

3 Again, now that we understand that we're
4 affecting microtubules, the way to judge that is to
5 test and measure the release of infectious virus
6 particles in the cell itself, so that is the
7 endpoint that you look forward to see whether or
8 not you're affecting viral production.

9 In this assay called the infectious viral
10 titer assay, the way this is done, in step 1, which
11 you see, is you can incubate cells with the virus
12 by itself or virus plus our drug. And what's
13 happening in that period of time when it's
14 incubating is a viral cycle's taking place and new
15 virus is being released into the media, and now you
16 want to measure that new virus that's in the media
17 to see whether your drug has an effect or not.

18 The way you do that is you take the media,
19 the supernatant, and you replate it on fresh cells,
20 and what you're looking for as an indicator of
21 infectious disease particles is you're looking for
22 dead cells, and if the cell gets infected, it dies.

1 And you can measure that; you can actually measure
2 the cell viability.

3 When you look at the graph to the far right,
4 this is measuring viable cells versus the
5 supernatant diluted, diluted, diluted, to a point
6 that you have enough viable cells that you can see
7 50 percent of your cells alive. So by way of
8 example, if you did the straight virus, you have to
9 dilute that supernatant a million-fold to see
10 50 percent of those cells alive, whereas with
11 VERU-111, sabizabulin, and 1 nanomolar and
12 10 nanomolar -- which incidentally is easily
13 achievable with a 9-milligram dose -- you see 80 to
14 100 percent of the cells are viable even at their
15 your first dilution. So what this suggests and
16 indicates is that there is a marked reduction in
17 infectious viral particles released by the cell
18 with sabizabulin incubation.

19 How about anti-inflammatory activity? We
20 use what's called an endotoxin septic shock model
21 in vitro, and what we're trying to do is simulate
22 the cytokine storm. And the way you do that is you

1 take mouse spleen cells and shock it with an agent
2 called LPS. What this does, it releases a bunch of
3 cytokines into the media, and you can measure it if
4 you add your drug, for example.

5 So in this case, sabizabulin at
6 40 nanomolar, which is, again, easily achievable
7 with a 9-milligram human dose, you see that we were
8 able to reduce cytokine production, not just IL-6,
9 but across the cytokines that were produced by this
10 septic shock model, and this suggests that
11 sabizabulin has broad anti-inflammatory activity.

12 Now, this has come up several times, and the
13 reason for it is -- and this is looking at
14 colchicine as a proxy for a potential drug that is
15 exactly the same as sabizabulin, and of course it's
16 not. First of all, colchicine is originally
17 indicated for acute gout and a Mediterranean
18 familial fever.

19 Sabizabulin is not colchicine, and
20 colchicine has not fared well in COVID-19 studies.
21 But again, it's not the same molecule. It's a
22 different chemical structure, as you can see to the

1 right, and it targets microtubules differently. So
2 you can't put microtubule inhibitors into one
3 bucket. That takes away the complexity of why
4 there's so many microtubules today being used for
5 different diseases. In this situation, it's very
6 specific. Sabizabulin binds to beta tubulin and
7 alpha tubulin to crosslink alpha and beta tubulin,
8 whereas colchicine binds only to beta tubulin.

9 So the biology is different. The
10 pharmacology is different. The pharmacokinetics is
11 different. The therapeutic index is different. In
12 fact, it turns out sabizabulin is a much more
13 potent inhibitor tubulin polymerization, so
14 sabizabulin does not fit into p-glycoprotein or
15 CYP3A4, which CYP colchicine does, and is the
16 reason why colchicine has a narrow therapeutic
17 index; we just don't fit.

18 In fact, if you look at the biology -- and I
19 call your attention to the right-lower side of the
20 slide -- you'll see this cell proliferation assay,
21 where we're looking at human triple negative breast
22 cancer cell lines, and the Y-axis is the mean

1 inhibitory concentration 50 in nanomolar. You'll
2 see the green, which is VERU-111, is very effective
3 in inhibiting human triple negative breast cancer
4 cell lines, but colchicine is not. Ultimately,
5 ultimately, clinically, sabizabulin did show in
6 phase 2 and phase 3 clinical studies that it was a
7 strong mortality benefit in hospitalized patients
8 at high risk for ARDS, and for death.

9 Now, the program, the sabizabulin clinical
10 program, consists of the phase 2 and phase 3
11 COVID-19 studies that were done during the pandemic
12 period, from June 2020 to June 2022, so we really
13 overlapped the pandemic period, and we allowed
14 standard-of-care treatment. And you can see in the
15 blue these are the two studies that support
16 efficacy and safety, and we used as our patient
17 population hospitalized COVID-19 patients who are
18 at high risk for the development of ARDS, and
19 death.

20 Supporting safety data comes from our
21 prostate cancer studies of which we have a
22 phase 1b/2 and a phase 3 that's ongoing. Advanced

1 prostate cancer patients are relevant because in
2 this patient population, we use doses of
3 32 milligrams, which is about 3 and a half times
4 higher, and chronic usage, in some cases as much as
5 3 years. So we believe that prostate cancer
6 patients that have the same comorbidities and of
7 similar age, and the fact it was well tolerated, is
8 useful information.

9 The sabizabulin proposed EUA indication is
10 exactly the patient population we treated. These
11 are patients with hospitalized moderate to severe
12 COVID-19, who are at high risk for ARDS. The dose
13 in administration is a 9-milligram oral capsule,
14 once daily for up to 21 days or discharged from the
15 hospital. And the reason that's important is a
16 capsule can be opened and used in an ICU setting.
17 Secondly, the patient doesn't get to go home with
18 the drug, so this is a hospital-controlled drug.

19 Now, you're going to be asked to consider
20 the observed high placebo mortality rate in our
21 phase 3 sabizabulin study and put that into
22 context. But I would argue we have to also put

1 into context the observed placebo rate that we got;
2 and furthermore, once we understand that, what was
3 the result of our drug in that setting?

4 So first of all, to be clear, we purposely
5 designed our study to enroll very sick patients,
6 and this was done in consultation with the FDA.
7 And furthermore, we selected mortality as the most
8 objective and important primary endpoint. In fact,
9 we went one step further and said mortality at
10 day 60.

11 So what did we learn by having a clinical
12 trial with the inclusion/exclusion criteria that
13 focused on selecting out the sickest patients is we
14 found out that sicker patients die at a higher
15 rate, and we have two lines of information --
16 evidence -- that supports the context of our
17 observed high placebo rate.

18 One is contemporaneous studies, and what we
19 did is we took 15 contemporaneous COVID-19 studies,
20 and we plotted out the mortality rates of placebo
21 plus standard of care, and these are the studies
22 that either have an EUA or they're part of the NIH

1 COVID-19 treatment guidelines, and compared it to
2 our phase 3 sabinabulin study.

3 Next, very recently, the CDC has real-world
4 data, where they reported the mortality risk in
5 hospitalized severe COVID-19 patients during the
6 Delta to Omicron periods, from July 2021 to
7 June 2022, which again is where our studies
8 overlap, from the Premier Healthcare Database
9 Special COVID-19, and this database captures
10 678 hospitals and 25 percent of the annual hospital
11 admissions.

12 So what did we see? Well, again you just
13 can't put the death rate side by side; you have to
14 put context to the death rates. And what we did
15 here is we plotted the placebo mortality rate with
16 standard of care, plus against the proportion of
17 patients that have severe disease defined as
18 non-invasive ventilation, high-flow oxygen, and
19 mechanical ventilation; so these are sick patients.
20 And it makes sense, and what we showed is that the
21 higher proportion of sick patients you have, the
22 higher the death rate.

1 This follows and is highly correlative with
2 an R squared of 0.7702. So the black dots form
3 that line, and you recognize these studies. These
4 are the common studies and viewed again through the
5 lens of the proportion of patients that have severe
6 disease.

7 Now when you add the overall study from
8 Veru, which is 29.4 percent at day 30 -- and we
9 picked day 30 because this is how all of these
10 studies have reported -- you see that the red dot
11 falls in line. Again, you would imagine at day 60
12 you would have even a higher death rate.

13 Now let's look at the real-world data. The
14 real-world data that was reported -- and I draw
15 your attention to the blue table -- this table
16 shows you the mortality rates of the high-risk
17 COVID-19 patients based on variant. So to pause
18 for a moment, I'm not talking about all the
19 patients that come into the hospital and that are
20 admitted, and those are the patients you're
21 treating. No. We're talking about the patients at
22 high risk for ARDS, so those are the patients on

1 this chart: ICU, WHO 5, WHO 6, WHO 5 being forced
2 oxygen, WHO 6, mechanical ventilation.

3 What you see whether you look at Delta or
4 early Omicron, they're the patients that are
5 contributing to the high mortality rate, then and
6 today. In fact, if you look now at the phase 3
7 COVID-19 sabizabulin full study that was enrolled
8 in this same period of time, the overall placebo
9 rate of 29.4 percent at day 29 and 39.7 percent at
10 day 60 is in line.

11 So now when you understand the context of
12 the high placebo rate, based on the severity of the
13 patients that were enrolled, now let's look at the
14 mortality benefit of the sabizabulin study.

15 Well, the mortality benefit shows the strong
16 effect size was robust and clinically meaningful in
17 every subgroup or sensitivity analysis of the
18 primary endpoint regardless of the placebo
19 mortality rate. In fact, the hospitalized COVID-19
20 patients at high risk for ARDS and death then and
21 now are the same patients who are dying, and will
22 have the same benefit from sabizabulin's treatment.

1 How about our safety database? We
2 acknowledge it's small, but we also acknowledge the
3 safety database supports the EUA. The overall
4 safety population database is 266 patients, which
5 consists of the COVID-19 patients and the prostate
6 cancer patients. There were no remarkable safety
7 findings in our safety population. It was well
8 tolerated at 3 and a half times dose higher, and up
9 to 3 years duration in prostate cancer studies.

10 To put in perspective, sabizabulin has a
11 short half-life. Five and a half hours it's
12 quickly cleared, and you have a short course of
13 therapy, 21 days or discharge from the hospital;
14 again, because it's a hospital-controlled drug.
15 Any potential safety risk is minimized, as the
16 indicated population will be hospitalized and under
17 direct care. We're committed to working with the
18 agency to collect additional clinical information
19 under the EUA to support the continued use of
20 sabizabulin.

21 We also ask to consider the proposed
22 population. Well, the patient population we put in

1 our proposed fact sheet is the patient population
2 we studied. We propose that sabizabulin be
3 indicated for the treatment of hospitalized adult
4 patients with moderate to severe COVID-19 who are
5 at high risk for acute respiratory distress
6 syndrome. This matches our inclusion/exclusion
7 criteria for the phase 2 clinical trial, and this
8 is the population where sabizabulin treatment
9 resulted in a robust, statistically significant,
10 and clinically meaningful mortality benefit.

11 A serious unmet medical need still exists
12 when you look at patients who are on supplemental
13 oxygen with comorbidities, WHO 5 with forced
14 oxygen, and WHO 6 from mechanical ventilation.

15 Now, I would like to ask Dr. Gary Barnette,
16 our chief scientific officer, to provide a summary
17 of the efficacy and safety of our COVID-19 program.

18 **Applicant Presentation - Gary Barnette**

19 DR. BARNETTE: Thank you, Dr. Steiner.

20 My name is Gary Barnette, and I'm the chief
21 scientific officer at Veru. I'm a PhD clinical
22 pharmacologist by training. I'm a former FDA

1 reviewer in three different divisions.

2 In March 2020, we were starting this
3 pandemic, and as you know, there was a lot of
4 information, misinformation, disinformation, and
5 patients and people just didn't understand what to
6 do, and I started getting calls from people from my
7 hometown in Lost Creek, West Virginia, as well as
8 folks from church, "So if I get this virus, what do
9 I do?"

10 With the knowledge that we have, a phase 3
11 asset of sabizabulin, a micro tubulin
12 depolymerization agent, and then looking at the
13 biology and the microtubule trafficking, and the
14 inflammatory response that the virus induces, it
15 became very apparent to Dr. Steiner and I that
16 sabizabulin had, or could have, a potentially
17 incredible important effect on this pandemic.

18 Initially, we called the FDA immediately.
19 The FDA has been very responsive. We were in a
20 pre-IND meeting. Very quickly we went to the IND
21 and collaboratively designed the phase 2 study that
22 Dr. Steiner has mentioned and that I'll go over

1 briefly.

2 That phase 2 study was a proof-of-concept
3 study to look at this very novel mechanism and way
4 of attacking a virus, a viral infection. The study
5 indeed only included 39 patients as per the
6 discussion with the FDA. The key efficacy
7 endpoints, as you can see on the left, we showed an
8 82 percent reduction in mortality in this small
9 study. We showed a reduction in days in the ICU
10 and a reduction in the mean days on mechanical
11 ventilation.

12 Turning to safety, in the right box, this is
13 a summary of adverse events that occurred in at
14 least 2 patients in either group in the study. As
15 you can see, there's no adverse event that was over
16 represented in the sabizabulin group. As a matter
17 of fact, the adverse events associated with COVID
18 progression looked like they were higher in the
19 placebo group than they were in the sabizabulin
20 group.

21 We took these data back to the FDA for an
22 end of phase 2 meeting; again, had an incredibly

1 collaborative discussion about the design of the
2 phase 3, discussed and decided upon the primary
3 endpoint of mortality, all-cause mortality, at
4 day 60, and ultimately, based on the data that you
5 see on the screen, the FDA granted fast-track
6 designation for the program.

7 Now, the phase 3 clinical study that we
8 designed was a double-blind, placebo-controlled
9 study, 2 to 1 randomization, and frankly, the
10 2 to 1 randomization is because ethically it became
11 difficult for us to include a number of patients on
12 a placebo arm when you had, potentially, an
13 82 percent reduction of mortality, as you saw in
14 the phase 2.

15 The study was designed with an estimated
16 placebo rate of 30 percent, a mortality rate of
17 30 percent, with approximately 50 percent reduction
18 in the sibuzabulin group. The alpha was 0.05
19 two-sided and the power was greater than
20 92 percent.

21 As Dr. Steiner outlined, these are sick
22 patients. I mean, these are the most progressed

1 patients. These are WHO 4's. And just to remind
2 you, a WHO 4 is a hospitalized patient that is on
3 supplemental oxygen or passive oxygen. In our
4 study, these patients had to have at least one
5 comorbidity that made them at high risk for
6 development of disease. WHO 5's we recruited. A
7 WHO 5 is forced oxygen and WHO 6 mechanical
8 ventilation with innervation. The patients in our
9 study did have to have an SpO₂ of less than
10 94 percent on room air prior to oxygen support.

11 The study was done under current GCPs and
12 was conducted rigorously. The study had an
13 adequate informed consent process, and as far as
14 the differences in goals of standard of
15 decision making that the FDA mentioned earlier and
16 we'll ask you to opine on later, the patients that
17 came into the study made an informed decision to
18 participate in this study when they were
19 progressed, and they made the decision that they
20 wanted to give this drug a shot because they wanted
21 to live. And we believe that that is the basis of
22 this particular program; keep patients alive.

1 The patient disposition, we screened
2 244 patients for the study. We randomized 204.
3 The 2 to 1 randomization worked fairly well with
4 134 in the sibuzabulin and 70 in the placebo group.
5 As you can see from the bottom line, the proportion
6 of patients that completed the study in the
7 treatment group was fairly similar with
8 93.3 treated group versus 94.3 in the placebo
9 group.

10 Key demographics, the mean age of the
11 patients was similar. The proportion of gender
12 distribution was similar. The WHO score at
13 baseline was similar. One of the uncertainties
14 that the FDA will ask you to discuss later on is
15 the standards of care. The standards of care that
16 we applied to the study is distribution. Here
17 again, as Dr. Steiner mentioned, patients were
18 allowed to have standard of care in the study, and
19 in the placebo group as well as in the treated
20 group.

21 As you can see, dexamethasone is a little
22 higher in the treated group, but when you look at

1 any corticosteroid, there's no difference.
2 Remdesivir is approximately similar, and then of
3 course the IL-6 and the JAK inhibitor used appears
4 to be higher in the placebo group than the treated
5 group.

6 As has been mentioned many times, the
7 primary endpoint of the study was all-cause
8 mortality or the proportion of patients who died on
9 study up to day 60. Some key secondary endpoints
10 were proportion of patients alive without
11 respiratory failure at varying time points; days in
12 the ICU; days on mechanical ventilation; days in
13 the hospital; proportion of patients who died on
14 study at other time points other than day 60; and
15 then change from baseline and viral load, and we'll
16 go over these as we go through this presentation.

17 As has been mentioned, we did have a planned
18 interim analysis. The planned interim analysis was
19 the first 150 patients randomized into the study.
20 On April 8th, an independent data monitoring
21 committee reviewed the data that you're seeing on
22 the screen and made a decision that the study

1 should be unanimously stopped; a unanimous
2 decision, or recommendation, to stop the study
3 early for clear evidence of benefit.

4 As you can see in the graph on the right,
5 the placebo cumulative mortality curve starts
6 separating from sabinzabulin almost immediately and
7 continues to widen as the study progressed up to
8 day 60. The p-value on the bottom-right, this is
9 using a logistic regression with the covariate
10 analysis and the multiple imputation. The p-value
11 is 0.0042 with an odds ratio of 3.21. This is very
12 consistent with the data that Dr. Karimi-Shah
13 presented in her introduction.

14 At the time that the interim analysis was
15 completed, we had enrolled 204 of the 210 targeted
16 patients into the study, and the rest of the data
17 that I'm going to present today is focusing on this
18 data set. As you can see in the curve to the left,
19 the top-left, the mortality benefit was maintained
20 in the overall population. Again, the placebo
21 group, from a cumulative mortality standpoint,
22 separates quickly and continues to separate over

1 the 60-day treatment period or follow-up period.
2 The p-value of this overall analysis, again, very
3 rigorous and robust at 0.0046 using the planned
4 primary analysis.

5 We did some sensitivity analyses, and you
6 can see those in the blue box. The take-home
7 method, whether you look at it from a time to event
8 Kaplan-Meier perspective, or a Cox proportional, or
9 a logistic regression proportion, the p-values are
10 very strong with basically less than 0.005 across
11 the board. Dr. Wei in a few minutes will provide
12 an independent analysis of these data that he did
13 that also demonstrates statistical significance and
14 benefits of sabizabulin in reduction in death
15 compared to placebo.

16 Now again, some of the uncertainties that
17 the FDA has commented on earlier, and we'll ask you
18 to discuss later, are related to demographics,
19 standards of care, and these kinds of things. We
20 did subgroup analyses, using the primary endpoint,
21 of the demographics. The males/females, you can
22 see age 60, various standards of care, WHO score,

1 and geography.

2 Let me orient you to this slide very
3 briefly. The vertical line in the middle means
4 anything left of that vertical line means
5 sabizabulin is better in absolute risk reduction.
6 Anything to the right, or any dot to the right of
7 that, means placebo was better. As you can see
8 across, all these subgroup analyses, the dots are
9 all to the left of that line, meaning the absolute
10 risk reduction, regardless of what subgroup
11 analysis we look at, shows a benefit in sabizabulin
12 in deaths compared to placebo.

13 Now I'll focus you on the standards of care,
14 specifically vaccine versus unvaccinated; use of
15 remdesivir, no remdesivir; dexamethasone, no
16 dexamethasone; tocilizumab, no tocilizumab; JAK
17 inhibitor, no JAK inhibitor. I want to point out,
18 whether they got the standard of care or they did
19 not, the dots are all to the left of that vertical
20 line, meaning the absolute risk reduction clearly
21 demonstrates that sabizabulin reduces death
22 compared to placebo.

1 Another potential uncertainty the FDA
2 mentions is the comorbidities, so we did a number
3 of analyses of comorbidities, again, looking at the
4 overall death rate up to day 60. You can see on
5 the left the subgroup analyses of various
6 comorbidities, as well as constellations of
7 comorbidities, meaning multiple comorbidities, and
8 strings of comorbidities that patients could have
9 had in the bottom two sections, just hypertension
10 plus 3 comorbidities, et cetera, and then the
11 bottom three lines are just the sheer number of
12 comorbidities that the patients had coming into the
13 study.

14 The take-home message from this slide is the
15 right two columns, and your eye can go down those
16 two columns and see negatives. So in every
17 comorbidity or every constellation of comorbidity,
18 the absolute risk reduction in mortality with
19 sabizabulin is observed and the relative reduction
20 in mortality is observed across every analysis we
21 have conducted.

22 Now, to further investigate this, we did a

1 backward logistic regression analysis, where we
2 basically eliminated, or took out in a step-wise
3 fashion, all of the comorbidities and all of the
4 covariates that you would consider that's possibly
5 affecting this mortality and the observed effect
6 size.

7 You can see them listed here. I know it's
8 busy and complicated, but suffice it to say if you
9 look at the bottom-right, the p-value -- and we did
10 this -- and looked at the effect of all of these
11 covariates combined and separately, the p-value is
12 0.0050, again, in favor of sabizabulin.

13 Now one of the other questions that is often
14 asked is around variant. Now remember, the
15 mechanism of action of sabizabulin is independent
16 of variant and, frankly, it's independent of virus,
17 and this data here demonstrates that. I think
18 everybody would agree that -- well, our study was
19 conducted through the Delta and Omicron variants,
20 and I think everybody would agree, or most people
21 would agree, that prior to December 15, 2021, Delta
22 was the predominant variant that was circulating,

1 really, around the world. And you can see that top
2 line; the relative reduction in mortality of
3 patients that were randomized prior to that date
4 was 41.3.

5 I think we could argue about the transition
6 from Delta to Omicron, but regardless of whether
7 you look at after 12-15-2021 or after 1-15-2022,
8 whenever you feel the Omicron took over, basically,
9 as the predominant variant, the mortality benefit
10 is maintained, 59.1 percent relative reduction in
11 death, an absolute reduction of 21.1 or 16.6, both,
12 of course, clinically relevant.

13 Now, the FDA has brought up, and we
14 acknowledge, that there was the potential for an
15 unblinding when a patient went on to an NG tube,
16 and the capsule was opened. We also investigated
17 this extensively, and we investigated this down to
18 the site level, and we could not find any evidence
19 of unblinding or conscious unblinding. We don't
20 see any difference or change in standards of care
21 administered, or adverse event, and so on and so
22 forth.

1 We also did a statistical analysis. This is
2 a Kaplan-Meier analysis where we used mortality or
3 initiation of dosing via NG tube as the censored
4 event. And as you can see in this analysis, a
5 relative difference of 43.4 percent, but a log
6 rank -- a p-value log rank -- on the Kaplan-Meier
7 analysis of 0.0179, or using Wilcoxon, 0.0228, both
8 show robust statistical significance. So while it
9 could have happened, we don't believe it affected
10 the study at all.

11 Key secondary endpoints, when we look at the
12 first secondary endpoint, which is proportion of
13 patients alive and free of respiratory failure at
14 day 29, you can see the blue box in the middle of
15 the screen. At day 29, we showed a 32 percent
16 increase in patients who were alive and did not
17 have respiratory failure at that time point. This
18 resulted in a p-value, at the bottom-right, of
19 0.0186; again, robustly statistically significant.

20 Looking at the other secondary endpoints,
21 days in the ICU, days on mechanical ventilation,
22 days in the hospital, again, all the way to the

1 right you can see each one of these met statistical
2 significant rules.

3 Now I want to point out in this particular
4 analyses, as per FDA direction, we attributed the
5 worst possible outcome for every patient who died
6 on study. What that means is the worst possible
7 outcome would be 60 days in the hospital. So for
8 every patient that died in the study, we attributed
9 60 days in the hospital, 60 days in ICU, and
10 60 days on mechanical ventilation to those
11 patients. That's the analysis you're seeing on the
12 screen. Dr. Wei, here in a bit, will be talking to
13 you about an independent analysis he did that looks
14 at it differently that also shows statistical
15 benefit of sabizabulin in these parameters.

16 The bottom secondary endpoint is viral load.
17 This did not reach statistical significance; very
18 highly variable and didn't reach statistical
19 significance. But when you compare the mean values
20 at baseline versus the mean values at last on study
21 up to day 9, you see an approximately 43 percent
22 reduction in sabizabulin viral load and

1 approximately 412 percent increase in placebo viral
2 load; again, not statistically significant, but
3 certainly this observation is intriguing.

4 So what are our efficacy conclusions?

5 Sabizabulin demonstrated a very robust 20.5 percent
6 absolute risk reduction at 60-day mortality. This
7 was also analyzed as a 51.6 relative risk
8 reduction. Every sensitivity analysis, every
9 subgroup analysis, when we looked at every
10 parameter that we could outline, they all confirmed
11 the overwhelming benefit of sabizabulin in
12 reduction of death. The secondary endpoints also
13 consistently demonstrate statistically significant
14 and clinically meaningful efficacy of sabizabulin.

15 Now the number to treat, or NNT, this is the
16 number of patients that we need to treat to save a
17 life, and this is an incredible finding or an
18 incredible way to look at this. For every
19 5 patients treated in the clinic with sabizabulin
20 in the phase 3 clinical study, we saved one life.

21 Now, I have not gone over one of the other
22 points the agency is going to mention and ask you

1 to opine on, is the timing to enrollment. I do not
2 have data on slide, however, I do have it in a
3 backup if you'd like to see it. We did have
4 6 patients in the sabizabulin group that were in
5 the hospital for greater than 14 days prior to
6 entry into the study. Now, one could argue whether
7 that patient would be more likely or less likely to
8 die because they're in the hospital, but the bottom
9 line, it was different, six in the treated group
10 versus zero in the placebo group. When we
11 eliminate those 6 patients from the analysis and do
12 the analysis again, the p-value is still 0.0046.
13 So the time coming into the hospital prior to entry
14 into the study does not appear to matter.

15 I'm going to continue to discuss our safety
16 database. As Dr. Steiner mentioned, the overall
17 safety population is 266 patients and growing. We
18 have 149 patients in the two COVID-19 studies,
19 117 patients in the ongoing phase 3 study at the
20 time of this data cutoff. I'm going to focus this
21 discussion on the phase 3 study, and specifically
22 the safety data set, meaning patients who actually

1 got at least once dose of study drug, and that's
2 199 patients or 130 in the sabizabulin group and 69
3 in the placebo group.

4 The first slide is the treatment-emergent
5 adverse events, and this table represents the
6 adverse events that occurred in at least 5 percent
7 of the patients in either treatment group. The
8 first thing I'll point out is that this is a 2 to 1
9 randomization study, so you have to focus on the
10 percentages in the middle, in the parenthetics in
11 the table, to understand the difference between the
12 treatment groups.

13 The proportion of patients that experienced
14 any treatment-emergent adverse event was 24 percent
15 higher in the placebo group compared to the
16 sabizabulin treatment group. The adverse events
17 above that blue line really represent adverse
18 events that are associated with COVID-19
19 progression. As you can see, they virtually all
20 are more highly represented in the placebo group
21 than the sabizabulin group.

22 Below that line is our other adverse events

1 that meet the criteria for this slide and, really,
2 not much that shows an imbalance against the
3 treatment arm. I would point out urinary tract
4 infections at the bottom is 6.2 and 1.4. I would
5 say additionally that when you look at bacterial
6 infections overall, there's no difference between
7 the treatment group, and when you look at
8 infestations and infections as a system organ
9 class, it's actually 33 percent higher in the
10 placebo group than in the treated group. This is
11 an observation we make, and we will follow this in
12 our fact sheet, as well as the patients being
13 treated with sabizabulin.

14 When you look at treatment-emergent adverse
15 events leading to the treatment discontinuation --
16 this is an important aspect -- there's no
17 difference between the treated group, 4.6 percent
18 versus 4.3 in the placebo group. The other thing
19 that you notice is that there's no individual
20 adverse event that's more than 1 in either group,
21 meaning there's nothing, again, that has
22 represented anything -- overrepresented in the

1 sabizabulin group.

2 Switching our attention to serious adverse
3 events, again, this table is the serious adverse
4 events that occurred in at least 2 percent of
5 patients in either treatment group. Again, the
6 proportion of patients that experienced any serious
7 adverse event was 59 percent higher in the placebo
8 group compared to the sabizabulin treated group.

9 These adverse events, as you scan down the
10 left side, are all adverse events, or serious
11 adverse events, that are associated with COVID
12 progression and COVID death. I could point out
13 that virtually all of them are overrepresented in
14 the placebo group versus the sabizabulin group. I
15 point out the bottom one, respiratory failure, a
16 key serious adverse event in this population, is
17 20.3 percent in the placebo group versus 10 percent
18 in the sabizabulin group.

19 Adverse events, fatal adverse events, of
20 course we had more deaths in the placebo group than
21 the sabizabulin group, so certainly it's
22 overrepresented in the placebo group. But the

1 take-home message from this slide is that there's
2 no individual fatal adverse event that's
3 overrepresented, again, in the sabizabulin group
4 compared to the placebo group.

5 So what are our safety conclusions?

6 Sabizabulin was well tolerated in our COVID-19
7 studies. The most common treatment-emergent
8 adverse events were respiratory failure, acute
9 kidney injury, and pneumonia. All three of these
10 events were experienced in a higher proportion of
11 subjects in the placebo group than in the
12 sabizabulin group.

13 The most common serious treatment-emergent
14 adverse events were respiratory failure, acute
15 kidney injury, and acute respiratory failure.
16 Again, all three were experienced in a higher
17 proportion of subjects in the placebo group
18 compared to sabizabulin, and interestingly, the
19 safety observations -- because of all the adverse
20 events associated with COVID progression -- appear
21 to be higher in the placebo group than the treated
22 group confirm the efficacy findings of sabizabulin

1 in the treatment of COVID-19.

2 The safety findings, I did not discuss
3 these, but the safety findings from the prostate
4 cancer program, at a dose of approximately
5 3 and a half fold higher than the dose we're using
6 in the COVID-19 studies, showed sabizabulin is well
7 tolerated even when administered chronically daily
8 for up to 3 years.

9 We agree with the FDA that additional data
10 is needed, and these are planned clinical trials
11 that we intend to conduct. The three, the first
12 one is V3011903. This is in hospitalized adult
13 patients with less severe COVID-19 than we studied
14 in the completed study, meaning WHO 3, that's
15 hospitalized patients not on supplemental oxygen,
16 and then WHO 4, patients without a comorbidity.

17 We believe and propose that this patient
18 population would be an ideal population to assess
19 the true effect of any adverse events associated
20 with sabizabulin because these are less sick
21 populations and will be less complicated by
22 progressing disease.

1 Incidentally, as we've mentioned multiple
2 times, the method of action of sabizabulin is
3 agnostic to variant and, frankly, it's agnostic to
4 virus. We do have nonclinical information of the
5 positive effect of sabizabulin on H1N1, or
6 influenza, as well as pox viruses or vaccinia
7 viruses.

8 We do intend to initiate two phase 3
9 studies, one in influenza, adult influenza patients
10 hospitalized, and then also hospitalized adult
11 patients with viral-related ARDS. We do look
12 forward to discussing these proposed studies with
13 the agency. We do have protocols written for these
14 and ready to initiate.

15 We're discussing this, but it looks like
16 each one of these studies will actually have
17 approximately 500 patients in each or more, so this
18 should give us a lot of safety data to augment the
19 knowledge of sabizabulin. Of course, additionally,
20 we will collect safety data under the EUA as we
21 have to and as regulated.

22 So what is the benefit-risk from the

1 sponsor's perspective? The benefit-risk assessment
2 really shows overwhelmingly positive in favor of
3 sabizabulin with reductions in mortality and death.
4 From COVID-19, we're not worried about getting the
5 sniffles; we're worried about dying. And overall,
6 sabizabulin reduction in mortality in the overall
7 population and in all subgroup analyses and
8 sensitivity analyses is robust.

9 Sabizabulin, again, is intended for use only
10 in hospitalized patients that are high risk for
11 death, or to use the FDA's terminology,
12 "non-negligible risk of death," and they're under
13 constant surveillance. Therefore, any adverse
14 events that are observed can be addressed very
15 quickly and mitigate any further risk.

16 As I mentioned, additional safety data will
17 be obtained under the EUA for this indication,
18 including the spontaneous reporting under the
19 regulations, as well as a pregnancy registry that
20 we have put in place. Through the additional
21 planned clinical studies with sabizabulin that I
22 outlined in less severe COVID patients, influenza

1 and virus-related ARDS, we do propose that we will
2 collect a significant amount of safety and efficacy
3 data on sabizabulin as we go forward in a very
4 short time frame.

5 Now, I'd like to introduce Dr. Lee-Jen Wei
6 from Harvard. He's a professor of biostatistics at
7 Harvard. He has done independent analyses of our
8 efficacy data, both primary and secondary
9 endpoints, and we'd like him to present that today.

10 Dr. Wei, the floor is yours, sir.

11 DR. WEI: Thank you, Dr. Barnette. Can you
12 hear me alright?

13 DR. BARNETTE: Yes.

14 **Applicant Presentation - Lee-Jen Wei**

15 DR. WEI: Thank you.

16 This is Lee-Jen Wei. First, I want to make
17 disclosures. I have to admit there are probably
18 limited numbers we served in the industry because
19 I've been doing clinical trials for 40 years. Most
20 of the time we served data monitoring, we probably
21 served like 50 or 60 committees in the past. So I
22 apologize if I missed any of those companies

1 involved in the past.

2 I joined Harvard 1991 during this HIV
3 epidemic. I was told I was hired because they
4 needed someone who knows a little bit about
5 survival analysis to handle HIV. Our department
6 actually is a data center for HCTG [ph] Network.
7 Since then, I've gotten involved with infectious
8 disease quite a bit. Now, our center actually also
9 sponsors for several COVID-19 trials.

10 In the past two years, our group published
11 several papers in the clinical journals for
12 methodology and discussion, for example, of
13 statistical methods. For example, the New England
14 Journal of Medicine, Annals of Internal Medicine,
15 et cetera, and myself right now has got involved in
16 a couple of ARDS trials involving COVID-19.

17 Now, for the current study, the primary
18 endpoint is day 60 survival, which is a binary
19 endpoint; either the patient survived on day 60 or
20 died. The sponsor told me, "Well, the results are
21 so impressive." They just wonder if my group can
22 actually analyze data independently to see if

1 anything they actually -- this is very unusual.
2 They told me, "Anything you can poke into to find
3 out our results are not robust, we will be happy to
4 hear it," and this is very unusual from a sponsor
5 from industry. So I said, "Okay. Let's try the
6 following. Send the data to us." So we had raw
7 data, survival data, and also had secondary
8 endpoints, so I'm going to share with you very
9 quickly what we did.

10 Now, everybody knows now, the FDA has some
11 concern about the 902 study may be a small size,
12 and maybe there is some imbalance in the patients'
13 baseline level, what we call covariates, so that's
14 one of the concerns we're going to discuss today.
15 Before I present in a robust way to analyze day 60
16 survival with covariate adjustment, allow me to
17 show you what is exactly the same that the sponsor
18 presented in the survival analysis Kaplan-Meier
19 curve. You notice the blue curve is for the
20 treated arm. The brown curve is for placebo or
21 control arm patients. You notice the curve, the
22 blue one, is always about the brown one, so

1 numerically we know the patients' survival profile
2 is much better in the treated arm than the control.

3 Now remember there are 6 patients, four in
4 the treated arm, two in the control arm. We don't
5 know their survival status because they withdrew
6 from the study. In the Kaplan-Meier, we actually
7 assumed those 6 patients are censored, the survival
8 data, which is a very popular way to handle this
9 censored observation.

10 You notice they are only treating 60 days,
11 so you use the Kaplan-Meier curve. You're using on
12 the right-hand side the 60 days. You're reading
13 the blue curve's value against the brown curve.
14 That's what we interpret, 60 days survival rates
15 between the two arms.

16 This is not adjusted with the baseline
17 covariants at all. It's unadjusted. You notice
18 with the treated arm patient, on average, 60 days
19 survival is at 80.9 percent. The placebo is
20 60.7 percent. The difference is 20 percent. I
21 have to say this. Even without adjustment, I never
22 saw this kind of mortality benefit. This is not

1 relatively a reduction of mortality; this is
2 absolute reduction. I don't think any trial -- so
3 far I haven't seen -- in the COVID-19, we have such
4 a dramatic difference in absolute sense.

5 In any event, the risk difference, or
6 mortality, or survival difference is 20 percent,
7 and you notice that the lower bound is 7 percent,
8 upper bound is 33 percent, and the p-value, again,
9 0.0028, as Dr. Barnette showed us. The odds ratio
10 is 1. That means there is no difference, and the
11 lower the better in this case, but the FDA uses it
12 the other way around, like flipping over or
13 something. Again, it's highly significant.

14 Next, the method we used, we actually
15 started to use the covariate information from the
16 patient; that means the patients at baseline
17 variable information. This is all prespecified in
18 the protocol, and you notice the sponsor used the
19 logistic regression because of the binary data with
20 those covariate adjustments.

21 Another thing that's very interesting is
22 because we had 6 patients without a survival

1 status, the sponsor used multiple imputations to
2 figure out what's going on with the day 60
3 mortality for 6 patients. I believe the
4 statistical method was actually shared with FDA. I
5 believe FDA agreed with this plan, but in survival
6 analysis, this is a little bit unusual.

7 We usually don't impute those censor
8 observations, also we actually use a logistic
9 regression covariate adjustment we call ANCOVA.
10 It's very popular, but nowadays people start
11 wondering, maybe we can relax this modeling.
12 Instead of using logistic regression, can I do
13 better? That means I don't use any model,
14 model-free. I notice we have several experts in
15 survival analysis on the committee today. We'll be
16 happy to discuss it a little further.

17 So what we did is the following. We
18 actually used a method called augmentation method,
19 which also was recommended by FDA guidance for the
20 covariate analysis and recently actually was
21 published in 2021. It's very impressive. Actually
22 FDA recommended also thinking about using

1 non-parametric, use a model-free method instead of
2 logistic regression.

3 Of course, logistic regression still is one
4 of the analyses that we usually do anyway, but if
5 we do this in a non-parametric way, make
6 adjustments for patients covariates, the first one,
7 because we have 6 patients, we didn't know their
8 survival status. So let's first drop the
9 6 patients because we don't know how to do this
10 imputation, which I think is to ignore the
11 imputation method [indiscernible]. How are we
12 going to do it with 6 patients?

13 First, we ignore the 6 patients and the data
14 and say, what happened? If we use this
15 non-parametric augmentation method and adjust it,
16 again, the difference is 20 percent and the p-value
17 is still pretty impressive. In fact, this is a
18 very interesting methodology. In fact, FDA asked
19 the sponsor to perform such analysis I think maybe
20 a month ago, so we did this augmentation method to
21 actually answer FDA's questions about the
22 augmentation method. Anyway, unadjusted is also

1 20.5 percent.

2 Now, because we didn't want to drop the
3 6 patients, what are we going to do with these
4 6 patients? Then we said, "Well, why don't we do
5 the following?" You have 4 patients that were in
6 the treatment arm and 2 patients in the control
7 arm. We didn't know the survival status on day 60.
8 Why don't we just put this in 4 patients, assign
9 the treatment group, the old debt [indiscernible]
10 at day 60. On any hand, those 2 patients in the
11 control arm, we assume they survived on day 60, so
12 we try to penalize the treatment group and saying,
13 "Look. I gave you the worst case." What happened
14 in this case?

15 Again, we used this augmentation method. If
16 you noticed, without adjustment, you have
17 16.9 percent difference and the adjusted one, 16.8.
18 They're almost identical. Look at this confidence
19 interval p-value. The p-value for adjusted is a
20 little bit larger, 0.0136. Now, remember this is a
21 penalty against the treated arm.

22 Now, of course if you have survival data, we

1 usually use a Cox model instead of logistical
2 regression, then we say, "Okay. Let's do a Cox
3 model." I think the sponsor also did this Cox
4 model. Again, if you do the Cox model, you don't
5 have to worry about the 6 patients anymore because
6 they are censored observations. If you look at
7 this hazard ratio at 0.432 and the covariate
8 adjusted for Cox model at 0.38, this is really very
9 impressive, clinically speaking. Don't even worry
10 about this p-value anymore. We ask ourselves,
11 clinically speaking, do you think you have a
12 survival benefit? I would say yes.

13 I finished the primary endpoint analysis,
14 and we know, under the sun, any method we did, we
15 have a treatment effect, and statistically and
16 clinically very meaningful. The next one, the
17 sponsor says, "L.J. Wei, why don't you try to
18 analyze the secondary endpoint?" I said, "Fine."

19 Now, the first one, we are dealing with the
20 hospital staying time. For example, the patients
21 stay in the hospital 15 days and check out, so
22 these patients are 15 days in the hospital. They

1 wanted to know, based on the time in the hospital,
2 in this endpoint, what would happen between the two
3 groups?

4 You notice the sponsor did an interesting
5 analysis. Suppose a patient died at 10 days in the
6 hospital, and we said, well, what would be the
7 patients in the hospital days? The patient died.
8 Then the sponsor actually imputed this number by
9 60 days. That means, "Sorry. I give you the worst
10 number." But on the other hand, if you think about
11 it, the patient died at 10 days, the in-hospital
12 days shouldn't be 60 days. It's a very artificial
13 number.

14 That's one of the methodology papers we
15 published in Annals of Internal Medicine last year.
16 For COVID-19, we encouraged people to think a
17 little bit differently. We traced this endpoint a
18 little bit. We said, "Hey, listen. Why don't you
19 think it the other way around? You have 60 days of
20 follow-up time. How about we say hospital-free
21 survival days during the 60 days?" So I said,
22 "What do you mean?" I said, "Well, if the patient

1 is in the hospital for 15 days and checks out
2 alive," and we said, okay, 60 days minus 15, that's
3 45 days. So this guy, again, 45 days, happy days.
4 On the other hand, you have a patient who died
5 10 days in the hospital. I said, "How many days
6 did this guy survive checking out from the
7 hospital?" Zero days.

8 So clinically speaking, this is a much
9 better way to quantify this concept. So we use
10 this endpoint slightly different from the sponsor,
11 and you notice in the table, the treatment arm
12 patient, on average, 36.1 days hospital free, and
13 then they also survived. The placebo is 28 days.
14 The difference is 8.11. Again, you can see it's
15 statistically and clinically very interesting. In
16 fact, if you notice in remdesivir, the original
17 trial, those products probably give us 1.5 days, on
18 average, for 28 days, but this is 8.11 days for
19 60 days.

20 For ICU-free survival days, we used the same
21 definition, then we compared the two arms. You
22 notice the treatment arm, 44.2 days, placebo,

1 34 days; again, statistically, clinically very
2 meaningful. The next one is mechanical
3 ventilation-free survival days. The difference is
4 9.29 days, and again, it's a pretty interesting
5 result.

6 So I think that the concern about imbalance
7 of covariates, I think FDA in the briefing document
8 is kindly saying, "Well, maybe there are some
9 differences among those patients between the two
10 groups." They have some kind of a small
11 discrepancy between the two groups. That's
12 probably due to the small data set. But on the
13 other hand, the FDA also claims, no matter what
14 analysis -- and we made an adjustment any way we
15 wanted to, and we couldn't find anything that would
16 discredit this impressive mortality benefit.

17 Another thing I think FDA also mentioned is
18 maybe there are some unobserved covariates. We
19 didn't collect, so we cannot make an adjustment, so
20 what are you going to do with this? They believe a
21 large trial is probably ok, but in my humble
22 opinion and so many years experience, you have so

1 many unobserved covariates, but those covariates
2 are probably all highly correlated with observed
3 covariates.

4 So if we make an adjustment with observed
5 covariates, I don't think there's a big issue with
6 those unobserved covariates. So in summary, I
7 believe the efficacy of the treatment is solid, and
8 I would emphasize clinically and also statistically
9 very meaningful.

10 Allow me to introduce the next speaker,
11 Dr. Sandrock, for further discussion. Thank you
12 very much.

13 **Applicant Presentation - Christian Sandrock**

14 DR. SANDROCK: Great. Thank you, Dr. Wei,
15 and nice to meet you all today.

16 I'm Christian Sandrock. I'm an infectious
17 disease pulmonary and critical care physician here
18 at the University of California, Davis. I'm
19 actively involved in both clinical trials, as well
20 as clinical care. I'm actually the ICU attending
21 on this past week and this current week right now,
22 which makes for things to be very entertaining. So

1 thank you for your time this morning, and I'll talk
2 a little bit about risk-benefit assessment here as
3 we move forward.

4 My disclosure's listed here. I don't have
5 any equity or capital in any companies. I do have
6 some grant funding, which is NIH, CMS, and CDC
7 sponsored. I've been both a principal or
8 sub-investigator in a number of clinical trials
9 over the prior five years, and I have a number of
10 speaking and advisory roles predominately within
11 the antimicrobial world.

12 As we manage these patients here in the ICU
13 and as a clinician at the bedside, unfortunately,
14 the risk of death and serious illness from
15 COVID-19, unfortunately, remains persistently high.
16 I was just on this past weekend. We had a death
17 directly from COVID-19. Yesterday, we had to place
18 somebody on mechanical ventilation for COVID-19, so
19 it still persists, unfortunately, a few years into
20 this pandemic.

21 When we manage these patients in the
22 hospital, as you can see, up to a third of them

1 that are hospitalized have some signs of acute
2 respiratory distress syndrome, or ARDS, and that
3 may be those patients on the floor with minimal
4 oxygen support and they have some signs of ARDS.
5 But, unfortunately, as they migrate into the more
6 critical areas, into the ICU, requiring more
7 ventilatory support, whether it's high-flow nasal
8 cannula or non-invasive mechanical ventilation, or
9 unfortunately, if they require mechanical
10 ventilation, their mortality rate increases
11 greatly, and that's predominantly due to ARDS.

12 What we're seeing now is that, at least in
13 September and October, we have an average of 4[00]
14 to 500 deaths per day still from COVID-19. So
15 unfortunately that's still acceptably high, and
16 it's really driven by these patients in our ICU
17 with severe COVID-19 and severe COVID lung disease.

18 Now, Dr. Steiner did a nice job of
19 highlighting some of the changes by variant of
20 crude mortality, and I want to draw your attention
21 over to the right-hand side. This is sort of the
22 world we kind of live in as a clinician, and we're

1 really grateful for the interventions that have
2 happened over the last couple years, whether it's
3 been newer therapeutic options, vaccinations, other
4 public health measures, and certainly as the
5 variants have progressed.

6 Patients that are unhospitalized, we've seen
7 certainly less severe disease in hospitalization,
8 and for those that are hospitalized, particularly
9 as you can see in that top table, there has been a
10 decline from Delta, to early Omicron, to later
11 Omicron. But as we move down that table,
12 particularly in our patients in the ICU and those
13 more severe patients, it still remains persistently
14 high. Although it declined, this is still a
15 persistently high mortality rate.

16 The second table below that really
17 highlights, again, those WHO class 4, 5, and
18 6 patients, which make up the majority of the
19 patients that are dying from COVID-19 now, they
20 either have multiple comorbidities, they're over
21 the age of 65, and they're in our ICU either
22 requiring some form of advanced oxygen support,

1 whether it's high-flow nasal cannula or
2 non-invasive mechanical ventilation, or they're on
3 mechanical ventilation themselves.

4 You can see in that bottom table this
5 subgroup, which is the subgroup study, is really
6 the ones that are persistently still dying from
7 COVID-19 and what we're seeing at the bedside. So
8 it highlights that we still have this hole or this
9 unmet medical need around these difficult-to-treat
10 patients, which we're still seeing in our
11 institutions on a regular basis.

12 Now, I really wish I had a crystal ball that
13 can predict how this pandemic's gone and where it's
14 going to go. I certainly in the last couple of
15 weeks would have loved a crystal ball to predict
16 where RSV are going. We're getting quite inundated
17 with RSV here, mostly in pediatric, but definitely
18 in our adult population.

19 So we, unfortunately, have to prepare for
20 both ends of the spectrum, a best-case and a
21 worst-case scenario. This is data from the
22 COVID-19 Scenario Modeling Hub at the University of

1 Massachusetts Amherst, and you can see on the
2 left-hand side a best-case scenario which we both
3 at the bedside and both as a medical institution
4 have to really focus in on, and we hope this is the
5 direction it goes in.

6 Ideally, we have boosters that are now
7 available, and most of our patients are taking up
8 those boosters. Immunity and natural immunity, as
9 well as vaccination booster immunity, remains the
10 same, and that the severe risk infection remains
11 unchanged. Even despite that, we're still looking
12 at modeling predicting roughly, on average, 1600
13 new deaths per week towards the end of the calendar
14 year.

15 Unfortunately, we still have to prepare for
16 a worst-case scenario, and in this case there's a
17 high immune Escape variant. This variant, even
18 though we have reformulated boosters, doesn't quite
19 provide the same immune protection with those
20 boosters, and there's a 40 percent immune Escape
21 that leads to roughly a 20 percent increased risk
22 of hospitalization and death with this new variant,

1 and that could push our new deaths weekly towards
2 the end of the calendar upwards of 4700.

3 So we really need to be ready, both
4 clinically at the bedside, both from a pharmacy and
5 therapeutics standpoint at our institution, but
6 also as an institution and a community as a whole
7 for both ends of these spectrums. So that's kind
8 of how we approach a lot of our planning and
9 treatment options, by looking at both of these.
10 And I will admit, I'm a bit nervous as we enter
11 into winter here with the way RSV has been going as
12 well.

13 So when we look closely at the treatment
14 landscapes and some of the limitations, again,
15 we're expecting these COVID-19 surges to continue
16 and to create a new strain in our hospital, or
17 hospital capacity, to impact our ability to do some
18 of our regular daily operations, but also to really
19 make it difficult to manage some of these patients
20 at the bedside. And our existing therapies, as far
21 as numbers and as absolute and relative benefit,
22 are modest at best.

1 So obviously, as I manage these patients at
2 the bedside, they require moderate amount of
3 oxygen, and they're in my ICU. We have some
4 treatment options. Some can be antiviral like
5 remdesivir, anti-inflammatories such as
6 baricitinib, tocilizumab, and dexamethasone. All
7 offer modest benefits at best, which we'll show you
8 in a second. Unfortunately, a lot of the
9 monoclonal antibody treatments are not indicated in
10 these patients, and they're also very strange
11 specific, so we don't have that option available to
12 us as well. So again, there's really this unmet
13 need for managing this subgroup of patients.

14 This outlays what we sort of do on a daily
15 basis, and I can tell you, for all of our patients
16 that we manage, this patient I just mentioned that
17 we intubated and placed on mechanical ventilation
18 yesterday, remdesivir, tocilizumab, dexamethasone,
19 these are all things we're going to do on a regular
20 basis at the bedside with all of these patients,
21 and you can see that modest, absolute risk
22 reduction as we move from left to right across the

1 screen, particularly as we get into tocilizumab and
2 baricitinib.

3 Sabizabulin on the right; this is the New
4 England Journal interim analysis data showing that
5 25 percent absolute risk reduction. This is the
6 kind of unmet need that we certainly would like to
7 have here at the bedside, so we can provide that
8 sort of support. And this is just kind of a nice
9 slide that lays the landscape of where we are as we
10 manage these patients every day, and certainly how
11 we can layer that treatment from remdesivir to
12 dexamethasone in managing these patients. We
13 certainly need something more than a modest
14 reduction in death as we move forward.

15 As we look at this risk-benefit analysis,
16 and as I sit at the bedside managing these
17 patients, what are some of the things that attract
18 us to this? What are these benefits in this hole
19 that can be filled? And really, as Dr. Barnette
20 and Dr. Wei outlined very nicely, there's a
21 20 percent absolute risk reduction and a 50 percent
22 relative risk reduction in death at day 60. And

1 that's one, certainly as a critical care physician
2 at the bedside, that really jumps out, and that's
3 really spread throughout all of this meaningful
4 subgroup analysis. And as the imbalances were
5 analyzed nicely, and Dr. Wei did a good job of
6 explaining this, there was still a clear benefit
7 favoring sibizabulin across those different
8 imbalances and subgroups.

9 If the patient survived, the other portion
10 which really gets us interested is that the
11 secondary end -- whether time in the ICU, days in
12 the hospital, and time on mechanical
13 ventilation -- those all showed improvement. So
14 this is really that unmet need that we're looking
15 for currently for these persistently difficult
16 patients to manage.

17 Dr. Steiner did a nice job outlaying the
18 phase 3 study placebo mortality that was roughly a
19 little under 30 percent, and how this was in line
20 at both 30 and 60 days with contemporaneous
21 studies, and I think that's key for us. So really,
22 this stubbornly high group of patients in our ICU,

1 in our hospital, with moderate to high risk for
2 COVID death, they're still difficult to manage, and
3 this is this unmet need that would really help
4 support our therapy at the bedside.

5 How do we approach this risk-benefit
6 analysis when we're sitting here at the bedside?
7 Well, if we look at the benefits -- and I have a
8 patient like this one that we just intubated, or
9 one that's coming in and admitted with oxygen
10 therapy, which I probably will get in the next day
11 or two -- really what stands out for us is,
12 obviously, the 50 percent relative risk reduction
13 in mortality compared to standard of care. So that
14 is the first and foremost, and secondary to that is
15 we obviously get fewer days of mechanical
16 ventilation; fewer days in the ICU.

17 All the data that we saw this morning,
18 looking at both the trials specifically for COVID,
19 as well as the cancer studies, show that it is
20 really well tolerated. It's efficacious and
21 independent of vaccination status and virus
22 variant. Then when we have newer agents and we use

1 these at the bedside, one of the things we really
2 like to see is that it's short term and that
3 they're in the hospital. So this is 21 days or
4 until discharge, so this is a short-term therapy,
5 which is provided in the hospital, so that provides
6 that added support.

7 Then lastly, not to be minimized but lastly,
8 sabizabulin is a new chemical entity. It's its
9 first in class, and then it works in two
10 mechanisms. Number one, it decreases viral
11 replication, and secondary, it's an anti-
12 inflammatory. So it has two mechanisms of action
13 in this subgroup of patients that we like.

14 So those are the benefits we look at, and we
15 balance those out very closely with the risks. And
16 we saw with Dr. Barnette's data a very nice
17 description of the adverse events and serious
18 adverse events in the phase 2 studies that were on
19 the minimal side and certainly don't at all
20 approach what the benefits would otherwise be.

21 Then secondarily, if we are going to see
22 some safety risk that's associated with this drug,

1 they're with us in the hospital or they're under
2 observation. We have ways to manage this, and
3 manage them through direct care. So it's clear
4 when we lay this out at the bedside, that the
5 benefits for us as clinicians certainly outweigh
6 any of the risks that we see, and that's very
7 important for this unmet need that we have at this
8 time.

9 So to sum everything up from our side of
10 things at the bedside, I'm still seeing patients
11 clinically here in our hospital. We still know
12 that there are many deaths globally, greater than
13 6 million in total. We're still seeing greater
14 than 400 deaths per day here in the United States.
15 Our treatment options currently available to us
16 have moderate benefits at best, whether it's
17 remdesivir, baricitinib, tocilizumab, steroid
18 therapy with dexamethasone, and having sabizabulin
19 with 20.5 absolute risk reduction, a greater than
20 50 percent relative risk reduction at 60 days as
21 far as mortality, with secondary endpoints reducing
22 time on the mechanical ventilation and the ICU, is

1 really that unmet need that we're looking for at
2 this time, and it really shows clear efficacy and a
3 favorable risk-benefit profile that we would really
4 like to have at our bedside.

5 I'm happy to take any questions later, and
6 at this time I'll turn it over to Dr. Steiner for
7 any further questions, and we can move to the next
8 slide. Thank you.

9 **Applicant Presentation - Mitchell Steiner**

10 DR. STEINER: Great. Thank you,
11 Dr. Barnette, Dr. Wei, and Dr. Sandrock. I
12 appreciate it.

13 COVID-19 is still a public health emergency.
14 We're still trying to understand and continue to be
15 surprised by the public health implications of its
16 evolving nature and potential threats. Death
17 remains the greatest fear from getting COVID-19 in
18 hospitals where patients are dying. The number of
19 deaths remain unacceptably high. We want to do
20 better. We need more effective tools.

21 Sabizabulin treatment and mortality benefit
22 was robust and clinically meaningful, including in

1 every subgroup or sensitivity analysis of the
2 primary endpoint conducted regardless of the
3 observed placebo mortality rate. Further analyses,
4 the small imbalances, and the constellation of
5 these imbalances still supports sabizabulin's clear
6 clinical benefit. The mortality benefit and
7 secondary outcomes observed in our phase 2 and
8 phase 3 COVID-19 sabizabulin studies were
9 generalizable to today, as these high-risk patients
10 studied are the same population that have the
11 highest mortality rates today.

12 Sabizabulin has a strongly favorable
13 benefit-risk ratio to prevent deaths in
14 hospitalized patients with moderate to severe
15 COVID-19 and high risk for ARDS, and death. Our
16 program supports an EUA. We are committed to
17 working with the agency to allow these patients in
18 greatest need access to sabizabulin under the EUA
19 and to collect additional clinical information
20 post-EUA.

21 I would like to thank the committee for your
22 attention and the FDA for the valuable advice and

1 collaboration on this project. We look forward to
2 your questions and comments. Thank you.

3 **Clarifying Questions to the Applicant**

4 DR. AU: Thank you.

5 We will now take clarifying questions for
6 Veru. Please use the raise-hand icon to indicate
7 that you have a question and remember to lower your
8 hand by clicking the raise-hand icon after you have
9 asked your question. When acknowledged, please
10 remember to state your name for the record before
11 you speak and direct your question to a specific
12 presenter, if you can. If you wish for a specific
13 slide to be displayed, please let us know the slide
14 number, if possible.

15 Finally, it would be helpful to acknowledge
16 the end of your question with a thank you and end
17 your follow-up question with, "That is all for my
18 questions," so that we can move on to the next
19 panel member.

20 We'll start with Dr. Chertow.

21 CAPT CHERTOW: Okay. Thank you. This is
22 Dan Chertow, and I appreciate all of the excellent

1 presentations.

2 My question is for Drs. Barnette and/or Wei,
3 and it is really a simple and straightforward
4 question as it relates to the various statistical
5 approaches to determine a reduction in 60-day
6 mortality in the drug group, and my question is
7 this.

8 How many deaths would have to switch from
9 from drug to placebo; in other words, reduce deaths
10 with drug versus placebo? How many cases -- how
11 many deaths would have to switch from one group to
12 the other in order to erase the statistically
13 significant difference in 60-day mortality using
14 your various statistical methods?. That's the end
15 of my question.

16 DR. BARNETTE: Hello. This is Gary
17 Barnette. We've done some analysis on that, and it
18 would be a fair amount. I mean, we would
19 need -- we did the sensitivity analysis and the
20 tipping-point analysis, where you move 4 and
21 6 deaths, and so on and so forth, and the p-values
22 remain robust.

1 I would ask Dr. Wei to continue and answer
2 this question.

3 DR. WEI: Thank you for the question. This
4 is L.J. Wei. In our group, we didn't do this
5 tipping-point analysis like you described, but in
6 my presentation we did one sort of similar to what
7 you described.

8 We have 6 patients, and we didn't know the
9 survival status on day 60. Four were in the
10 treated; two were in the control. So we were
11 saying those four treated, we're assuming they were
12 all deaths on day 60, but on the other hand, two in
13 the placebo arm were alive day 60. I think that's
14 the only penalty we considered, is a tipping-point
15 analysis.

16 I think you raise a good point.
17 Unfortunately, our group hasn't narrowed down to
18 exactly what. Sorry about that.

19 CAPT CHERTOW: I'll just make a follow-up
20 point to my question, which is that if one just
21 simply does the proportion of cases that died in
22 drug versus placebo, and you just swapped, and you

1 made your way down the line, and you swapped deaths
2 in the placebo group into the drug group, and for
3 the full study, that included all the 200 and some
4 patients, in order to become equivalent proportion
5 of deaths, it would be 9 patients that would have
6 to switch. So presumably, the statistically
7 significant difference in mortality outcome would
8 be meaningfully less than 9 patients. Thank you.
9 That's the end of my comment.

10 DR. AU: Thank you.

11 Dr. Evans?

12 DR. EVANS: This is Scott Evans at
13 MD Anderson. I suppose this is for Dr. Steiner. I
14 understand that the sponsor considers this
15 intervention to be a strain agnostic intervention,
16 and I see on applicant table 15 and on slide 31,
17 assessments of the timing, the predominant strain
18 different points. But nonetheless, an
19 unanticipated imbalance in strain could have a
20 significant impact on your patient outcomes.

21 So my question is, whether the sponsor has
22 any sequencing data or other strain-related data to

1 demonstrate whether you have an actual balance
2 between your patients?

3 DR. STEINER: This is Dr. Steiner. I'm
4 going to ask Dr. Barnette to answer that question.

5 DR. BARNETTE: This is Gary Barnette. At
6 the time of the initiation of the phase 3 and
7 leaving the phase 2 study, we made a decision not
8 to collect the actual variant because it was very
9 difficult. We didn't know where we were going and
10 what variant was going to show its face over the
11 time, so we do not have the actual variant, but we
12 do believe and propose that the timing analysis
13 we've conducted addresses that fairly well.

14 DR. EVANS: Okay. I have additional
15 unrelated questions, so I'll just allow my
16 colleagues the opportunity to speak first. I'm
17 going to lower my hand, and I'll re-raise it.
18 That's just notice to the chair. Thanks.

19 DR. AU: Thank you so much.

20 Dr. Gillen?

21 DR. GILLEN: Yes. Thank you, and I'm going
22 to stick to a clarifying question. I would just

1 like to get some feedback from the sponsor.

2 DR. AU: Dr. Gillen, I'm sorry to interrupt
3 you. Can you please state your full name for the
4 record, please?

5 DR. GILLEN: Oh, I'm sorry. Daniel Gillen.

6 DR. AU: Thank you.

7 DR. GILLEN: UC Irvine.

8 Again, a clarifying question to the sponsor,
9 and this is with respect to the protocol
10 amendments, and specifically with respect to the
11 changes in the interim analysis and monitoring plan
12 and the rationale behind those.

13 There's limited information in the briefing
14 document on the original design assumptions that
15 were made that defined the 300 patients that were
16 originally planned, but I'm going to try and piece
17 things together in terms of the timeline, and if I
18 can get the sponsor to clarify some things for me.

19 So according to the FDA document, on
20 January 9th of 2022, the interim analysis timing
21 had changed from 67 percent maximal
22 information -- in other words, occurring at 200

1 total patients to a 50 percent maximal information
2 at 150 patients -- and the rationale behind that
3 that's stated in the FDA briefing document was to
4 limit the amount of alpha or type 1 error that was
5 spent at that moment in time. I think that they
6 phrased it as to conserve alpha at the final
7 analysis.

8 Then 2 months later, the sample size then
9 was changed from 300 total to 210. And one
10 question I have there is, based upon what data and
11 rationale -- because the FDA briefing document
12 states that this is because it was difficult to
13 recruit patients, and yet we're applying for an
14 emergency use authorization. So those two things
15 seem to not really coincide with one another.

16 Then I believe that very shortly after
17 that -- but I can't understand the timing of
18 it -- there was an interim analysis that was
19 actually done because there was 198 patients
20 totally enrolled by March 29th, so that interim
21 analysis must have taken place on or near
22 March 18th.

1 So one of my big issues is what was
2 prespecified in terms of the interim monitoring
3 plan; what were the guiding principles in changing
4 the interim monitoring plan; and what data, if any,
5 were those changes based upon?

6 DR. BARNETTE: This is Gary Barnette. Your
7 timeline is accurate. The study was initially
8 designed with 300 subjects enrolled, and the alpha
9 level of 0.05 and the power in that particular was
10 greater than 99 percent. As we moved forward, we
11 were -- you know, recruitment into a clinical
12 study, of a placebo-controlled clinical study, is
13 always difficult, especially when you have hundreds
14 of studies also going on at the same time.

15 So our original design was 300 subjects with
16 a power greater than 99 percent. We do use the
17 60-day absolute mortality as the primary endpoint,
18 and as Dr. Wei outlined, that's a difficult
19 endpoint to hit. So we did adjust the interim
20 analysis number down to 150 because we felt like
21 that would be a sufficient number of patients in
22 the interim analysis to make a judgment of whether

1 we should continue the study or not and whether the
2 drug had effect. So that's why that analysis -- or
3 that protocol amendment was executed.

4 There wasn't any data, or unblinding, or
5 knowledge of any kind of unblinded data in that
6 particular decision. As we were going forward into
7 the spring, it became apparent that while
8 recruitment was still ongoing, it was slowed. It
9 significantly slowed at the sites that we had. As
10 we all know, the recruitment in these kinds of
11 studies waxes and wanes heavily, and we were making
12 a projection that it would take us somewhere
13 between 9 and 24 months to finish enrollment out to
14 to 300 and, frankly, we felt like as an
15 organization we made a business decision that we
16 had to make decision earlier. And remember, we
17 were way overpowered at 300.

18 So we made a decision again, prior to any
19 interim analysis and any unblinding of the data, we
20 made a decision to drop that N back from 300 down
21 to 210. The interim analysis, the planned interim
22 analysis, was conducted on April the 8th, and at

1 that time -- and, again, that was the analysis of
2 the first 150 patients randomized into the study.
3 And at that time, we had 204 patients randomized
4 into the study, but at that time, also, we only had
5 one patient in that group that was continuing on
6 treatment, and we allowed that patient to finish
7 out treatment, the last few days on treatment, and
8 then finish the follow-up, the 60-day follow-up, in
9 the full 204, and that's the data that we've been
10 presenting today.

11 DR. WEI: Dr. Barnette, this is L.J. Could
12 I make some comment to answer Dr. Gillen's
13 question?

14 DR. BARNETTE: Please. Yes, sir.

15 DR. WEI: Dr. Gillen, a good question.

16 I don't know exactly the history of the
17 interim analysis plan. I read it like you read it,
18 from the post-documents. But in my humble opinion,
19 the interim analysis was based on the data from
20 150 patients only, but even though they enrolled
21 204 patients at that time, they didn't use the rest
22 of the patients beyond 150, so they got a very

1 interesting result. The DMC people were just doing
2 according to the book. They said, "Well, we have
3 to terminate a trial." That's what they decided.

4 Now, an interesting part, we can't always
5 claim or say the interim analysis, based on
6 150 patient data, may be too small. Maybe just by
7 chance you are lucky to get this extremely
8 interesting result. On the other hand, afterwards
9 they followed the 204 patient data, and still the
10 benefit is still consistently very impressive. I
11 think that's sort of like we double checked if the
12 first interim analysis, the results are really by
13 luck, or really something's cooking here? So let
14 me stop here. Thank you.

15 DR. GILLEN: Thank you, Professor Wei. I
16 appreciate that. My question really revolves
17 around what was prespecified. I know that you know
18 that one can sample to a foregone conclusion in
19 trials, and you can certainly change the inference
20 that's accrued through a trial by moving that first
21 initial analysis back in time if that's done in the
22 observation of an effect, and then changing the

1 maximal sample size to then lower what the critical
2 value would need to be.

3 So I'll take the sponsor's word for it. I
4 just wanted to clarify exactly what the
5 decision-making process was. I do have one
6 comment, though.

7 If your interim analysis on April 8th was on
8 150 completed patients, and I give you, I'm going
9 to say, 30 days for a data lock, on March 29th you
10 had already enrolled 198 patients, but then
11 probably within 60 days, you guys had enrolled
12 48 patients approximately, if I'm doing this math
13 correctly, 60 to 90 days maybe, depending upon how
14 long it took you for the data lock and cleaning,
15 which doesn't seem like very terribly slow
16 enrollment to me on your projections. But maybe
17 you can clarify that later for me.

18 DR. AU: Great. I enjoy this robust
19 discussion.

20 In the interest of time, let's continue to
21 move on, and then we can maybe have the sponsor
22 come back or we can further discussion later in the

1 session.

2 How about Dr. Shaw?

3 DR. SHAW: Yes. This is Pamela Shaw. May I
4 have a clarification from the chair? I have three
5 clarifying questions. I do believe they're short,
6 but is it okay to ask them one after the other?
7 May I just have clarification on that?

8 DR. AU: Yes, please go ahead and do that.

9 DR. SHAW: Okay. Thank you.

10 My first question is for Dr. Steiner, and I
11 believe it's slide 14 or 15 of your presentation.
12 It was the graph showing the mortality rates of
13 different trials, I believe, on the placebo arms.

14 I don't know if you'll get a chance to put
15 that up, but I'll just ask my question which is,
16 I'm trying to understand how comparable these
17 different trials are, and they're being labeled as
18 contemporaneous. I guess I'm wondering for that
19 graph -- maybe the slide before this; I believe it
20 is the slide before this -- how many of those
21 trials would have been contemporaneous from the
22 point of view that the overwhelming majority of

1 patients would have been during the same time
2 frame, which was roughly Trial 903, roughly
3 May 2021 to June 2022? Because I know that the
4 case fatality rate was really changing over time,
5 and was really high at the beginning of the
6 pandemic.

7 To boil my question down, I want to make
8 sure that it's the similar eligibility criteria and
9 similar time frame. So for the severe patients,
10 for Trial 903, we have an 8-point WHO scale, that
11 to be eligible, it excluded WHO 7. So I'm kind of
12 wondering amongst all these dots, which of these
13 trials would have excluded WHO 7 and would have had
14 patients at the same time as Trial 903? Because
15 that's kind of what we're trying to compare this
16 placebo mortality rate to.

17 Do you have a sense for which were
18 contemporaneous and not including that most severe
19 group amongst all these trials?

20 DR. STEINER: This is Dr. Steiner. All of
21 these trials were overlapping. I mean, we're only
22 talking about the pandemic occurring for 2 and a

1 half years, so within the scope of the months, they
2 were very close to each other in months, and many
3 of these trials were overlapping.

4 But your point's a good one. What we did is
5 we didn't look at WHO score because WHO scores
6 changes. As you know, in some cases, WHO 4 is a
7 patient without oxygen. So we went back for the
8 studies that actually laid out who was on
9 mechanical ventilation and what was the patient
10 population that was on non-invasive forced oxygen.
11 We need to know that information because some of
12 these trials, as you mentioned, you just kind of
13 lumped it together, and you can't really tease that
14 out.

15 So a second test for this analysis -- and
16 that's why there's 15 -- is they had to
17 specifically tell us what that patient population
18 was, not whether the WHO score was a 5 or a 4
19 because there was some overlap.

20 I'm sorry. I didn't mean to cut you off.

21 DR. SHAW: No. That's alright. I
22 appreciate your response. So my understanding is

1 it is a little hard, like that WHO 7 or the most
2 severe of the mechanically ventilated --

3 DR. STEINER: Yes.

4 DR. SHAW: -- which also -- you can't really
5 tease that out.

6 DR. STEINER: What I can say is that,
7 particularly, there are some of these trials where
8 they may have had -- for example, we were calling
9 that WHO 7, which is ECMO, but they were less than
10 2 percent. So we had another version of this slide
11 where we put that in, and we felt it would be
12 distracting, so it would be unfair not to include
13 that trial if 2 percent of those patients were an
14 ECMO because 98 percent were either going to be
15 mechanical ventilation -- WHO 5's as we're calling
16 it now -- and that was the group that we're trying
17 to get.

18 So I think the importance here is the number
19 of trials and getting concrete information about
20 the severe patients, and whether there is a
21 correlation. So that gave us comfort that we were
22 in range.

1 Then the real-world data from the CDC, which
2 was the second slide I showed, that again shows you
3 all hospital -- and my slide doesn't have this, but
4 Dr. Sandrock's slide has it. And it shows, yes,
5 we're doing a much better job with all patients in
6 the hospital, but when you focus on the ICU
7 patients, the WHO 5's and WHO 6's, we're still
8 going down, but these are the patients that are
9 contributing to the death rate, and this is the
10 patient population our drug is indicated for.

11 DR. SHAW: Thank you very much for that
12 response. I agree with you that perhaps the
13 WHO 7's are a small percent, so while they do have
14 an elevated death rate perhaps because they were a
15 small percent, it's not clear how much they would
16 have elevated.

17 DR. STEINER: Yes, it would have been small.

18 DR. SHAW: Yes. But I wanted just two quick
19 comments. One is, according to table 30, some of
20 those trials were published before 903 even started
21 because RECOVERY, for instance, those were really
22 quite quick, those early [indiscernible] trials.

1 So some aren't overlapping, I believe, and I am a
2 little hesitant to compare the EHR or the
3 nonclinical trial population because, as we know,
4 individuals and clinical trial populations tend to
5 have less social disadvantage and be a different
6 racial mix than other things, so a little harder to
7 compare. But I do really appreciate that graph,
8 and I think you've answered my questions regarding
9 the clinical trial populations. Thank you.

10 DR. STEINER: Thank you.

11 DR. SHAW: My next two questions are
12 probably shorter. The next one, I believe it's for
13 Dr. Barnette. This is just a quick question,
14 clarifying question, regarding the 6 individuals
15 who were lost to follow-up, who's mortality status
16 at 60 days was unknown.

17 Can you say whether or not those 6 patients,
18 the censoring was related to the discharge, where
19 they discharged from the hospital?

20 DR. BARNETTE: This is Gary Barnette. The
21 censoring was related to our last contact with
22 them, or last known, vital status was known. These

1 6 patients were doing very well, were discharged
2 from the hospital, and I think one of them was the
3 last contact we had was at discharge, but a lot of
4 them, we were making follow-up calls with them, so
5 the decensoring is the last point of contact.

6 DR. SHAW: Okay. Great. Thank you. I
7 think you answered my question, which is they were
8 all discharged, and maybe some of them got followed
9 a little bit later. Thank you. That answers the
10 question. Thank you.

11 My final question is for Dr. Wei. I'm very
12 interested in all the sensitivity analyses, and I
13 had a quick question. I think it was slide 53,
14 which is the worst-case scenario, I like to call
15 it, where you think about those 6 patients for
16 whom you don't know of that 60-day survival status,
17 and the worst-case scenario in terms of the drug
18 efficacy would be you think about the four that
19 were unknown status on the drug arm and you impute
20 has died, and the two unknown survival status on
21 the placebo arm you impute as alive, and you see
22 how much that might degrade the observed treatment

1 effect.

2 My question for this analysis -- I believe
3 [indiscernible] the exact slide -- is I think I
4 understood you to say that this was an augmented
5 analysis. That's a bit of a black box since we
6 can't unpack here, but I wondered how much that
7 augmentation really mattered, and if you had done
8 the p-value from just a standard analysis where you
9 would have done this imputation, how different
10 would that p-value really be, if you knew that?

11 DR. WEI: Sorry. This is L.J. If I
12 understand your question, ma'am, you're saying if
13 I'm imputing those 6 patients, either they died at
14 day 60 or not, what is the usual way we analyze
15 this data?

16 DR. SHAW: Yes.

17 DR. WEI: As you know very well, if you use
18 survival analysis, and we can easily handle this
19 patient, assuming those guys -- like Gary is
20 saying, we take this last contact date as a
21 [indiscernible] observation. We do Cox regression
22 stuff, and you can actually --

1 DR. SHAW: But can I --

2 DR. WEI: Sorry, ma'am. Go ahead.

3 DR. SHAW: I was just going to say,
4 actually, in a severe population, there are many
5 people who aren't willing to do the usual survival
6 analysis, knowing that you know that they've been
7 discharged. I'm actually interested in the
8 logistics. Just because it's 60 days, that's very
9 standard to do a 60-day mortality of logistics. So
10 just for the logistics, making it super
11 simple -- I'm a simple person -- just a super
12 simple analysis, you've done imputations, there's
13 no missing data, this worst-case scenario, is the
14 p-value much different from this or is it similar?
15 Because I understand this is an augmented p-value;
16 this isn't a standard p-value.

17 DR. WEI: I'm sorry, Dr. Shaw. Could you
18 repeat your question? I'm sorry, because of my
19 age, probably I don't understand what you're
20 asking.

21 DR. SHAW: My confusion is around this idea
22 of augmentation. Were these p-values -- was this a

1 logistic regression p-value here?

2 DR. WEI: Oh, I see what you mean. I'm
3 sorry, Dr. Shaw. Yes. If you use just regression
4 doing this, you get the same result. It's almost
5 identical.

6 DR. SHAW: Okay. Thank you, a very simple
7 question. Thanks, Dr. Wei.

8 DR. WEI: Sorry about that. Thank you.

9 DR. SHAW: That's it.

10 DR. AU: Thank you so much.

11 Dr. Baden?

12 DR. BADEN: Yes. I have two clarifying
13 questions. I can ask one, and then get back in
14 line. Just building on Dr. Lee's question, really
15 trying to understand who's in the study, what I'm
16 getting at in particular is the WHO 4 with oxygen
17 and at least one comorbidity, and this is probably
18 to Dr. Barnette or Steiner.

19 Am I supposed to understand that we think
20 there's a 45 percent mortality for WHO 4 with
21 2 liters of oxygen? Because I want to understand
22 the benefit based on the risk of who entered the

1 study and is it that the WHO 4's, 5's, and 6's all
2 behaved identical, then I need help to understand
3 what that baseline staging -- how it tells us who
4 was enrolled.

5 DR. BARNETTE: This is Gary Barnette. Who
6 we enrolled were WHO 4's with at least one
7 comorbidity. Now, let me clarify. The average
8 number of comorbidities between the treatment
9 groups is about 3 and a half, so it wasn't like a
10 patient came in with just one comorbidity; usually
11 it was multiples, as I showed in that one
12 distribution slide.

13 The placebo mortality rate that we observed
14 in the study, again, the 45 percent at the interim
15 analysis and 39 percent in the overall analysis was
16 an aggregate of all the WHO 4's, 5's, and 6's. We
17 did stratify randomization by WHO 4, 5, and 6's,
18 and it worked fairly well, and that's who we
19 enrolled.

20 Now, what you'll see if you look at the
21 WHO 4's independently, the WHO 5's independently,
22 and the WHO 6's independently, is you see a

1 relative reduction in mortality across all three of
2 those groups. As a matter of fact, the reduction
3 in mortality in the WHO 4's is about 82 percent and
4 the reduction in mortality in the WHO 6's is
5 approximately 50 percent. So you see the benefit
6 across all WHO categories that were enrolled.

7 DR. BADEN: But the WHO 4 mortality, how did
8 that behave in relation to WHO 4 mortality in the
9 literature, in the placebo group? I'm trying to
10 understand the WHO 4's in relation to what we would
11 expect their mortality to be for who these patients
12 are.

13 DR. BARNETTE: This is Gary Barnette again.
14 This is a difficult question to answer because this
15 is not just a simple WHO 4, it's a WHO 4 with
16 multiple comorbidities in this situation, and many
17 of the publications in the literature don't really
18 outline it that way. We had approximately a
19 30 percent mortality rate in this population in our
20 study as we demonstrated in the placebo group. It
21 was 27.6 percent at day 60.

22 Yes, slide up. Table 12, slide up. Here's

1 WHO 4's, 5's, and 6's broken out. I think this is
2 from the briefing book. As I said, the mortality
3 in the WHO 6's are also small numbers, about
4 50 percent.

5 DR. BADEN: I appreciated this. Thank you
6 for the clarification. This to me, at least, says
7 that the WHO 4's that you enrolled are not average
8 WHO 4's. They're WHO 4's with a high -- very sick
9 WHO 4's.

10 DR. BARNETTE: Yes, that's correct.

11 DR. BADEN: With a 30 percent placebo
12 mortality, that's not an average WHO 4 staging, at
13 least in general clinical practice. Thank you.

14 DR. BARNETTE: That is correct.

15 DR. AU: Great. No further clarifying
16 questions, Dr. Baden? If not, I'll go to Dr. --

17 DR. BADEN: A second one, but I can come
18 back to it just to allow people to all share their
19 questions. I would like to ask it right now. I
20 can ask it quickly.

21 DR. AU: Yes. I think we should just plow
22 through it.

1 DR. BADEN: Okay.

2 Then what I'll ask, again, Dr. Barnette,
3 your slide 34, you point out the viral load at
4 day 9, and you show that it went down 42 percent in
5 the treated and up 412 percent in the placebo.
6 That seems very unusual to me in that viral
7 clearance occurs with time. So to have viral
8 augmentation 10 days into this with all the
9 standard of care seems unusual to me.

10 Do you have data of serial viral -- are we
11 able to see data of the viral load over time or by
12 group and absolute values to better understand
13 what's going on here? Because again, it makes me
14 worry that I don't understand the placebo group
15 because they're not behaving in the usual way.

16 Any clarification is appreciated. Thank
17 you.

18 DR. BARNETTE: Yes. This is Gary Barnette.
19 The way we collected this was at baseline through a
20 swab, so you understand the issues with the
21 variability that introduces. And then we planned
22 to assess it at day 9 or if the patient discharged

1 from the hospital prior to day 9, meaning last one,
2 so we didn't collect that swab. So we really only
3 did baseline and one study. We don't have serials.
4 If the variability is very high, it's difficult to
5 interpret. As I mentioned in my presentation, the
6 p-value is 0.2712. When we go to our additional
7 studies, specifically the WHO 3's and 4's, I think
8 we'll collect this more rigorously, and I think
9 that will elucidate this situation a lot.

10 DR. BADEN: Thank you.

11 DR. BARNETTE: You're welcome.

12 DR. AU: Dr. Lee?

13 DR. LEE: Thank you, Dr. Au. Janet Lee.

14 I have a question, actually two questions,
15 but the first question actually Dr. Baden asked.
16 The other one is related to requesting further
17 clarification of the design of the study.

18 It's my understanding the WHO 4 with
19 comorbidities, WHO 5, and WHO 6 would be straddling
20 both inpatient hospital wards and the ICU. And I
21 wanted to ask you about variability of time of
22 enrollment that you touched upon -- I think it was

1 Dr. Steiner -- and 6 patients within the Vero 113
2 group had greater than 14 days in the hospital
3 prior to entry of the study.

4 I just wanted to ask you, do you have any
5 information related to how many were WHO 4, WHO 5,
6 WHO 6 related to the time of enrollment just to get
7 a better understanding of the potential imbalances
8 of the two groups. Thank you.

9 DR. BARNETTE: Yes. This is Gary Barnette.
10 Slide up, please. We had 6 patients in the treated
11 group that were in the hospital for greater than
12 14 days prior to coming into the study. You're
13 stretching my memory, but I think there were three
14 or four WHO 4's and two were WHO 5's coming in when
15 they started into the study.

16 You know, I think the argument is some
17 people would think that those patients who've been
18 in the hospital for a while actually would have a
19 higher incidence of progression, or another
20 observation would be they were progressing more
21 slowly, of course.

22 What we did -- and these are the data that I

1 mentioned in my presentation -- we just basically
2 said, okay, if this was [indiscernible], let's take
3 these 6 patients out of the analysis, and you can
4 see that the p-value is 0.0046 with an odd ratio of
5 2.71. And this is actually the curve that the FDA
6 presents in their presentation, but we've blocked
7 out the top blue line that actually obliterates
8 those 6 patients, and you can see that the
9 mortality benefit is maintained.

10 DR. LEE: Thank you.

11 Actually, what I was asking about was
12 related to not only the people where the enrollment
13 was greater than 14 days in entry, but related to
14 also the placebo group, as well in terms of do you
15 have information related to when actually they were
16 enrolled in terms of entry into the study, in the
17 ICU versus in the hospital wards?

18 DR. BARNETTE: This is Gary. That's an
19 interesting question because it is difficult to
20 answer. What we did is we classified them by
21 WHO 4, 5, and 6, and not whether they were in the
22 ICU or not because, as you mentioned, they did dose

1 straddle. And frankly, that availability as the
2 standard practices at individual hospitals might
3 differ whether they're in the ICU or not, but
4 whether they need supplemental oxygen, forced
5 oxygen, or mechanical ventilation is pretty
6 standard to get their oxygen, their SpO₂s up high
7 enough through that support.

8 So we did not analyze it by ICU versus
9 non-ICU and that kind of thing because it has an
10 inherent variability of operational nature rather
11 than just a patient care nature.

12 DR. LEE: Thank you.

13 DR. AU: Thank you.

14 Dr. Walker?

15 DR. WALKER: Hi. Dr. Roblena Walker. Thank
16 you all so much for your presentation. I just had
17 a quick curious question, because we all know since
18 the pandemic, study analyses have shown that people
19 of color have experienced a very high
20 disproportionate burden of COVID cases, as well as
21 deaths, so there's a plethora of comorbidities and
22 racial disparities that we can spend hours on hours

1 talking about.

2 Nonetheless, with that being said, I'm just
3 curious, from a demographical standpoint, why was
4 only less than about 5 percent of the patient
5 population African Americans? Were they just not
6 assessable or available; if you could speak to
7 that?

8 DR. STEINER: Yes. This is Dr. Mitchell
9 Steiner. We recognize that the phase 3 study did
10 not enroll a lot of people of color, and it's not
11 because we didn't try. As you know, this is a
12 problem across clinical trials. I mean, we did
13 conduct a study not only in the U.S. but Latin
14 America and Europe, again, trying to get a diverse
15 population, so we tried.

16 With that said, we're not expecting the
17 biology to be different. I mean, microtubules are
18 conserved across people of color and all humans,
19 period, so we expect them to have the same benefit.
20 But as you heard from Dr. Barnette, we do plan to
21 conduct additional clinical studies and related
22 indications, and we are going to have an emphasis

1 on recruitment of diverse populations, and we're
2 doing that several ways, including, again, casting
3 a net to get diverse hospitals with diverse
4 populations involved, and there are actually third
5 parties that you can engage that will help you
6 specifically do that.

7 Now, with that said, under an EUA, for
8 example, people of all races that meet the criteria
9 of our product will have access to our product.
10 And the reason that's important is that gives us an
11 opportunity to follow them and get the additional
12 safety information, and potentially more.

13 DR. WALKER: Thank you.

14 DR. AU: Thank you.

15 Dr. Evans?

16 DR. EVANS: This is Scott Evans, and thank
17 you. A lot of the questions I planned to ask have
18 been answered, but one from Dr. Baden has
19 stimulated another thought. And I guess this is
20 for Dr. Steiner because he presented most of this.
21 But interpreting outcomes of the studies, or any
22 study, depends on our understanding of

1 plausibility, which raises some mechanism of action
2 questions, so I have mostly a preclinical
3 development question related to the claims.

4 So it was stated in the sponsor
5 Section 4.2.2 and slide 34, and in a few points in
6 the presentation, that there is an antiviral
7 effect. So I just want to understand what's
8 actually known in that sense because as Dr. Baden
9 pointed out, we have some unusual behavior between
10 the two groups.

11 Am I correct in understanding that what was
12 done preclinically was that Vero E6 cells were
13 infected, and then the supernatant was collected
14 and applied to additional cells, and then a
15 viability assay was performed at that point, and it
16 was from that -- yes, exactly -- that it was
17 inferred that there was a reduction in viral
18 replication.

19 The question, or what I'm getting to here,
20 is that I'm wondering that if you have an
21 agent -- if you have a molecule that disrupts
22 microtubule function, what may be actually

1 happening is you may have an impairment of viral
2 release, whereas if you had actually sampled the
3 Vero E6 cells that were initially infected and done
4 qPCR or plaque assays on live cells, that you may
5 find there was not, in fact, an impairment of our
6 replication, but of release.

7 Is that your understanding?

8 DR. STEINER: Yes. This is Dr. Steiner.
9 That's exactly my understanding, and we have other
10 lines of thought and other viruses. So that's why
11 this assay was important to do because what's
12 happening here is, as you know, even within
13 coronavirus, they have a different requirement for
14 intracellular microtubule trafficking and
15 production versus egress and release.

16 So in this situation what appears to be
17 happening with sabizabulin, and we see this in what
18 we demonstrated in the slide that's up, is that
19 also in pox virus, for example, when you're able to
20 look exactly as you had mentioned, it looks like
21 it's playing a major role in the export/egress
22 release, and that's why this kind of assay was done

1 so that we can understand that part of it better.

2 But that's exactly right.

3 I want to be very clear, we're not a, quote,
4 "antiviral" in the sense that we affect something
5 in the virus or protein that the virus has. As you
6 mentioned, its microtubules, so it's consistent
7 that interference with release or egress of the
8 virus would make the most sense.

9 DR. EVANS: Okay. Thank you.

10 Just to further clarify, it is my
11 understanding that there are no in vivo data,
12 either preclinical or clinical, looking at systemic
13 virus; is that correct?

14 DR. STEINER: No. We have a model that's an
15 NIH model for ARDS, but in that model, it was a
16 crude model done for only 5 days, so the
17 information was not very clear. But the purpose of
18 that model was to look for lung inflammation, so
19 the endpoint was that.

20 So yes, we have an in vivo study, but the
21 problem is the in vivo study didn't really tease
22 that out because of the timing and the kind; it was

1 an adapted SARS-CoV-2 murine virus. But when you
2 look in a dish like this and, again, in other
3 viruses that we've looked at nonclinically, this
4 looks like the mechanism.

5 DR. EVANS: Okay. Thank you.

6 DR. AU: Any additional clarifying questions
7 for the sponsor?

8 DR. BADEN: Yes. This is Lindsey; when it's
9 my turn.

10 DR. AU: Oh, I'm sorry. I don't think I saw
11 you on our list.

12 DR. BADEN: It went off and came back, but
13 I'm in turn with everyone else.

14 DR. AU: Dr. Baden, why don't you go ahead?
15 Go ahead.

16 DR. BADEN: Just want to follow up on
17 Dr. Lee's question, which was the slide 16, sort of
18 the swimmers plot that Dr. Barnette showed. For
19 those individuals who were hospitalized for a
20 prolonged period of time before being treated, what
21 was the trigger to treat them? Why at day 10 or 14
22 was the decision made to treat this patient now who

1 had been in house for so long?

2 A second clarifying question, which is very
3 different, is the dose at 9 milligrams, please help
4 me understand how you arrived at that dose and why
5 you think that's the best dose to go forward.

6 Thank you for clarifying these issues.

7 DR. BARNETTE: This is Gary Barnette. The
8 decision to treat could have been multivariable. We
9 could have had patients who actually progressed to
10 WHO 4 and qualified them for the study. Also,
11 sometimes patients are a little reticent to join a
12 clinical trial, and then once they get to a point
13 where they start progressing, then they come in.
14 It's difficult to tease that out. We did not
15 really look at this and investigate this clearly,
16 but I think those are the two logical reasons.

17 Now, as far as the 9-milligram dose goes,
18 when we initially approached the FDA back in
19 March-April of 2020, we had run the toxicology
20 studies. So the 9 milligram, or the equivalent to
21 the 9 milligram, was done based on the human
22 equivalent dose with a safety margin, a 3-fold

1 safety margin, to the no adverse effect level in
2 the tox studies, and that, in particular, has
3 shown -- the reason why we think it's an
4 appropriate dose is because we really propose that
5 the clinical data basically showed that it is
6 highly effective in reducing mortality, and the
7 safety observations are minimal.

8 So while we didn't do a traditional dose
9 finding, we did justify this dose based on the HED,
10 and we think the clinical data support this as the
11 right dose.

12 DR. BADEN: Thank you. That makes sense.
13 So if I'm to understand, the decision to enroll
14 them and treat them was either they finally decided
15 they wanted to -- the participant decided they
16 wanted to participate, or more likely there was
17 some form of progression which suggested additional
18 treatment would make sense, if I'm understanding
19 what likely went on. Thank you.

20 DR. BARNETTE: Yes, that's correct.

21 DR. AU: Great.

22 Before we move on to Dr. Seam, can I ask, if

1 you have your hand up and have spoke, could you
2 lower [inaudible - audio gap] if you don't have a
3 follow-up question. We're trying to gauge the pace
4 of the conversation.

5 Dr. Seam, please go ahead.

6 (No response.)

7 DR. AU: Dr. Seam, you're on mute.

8 DR. SEAM: Thank you. This is Nitin Seam.
9 I had a little trouble hearing you there, Dr. Au,
10 for a moment. I apologize.

11 I wanted to follow up on, I think, something
12 that Dr. Baden had brought up about the question
13 about the placebo mortality and the WHO 4 being a
14 little over 27 percent.

15 I just wanted to clarify. I think not in
16 this presentation, but in reporting the interim
17 analysis for the 150 patients, the placebo
18 mortality was 35.2 [inaudible]. And then after the
19 full 204, the other 54 were included, and I think
20 that has dropped down to 29.4. I didn't see it
21 broken down. I don't know if you all have that and
22 I just missed it. But what was the placebo

1 mortality for the subsequent 54 patients after the
2 150 that were in the paper?

3 DR. BARNETTE: This is Gary Barnette.
4 You're reading the differences exactly correct.
5 Incidentally, after the additional 54 patients, who
6 were predominantly WHO 4's, and with comorbidities
7 included in the study, naturally the placebo
8 mortality rate in that particular subset of those
9 54 patients were consistent with the WHO 4, which
10 is lower than the WHO 5, lower in the placebo
11 mortality than the WHO 5's and 6's.

12 DR. SEAM: Do you happen to have what that
13 mortality was for those 54?

14 DR. BARNETTE: Fairly. Okay. Go back.

15 At day 29 in that 54 patients, the interim
16 analysis, we had 35.2, 18 deaths out of
17 51 patients. Then at day 29 in the full,
18 2 patients in that 54 patients at day 29 passed or
19 died, in the placebo group, so 2 out of 17 or 18.

20 DR. SEAM: Okay. That was 2 to 1, right?

21 DR. BARNETTE: Yes.

22 DR. SEAM: That's [indiscernible] 17?

1 DR. BARNETTE: Yes, 2 out of 17.

2 DR. SEAM: Okay. Thank you for --

3 (Crosstalk.)

4 DR. BARNETTE: -- 49, and day 60 it was
5 more.

6 DR. SEAM: Yes. Thank you for clarifying.

7 DR. AU: Dr. Kim?

8 DR. KIM: Edwin Kim, University of North
9 Carolina. My question comes back to an earlier
10 discussion on mechanism. It seems proposed that
11 there's antiviral as well as an anti-inflammatory
12 effect of the medication. And I'm wondering from
13 the sponsor whether there is a feeling of one
14 effect to being stronger or more important than the
15 other.

16 Where this question is coming from, this
17 thinking about it, is there's sort of an ideal
18 timing to the application of this medication,
19 whether early on in infection if it's an antiviral
20 effect, or later on -- as I think where a lot of
21 this discussion is -- to prevent more the
22 inflammatory ARDS picture. Thank you.

1 DR. STEINER: Yes. This is Dr. Mitchell
2 Steiner. To answer your question, it's hard to
3 tease that out because we had the 9-milligram human
4 equivalent -- the 9-milligram dose, which is a
5 concentration we can achieve in our nonclinical
6 studies. We have pretty robust anti-inflammatory
7 activity and pretty robust -- and again I'm going
8 to be careful. It's antiviral because it stops the
9 release of the virus by going after microtubules
10 but doesn't affect the viral protein, for example,
11 but the net of it is it's an antiviral.

12 So the way I would look at it is -- and
13 Gary, Dr. Barnette, outlined this -- when you look
14 at the WHO 4's -- and we actually had published
15 this in IDWeek -- you see about an 80 percent
16 reduction in mortality in that group. So what
17 that's telling you -- and this is where you're
18 going -- is when you look at the NIH guidelines,
19 for example, it's all based on the pathophysiology,
20 which is you start out with a viral load that goes
21 up, triggers the immune response that ends up being
22 and overexaggerated immune response, and then you

1 get ARDS, multiorgan failure, and death.

2 So the idea is you use your
3 anti-inflammatories later and you use your
4 antivirals earlier. Well, in this situation, as
5 you know, remdesivir doesn't have mortality
6 benefit, so we see a mortality benefit, whether
7 it's because of the antiviral, or
8 anti-inflammatory, or both. But it certainly lends
9 a possibility that sibizabulin can be used earlier
10 because it would be the only one of the agents that
11 has the antiviral effect and a mortality benefit.

12 DR. KIM: Edwin Kim. Again, I have a
13 follow-up to that on slide 28, the subgroup
14 analysis of the primary endpoint, a somewhat
15 related question.

16 There it seems that the ranges are wider
17 when they're already on standard-of-care therapies,
18 and is there some thought, again, to the timing of
19 how this medication will be used compared to some
20 of these standard-of-care therapies like
21 tocilizumab or JAK inhibitors? Thank you.

22 DR. BARNETTE: This is Gary Barnette. What

1 you're seeing with the widening of the 95 percent
2 confidence intervals, really, the number of
3 patients in each one of those groups is probably
4 contributing to that. The point here is that
5 regardless of how you look at it, the absolute risk
6 reduction is maintained.

7 As far as ghosting and the use of
8 sabinzabulin in conjunction with all the standards
9 of care, as I showed in my slide, essentially,
10 everybody in the study got a systemic
11 corticosteroid, so I suspect that is the standard
12 of care that can serve, really, no matter where you
13 go. I think everybody should be on the best
14 standard of care. Then, of course, you add
15 sabinzabulin when they qualify for the study, for
16 dosing, meaning WHO 4 with comorbidities,
17 et cetera, et cetera, et cetera.

18 As far as the others, I think that's a
19 practice of medicine question, and I would ask
20 Dr. Sandrock if you would opine a little bit on the
21 use of these other standards of care.

22 DR. SANDROCK: Thanks, Gary. I think you

1 highlighted it nicely. We would like to start
2 these early, and we always do. As the antiviral
3 replication then progresses into an inflammatory
4 phase, earlier is always better. So if we look at
5 the average WHO class 4 patient who's required
6 oxygen, multiple comorbidities -- and this is
7 certainly a subgroup that they hopefully will have
8 remdesivir by the time they're at that point -- and
9 because of the required oxygen therapy, steroids
10 will be involved, this is, at least from a clinical
11 perspective, the ideal time where we would like to
12 start some sabizabulin.

13 What we do like with the data is if we miss
14 that window and they end up requiring more advanced
15 therapy for their oxygen, all the way through
16 mechanical ventilation, we feel pretty comfortable
17 at those time points as well. So really, the sweet
18 spot clinically is, I think when we would be
19 considering the other anti-inflammatory,
20 tocilizumab and baricitinib, this would be layered
21 on top of that, roughly around that same time
22 frame. Thank you.

1 DR. KIM: Thank you. And again, some of
2 these questions are coming from thinking about what
3 a potential future study might look like as well.
4 No follow-up questions. Thank you.

5 DR. AU: Thank you.

6 This has been a very robust discussion. I
7 know that we have three hands that are still up in
8 the room. We are, though, about 30 minutes over,
9 so I think I'm going to need to take the chair's
10 prerogative and ask that we take a break.

11 After the break, we'll move directly to the
12 FDA's presentation. I would recommend that we take
13 a five-minute break, which would put us -- my clock
14 says 11:37, so I would ask that we come back around
15 11:43. Sorry for that degree of precision, but I
16 feel like we're getting a bit behind, and I think
17 we need to kind of keep pace. So why don't we see
18 each other in about five minutes? Thank you so
19 much.

20 (Whereupon, at 11:37 a.m., a recess was
21 taken.)

22 DR. AU: I hope everyone had a nice break.

1 We will now proceed with the FDA
2 presentations, starting with Dr. Robert Busch.

3 **FDA Presentation - Robert Busch**

4 DR. BUSCH: Thank you, Dr. Au.

5 Good morning, and thank you all for taking
6 the time to attend this advisory committee meeting
7 today to discuss the data submitted by Veru
8 Incorporated. My name is Robert Busch, and I'm an
9 FDA medical officer and pulmonary critical care
10 physician at the Atlanta VA Medical Center, and
11 I'll be presenting the FDA's talk today, along with
12 my colleague, Dr. Sai Dharmarajan, a senior
13 mathematical statistician here at FDA.

14 The FDA's presentation today will follow the
15 outline presented here. First, I'll present some
16 background information on the VERU-111 EUA request
17 on COVID-19 and on the clinical development program
18 for sabizabulin, which the FDA presenters will call
19 VERU-111, focusing on study V3011902, which I'll
20 call Study 902, as the primary source of data for
21 the authorization request, and then I'll move on to
22 presenting a review of safety data.

1 After that, Dr. Dharmarajan will present the
2 efficacy results with a focus on all-cause
3 mortality. Then Dr. Dharmarajan and I will present
4 the uncertainties and clinical considerations in
5 the interpretation of results. So with that, we
6 can get started.

7 VERU-111 is a new molecular entity not
8 approved for any indication in the U.S. or
9 worldwide. It's an oral tubulin inhibitor that
10 binds to the colchicine binding site of
11 microtubules and prevents cross-linking.

12 As a drug substance, VERU-111 is
13 characterized as a white or whitish to yellow-brown
14 powder. The drug product used in Study 902 was a
15 formulated capsule, which comprised an off white,
16 to light tan, to yellow granulated powder of the
17 drug substance and additional excipients. We bring
18 this issue of the color of the capsule contents up
19 to provide context for discussion of potential
20 unblinding later.

21 The proposed dose used in the primary trial
22 was 9 milligrams by mouth or by a nasogastric tube

1 daily for up to 21 days or until hospital
2 discharge. This is just a reminder of the WHO
3 Ordinal Scale for Clinical Improvement. Subjects
4 with WHO 5 and 6 baseline severity and a subset of
5 WHO 4 severity were enrolled in the studies of
6 VERU-111.

7 The sponsor is requested emergency use
8 authorization of VERU-111 with the following
9 context of use: for the treatment of SARS-CoV-2
10 infection in hospitalized patients with moderate to
11 severe COVID-19 and who are at high risk for
12 developing acute respiratory distress syndrome or
13 ARDS.

14 The sponsor's proposed use includes at high
15 risk of ARDS, and trials of VERU-111 represented
16 that as shown on this slide. However, this term
17 doesn't really have a clearly defined meaning from
18 a regulatory or medical perspective, and it's a
19 source of uncertainty in the EUA, which we'll
20 discuss more later.

21 With that background on VERU-111's request,
22 we can move into the overview of the clinical

1 program. This is the outline I'll follow as I
2 review the program. I'll start by reviewing
3 COVID-19 and its impact, and much of this
4 background will be reviewed to many of you on the
5 committee.

6 COVID-19 is a serious and life-threatening
7 disease syndrome caused by the SARS-CoV-2 virus.
8 The World Health Organization declared COVID-19
9 pandemic on March 11, 2020. Both the worldwide and
10 U.S. impact of COVID-19 have been profound.
11 Worldwide, the WHO reports over 623 million cases
12 and 6.55 million deaths attributed to COVID-19.
13 The CDC reports 96.9 million cases in the United
14 States since early 2020, responsible for almost
15 1.1 million deaths.

16 As of mid October, the CDC reports over
17 37,000 new cases per day, over 3,000 new admissions
18 for hospitalizations per day, and over 300 deaths
19 per day in the United States. So the impact of
20 this disease is still being felt every day in
21 America and the world.

22 Over the course of the pandemic, new

1 variants of concern have appeared, leading to
2 differences in transmissibility, virulence, and
3 disease severity over time. Most of us understand
4 these differences from treating patients during
5 times like the Delta surge and the Omicron surge.
6 SARS-CoV-2 infection can result in a wide spectrum
7 of clinical manifestations, ranging from
8 asymptomatic infection to critical illness, but for
9 this discussion, we're focused on hospitalized
10 disease and subjects with hypoxemia.

11 Some of these patients will progress to
12 severe and critical hospitalized disease, with
13 pulmonary disease characterized by pulmonary
14 inflammation and early ARDS physiology, as well as
15 extrapulmonary manifestations of dysregulated
16 systemic inflammation, hypercoagulability, and even
17 septic physiology with shock and organ failure. As
18 subjects continue to progress, their critical
19 COVID-19 course is generally characterized by
20 refractory critical illness, progressive organ
21 failure, severe ARDS, and death.

22 So now we can discuss available therapies

1 and elements of standard of care for COVID-19,
2 first focusing on nonpharmacological elements of
3 care, and then talking about medications.

4 Pulmonary supportive care for COVID-19
5 centers on oxygenation in most cases, while
6 oxygenation and ventilation support often play
7 larger roles as patients progress through ARDS.
8 Supplemental oxygen can be supplied to patients by
9 many different devices depending on severity. If
10 nasal cannula is insufficient, patients may require
11 heated, humidified high-flow nasal cannula oxygen
12 or non-invasive positive pressure ventilation modes
13 like CPAP or bi-level PAP.

14 If those measures fail, intubation and
15 mechanical ventilation remain the standard of care,
16 and the decision to intubate is tied to other
17 decisions like low-tidal volume ventilation
18 strategies, fluid management strategies, sedation,
19 and proning. ECMO is also an option in some
20 centers, although its efficacy is still an area of
21 active debate. Extrapulmonary care for critical
22 COVID-19 can be extensive and includes the measures

1 listed here.

2 Finally, importantly, there are some
3 elements to COVID-19 care that may be less
4 frequently discussed during reviews of trial data,
5 including less tangible elements of care such as
6 pandemic medical decision making, patient
7 communication at family meetings, goals of care
8 discussions, and decisions to withhold or withdraw
9 life-sustaining therapies, all of which are
10 integral to a patient's clinical course.

11 We can also consider pharmacologic agents
12 available for the prevention and treatment of
13 COVID-19, some of which form part of standard of
14 care for the disease. One of the most important
15 milestones in the COVID-19 pandemic has been the
16 development and approval of safe and effective
17 vaccines against SARS-CoV-2 that prevent infection,
18 as well as preventing severe disease and death from
19 COVID-19.

20 If we move from prevention to treatment,
21 while now approved, remdesivir's initial May 2020
22 EUA in COVID-19 was based on data from 696 subjects

1 exposed to remdesivir plus additional controls, and
2 the approved efficacy and safety database includes
3 1,592 subjects who were exposed to remdesivir with
4 additional controls.

5 While neither approved nor authorized for
6 this purpose, corticosteroids, and specifically
7 dexamethasone, have been endorsed by NIH treatment
8 guidelines and become a major component of standard
9 of care for hospitalized subjects with COVID-19 who
10 require supplemental oxygen due to efficacy data
11 that suggest a reduction in mortality from trials
12 like RECOVERY. In RECOVERY alone, 2,104 subjects
13 were exposed to dexamethasone for the treatment of
14 COVID-19.

15 Next, we have baricitinib. Baricitinib's
16 initial EUA for COVID-19 in November 2020 was based
17 on 515 subjects with COVID-19 exposed to
18 baricitinib plus additional controls. Its approved
19 COVID-19 efficacy and safety database now stands at
20 1,307 subjects exposed to baricitinib plus
21 additional controls.

22 And finally, tocilizumab, which was

1 originally approved for rheumatoid arthritis in
2 2010 but received emergency use authorization for
3 the treatment of COVID-19 on the basis of trial
4 data from the RECOVERY and EMPACTA trials, among
5 others, suggesting that tocilizumab may be
6 effective in reducing mortality among hospitalized
7 subjects with COVID-19 who require supplemental
8 oxygen. 3,016 subjects exposed to tocilizumab were
9 evaluated for the EUA issued in November of 2020.

10 It's important to note the dates involved
11 here, which demonstrate that authorizations,
12 approvals, and other practice changes for COVID-19
13 treatment have changed standards of care over the
14 course of the pandemic and continue to evolve.
15 These practice changes include the timing of the
16 medications mentioned above, as well as
17 anticoagulation strategy changes, changes in
18 nonpharmacologic practices, and evaluation of
19 multiple other ultimately ineffective medications.
20 So comparing to trials that are even months apart,
21 it's a complicated endeavor.

22 Now with that background, we can move on to

1 VERU-111 development. The mechanism of action of
2 VERU-111 is understood to be through tubulin
3 inhibition, and it binds to colchicine binding site
4 of tubulin. The sponsor has proposed both anti-
5 inflammatory and antiviral activity of VERU-111 in
6 COVID-19, however, there are uncertainties in these
7 proposed mechanisms of action.

8 First, some of the data presented for the
9 anti-inflammatory mechanism of action rely on
10 assumptions of downstream actions of VERU-111 that
11 are similar to colchicine, but there aren't
12 necessarily controlled experiments with VERU-111
13 that demonstrate each of these steps. Similarly,
14 our Division of Virology review of the available
15 antiviral data for VERU-111 suggested that there
16 was no direct evidence provided to support the
17 antiviral activity of VERU-111. This included the
18 fact that there was no meaningful reduction in
19 viral shedding in Study 902.

20 So while we know that the drug is a tubulin
21 inhibitor and it shares its primary mechanism of
22 action with colchicine, and we'll talk more about

1 colchichine later, the mechanism of the potential
2 efficacy of VERU-111 in COVID-19 remains uncertain.

3 As noted, this is a new molecular entity not
4 approved for any indication, however, VERU-111 has
5 conducted some development in metastatic prostate
6 cancer through two ongoing studies. Both of these
7 studies did not contain a placebo control, were
8 open label, and focused on metastatic prostate
9 cancer. Further details of these studies are
10 available in the briefing document.

11 The review team did not consider these
12 cancer studies informative to our safety review,
13 based on major differences in the disease process,
14 in the all-male patient population and other study
15 design differences.

16 In terms of COVID-19, the sponsor initially
17 conducted a 1 to 1 randomized, double-blind,
18 placebo-controlled, proof-of-concept trial among
19 39 subjects hospitalized with COVID-19, meeting
20 enrollment criteria. The results of that trial led
21 to the design and conduct of Study 902, an efficacy
22 and safety trial that was initially planned to

1 enroll 300 subjects based on enrollment criteria
2 we'll discuss further.

3 It's worth noting that communications
4 between the division and the sponsor highlighted
5 repeatedly that the size of the safety database was
6 small compared to other products which had been
7 granted EUA, and that the division proposed that at
8 least 500 subjects treated with VERU-111 would
9 provide a more robust characterization of both
10 effectiveness and safety in the context of a
11 possible clinical benefit and any potential safety
12 concern observed.

13 However, during the conduct of Study 902,
14 the sponsor proposed a sample size change from 300
15 down to 210 subjects, as they've noted, citing slow
16 enrollment. This was followed by an interim
17 analysis that suggested efficacy on the all-cause
18 mortality endpoint, based on an analysis of the
19 first 150 subjects. My colleague, Dr. Dharmarajan
20 will talk about this further when he reviews the
21 efficacy data.

22 This table summarizes characteristics for

1 both trials in COVID-19. Each trial collected data
2 to day 60, and enrollment criteria were similar
3 across trials. The primary endpoint differed
4 between the two studies, but both studies included
5 mortality endpoints. While Study 901 had a
6 positive efficacy estimate, Study 901 at
7 39 subjects was too small to draw meaningful
8 conclusions, and baseline imbalances affected the
9 potential clinical interpretability of its data.

10 So as discussed in the briefing document,
11 our focus during this meeting is primarily on
12 Study 902, which, while still a relatively small
13 study, randomized 204 subjects across sites in the
14 U.S., Mexico, Argentina, Colombia, Brazil, and
15 Bulgaria.

16 Now we can go into the details of Study 902.
17 Since the sponsor's already discussed some aspects
18 of trial design, I'll focus my discussion on points
19 that may be important to the division's
20 uncertainties later in the presentation. A study
21 schematic is presented here. I'm just going to
22 highlight a few key points.

1 There was no limit to how many days
2 prospective subjects were allowed to be
3 hospitalized or treated for COVID-19 prior to
4 screening and enrollment. The protocol did not
5 require any particular elements of standard of care
6 for COVID-19 treatment, but it stated that subjects
7 should receive local standard of care. Screening
8 included some measurements of severity, and this
9 occurred up to 3 days prior to formal enrollment in
10 the day 1 baseline assessments. However, formal
11 data collection that described a clinical course
12 prior to screening were not available. As
13 presented by the sponsor, subjects were then
14 randomized and followed to day 60.

15 The enrollment criteria for Study 902
16 recruited an adult population with confirmed
17 SARS-CoV-2 infection and low peripheral oxygen
18 saturation, requiring supplemental oxygen at
19 screening or documented prior to screening. This
20 can be accomplished through ER notes or even EMT
21 notes, for example.

22 The severity criteria for inclusion were

1 based on the WHO Ordinal Severity Scale. If a
2 subject met criteria for WHO 5 or 6 at baseline,
3 they can be included. However, if they met WHO 4
4 criteria at baseline, meaning oxygen
5 supplementation by simple nasal cannula or simple
6 mask, they were required to also have one or more
7 designated comorbidities as shown in the list
8 provided. However, as we'll discuss later, data
9 were not collected on all these factors.

10 So as the summary for inclusion, this is the
11 WHO Ordinal Scale for Severity that formed the
12 basis for trial enrollment, and this was what the
13 enrollment criteria allowed: subjects with WHO 5
14 and 6 severity, as well as a subset of subjects
15 with WHO 4 severity who met additional criteria.
16 The exclusion criteria were generally acceptable,
17 and we've just listed one from the list here.

18 The full criteria excluded subjects enrolled
19 in other trials, subjects with evidence of liver or
20 renal dysfunction and subjects with WHO 7 severity
21 at baseline. The 2 to 1 randomization in Study 902
22 was stratified by baseline WHO severity score to

1 attempt to provide for a similar baseline severity
2 across study arms, however, randomization was not
3 stratified by site in this multinational study.

4 Blinding was provided for by supplying
5 VERU-111 drug products and placebo in matching
6 capsules for PO administration, however, in order
7 to administer the medication by enteral tube, such
8 as a nasogastric tube, the protocol required the
9 capsule to be opened and the contents to be mixed
10 with water for administration. We'll discuss this
11 further during the presentation when we consider
12 potential unblinding events.

13 The primary endpoint for Study 902 was
14 all-cause mortality at day 60, and of course
15 mortality is a clinically relevant endpoint for
16 COVID-19 and is noted in the agency's COVID-19
17 guidance to industry. Study 902 also evaluated the
18 secondary endpoints listed here. Each of these
19 endpoints incorporated mortality events through its
20 presence in the composite endpoint or through a
21 statistical penalty, so the mortality results
22 directly influenced each endpoint, which is why

1 mortality is our focus.

2 Now I'll move on to describing the enrolled
3 population. If we look at the study disposition,
4 the initial intention to treat, or ITT, population
5 included 134 subjects randomized to VERU-111 and 70
6 randomized to placebo. The safety population,
7 comprised of subjects who received at least one
8 dose of the study medication, was only slightly
9 smaller, as well as the modified intention-to-treat
10 population. The division's analyses of efficacy
11 will focus on the ITT population and our analyses
12 of safety will focus on the safety population.

13 Eighty-two percent of study participants did
14 not complete 21 days of therapy and the mean time
15 to discontinuation was around 9 days. The
16 proportion of missing data in the study was
17 relatively low, as Dr. Dharmarajan will discuss.
18 In terms of withdrawals, 6.4 percent of subjects
19 withdrew from the study, which was similar across
20 arms.

21 So for these next few slides, I'll present a
22 series of small but potentially clinically

1 meaningful imbalances in baseline factors. While
2 these types of imbalances are somewhat expected
3 given the small sample size, these imbalances occur
4 in factors that might be predicted to affect a
5 patient's COVID-19 prognosis and mortality, and in
6 the context of the 2 to 1 randomization ratio,
7 factors that affect the placebo mortality of a few
8 patients would then exert more influence on the
9 efficacy estimate.

10 So as we look at the demographics of the
11 enrolled population, there was a difference in the
12 proportion of subjects equal to or greater than
13 65 years of age at baseline, with a higher
14 proportion of patients over age 65 in the placebo
15 group. This is potentially relevant because CDC
16 guidelines suggest that age remains the strongest
17 risk factor for severe COVID-19 outcomes.

18 This next table shows some clinical
19 characteristics. There was a small imbalance in
20 vaccination rates at baseline, suggesting that a
21 higher proportion of subjects in the placebo arm
22 were hospitalized despite prior COVID-19

1 vaccination. All of the subjects in the Study 902
2 were hospitalized and required supplemental oxygen
3 at baseline, implying that they all likely had
4 compelling indications for dexamethasone,
5 remdesivir, and an immunomodulator if we consider
6 U.S. standard of care. However, the rates of these
7 standard of care agents were considerably less than
8 100 percent of the study, and there were small
9 imbalances between arms.

10 Since this study has a small sample size and
11 used 2 to 1 randomizations, even when including
12 some of these variables as prespecified covariates
13 in the primary efficacy model, it's possible that
14 the adjusted analyses may not have completely and
15 correctly accounted for all of these observed
16 imbalances. My colleague, Dr. Dharmarajan, will
17 elaborate on this later.

18 So we continue to have concerns, especially
19 about the cumulative effect of these small measured
20 baseline imbalances, as well as potential
21 imbalances in variables that weren't measured and
22 how they might impact study outcomes. To put it

1 another way, one of the most informative measures
2 about baseline severity is probably this, the
3 proportion of subjects in the ICU at baseline. And
4 acknowledging what Dr. Barnette said about
5 differences locally, there's still an imbalance
6 here; 38.1 percent of subjects in the VERU-111 arm
7 were in the ICU at baseline versus 44.3 percent of
8 subjects in the placebo arm.

9 Similarly, there were small imbalances in
10 baseline comorbidities. The proportion of subjects
11 with diabetes, hypertension, heart failure,
12 pneumonia, acute respiratory failure, and ARDS at
13 baseline were all numerically higher in the placebo
14 group, while asthma and COPD were higher in the
15 VERU-111 group.

16 While the enrollment criteria for WHO 4
17 subjects allowed for inclusion of subjects who were
18 immunocompromised or subjects who resided primarily
19 in a nursing home, there was no formal data
20 collection to quantify subjects who met these
21 criteria at baseline, or to further describe what
22 forms of immunocompromise might have been present.

1 In our view, we also noticed a difference in
2 the proportion of subjects who had received over
3 14 days of standard-of-care medications for
4 COVID-19, with a higher proportion in the VERU-111
5 arm. This included subjects with values like
6 30 days, 37 days, and 55 days of corticosteroids
7 and/or remdesivir for COVID-19 prior to
8 randomization. Similarly, a higher proportion of
9 subjects were hospitalized for greater than 14 days
10 prior to randomization in the VERU-111 arm compared
11 to placebo. This included subjects with values
12 like 19, 28, and 30 days of hospitalization prior
13 to study randomization.

14 The full scope of COVID-19 standard-of-care
15 therapy and duration of hospitalization in
16 Study 902 are depicted in these plots, with days of
17 COVID-19 standard-of-care therapy on the left plot
18 and days of hospitalization on the right. Patients
19 treated with VERU-111 are in blue and patients in
20 the placebo group are depicted in red. The day of
21 randomization is labeled day 0 on the X-axis and is
22 denoted by the black vertical line.

1 With these plots, we're asking you to focus
2 primarily on the prerandomization values to the
3 left of day 0. You can see that the VERU-111 arm
4 contains the most extreme values for both
5 prerandomization therapy and duration of
6 hospitalization near the top of the plot. These
7 ideas will come back up again when we talk about
8 uncertainties and their effect on the
9 interpretation of the efficacy results.

10 With that, I'll move on to safety. The
11 division decided to present these safety data early
12 in the presentation for two reasons; first, to
13 inform the overall benefit-risk discussion
14 regarding VERU-111 so that the committee can make
15 informed decisions, of course; and second, to
16 devote the rest of the presentation to the efficacy
17 results and their uncertainty, which are the major
18 topics for discussion today.

19 The primary uncertainty in the safety
20 database is due to the extremely limited sample
21 size, which limits our ability to adequately
22 characterize the safety of the drug. The safety

1 analysis set for 902 comprised 130 subjects exposed
2 to VERU-111 and the 69 on placebo, many of whom
3 stopped the drug prior to day 21.

4 For comparison, we can refer again back to
5 the safety database for remdesivir, baricitinib,
6 and tocilizumab, each of which contained over
7 500 COVID-19 subjects exposed to each drug at the
8 time of the initial EUA earlier in the pandemic.
9 The division considered pooling safety data across
10 studies, but Study 901 included only 39 subjects
11 randomized 1 to 1, to VERU-111 versus placebo. The
12 differences in randomization ratios and the
13 difference in timing during the pandemic all led to
14 our decision not to pool safety data across
15 studies. The discussion of the analyses of the
16 safety data from Study 901 is detailed in the
17 briefing document, though.

18 For the purposes of this presentation, I'll
19 focus on the results of Study 902 comprising
20 130 total subjects who received VERU-111 with a
21 mean duration of exposure of approximately 9.1 days
22 compared to placebo. The content and frequency of

1 safety evaluations for the Study 902's protocol
2 were adequate and comparable to other trials
3 considered safe to proceed during the COVID-19
4 pandemic. It included adverse event data
5 collection to day 60, as well as additional safety
6 data from clinical labs, and 12 lead to EKGs, for
7 example.

8 As noted, the small safety database limits
9 our ability to detect rare events, so we're going
10 to start with common adverse events in the study.
11 The available safety data suggested a few potential
12 safety signals for VERU-111. When thinking further
13 on these AEs, the limited information on this new
14 molecular entity doesn't provide a direct mechanism
15 linking microtubule inhibition from VERU-111 to
16 these events, but we did observe that most of these
17 events occurred in organ systems with populations
18 of high turnover cells, like the immune system, GI
19 system, bone marrow, and skin, and some were
20 similar to colchicine, which also inhibits tubulin,
21 so we can start with urinary tract infections.

22 UTIs showed one of the largest imbalances in

1 the study, with a higher proportion in the VERU-111
2 arm, and there were smaller imbalances in related
3 terms such as urosepsis, which is not shown. Next,
4 the overall gastrointestinal system organ class
5 showed an imbalance towards a higher proportion of
6 subjects in the VERU-111 with AE terms under this
7 heading.

8 On digging deeper into the signal,
9 imbalances in three areas stood out, GI hemorrhage,
10 GI motility including diarrhea, and GI symptoms,
11 including nausea and vomiting. GI hemorrhage
12 showed a small imbalance, but given its importance
13 in a critically ill population, we investigated GI
14 hemorrhage further through an exploratory analysis
15 using a standardized MedDRA query. This showed
16 other potential events but still a small imbalance,
17 but it didn't change the overall interpretation.

18 The other GI adverse event terms of motility
19 issues like diarrhea and symptoms like nausea and
20 vomiting are not surprising, given that there are
21 documented adverse events for colchicine. Anemia
22 was the next signal, and this showed a small

1 imbalance as shown on the slide. Colchicine
2 contained some similarities here, too.

3 Next to last is the imbalance in epidermal
4 and dermal conditions, including imbalances in
5 decubitus ulcers, among others. And finally, we
6 have venous thromboembolism adverse events with
7 small imbalances in the AE term "deep vein
8 thrombosis," which is shown here, as well as some
9 other related terms, which are not shown here.

10 As you can see, this imbalance is small, but
11 this topic is clinically important in the care of
12 COVID-19, and the rates you're seeing are
13 potentially low for COVID-19 patients and the
14 severity of subjects enrolled in the trial. To see
15 whether we could gain more confidence in this
16 signal, we performed another standardized MedDRA
17 query analysis using the SMQ, embolic and
18 thrombotic events, venous, which captured more
19 potential events with a similar imbalance. So
20 again, this didn't refute the imbalances shown or
21 the interpretation of the signal.

22 As I said before, characterization of

1 serious adverse events is limited by the small
2 sample size. With this limitation in mind, no SAE
3 imbalance was noted as a stand-alone potential
4 risk, based on the available data.

5 We also looked to see whether safety signals
6 from common adverse events were reciprocated in the
7 SAEs. We did still see an imbalance in SAEs of
8 urinary tract infections, but the serious adverse
9 event review was inconclusive for the other signals
10 I mentioned in the previous slide, and then one
11 more note on death events. My colleague,
12 Dr. Dharmarajan, will go into these events as part
13 of the efficacy discussion, so we've deferred the
14 review of death events as part of the safety
15 analysis.

16 So to summarize, the efficacy and safety
17 data for the sponsor's emergency use authorization
18 request relied primarily on Study 902 a 2 to 1
19 randomized, double-blind, placebo-controlled
20 efficacy and safety trial of VERU-111, in
21 hospitalized subjects with COVID-19 on supplemental
22 oxygen, that ultimately randomized 204 subjects and

1 was stopped early after an interim efficacy
2 analysis.

3 In thinking about the division's focused
4 protocol review and the key issues for discussion,
5 first, we have the potential uncertainties related
6 to the mechanism of action in COVID-19. As
7 discussed, there's no direct evidence to support
8 the claim of antiviral activity, and the proposed
9 anti-inflammatory mechanism relies on data from
10 colchicine. Second, there are additional potential
11 uncertainties related to the trial design,
12 including the clinical relevance of and the data
13 collection for the designated population described
14 as high risk for ARDS.

15 In addition, the trial did not limit the
16 duration of prerandomization therapy for COVID-19
17 or prerandomization hospitalization, which we'll
18 discuss further later. Finally, there are
19 uncertainties related to the small sample size,
20 which has come up again and again, which resulted
21 in multiple small baseline imbalances in clinically
22 relevant aspects of demographics, disease

1 characteristics like proportion of subjects in the
2 ICU at baseline, standard of care therapies, and
3 prerandomization care.

4 If we summarize the safety data, the most
5 important observation to consider is that the
6 COVID-19 specific safety database for this new
7 molecular entity is small at 149 subjects exposed
8 between Studies 901 and 902, and considerably
9 smaller than most of the standard-of-care drugs
10 available, approved, or authorized for COVID-19,
11 such as dexamethasone, remdesivir, baricitinib, and
12 tocilizumab. This contributes to the uncertainty
13 in the safety of the product and limits our ability
14 to draw conclusions on rare events or serious
15 adverse events.

16 Despite this, we did see some imbalances in
17 common adverse events, including urinary tract
18 infections; gastrointestinal adverse events,
19 including diarrhea and nausea and vomiting that are
20 familiar from the safety profiles of colchicine; as
21 well as anemia, dermatological events, and a small
22 imbalance in venous thromboembolism events.

1 Of course, the overall impact of these
2 potential safety signals on benefit-risk is
3 dependent primarily on the level of confidence for
4 the potential efficacy signal for mortality. So to
5 begin the discussion on mortality, I'll turn the
6 presentation over to my colleague, Dr. Dharmarajan,
7 to discuss the statistical review of efficacy.

8 **FDA Presentation - Sai Dharmarajan**

9 DR. DHARMARAJAN: Thank you, Dr. Busch.

10 Good morning, everyone. I'm Sai
11 Dharmarajan, a statistical reviewer in the Office
12 of Biostatistics at CDER, FDA. I'll now go over
13 the statistical review of efficacy, starting with
14 the review of the interim analysis and study
15 decision making, followed by a review of the main
16 study findings and some sensitivity and subgroup
17 analyses.

18 The study followed an O'Brien-Fleming group
19 sequential design, allowing for one interim look
20 and within the overall type 1 error controlled at
21 5 percent; that is a two-sided alpha of 0.05.
22 Interim analysis was to include the first

1 150 randomized subjects who completed all
2 evaluations through day 60. The sponsor initially
3 planned the interim analysis to occur at 50 percent
4 of the maximally sample size of 300, however, as
5 the sponsor reduced the sample size to 210, citing
6 slow recruitment, interim analysis was to occur
7 when 71.4 percent of the maximum number of subjects
8 to be enrolled had completed the trial.

9 The criterion for efficacy at the interim
10 analysis was a two-sided p-value of 0.016; that is
11 the trial would be stopped for efficacy if the
12 two-sided p-value for the primary endpoint was
13 lower than 0.016 at the interim stage. If the
14 criterion was not met, the trial was to continue
15 through the final analysis, including all
16 210 subjects.

17 The observed p-value at the interim analysis
18 was p equals 0.0045, which is lower than the
19 threshold p-value of 0.016, indicating the
20 statistical boundary for efficacy was crossed;
21 thus, the independent data monitoring committee
22 recommended stopping the trial for efficacy. An

1 additional 54 subjects were already enrolled at the
2 time of stopping and were allowed to complete the
3 study period. Thus, while significance testing was
4 based on the first 150 subjects at the interim
5 analysis, information is available on
6 204 randomized subjects and is provided in all the
7 analysis results that we will present.

8 In the following slide, we will present the
9 interim analysis results, which formed the basis
10 for stopping the trial, and the results from the
11 analysis, including all 204 subjects, completed the
12 study.

13 For the primary endpoint of all-cause
14 mortality at day 60, the sponsor compared the
15 proportion of subjects alive at day 60 in the two
16 treatment arms using a logistic regression
17 analysis, adjusting for treatment and in the
18 following covariates: sex, baseline WHO Ordinal
19 Scale score, region, and remdesivir use and
20 dexamethasone use at baseline.

21 In the analysis, missing outcome data in
22 4 subjects in the VERU-111 arm and 2 subjects in

1 the placebo was handled using multiple imputation,
2 with the imputation model including the same
3 covariates and, additionally, treatment
4 discontinuation status and hospital discharge
5 status.

6 The sponsor reported the odds ratio and
7 95 percent confidence intervals for treatment
8 comparison. Here, we also present the risk
9 difference and 95 percent confidence intervals. At
10 interim, 76.5 percent of the subjects treated in
11 the VERU-111 and 53.8 percent of the subjects in
12 the placebo arm remained alive at day 60. The odds
13 ratio for odds of staying alive at day 60 was 3.20
14 in favor of treatment, and the risk difference
15 indicated a 23.1 percent change in the risk of
16 mortality.

17 Among all 204 randomized subjects,
18 78.4 percent of the subjects treated in the
19 VERU-111 and 58.6 percent of the subjects in the
20 placebo arm remained alive at day 60. The odds
21 ratio for odds of staying alive was 2.77 in favor
22 of treatment, and the analysis indicated a

1 19 percent greater chance of remaining alive in the
2 treatment group.

3 To assess the robustness of the primary
4 analysis findings, the sponsor conducted a
5 sensitivity analysis that considered the full range
6 of possible response rates in subjects with missing
7 data, the response being defined as being alive at
8 day 60.

9 Specifically in this analysis, imputations
10 were performed independently between the two
11 treatment groups such that in the most extreme and
12 favorable case for VERU-111, the imputed response
13 rate in subjects with missing data in the VERU-111
14 arm was zero percent and the placebo arm was
15 100 percent, and the most extreme favorable case
16 for VERU-111, the imputed response rate in the
17 subjects missing data in the VERU-111 arm was
18 100 percent and the placebo arm was zero percent.

19 Timely analysis conclusions remained robust
20 even to missing data assumptions, with the
21 treatment comparison in the most extreme
22 unfavorable case being similar to that seen in the

1 primary analysis with an odds ratio of 2.16 and the
2 risk difference of 17.7 percent.

3 To provide an understanding of the overall
4 trajectory of the treatment effect, in this slide
5 we present the comparison of mortality in the two
6 treatment arms at day 29 and other time points. At
7 day 29, 110, or 82.1 percent, of the subjects
8 remained alive in the VERU-111 arm and 48, or
9 68.6 percent, of the subjects remained alive in the
10 placebo arm.

11 Treatment comparisons using the same
12 logistic regression model as done in the primary
13 analysis revealed that the proportion of subjects
14 alive was higher in the VERU-111 arm, with an odds
15 ratio of 2.15 for odds of being alive at day 29 and
16 the risk difference of 11.9 percent favoring
17 treatment.

18 We note that the treatment effect in terms
19 of difference in mortality was lower at day 29 and
20 earlier time points than at day 60. This is also
21 seen here in the Kaplan-Meier plot of survival
22 curves, which seemed to diverge further after

1 day 29.

2 As noted previously, baseline imbalances
3 were observed in the timing of enrollment into the
4 study with respect to clinical course and duration
5 of standard-of-care therapy. The potential effect
6 of these imbalances on study findings were explored
7 using sensitivity analyses that adjusted for the
8 baseline factors of additional covariates and the
9 primary analysis of the primary endpoint, and
10 subgroup analysis defined by the timing of
11 enrollment into the study with respect to clinical
12 course and duration of standard-of-care therapy.
13 In the following slides, we'll present the results
14 of these analyses and discuss the findings and the
15 limitations for interpretation.

16 First, we look at the results of sensitivity
17 analysis, including an adjustment for baseline
18 imbalances in days hospitalized and days of
19 standard-of-care therapy prior to randomization in
20 the primary logistic regression analysis model.
21 The results from the primary analysis are also
22 included in the first row of the table for

1 comparison.

2 After adjusting for days hospitalized prior
3 to randomization, the estimated treatment effect in
4 terms of odds ratio, for the odds of staying alive
5 at day 60, was 2.58, which was slightly lower than
6 that reported in the primary analysis. And
7 likewise, adjusting for days of standard-of-care
8 therapy prior to randomization also produced a
9 slightly lower odds ratio of 2.65. However,
10 adjusting for these imbalances did not seem to
11 affect the estimate of the risk difference summary
12 measure.

13 Here, we present the results of the primary
14 analysis by subgroups defined by days hospitalized
15 and days of standard-of-care therapy prior to
16 randomization. This analysis explored if the
17 treatment effect remained consistent across
18 subjects with different amounts of days in hospital
19 and days of standard-of-care therapy prior to
20 randomization.

21 The results indicate that the numerical
22 trend for efficacy was maintained in subgroups of

1 patients who are hospitalized less than 5 days and
2 less than 10 days prior to randomization, and also
3 in patients with less than 5 days and less than
4 10 days of standard-of-care therapy prior to
5 randomization. The estimated odds ratio for the
6 odds of remaining alive at day 60 ranged from 2.38
7 to 4.18 in these subgroups, and the estimated risk
8 difference ranged from 15.8 to 20.2 percent. We
9 noted the cutoffs of less than 5 and less than 10
10 were arbitrarily chosen. We also note that the
11 findings were consistent for other cutoff values
12 explored.

13 We thought that the addition of covariates
14 to control for baseline imbalances in days of
15 hospitalization and days of standard-of-care
16 therapy prior to randomization had minimal impact
17 on the primary analysis results, and that subgroup
18 analysis results were consistent with the primary
19 analysis results. However, it is important to note
20 that these post hoc analyses are simplistic
21 explorations using available data and may not have
22 correctly captured the relationship between these

1 imbalance factors and the outcome.

2 Further, exploration of the effect of the
3 interaction of these imbalance factors was not
4 possible due to limitations of the sample size. As
5 such, these exploratory analysis do not completely
6 eliminate the concern that these baseline
7 imbalances across treatment groups may have
8 impacted the study findings. A larger study where
9 such imbalances are less likely to occur after
10 randomization would be needed to confirm the lack
11 of influence of baseline imbalances on study
12 findings.

13 As presented by the sponsor, a positive
14 trend for efficacy was seen in secondary endpoints
15 of alive and free of respiratory failure at day 29,
16 days in ICU, days in hospital, and days on
17 mechanical ventilation, and clinical improvement on
18 the WHO Ordinal Scale. It is important to note
19 that the calculation of each of these secondary
20 endpoints are influenced by the mortality results
21 since each secondary endpoint contains a component
22 of mortality or provides a numerical penalty for

1 mortality events. Thus, while supportive, these
2 results were influenced by results in mortality.

3 We also note that the imbalances in timing
4 of enrollment, specifically in terms of days
5 hospitalized and days of standard-of-care therapy
6 prior to randomization, may influence the clinical
7 interpretation of some secondary endpoints such as
8 days in hospital. My colleague, Dr. Busch, will
9 discuss more about this issue, later.

10 In summary, Study 902 met the statistical
11 criterion for stopping at the interim analysis
12 stage for efficacy. Data from all 204 subjects
13 completing the study indicates a treatment benefit
14 for all-cause mortality at day 60. Primary
15 analysis results remained robust to missing data
16 assumptions. Exploratory analysis seemed to
17 indicate a minimal impact of baseline imbalances in
18 timing of enrollment with respect to clinical
19 course and duration of standard-of-care therapy on
20 study findings, although, as mentioned above, these
21 analyses do not completely eliminate the concern
22 caused by these imbalances.

1 Finally, a positive numerical trend for
2 efficacy was also consistent across subgroups
3 defined by age, baseline WHO Ordinal Scale score,
4 region, remdesivir use and dexamethasone use at
5 baseline.

6 Now my colleague, Dr. Busch, and I will talk
7 about uncertainties in the efficacy data and some
8 clinical considerations.

9 Our review has identified a number of
10 uncertainties with the data, which we raised in the
11 context of this small trial in critically ill
12 patients. These uncertainties or issues are listed
13 in this slide. In the following slides, we'll
14 discuss each of these issues in detail, and I'll
15 start with the first one on high placebo group
16 mortality rate.

17 Based on the planned severity level of
18 patients to be enrolled, the sponsor utilized a
19 reasonable assumption that the placebo mortality
20 rate would lie between 15 percent and 30 percent,
21 consistent with other studies with comparable
22 severity. However, the day 60 mortality rate in

1 the placebo group in Study 902 was 39.7 percent.

2 At the interim analysis stage, the day 60
3 mortality rate in the 52 subjects in the placebo
4 group who completed the study was 45.1 percent, and
5 among subjects within North America, it was
6 63.6 percent. While it is challenging to make
7 direct comparisons to other randomized-controlled
8 trials, we show here that prior and concurrent
9 studies conducted in populations with similar
10 baseline severity have reported lower day 60
11 mortality rates for the placebo arm.

12 For example, the placebo group mortality
13 rate was 15 percent in the COV-BARRIER study. This
14 included subjects with baseline disease severities
15 corresponding to the 8-point WHO Ordinal Scale
16 scores 3, 4, and 5. A placebo group mortality rate
17 at day 60 was 25 percent in the REMDACTA study and
18 11 percent in another study of sarulimab, both of
19 which included subjects with baseline disease
20 severities corresponding to WHO Ordinal Scale
21 scores of 4, 5, 6, and 7. All three of these
22 trials were concluded before the start of Study

1 902.

2 In a more recent trial, the ACTIV-1 IM,
3 conducted from October 2020 to December 2021, and
4 including subjects with predominantly baseline
5 disease severities responding to WHO Ordinal Scale
6 scores of 4, 5, 6, the day 60 mortality rate in the
7 placebo group was reported to be 16.5 percent. In
8 another trial, ACTIV-3b, which is conducted in an
9 overlapping time frame with Study 902 in the U.S.
10 and in some Brazilian sites, and included subjects
11 with a baseline WHO Ordinal Scale score of 5 and 6,
12 the day 90 mortality rate in the placebo arm was
13 35 percent.

14 Given these data from recent trials and
15 other trials which were conducted earlier in the
16 pandemic when treatment options were limited and in
17 the presence of variants soon to be associated with
18 a higher mortality rate, the mortality rate
19 observed in Study 902 appears to be higher than
20 what would be expected in the study population
21 during the time frame in which the study was
22 conducted, calling into question the

1 interpretability of results and the patient
2 population studied.

3 This slide just lists the references for the
4 information displayed in the table we just saw,
5 showing that in the day 60 mortality rate, the
6 placebo group in Study 902 was higher than
7 expected, based on data from prior and concurrent
8 studies.

9 While discussing the high placebo mortality
10 rates here, we have focused on day 60 mortality, as
11 this is what is used for the primary endpoint, the
12 results of which were used to justify stopping
13 early for efficacy. We also note that a few
14 studies had a similar day 29 mortality rate in the
15 placebo group, but we also note that these studies
16 were conducted earlier in the pandemic with
17 potential differences in standard-of-care therapies
18 and viral variants.

19 It is also worth noting that the treatment
20 difference at day 29 was much lower than that
21 observed at day 60, with an odds ratio of 2.15 and
22 with 95 percent confidence intervals going from

1 1.02 to 4.56, and a risk difference of 11.9 percent
2 with 95 percent confidence intervals going from
3 negative 0.3 to 24.2 percent. This indicates that
4 much of the differentiation between treatment arms
5 occurred after day 29.

6 With that, I'll now turn it back over to
7 Dr. Busch for a discussion of other uncertainties
8 and clinical considerations.

9 **FDA Presentation - Robert Busch**

10 DR. BUSCH: Thank you, Dr. Dharmarajan.

11 Earlier, we mentioned potential unblinding
12 as an uncertainty in the program. While VERU-111
13 and placebo products for Study 902 were supplied in
14 matching capsules, the contents were not identical.
15 For those who couldn't take oral medications, the
16 protocol noted that the capsule should be broken
17 open and the contents mixed with water for
18 administration through an enteral tube. Because
19 the placebo and VERU-111 products were visually
20 different, there was the potential for unblinding.
21 In response to an information request, the sponsor
22 sent us these pictures.

1 So this is what the care providers saw when
2 they opened the capsules. In these pictures, the
3 VERU-111 product used in Study 902 is on the left,
4 while the placebo product is in the middle. As we
5 noted previously, the drug product was an
6 off-white, to light tan, to yellow granular powder,
7 and this information was available in the
8 investigators brochure, and here are pictures of
9 the products once they are mixed with water.

10 So this is what care providers would see in
11 the syringe before injecting into the enteral tube,
12 for example. There were differences in appearance,
13 especially color, as well as differences in the
14 dissolution properties of the capsule contents.
15 Once again, the VERU-111 drug product from
16 Study 902 is on the left, while the placebo product
17 is in the middle.

18 So the potential for unblinding existed, at
19 least in subjects who couldn't take medications by
20 mouth. When we asked further about this potential
21 unblinding, the sponsor reported that 23.9 percent
22 of subjects in the VERU-111 arm received at least

1 one dose of study drug via nasogastric tube,
2 compared to 32.9 percent of subjects in the placebo
3 arm. However, they also acknowledged that the data
4 collected only addressed administration by
5 nasogastric tube, meaning that data were not
6 collected to quantify other forms of enteral tubes
7 like orogastric or percutaneous gastrostomy, or
8 even what happened with subjects with impaired
9 swallowing who couldn't take the capsule intact, so
10 the scope of the potential unblinding in Study 902
11 was uncertain.

12 So then, does it matter that unblinding may
13 have occurred? Mortality is often thought of as an
14 objective endpoint for clinical trials, and we
15 acknowledge that whether a clinical event of death
16 occurred is not influenced by knowledge of
17 treatment assignment. This means that a mortality
18 event is not vulnerable to ascertainment bias.

19 However, the mortality endpoint can be
20 influenced by the knowledge of treatment assignment
21 through the conscious or subconscious differential
22 use of treatments, or other aspects of care between

1 arms, which could lead to influence on the rate or
2 timing of death events, and this is known as
3 performance bias. Prior studies suggest that
4 inadequately blinded trials overestimate efficacy,
5 including trials that measure mortality,
6 potentially due to the influence of performance
7 bias, and these data were reviewed in the briefing
8 document.

9 An additional issue in Study 902 is that the
10 potential unblinding is confound by severity, so
11 the subjects who have clinical decline, and
12 especially intubation and mechanical ventilation,
13 are also the subjects most likely to require an
14 enteral tube, whether NG, OG, PEG, or other. This
15 combination of knowing that sicker subjects had a
16 higher likelihood of unblinding, and not being able
17 to know how many subjects might have been unblinded
18 in total, makes exploring this topic further very
19 difficult for two reasons.

20 First, because sensitivity analyses about
21 this group of subjects ultimately can't get past
22 the fact that they had a higher severity and a

1 higher likelihood of death, regardless of potential
2 unblinding; and second, since only data on NG tubes
3 were collected, we don't know the full scope of
4 potential unblinding in Study 902, so the
5 completeness of any sensitivity analysis is also an
6 issue here. This potential unblinding is relevant,
7 though, because it has the potential to influence
8 care during the trial, including goals of care
9 decision making, which I'll discuss more later.

10 There were several features of Study 902
11 that may have made it more vulnerable to
12 performance bias. The care of subjects with
13 critical COVID-19 involves frequent, clinically
14 relevant interventions, many of which require
15 medical decision making about the benefit-risk of
16 the intervention in the context of the subjects'
17 perceived overall prognosis.

18 In addition, it's worth noting that the only
19 data available to investigators regarding the
20 efficacy of VERU-111 at this point were data from
21 the 39 subjects in Study 901. The investigators
22 brochure stated that the mortality results from

1 Study 901 represents an 82 percent relative
2 reduction in mortality in the VERU-111 population,
3 which could have influenced treatment expectations.

4 Finally, the urgency of these interventions
5 may have been influenced by the overall care
6 patterns of the pandemic. Unfortunately, the
7 limited data collection in the study, while not
8 necessarily different from many other trials during
9 the pandemic, does not allow us to explore these
10 uncertainties further. Even if we conducted a
11 sensitivity analysis, we can't be sure how many
12 subjects had enteral tubes, and an efficacy result
13 in a potentially unblinded population could be due
14 to the drug or it could be interpreted to show
15 influence of performance bias, and we don't have
16 additional data that would help us to disentangle
17 this.

18 So while we cannot definitively say that
19 unblinding occurred, differences in the appearance
20 of the study drug product raise this possibility.
21 These uncertainties are intensified by the small
22 sample size and the 2 to 1 randomization ratio of

1 Study 902, where any effect on the mortality of
2 even a few subjects in the placebo group may have
3 exaggerated effect on the overall results.

4 If we move to standard of care, the use of
5 local standard of care for COVID-19 introduces
6 uncertainty in the interpretation of the mortality
7 data for U.S. healthcare systems because in some
8 cases, it appeared to differ substantially from
9 accepted elements of U.S. standard of care.

10 Given the population, each subject had
11 compelling indications for remdesivir,
12 dexamethasone, as well as an immunomodulator in a
13 U.S. healthcare center. However, when we look at
14 the data, little remdesivir use occurred outside of
15 the United States in Study 902, and even this
16 approximately 28 percent of subjects showed an
17 imbalance across arms.

18 Similarly immunomodulator use was less than
19 10 percent in Study 902. Baseline corticosteroid
20 use hovered around 80 percent in Study 902, but
21 that number doesn't take into account both the
22 small baseline imbalance or the durations of

1 therapy provided.

2 This plot focuses on the top results from
3 each study arm for COVID-19. It's a subset or like
4 a zoom-in of the graph I showed earlier that
5 maintains the randomization ratio, so it's actually
6 slightly mislabeled in the briefing document since
7 it isn't simply the top 15 values; it's the top
8 10 values from the VERU-111, shown in blue, and the
9 top 5 from the placebo arm, shown in red, to
10 maintain randomization. The top 15 values are
11 actually populated by 12 values in the VERU-111 arm
12 and three in the placebo arm.

13 But regardless, you can again see that there
14 was a higher proportion of subjects with more than
15 14 days of prerandomization therapy in the VERU-111
16 arm, and that some subjects received
17 corticosteroids for over 30 days prior to
18 randomization. If we include the
19 post-randomization duration, there were subjects
20 who received corticosteroids for over 50 days.
21 There's uncertainty in how these different practice
22 patterns might influence the efficacy results and

1 in whether these data are informative in the
2 context of U.S. practice patterns.

3 Next, as mentioned previously, there were
4 baseline imbalances in measured elements of
5 standard-of-care therapies between arms, including
6 remdesivir, corticosteroid use at baseline, and
7 proportion of subjects in the ICU at baseline. In
8 addition, while we have some data on medications,
9 data collection on nonpharmacologic elements of
10 standard of care in Study 902 at baseline was
11 limited, as well as before and after randomization.

12 Because of this, it's difficult to assess
13 the full scope of potential differences in standard
14 of care, and it's also difficult to explore the
15 potential influence of performance bias on
16 post-randomization care in the setting of potential
17 unblinding events. Again, these concerns are
18 compounded in the setting of a small trial.

19 Next, we can talk about the timing of
20 enrollment in relation to the subjects' COVID-19
21 clinical course. This graph shows the top
22 15 values for the duration of prerandomization in

1 hospitalization in Study 902, another zoom-in from
2 a previous plot, and the top 15 values for this
3 data point just happened to mirror the 2 to 1
4 randomization ratio.

5 The days hospitalized is shown in blue for
6 the VERU-111 arm and red for the placebo arm. As
7 you can see, there is an imbalance between
8 treatment arms for subjects who are in the hospital
9 greater than 14 days prior to randomization. But
10 what we can't really know is, for example, what the
11 clinical course was for that person who had been in
12 the hospital for 30 days prior to randomization.
13 Was that person slowly getting worse prior to
14 randomization or had they already turned a corner
15 and were getting better? It's difficult to know,
16 other than to say that they met inclusion criteria
17 at that one cutpoint.

18 This creates uncertainty in the results for
19 these subjects with long prerandomization
20 hospitalizations because it's difficult to put
21 results from someone who's been hospitalized for
22 30 days in context with the expected use for

1 VERU-111 if it were authorized.

2 Presumably, subjects who might receive
3 VERU-111 would be subjects who were relatively
4 early in their COVID-19 clinical course, similar to
5 the use of remdesivir, dexamethasone, and
6 immunomodulators. But these subjects who were in
7 the hospital longer might have differed in
8 clinically relevant ways compared to subjects
9 admitted and on oxygen within the last 5 days, for
10 example. Their prognosis or their goals of care
11 might have been better known, or they might even
12 have already turned the corner and were improving.

13 As I noted earlier, the data on severity and
14 clinical course prior to screening and baseline
15 assessments are very limited in this study.
16 However, despite that, there are some data that
17 suggests that some subjects were on a clinical
18 trajectory of improvement prior to randomization.

19 For example, the data suggests that
20 2 subjects were extubated between screening and
21 randomization prior to any study drug. In
22 addition, one subject required high-flow nasal

1 cannula on day 1 of the study, meaning WHO 5, and
2 was discharged from the hospital on day 2; so these
3 subjects were probably already getting better but
4 were enrolled and randomized.

5 It's unclear how the mortality data for
6 these subjects might influence the overall results
7 in a small study like this since their prognosis
8 may have been clear even without study drug.
9 Moreover, these few examples may not provide us
10 with the full scope of this uncertainty. These
11 examples came from analyses of the available data
12 points of screening and baseline values, but the
13 few prerandomization data points may not tell the
14 whole story, especially for subjects who were
15 already hospitalized for 2 to 4 weeks.

16 So now we return to goals of care. I'm
17 going to focus on the wording of "goals of care" to
18 include both the patient and family's contribution
19 and the care team's contribution to decision making
20 like do not intubate and do not attempt
21 resuscitation, the general focus of care, as well
22 as other decisions to withhold or withdraw

1 life-sustaining therapies.

2 The first point here is that Study 902 did
3 not collect data on goals of care. This is not
4 unusual in critical care trials. We included data
5 in the briefing documents suggesting that only
6 about 35 percent of critical care trials collect
7 any data on goals of care, despite this being a
8 major part of ICU care. However, even though data
9 were not collected, we do have evidence from the
10 study narratives that suggest these conversations
11 did occur. Examples include one narrative that
12 stated, "intubation had been refused," and another
13 that stated, "The patient received no treatment for
14 the event of cardiorespiratory arrest."

15 These two examples likely led to imminent
16 death events, but it's more difficult to capture in
17 the narrative other events like a shift to comfort,
18 focused care, terminal extubation, or a clinical
19 decision that renal replacement therapy would not
20 change a subject's prognosis, or similar things.

21 Because we can't quantify or qualify goals
22 of care in Study 902, their effect on the observed

1 mortality is impossible to determine definitively.
2 However, we cannot ignore the effect of goals of
3 care decision making since evidence suggests that
4 this type of decision making precedes death in most
5 critically ill subjects in randomized trials.

6 Data from the ETHICUS trial suggested that
7 goals of care conversations precede 75 percent of
8 deaths in European ICUs, and other data reinforced
9 this idea in other regions. In addition, there are
10 data that suggest that goals of care decision
11 making may be an independent predictor of death,
12 even after controlling for severity and other
13 factors, implying that a decision to withdraw or
14 withhold life-sustaining therapy has the potential
15 to directly affect a trial subject's mortality
16 endpoint, and not simply be another marker of
17 extreme severity or that a subject is on a clinical
18 trajectory of worsening.

19 Complicating these considerations is the
20 evidence suggesting that goals of care decision
21 making is highly variable, with variability
22 attributed to region, site, and even individual

1 positions within a site. And there's more
2 variability based on factors like the provider and
3 family's religious and personal beliefs, and the
4 local paradigm of patient/family-centered care
5 versus patriarchal care. So even if we had data on
6 all reasonable markers of severity, we couldn't
7 just use severity as a proxy to judge how these
8 decisions affected the mortality endpoint.

9 Finally, complicating this further, studies
10 suggest that goals of care decision making occurred
11 more frequently during the COVID-19 pandemic and
12 that patients, providers, and families may have
13 chosen to limit life-sustaining therapies more
14 frequently during the pandemic.

15 So we have uncertainty in the effects of
16 goals of care decision making on the mortality
17 endpoint of this small study, but we don't have a
18 way to analyze whether variability and goals of
19 care decision making between sites, regions, or
20 even within sites may have influenced mortality
21 rates differentially. And in this context of goals
22 of care decision making under high stress pandemic

1 conditions, we also have to again consider whether
2 potential unblinding might have consciously or
3 subconsciously influenced goals of care decisions.

4 As noted previously, the only data available
5 to investigators for VERU-111's efficacy in
6 COVID-19 endorsed a major effect on mortality. If
7 a provider knew a subject was receiving placebo and
8 on a clear clinical trajectory of decline, it's
9 hard to believe that the potential to collect
10 additional trial data would outweigh the
11 responsibility to clarify goals of care decision
12 making and avoid unnecessary suffering.

13 Contrast this scenario with a scenario where
14 the same subject is known to receive an
15 investigational product which recorded a previous
16 mortality benefit, and we must consider whether the
17 communication and decision making might be
18 consciously or subconsciously influenced.

19 Finally, all these considerations, once
20 again, are heightened by the fact that this was a
21 small trial with a 2 to 1 randomization ratio,
22 where few death events in the placebo arm might

1 have had an exaggerated effect on mortality
2 results, and where potentially in the best case
3 scenario, the lack of 4 events in the placebo arm
4 could have made the results not statistically
5 significant.

6 It's important to note here that when we
7 point out these uncertainties in goals of care
8 influencing the interpretation of the trial's
9 endpoint, the division does not in any way imply
10 that goes of care decision making in Study 902 was
11 ethically or medically inappropriate for the
12 subjects.

13 Decisions to enter into goals of care
14 conversations and decisions to withhold or withdraw
15 life-sustaining therapy are based on many factors,
16 including clinical severity, patient autonomy, and
17 avoidance of unnecessary suffering, and these may
18 not always align with concerns related to
19 interpreting trial data and endpoints.

20 Switching gears, we can try to put these
21 results in context with the efficacy of other
22 tubulin inhibitors in COVID-19, mainly colchicine.

1 While caution should be exercised when comparing
2 results across clinical trials and across drug
3 products within a class, we provide these data for
4 consideration given colchicine's similar accepted
5 mechanism of action. The totality of available
6 data from randomized-controlled clinical trials do
7 not support the efficacy of colchicine on
8 clinically relevant endpoints in COVID-19.

9 Importantly for this discussion, there was
10 one small trial that enrolled 105 subjects early in
11 the pandemic, which suggested a potential mortality
12 benefit for colchicine. However, subsequent larger
13 clinical trials, including RECOVERY, did not
14 reciprocate these findings, and a Cochrane
15 meta-analysis performed in 2021, that included data
16 from over 11,000 hospitalized participants,
17 suggested a mortality risk ratio of 1 at day 28 for
18 colchicine. The authors concluded that colchicine
19 results showed little to no difference in all-cause
20 mortality up to 28 days. A later even larger
21 meta-analysis reinforced these findings, so we
22 can't borrow support from colchicine.

1 And finally, one uncertainty that was noted
2 before, the proposed patient population for use,
3 specifically, the uncertainty is whether the
4 proposed definition of high risk of ARDS is
5 adequately represented in Study 902 and whether it
6 adequately defines a clinically meaningful patient
7 population, as we've noted multiple times, is a
8 small study. Only 20 subjects out of 204 were
9 intubated at baseline, so there is uncertainty in
10 how much confidence we can ascribe to the results
11 in the WHO 6 subgroup.

12 We also have to remember that only subjects
13 with WHO 4 were required to have one of the listed
14 high risks of ARDS comorbidities to enroll. Out of
15 204 subjects, 116 were WHO 5 or 6 at baseline,
16 leaving just 88 subjects to fully provide evidence
17 on the efficacy of VERU-111, representing each of
18 these comorbidities in combination with WHO 4
19 severity, and there were fewer than 30 in the
20 placebo group.

21 We presented comorbidities for the entire
22 enrolled population in our prior tables, but of

1 course the number of subjects for each comorbidity
2 in the WHO 4 population is even lower, so it's
3 uncertain how much confidence to ascribe to the
4 efficacy results in each individual comorbidity in
5 this WHO 4 group, and we have to reiterate that
6 data on the number of subjects who were
7 immunocompromised, and how they qualified for that
8 designation were not collected.

9 This is important because having a drug with
10 a context of use specifically targeted at
11 immunocompromised subjects would represent a major
12 change in standard of care since it would be the
13 only drug labeled specifically for that population.
14 But we don't know how many subjects may have been
15 immunocompromised in Study 902.

16 So we presented multiple potential
17 uncertainties in our review of the efficacy data
18 from Study 902, and as described by Dr. Karimi-Shah
19 previously, many of these issues might not
20 influence the overall interpretation of a very
21 large trial, but they do lead to uncertainty in the
22 small trial with a 2 to 1 randomization ratio,

1 small baseline imbalances, limited data collection,
2 and concerns for potential unblinding effects. And
3 while we performed some exploratory sensitivity
4 analysis, as did the sponsor, these are not able to
5 fully resolve all these uncertainties.

6 So in summary, the placebo mortality rate in
7 Study 902, especially at U.S. and North American
8 sites and in the WHO 4 group, stands out at this
9 point in the pandemic. The potential unblinding
10 events from opening study drug capsules may have
11 led to performance bias. There were small but
12 clinically relevant imbalances in Study 902 in
13 baseline standard-of-care medications for COVID-19.
14 Also, the rates and durations of standard-of-care
15 therapies suggest that standard of care in
16 Study 902 may not be representative of U.S.
17 standard-of-care practices.

18 Some subjects were already on a clinical
19 trajectory of improvement prior to randomization in
20 Study 902, complicating the interpretation of their
21 efficacy data for the proposed context of use.
22 Goals of care decision making is a frequent

1 occurrence in critically ill patients, and
2 potential unblinding and prior available efficacy
3 data in this study may have led to subconscious
4 influence on goals of care decision making.

5 In the face of these uncertainties related
6 to Study 902 specifically, we also have to
7 acknowledge that available data for the tubulin
8 inhibitor colchicine suggests a lack of efficacy of
9 colchicine on mortality. And in terms of
10 applicability to clinical medicine in the patients
11 we see, we have uncertainty in whether the
12 designated study population is clinically
13 meaningful as defined, and whether the study
14 provides adequate confidence in each component of
15 that population.

16 Finally, the lack of data collection on
17 enteral tubes, nonpharmacologic aspects of care,
18 details of clinical trajectory, and goals of care
19 decision making limit our ability to further
20 explore the potential influence of these topics on
21 mortality results.

22 With all that, the question we're asking the

1 committee to discuss is whether the available
2 benefit-risk evidence supports the contention that
3 VERU-111 may be effective to treat COVID-19 in the
4 face of these uncertainties presented. Balancing
5 these uncertainties is the unexpected but
6 statistically significant and potentially
7 clinically meaningful difference in all-cause
8 mortality observed in Study 902. This observed
9 difference stands out in the context of the ongoing
10 COVID-19 pandemic, as multiple presenters have
11 noted. With over 300 deaths per day in the U.S.
12 alone and the unmet need for additional therapies,
13 especially those that decrease mortality, balancing
14 our considerations, we welcome your input on these
15 topics.

16 As we discussed in the briefing document,
17 the division is also considering what additional
18 information will be necessary to clarify the
19 uncertainties that we've brought up regardless of
20 whether or not the drug is authorized. A few
21 options exist for this, including requiring
22 additional trials as a condition of a potentially

1 EUA. If this were the case, regulations require
2 that the new study be in the same population of the
3 EUA. Because of this, for the purposes of the
4 committee discussion, we're going to ask you to
5 focus on subjects with WHO 5 and 6 severity, and
6 WHO 4 severity with additional selected
7 comorbidities.

8 Both the division and the sponsor have
9 already discussed preliminary elements of trial
10 design, and as stated in the briefing document, use
11 of a randomized, double-blind, placebo-controlled
12 superiority design may be the most feasible and
13 practical. However, understanding committee's
14 opinions on this is also part of our goals, but
15 there are other considerations, including how best
16 to address the uncertainties brought up in the
17 division's review. Some of these considerations
18 are noted here on this slide. In the committee's
19 discussion, we ask that you consider providing
20 additional input on these elements.

21 This concludes this morning's FDA
22 presentation. At this point, I'll turn the meeting

1 back over to the committee chair to allow for
2 clarifying questions for the FDA, and
3 Dr. Karimi-Shah will return later to provide the
4 charge to the committee. Thank you so much for
5 your attention.

6 **Clarifying Questions to the FDA**

7 DR. AU: Thank you for that presentation.
8 We will now take clarifying questions for
9 the FDA. Please use the raise-hand icon to
10 indicate that you have a question, and remember to
11 lower your hand by clicking the raise-hand icon
12 after you've asked your question. When
13 acknowledged, please remember to state your name
14 for the record before you speak and direct your
15 questions to a specific presenter, if you can. If
16 you wish for a specific slide to be displayed,
17 please let us know the slide number, if possible.

18 Finally, it would be helpful to acknowledge
19 the end of your question with a thank you, and end
20 the end of your follow-up question with, "That is
21 all for my questions," so that we can move on to
22 the next panel member. Thank you.

1 Let's go ahead and start with Dr. May.

2 DR. MAY: Yes. Susanne May. I have a
3 couple of clarifying questions.

4 Number one, I didn't see it in the document,
5 but the last presenter, you mentioned 4 deaths in
6 the placebo group. If 4 deaths in the placebo
7 group would not have occurred, that then the
8 results would not have been statistically
9 significant; is that correct?

10 DR. KARIMI-SHAH: Hi. This is Banu
11 Karimi-Shah. Can you hear me?

12 DR. MAY: Yes.

13 DR. KARIMI-SHAH: Hi, Dr. May. I'm going to
14 ask Dr. Dharmarajan to address your question.

15 DR. MAY: Okay.

16 DR. DHARMARAJAN: Hey. This is Dr. Sai
17 Dharmarajan, statistical reviewer at CDER, FDA.

18 In the morning session, Dr. Chertow asked
19 this question on how many deaths in the placebo
20 group would be required to change the statistical
21 significance of the primary endpoint results. In
22 our analysis, the FDA found that if the placebo

1 group had four fewer deaths, the primary logistic
2 regression analysis model would have yielded a
3 p-value greater than the nominal significance level
4 of 0.05 for the treatment effect; that is the
5 treatment effect estimate would no longer be
6 nominally significant at the 0.05 level, and this
7 is with data, including all 204 randomized subjects
8 who completed the study, and this is, again, in the
9 primary logistic regression analysis model, which
10 adjusted for other covariates as well about the
11 treatment.

12 DR. MAY: Great. Thank you. That was as I
13 understood, then.

14 The other question that I have is, the
15 height of mortality rate in the placebo group,
16 could that for this study be based on a lower
17 percent vaccinated compared to the other studies
18 that were shown and compared to? Then, actually
19 for this particular study, I believe the percent
20 vaccinated is slightly in the direction against the
21 treatment group. So those are two related
22 questions.

1 DR. KARIMI-SHAH: Thanks, Dr. May. This is
2 Banu Karimi-Shah. I'm going to ask Dr. Busch to
3 address your question.

4 Dr. Busch?

5 DR. BUSCH: Sure. Thank you for this
6 question. The first part was, is the vaccination
7 rate different from other trials? I think that's
8 difficult to answer without being somewhat
9 speculative just because, again, the difference in
10 timing of the trials and differences in sites,
11 internationally especially, leads to differences in
12 rates of vaccination, and even the types of
13 vaccinations.

14 I believe what we've presented were the FDA
15 approved vaccinations, but of course
16 internationally, people may have had -- well,
17 internationally, people may have had other
18 vaccinations that were not approved here in the
19 U.S., so I'm somewhat limited in what I can give
20 you on that, and I apologize for that.

21 The second question was, there was
22 imbalance. Yes. The placebo group did have a

1 higher FDA-approved vaccination rate, however,
2 there are two ways to sort of interpret. You can
3 interpret that as they are better protected, or you
4 can interpret that, since they're hospitalized,
5 they're hospitalized despite a higher rate of
6 vaccination. So again, that's a little bit up for
7 interpretation.

8 Does that answer the question sufficiently?

9 DR. MAY: Yes, that answers all of my
10 questions. Thank you.

11 DR. BUSCH: Thanks.

12 DR. AU: Great.

13 Dr. Chertow?

14 CAPT CHERTOW: Okay. This is Dan Chertow,
15 and I just want to say thank you to the presenters
16 for the excellent presentation, and I had two
17 questions, the first of which Dr. May asked and
18 Dr. Dharmarajan answered, which is to ask if the
19 FDA had done that, quote/unquote "tipping-point
20 analysis" to inform us as a committee how many
21 patients we're talking about that would need to
22 have lived in the placebo group to make a

1 difference in the primary outcome?

2 Obviously, that's relevant because the case
3 has been reasonably made that there are differences
4 in the two groups, the drug versus study placebo
5 group as it relates to baseline characteristics, as
6 it relates to treatment standard of care, and as it
7 potentially relates to this issue of performance
8 bias as a function of potential unblinding due to
9 the capsule and such.

10 So I think that's helpful to know that
11 perhaps if any of those issues added up to an
12 outcome of four differences in the placebo group,
13 there would be a difference.

14 My second question, which was not yet asked,
15 has to do with whether or not the sponsor provided
16 FDA any evidence supporting biologic plausibility
17 of drug efficacy along the pathway, supporting an
18 impact on host response or inflammatory response,
19 either as it relates to changes in cell populations
20 or cellular mediators and inflammation, and/or
21 soluble mediators of inflammation.

22 I mean, we talked about viral load as one

1 proposed mechanism, but were there additional data
2 supporting biologic plausibility affecting host
3 inflammatory response? Thank you.

4 DR. KARIMI-SHAH: Thanks, Dr. Chertow. I'm
5 going to ask Dr. Yunzhao Ren, our clinical
6 pharmacologist, to answer your question.

7 DR. REN: Hi. This is Yunzhao Ren, the
8 clinical pharmacologist from FDA.

9 Can you hear me?

10 DR. AU: Yes, we can hear you.

11 CAPT CHERTOW: Yes.

12 DR. REN: Okay.

13 We actually raised the same question to Veru
14 during the review and, unfortunately, they did not
15 collect any cytokine data in their clinical
16 studies. So it's like the in vivo inflammation or
17 anti-inflammatory evidence is completely missing
18 for this program. The sponsor conducted some
19 in vitro anti-inflammatory effect. I'll defer this
20 evaluation to our nonclinical team.

21 DR. KARIMI-SHAH: This is Dr. Karimi-Shah
22 again. I'm going to ask Dr. Salicru, our

1 pharmacologist/toxicologist colleague, to add
2 anything further.

3 DR. SALICRU: Hi. This is Eleni Salicru,
4 the nonclinical reviewer, and from the nonclinical
5 perspective, we evaluated the anti-inflammatory
6 claim of the drug, and other than the septic shock
7 model data that the sponsor presented, looking at
8 cytokine release, they didn't present any data
9 looking at particular cell populations to that
10 effect.

11 CAPT CHERTOW: Thank you. My question has
12 been adequately answered. Thank you so much for
13 your responses.

14 DR. AU: Thank you.

15 Dr. Lee, I saw that you had your hand up and
16 put it down. Did we answer your question?

17 DR. LEE: Yes. Dr. May asked the same
18 question that I had, and Dr. Chertow as well.
19 Thank you.

20 DR. AU: That's what happened. Thank you so
21 much.

22 Dr. Shaw?

1 DR. SHAW: Yes. Thank you. This is Pamela
2 Shaw. This is a question for the presenting
3 statistician of the FDA, and this is with respect
4 to your slide 80, which I think was slide 95 in the
5 PDF overall. I just had a clarifying question.
6 These might be results that were just being also
7 presented by the sponsor, but since I saw it twice,
8 I think I need to ask this question because I'm a
9 little confused as to what's being presented.

10 This is the primary endpoint results, and
11 it's starring the number of people that were
12 missing, both at the interim analysis, and then at
13 the final analysis of 204. I guess I was just
14 trying to understand in terms of how the
15 missingness was treated because the denominator
16 sort of adds up to the total. So somehow something
17 was imputed in the numbers that were presented, and
18 I just wanted to understand what was being imputed
19 in the simple percents, and then the analysis that
20 was presented in this table; if that makes sense.

21 I'm just a little confused by the place
22 where it says four were missing for the Vero arm

1 and few in the placebo, and yet all 204 are being
2 listed in terms of the survival status in the ITT
3 in that table. It just seemed a little confusing
4 there.

5 DR. KARIMI-SHAH: Yes. Hi. This is
6 Dr. Karimi-Shah, FDA. We're trying to get that
7 slide up for you, Dr. Shaw.

8 Slide 80, please, if we could get that up,
9 and then I will call turn your question over to
10 Dr. Dharmarajan.

11 Hey. This is Sai Dharmarajan. I think we
12 can wait to the slide to come up.

13 Yes. The numbers, they do add up to
14 100 percent, including the missing -- the
15 imputations were for the the treatment comparison
16 estimates, so specifically for the odds ratio and
17 95 percent confidence interval, and this difference
18 in the 95 percent confidence interval. For these
19 analyses, to get these data estimates, the missing
20 outcomes where imputed; so, yes.

21 DR. SHAW: So you just took a snapshot,
22 single [indiscernible] just for the sake of the

1 table.

2 DR. DHARMARAJAN: It was multiply
3 imputed --

4 DR. OKAY.

5 DR. DHARMARAJAN: -- with the covariates
6 that were adjusted for in the primary analysis, and
7 also the treatment discontinuation status. These
8 are the grades for the imputation model.

9 DR. SHAW: Alright. Thank you. That
10 answered my question.

11 DR. AU: Thank you very much.

12 This is David Au. I see a number of hands
13 going up, but it's also 1:05 on the East Coast.
14 What I think I will do is I think we're going to
15 have an opportunity to make up a little bit of time
16 after the open public hearing portion, so I'm going
17 to ask that anyone who has a question to please
18 remember that question, and we'll come back to it.
19 Right now I have Dr. Baden, Dr. Kim, and Dr. Gillen
20 on my list for that time period.

21 What I'd like to do is let's give ourselves
22 a half an hour for a lunch period. So why don't we

1 come back at 1:35, if that's ok with everyone, and
2 that will give us a little bit of time to kind of
3 refresh and the like. And then we'll go to the
4 open public hearing session, and then we can
5 address these other clarifying questions, including
6 Dr. Shapiro, if your question is unanswered from
7 early in the day.

8 Thank you. Let's adjourn for about
9 30 minutes. Thank you very much.

10 (Whereupon, at 1:07 p.m., a lunch recess was
11 taken.)

12
13
14
15
16
17
18
19
20
21
22

A F T E R N O O N S E S S I O N

(1 : 35 p.m.)

Open Public Hearing

4 DR. AU: I hope everyone had an opportunity
5 to have a nice little break. I think we're going
6 to go ahead and get started again. We will now
7 begin the open public hearing session.

8 Both the FDA and the public believe in a
9 transparent process for information gathering and
10 decision making. To ensure transparency at the
11 public hearing session of the advisory committee
12 meeting, FDA believes that it is important to
13 understand the context of an individual's
14 presentation.

1 in connection with your participation in the
2 meeting.

3 Likewise, FDA encourages you, at the
4 beginning of your statement, to advise the
5 committee if you do not have any such financial
6 relationships. If you choose not to answer this
7 issue of financial relationships at the beginning
8 of your statement, it will not preclude you from
9 speaking.

10 The FDA and this committee place great
11 importance in the open public hearing process. The
12 insights and comments provided can help the agency
13 and this committee in their consideration of the
14 issues before them.

15 That said, in many instances and for many
16 topics, there will be a variety of opinions. One
17 of our goals for today is for this open public
18 hearing to be conducted in a fair and open way,
19 where every participant is listened to carefully
20 and treated with dignity, courtesy, and respect.
21 Therefore, please only speak when recognized by the
22 chairperson. Thank you for your cooperation.

1 Speaker number 1, your audio is now
2 connected. Will speaker number 1 begin and
3 introduce yourself? Please state your name and any
4 organization that you are representing for the
5 record. Thank you.

6 DR. CALLENDER: Hello. Thank you for this
7 opportunity to speak today on behalf of the
8 National Center for Health Research. My name is
9 Ealena Callender. I'm a physician with a master's
10 in public health, and I'm a senior fellow at our
11 nonprofit think tank.

12 Our center conducts, analyzes, and
13 scrutinizes research on a range of health issues,
14 with a particular focus on which prevention
15 strategies and treatments are most effective for
16 which patients and consumers. We do not accept
17 funding from companies that make products that are
18 the subject of our work, so we have no conflicts of
19 interest.

20 Every day, hundreds of men and women die due
21 to COVID-19. In the third year of this worldwide
22 pandemic, we are still searching for safe,

1 reliable, and effective treatments for severely ill
2 patients. Initial data for Veru's drug,
3 sabizabulin, or VERU-111, is promising, but the
4 study leaves unanswered questions about safety and
5 efficacy. The question for you is whether better
6 evidence is needed before the emergency use
7 authorization is granted.

8 Veru's multicenter, placebo-controlled
9 phase 3 clinical trial found a significant
10 reduction in mortality for patients in the
11 treatment group. The decrease in mortality is
12 impressive, 20 percent for sabizabulin versus
13 45 percent for placebo, but the strength of this
14 data remains unclear due to the relatively small
15 size of the study.

16 The analysis included only 94 patients in
17 the treatment group and 51 in the placebo group.
18 The placebo group seems to have an abnormally high
19 mortality rate. They were older, had a higher WHO
20 severity score, and are more likely to have
21 diabetes, hypertension, and heart failure. All of
22 these could have caused the higher mortality rate

1 compared to those in the treatment group.

2 Did the placebo group experience higher
3 mortality because it had more risk factors for
4 severe disease or because they did not receive the
5 treatment? This is impossible to determine due to
6 the characteristics of this particular study.

7 In general, small study size can be
8 problematic. Such studies have a significant
9 potential for certain types of bias. They may also
10 produce false positive results or an overestimate
11 of the magnitude of an association. Also, with so
12 few patients, it's impossible to determine if there
13 are relatively rare but serious side effects.

14 Medical products can be considered for EUA
15 if they may be effective to prevent, diagnose, or
16 treat serious or life-threatening diseases caused
17 by COVID-19. In addition, FDA requires that the
18 benefits outweigh the potential risks of the
19 treatment and that there is no adequate approved
20 and available alternative for diagnosing,
21 preventing, or treating the disease or condition.

22 The evidence presented today is obviously

1 stronger than the evidence for some previous COVID
2 treatments that were authorized under the Emergency
3 Use Authorization, so we are in a different
4 situation today because we have several different
5 safe and effective vaccines to help prevent severe
6 illness, hospitalization, and death from COVID-19.
7 Moreover, there are treatments available to help
8 manage severe illness in these patients.

9 The drugs in use today have been studied and
10 used on thousands of patients thus far. While
11 there may be some uncertainty about their risks or
12 benefits for specific types of patient's, they have
13 been studied on a much larger scale than this one
14 small study.

15 When we have multiple options to offer
16 patients for both prevention and treatment, should
17 FDA authorize the use of a treatment based on a
18 comparison with the placebo group that is at a
19 higher risk of mortality in so many important ways?
20 Would a reasonable compromise require the company
21 to start enrolling patients in a study of a better
22 matched placebo group prior to making the EUA

1 decision? Unfortunately, it would be very
2 difficult to conduct a confirmatory study once the
3 drug is on the market.

4 For that reason, we urge this committee to
5 recommend the FDA require better data before
6 granting emergency use authorization for this drug.
7 Thank you again for the opportunity to speak today.

8 **Clarifying Questions (continued)**

9 DR. AU: Thank you very much for the
10 comments.

11 The open public hearing portion of this
12 meeting has now concluded, and we will no longer
13 take comments from the audience. The committee
14 will now turn its attention to address the task at
15 hand, the careful consideration of the data before
16 the committee, as well as the public comments.

17 We will now take the remaining clarifying
18 questions. Please raise your hand icon to indicate
19 that you have a question, and remember to please
20 put your hand down after you've asked your
21 question. Please remember to state your name for
22 the record before you speak and direct your

1 question to a specific presenter, if you can.

2 If you wish for a specific slide to be
3 displayed, please let us know the slide number, if
4 possible. As a gentle reminder, it would be
5 helpful to acknowledge the end of your question
6 with a thank you, and end the end of your follow-up
7 question with, "That is all for my questions," so
8 that we can move on to the next panel member

9 Why don't we start with Dr. Baden?

10 DR. BADEN: Yes. Thank you. And I did want
11 to thank both the applicant and the agency for
12 terrific presentations on a tremendous amount of
13 data, and for making it interpretable so we can
14 wrestle with the issues at hand.

15 My question to the agency in follow-up to
16 their discussion has to do with, what do you make
17 of two things; one, the virologic data that were
18 presented; and number two, the dosing regimen that
19 is proposed? How do you think about those two
20 parameters in terms of our confidence that we
21 understand the virologic data and that we have the
22 dosing regimen correct? Thank you.

1 DR. KARIMI-SHAH: Thank you, Dr. Baden.

2 This is Dr. Karimi-Shah from the FDA. Your
3 question is in two parts, one for the virologic
4 data and one for the dosing regimen.

5 For the virologic data, I'm going to turn it
6 over to my colleague, Dr. Takashi Komatsu.

7 DR. KOMATSU: Hi. This is Takashi Komatsu.
8 I'm the virology reviewer from the Division of
9 Antivirals. Thank you for the question.

10 With respect to the viral shedding data, as
11 was already discussed earlier in this morning's
12 presentation, it was very difficult for us to
13 really make any definitive conclusions, partially
14 because of the huge variability that was already
15 noted this morning; just a handful of patients can
16 pretty much swing the overall mean values. In
17 fact, if we look at the median value, the window
18 between these two treatment points closes much more
19 rapidly. Secondly, as was also noted in this
20 morning's discussions, the serial data were not
21 collected or presented, so again, you really can't
22 make any definitive conclusions based off of the

1 viral shedding data.

2 As the sponsor noted this morning, I think
3 the future studies that they were proposing, as
4 they were suggesting, I think data collected from
5 those studies will probably shed more insight in
6 terms of viral shedding data. So to conclude, we
7 really can't make any definitive conclusions based
8 off of the viral shedding data that was collected
9 from this study. Thank you.

10 DR. BADEN: If I may ask a follow-up to the
11 virologic question? Thank you for those comments.

12 One, don't we normally look at virologic
13 data on a log scale, which may change how we see
14 it? And number two, the persistence of virus
15 9 days later, a period of illness, enrollment,
16 treatment 9 days later, the persistence of virus at
17 a meaningful level, is that surprising to you?

18 DR. KOMATSU: Thank you for those questions.
19 Yes, we do look at it in log terms typically, and
20 we have looked at the data presented in that
21 format. When we look at it that way, the window
22 basically closes much more between these arms.

1 It's really a handful of patients with very high
2 values, especially in the placebo arm, that's
3 really throwing those values off.

4 Now, if you look at the median value,
5 actually by being none, most of these patients
6 actually were no longer shedding virus. So if you
7 look at the median values, these data look much
8 more similar to the data that you are more used to
9 seeing. Thank you.

10 DR. BADEN: Very helpful. Thank you. Sorry
11 for interrupting.

12 DR. REN: Hi. This is Yunzhao Ren, the
13 clinical pharmacology team leader from FDA again.
14 I can speak on behalf of the dosing regimen
15 selection or exploration in this program.

16 We all know that the 9-milligram BID regimen
17 studied in phase 3 Study 902 was informed from the
18 phase 2 Study 901, and dose selection in Study 901
19 is informed by the nonclinical study in the
20 previous prostate cancer clinical program. We
21 considered the phase 2 Study 901 more like a
22 proof-of-concept study, which the sponsor only

1 studied one dose. Because there was some trend to
2 showing potential efficacy, we do allow sponsor to
3 bring just one dose into their phase 3 study

4 In terms of the selection of dosing regimen,
5 based on what the sponsor submitted, VERU-111, it
6 is a reversible tubulin inhibitor, and the
7 half-life in humans is quite short; it's only about
8 5 hours. So therefore, we consider the BID regimen
9 is suitable for treating -- the micro tubulin,
10 based on the mechanism of action.

11 I'm not sure if that asked -- all these
12 questions.

13 DR. BADEN: Thank you very much. The
14 response is very helpful.

15 DR. REN: Thank you.

16 DR. AU: Great.

17 Dr. Kim, you had your hand up before we went
18 on lunch and for the open public period. Did you
19 have a follow-up question or clarifying question?

20 DR. KIM: Yes. Edwin Kim. I'm grappling
21 with trying to understand the mortality rate that
22 we've been discussing throughout the day of being

1 higher than maybe expected, and I guess I'm trying
2 to find which slide it was. But I'm not sure if
3 this is for -- I guess it's mostly for the FDA.

4 It seems that the posted comparator studies
5 with their mortality rates, only one of the studies
6 is conducted over the same time period, the
7 ACTIV-2, and that one, they seem to suggest a
8 higher mortality rate. It does make me wonder, the
9 people that are actually going into the hospital,
10 the people that are actually volunteering to
11 consent for a clinical trial, I would anticipate
12 they were different now or later in the pandemic
13 than the ones early on, where we took sort of
14 all-comers, and people might have been more willing
15 and interested in signing up for trial. And I'm
16 curious if the agency would have any comment
17 towards that, if that is a proper way to think
18 about it or not. Thank you.

19 DR. BUSCH: Hi. This is Rob Busch from the
20 agency. Certainly that's an interesting
21 perspective. Of course, some parts of it would be
22 a little bit speculative. I'm not sure that we

1 were able to collect those types of data or get
2 some sense of that from other trials either. But
3 when we're talking about the mortality across those
4 different studies, you're certainly right to say
5 that, again, there are differences there that make
6 the comparisons challenging, and we tried to couch
7 ours in those terms.

8 But again, some of the things you mentioned,
9 the differences in the trial, when Dr. Baden asked
10 a question about the WHO 4 earlier, I believe
11 Dr. Barnette admitted that this group is not just
12 WHO 4, but WHO 4 plus comorbidities. And we agree
13 with that, but it's also not too much of a stretch
14 to say that many of the subjects hospitalized, at
15 least in the U.S., and progressing to WHO 4 disease
16 will have these comorbidities like diabetes and
17 hypertension anyway. So I don't think that would
18 have changed over the course of the pandemic.

19 So when we look at the 4's here, again, it's
20 not a 1 to 1 comparison, and we want to acknowledge
21 that, but to just say that the enrolled sample of
22 WHO 4 subjects should have a worse prognosis than

1 the vanilla WHO 4 group, I'm not sure that we can
2 agree with that because the referenced WHO 4
3 mortality rate doesn't really account for the
4 presence of any of these comorbidities.

5 But over the course of the study, again,
6 we're trying to use this to show broad trends, and
7 we agree with you that the direct comparisons are
8 challenging, to say the least. I hope that answers
9 your question. It's a difficult question and a
10 good one.

11 DR. KIM: Yes. That's very helpful. Thank
12 you. No follow-up questions.

13 DR. AU: Great.

14 Dr. Gillen?

15 DR. GILLEN: Great. Thank you. This is
16 Daniel Gillen. I'd echo everyone in thanking the
17 sponsor and the FDA for great presentations. I
18 have two questions, actually, but the first is for
19 Dr. Dharmarajan on the FDA analysis. I apologize.
20 They're on the slide, the two tables inside the
21 FDA's briefing document. But on table 9, you did a
22 sensitivity analysis, and I think there's a

1 sensitivity analyses presented, I will say, by both
2 the FDA and the sponsor and are quite complete, but
3 leaving no stone unturned, I have one question
4 about what was presented in table 9 there.

5 When you looked for the sensitivity analysis
6 adjusting for comorbidities, you considered any
7 versus none, and I think you'll lose much of the
8 signal in the comorbidity imbalances that occurred
9 inside of the study. What I'm referring to, is if
10 you look at table 6 where you have the breakdown of
11 characteristics for the patients that's in the
12 briefing document from the FDA, the biggest
13 imbalances are coming from asthma and COPD, which
14 is going to be for chronic lung disease, the only
15 CRF captured events that's considered there., then
16 also with respect to cancer, where that was not one
17 of the comorbidities included for the WHO 4
18 individuals, but it didn't have immunocompromised
19 individuals, so this may play into that to some
20 degree.

21 So the question, now that I've set that up,
22 is did we look at an analysis -- again, just making

1 sure on completeness sake -- where we considered
2 these specific imbalances in these particular
3 comorbidities that were part of the inclusion
4 criteria, particularly on the WHO 4 population?

5 DR. DHARMARAJAN: Hey. This is Sai
6 Dharmarajan from the FDA. To answer your question,
7 Dr. Gillen, they did lose information by adjusting
8 for the comorbidities as any versus none. But on
9 the flip side, you weren't able to adjust, I guess,
10 for individual comorbidities because of the limited
11 sample size. So I guess the question then becomes,
12 which comorbidities should we prioritize and which
13 we should leave out of the adjustment? So for that
14 reason, we weren't able to do that kind of analysis
15 where we were comfortable adjusting for each of the
16 individual comorbidities.

17 That's my statistical take on it. I'll call
18 on my clinical colleague, Dr. Busch, to add
19 anything if he has to.

20 DR. GILLEN: While we're waiting for
21 Dr. Busch, what I would say is we're clearly in a
22 data-driven scenario anyways, where we're looking

1 at sensitivity analyses on these things. So rather
2 than ranking those comorbidities, I would argue
3 your potential ranking can come from where your
4 largest imbalances were occurring, and determining
5 as you group those, those particular comorbidities
6 that were of the biggest imbalance, what impact
7 that might have had on the overall primary
8 analysis.

9 DR. BUSCH: This is Dr. Busch. It's an
10 interesting question you bring up. I'm not sure I
11 can address that second part from a methods
12 perspective, however, we had some concerns about
13 the things, specifically again, data-driven and
14 what's available from a clinical perspective, and
15 especially things that would influence towards this
16 result that we see; and, full disclosure, that was
17 perhaps more important to look at for us.

18 One thing that has come up as well is that
19 we were a little bit less focused on asthma and
20 COPD, not only because there were few subjects in
21 the trial with those comorbidities, but also
22 because, at least at ATS -- sorry, American

1 Thoracic Society -- there was some data presented
2 this year that suggested that asthma was perhaps
3 less of a risk factor for COVID-19 outcomes than
4 previously thought, so that may have also
5 influenced our thinking about what to include.

6 Then of course, I think Dr. Dharmarajan
7 mentioned that there just weren't enough people to
8 throw as many things as we wanted to in a model and
9 account for everything at once and, of course,
10 that's just probably a function of the sample size.
11 Then I don't believe we did an analysis of ICU at
12 baseline, for example, and things like that, so
13 there were a lot of situations where we were
14 limited both by the time we had for the review, as
15 well as the data available to us. I hope that's a
16 reasonable answer.

17 DR. GILLEN: It is. I guess I would just
18 point out that you've got 55 people pulled in one
19 of those three categories that I just discussed,
20 and we're talking about a main effect adjustment
21 here, not an interaction, but I'll go ahead and
22 leave it at that. I do think it's something that

1 should be considered.

2 If I can ask my my second question, and this
3 could be addressed by the FDA and the sponsor, but
4 it stems off of a quote that was triggered to me by
5 Dr. Barnette during his presentation, and it's been
6 relevant to potential biases from the unblinding
7 that could come forward in terms of decisions on on
8 how to treat a patient if unblinding were to have
9 occurred.

10 When Dr. Barnette was presenting
11 slide CO-32, his statement that I wrote down was,
12 "There was no difference in change of standard of
13 care," and this was, again, with respect to the
14 FDA's questioning of potential biases.

15 I'm very curious to know how one assessed
16 whether there was no change of standard of care,
17 and if the FDA had to take on this; if they were
18 able to, A, empirically assess whether there was
19 any particular change in standard of care between
20 individuals, and their thoughts on that statement.

21 DR. KARIMI-SHAH: Thank you for that
22 question. This is Banu Karimi-Shah, FDA. We can

1 start with that, and I'll turn the podium over to
2 Dr. Busch.

3 DR. BUSCH: Sure. So that's another great
4 question. As I tried to highlight in the
5 presentation, many of our sensitivity analyses were
6 limited by what data was collected. And again,
7 this is not impugning the sponsor in any way
8 because this is not different from many other
9 critical care trials, or COVID-19 trials that
10 weren't necessarily critical care, conducted during
11 the pandemic.

12 But for example, things like ventilator
13 settings, proning, neuromuscular blockade, fluid
14 strategies -- and you could probably do
15 anticoagulation, although doses weren't always
16 apparent -- all these things that may have really
17 influenced how you treat the entirety of a patient
18 who's critically ill, those data were not
19 available.

20 So we have some medication data, mostly the
21 name and the timing, the dates, but it's kind of
22 difficult to say what was done appropriately. And

1 then you also have to take into account the fact
2 that this was local standard of care, so again the
3 idea that somebody got well over 50 days of
4 dexamethasone or corticosteroids makes it difficult
5 to examine how we would very clearly and
6 thoughtfully interpret those elements of standard
7 of care, whereas many of the nonpharmacologic
8 elements of care, and even, again, goals of care,
9 which are part of standard of care, those data just
10 weren't there.

11 So I agree with Dr. Barnette, and all of us
12 tried to do the sensitivity analyses that we could.
13 Some of those were limited by the data collection;
14 some of those, like the NG tube thing, were limited
15 just by the idea that data were collected, but it
16 wasn't the entire scope of the potential issue, but
17 we did the best we could with what we had. I hope
18 that's a reasonable answer again. If there's any
19 follow-up, I'm happy to address it.

20 DR. GILLEN: No, I think it is, but if I can
21 interpret your statement, making a blanket
22 statement about there's no difference in change of

1 standard of care is a bit of a strong statement,
2 given the observed data that we have, which is my
3 take on it as well, and why I wrote it down.

4 Do I fairly interpret your response?

5 DR. BUSCH: Yes, I think that's fair. We
6 would be hesitant to make a broad statement of
7 everything is fine, yes.

8 DR. GILLEN: Thank you.

9 DR. AU: Thank you.

10 Dr. Shapiro?

11 DR. SHAPIRO: I think they addressed it.

12 Thanks.

13 DR. AU: Okay. Great.

14 This is David Au. I had one last question,
15 which again goes a little bit back to the question
16 of blinding/unblinding.

17 When the FDA showed the pictures of the
18 compound in comparison to placebo, can I ask, do we
19 know -- and this is either for the FDA or the
20 sponsor -- who administered the drug or the
21 placebo, and were they trained on the differences
22 between the differences in color?

1 DR. KARIMI-SHAH: Hi. This is Banu
2 Karimi-Shah, FDA. We can start with this, Dr. Au,
3 and I will turn the podium over to Dr. Busch, and
4 then we can see if the sponsor has anything to add.

5 DR. BUSCH: Hi. This is Rob Busch again.
6 If we can bring up slide 98 from the FDA
7 presentation just to show the pictures again?

8 Based on the protocol, as far as I know,
9 there wasn't any training of personnel about
10 differences in the product. I don't know that that
11 was a part of the training. It was like a single
12 statement about they can open them up and mix them
13 with water.

14 In terms of who administered the study drug,
15 we talked about this, and the sponsor talked to us
16 about this during the IR, and I think the general
17 consensus, although again there wasn't necessarily
18 a data point for this, was that, generally, we
19 would expect that ICU nurses -- especially in these
20 situations, again, because it's sort of linked to
21 severity -- or floor nurses would be administering
22 this product. So we had a discussion about how

1 that might impact the general care team, depending
2 on the situation, and the country, and the practice
3 there. Certainly in the ICU where I work at,
4 anything that comes up to an ICU nurse is talked
5 about.

6 So I think it would be challenging to say
7 that this type of thing would not be filtered up
8 the line, but in terms of the direct answer, again,
9 and other places across the world, I'm not sure
10 that the care pattern would be the same, or the
11 multidisciplinary team would be the same. So it's
12 difficult to answer the question without just
13 speculation in terms of what the impact would be of
14 the person giving the drug and potentially seeing
15 this.

16 I guess I'll pass it over to the sponsor to
17 address potentially whether people were trained to
18 look for this in some way.

19 DR. BARNETTE: Hello. This is Gary
20 Barnette. No, people were not trained on the
21 colors of the materials, and we do know that in our
22 study -- and I think the FDA confirmed in the site

1 inspections -- that there was no evidence of
2 unblinding.

3 I would ask Dr. Sandrock to opine on whether
4 these would be discussed and what the impact of
5 this might have on treatment in his clinical site.

6 DR. SANDROCK: Yes. Thanks, Gary.

7 Generally, even though nurses do, and
8 particularly ICU nurses, spend a lot of time
9 talking about cases, this wouldn't be something
10 very commonly discussed unless there was a lot of
11 variability. So if one dose was clear, one dose
12 was colored yellow or brown, they might come back
13 and sort of discuss the variability, but if they
14 received a placebo or a study drug consistently, I
15 think there probably, in my experience, wouldn't be
16 a whole lot of discussion other than, "Hey, they're
17 enrolled in a trial, this is the experimental drug,
18 we don't know if they're getting placebo or the
19 agent, and we're really not going to spend a lot of
20 time discussing it." And most of the time, the
21 nurses don't talk about those things, particularly
22 in the ICU. We're usually just too busy to really

1 spend time on that level of detail between study
2 drug or [indiscernible]. In my experience, I
3 haven't seen it much here.

4 DR. AU: Great. Thank you. I don't have
5 any additional comments.

6 Dr. Seam?

7 DR. SEAM: Yes. Thank you. This is Nitin
8 Seam. One question, I think it was Dr. Busch who
9 alluded to this earlier, thinking about the prior
10 drugs that have been approved via EUA, baricitinib
11 and the IL-6 inhibitors. We've been talking a lot
12 about sample size here.

13 Do you know offhand what were the end of the
14 studies that have been used at that time to approve
15 those via EUA?

16 DR. KARIMI-SHAH: Thanks, Dr. Seam.

17 DR. BUSCH: Hi. This is --

18 DR. KARIMI-SHAH: Dr. Karimi-Shah here.

19 Oh, sorry. Go ahead, Dr. Busch.

20 DR. BUSCH: Sorry. I was just
21 waiting -- your microphone is turned on from Adobe
22 Connect.

1 This is Rob Busch. We do. I tried to
2 present some of that, but perhaps it didn't come
3 across very well. Remdesivir started with -- and I
4 guess this is slide 20 and 21 from our
5 presentation. Remdesivir's initial May 2020 EUA in
6 COVID-19 had data from 696 subjects exposed to
7 remdesivir, plus the additional controls. And then
8 the approved efficacy and safety database that's
9 labeled -- not all trials, but just the labeled
10 trials for the approval -- included 1,592 subjects
11 exposed to remdesivir, and then additional
12 controls.

13 If we move to baricitinib, dexamethasone had
14 3,000-ish subjects in RECOVERY, but is not
15 authorized to approved for that purpose. So then
16 baricitinib's initial COVID-19 in November 2020 had
17 515 subjects with COVID-19 exposed to baricitinib,
18 plus additional controls. Also it had a history of
19 use for other purposes in rheumatology as an
20 approved drug. Then its approved COVID-19 efficacy
21 and safety database, as labeled, not including the
22 rheumatologic, but just the approved COVID-19

1 efficacy and safety database that's labeled, stands
2 at 1,307 subjects exposed to baricitinib, plus
3 additional controls.

4 Then the final one right now is tocilizumab,
5 barring other occurrences recently. Tocilizumab
6 was, again, already approved since 2010 for
7 rheumatoid arthritis, but its EUA in November of
8 2020 included a lot of data, RECOVERY, and EMPACTA,
9 and other trials. And actually there were 3,016
10 subjects exposed to tocilizumab that were
11 evaluated, plus additional controls, for the EUA
12 that was ultimately issued in November of 2020.

13 DR. SEAM: Just to follow up very
14 briefly -- thank you for that and sharing the
15 slide. But those are the numbers at the time of
16 the EUA; is that right?

17 DR. BUSCH: Correct. It's 600 something for
18 remdesivir, and 500 something for baricitinib, and
19 3,000 for tocilizumab.

20 DR. SEAM: Thank you so much, Dr. Busch.
21 That's all the questions I have.

22 DR. BUSCH: Thank you.

1 DR. AU: Thank you.

2 Dr. Chertow?

3 CAPT CHERTOW: Thank you. This is Dan
4 Chertow. My question relates to equipoise and
5 feasibility of repeating a study that matches and
6 perhaps enhances the design of the existing study
7 that we're discussing today, and let me be specific
8 if I can.

9 Let's say that the committee made a
10 determination that the drug met criteria for EUA
11 approval that the known or potential benefits
12 outweigh known or potential risks, but that there
13 was a stipulation that an additional trial needed
14 to be done within the defined time frame for
15 continuing EUA approval, and then perhaps
16 ultimately for final approval for FDA. Let's say
17 that was the position of the committee.

18 When you have studies of this nature that
19 suggest such a difference in outcome, obviously,
20 there's a discussion to be had around equipoise. I
21 think an argument can be made, given the
22 uncertainties that have been presented, that

1 equipoise is perhaps achievable. But even if that
2 were the case, are there examples where data such
3 as this has existed, where EUA approval is
4 permitted on a time-limited basis, and a study of
5 similar design has been requested, and that it has
6 shown that implementing that study is actually
7 feasible, given the challenges of having a drug now
8 available, and then ultimately implementing the
9 study?

10 Can you say anything about historical
11 examples that might match this and make comments
12 about feasibility of an additional study?

13 DR. KARIMI-SHAH: Hi. This is
14 Dr. Karimi-Shah, FDA. We're going to start with
15 this. I'm going to turn the podium over to
16 Dr. Busch, and then we have a few additional FDA
17 folks who may want to chime in as well.

18 DR. BUSCH: Dr. Chertow, there are a lot of
19 good questions in what you asked, so let me try and
20 break them down bit by bit.

21 The first one is whether there is equipoise,
22 so first, we acknowledge that in the face of a

1 mortality difference, that is always a challenge.
2 Discussions internally within the FDA and talking
3 with the sponsor as well, with these uncertainties
4 that we have and some of the issues we brought up,
5 I think you noted that perhaps there is enough
6 equipoise to do it.

7 Then probably the bulk of the question was
8 more to do with, if you have an efficacy result,
9 and then especially mortality, what's the
10 feasibility of doing it in other examples? So
11 there's probably not a direct match because as
12 Dr. Wei I think pointed out, he said the words, I
13 think, "I have never seen such a risk difference,"
14 and of course, I think that's where we are, too.
15 Of course it's a question of how you interpret that
16 skepticism versus saying this is amazing, so how do
17 we get to that next point?

18 In terms of precedent, we do have
19 baricitinib, so it's slightly different, but
20 baricitinib had trials underway -- or had their
21 second trial underway at the time of the issue of
22 the original EUA. I think it was the KHA trial or

1 something, was underway, and those results were
2 pending, but it wasn't the exact same scenario
3 where it would be done after the results were
4 already public. So that had already started, at
5 least enrollment. I think they were a little
6 further along.

7 Tocilizumab didn't do any new trials after
8 the EUA, as far as we're sort of talking
9 internally. Then in terms of equipoise and things
10 like that, we are asking the committee to ask about
11 this, of course, to sort of opine.

12 So there's not really a precise match, and
13 one of the questions that we're asking you, of
14 course, is directly what you're asking; is it a
15 situation where we feel like that would be feasible
16 or workable, and what will that mean? It's not
17 clear whether that should weigh in on the decision
18 of may be effective, but it's certainly a concern
19 that's very valid.

20 I'll push it back to Dr. Karimi-Shah and
21 anyone else from the FDA side to add to that, but I
22 hope that at least addressed the concern because we

1 agree with the general point.

2 CAPT CHERTOW: Yes. I guess I'll see if
3 others from FDA would like to comment. My response
4 to your comments, which I appreciate -- thank you
5 for them -- would be that, clearly, it is the role
6 of the committee to have these conversations around
7 equipoise and feasibility.

8 My question, is there precedent to help
9 guide us, a relevant precedent to help guide us,
10 where there actually are examples where you see, at
11 least in a small trial, which I will say,
12 quote/unquote, "has flaws," where there's such a
13 mortality difference, where you've been able to
14 then go on and actually accomplish an additional
15 similar trial as a requirement for the EUA
16 approval? That's really my question. Are there
17 other examples where that's been accomplished? And
18 perhaps, again, maybe that's germane to our
19 fundamental question or not, but it does have some
20 bearing.

21 DR. KARIMI-SHAH: Hi. This is Banu
22 Karimi-Shah, FDA. And, yes, Dr. Chertow, you're

1 exactly right. I think each of our EUA
2 applications has its own set of different
3 challenges, and while we have issued conditions of
4 authorization for other drugs that have been
5 authorized, this is really a new area, and we don't
6 have a relevant precedent here; so again, part of
7 what we're asking the committee to weigh in on.
8 Thank you.

9 CAPT CHERTOW: I appreciate the response.
10 Thank you for your response.

11 DR. AU: Thank you.

12 To continue this robust discussion,
13 Dr. Baden?

14 DR. BADEN: Yes. Just building on
15 Dr. Chertow's comment, and thinking about it from
16 another side, but it's an issue we've all been
17 struggling with.

18 Given the purported mechanism, and that this
19 may be relevant to how virus cellular interaction
20 occurs, and therefore abrogating the negative
21 effects of viral infections, and extending the
22 thought experiment to other respiratory

1 viruses -- as the applicant suggested, maybe this
2 should work for flu or RSV -- if a trial were done
3 in flu or RSV, a similar kind of criteria, and were
4 negative, how would that then inform this type of
5 authorization if this authorization went forward?

6 I'm just sort of asking a thought experiment
7 to both the applicant and the agency, is if a
8 well-done superiority trial in flu, as proposed,
9 turned out to be negative, how would the applicants
10 view it in terms of the mechanism and the findings
11 in this study? How would the agency view that kind
12 of result? Thank you for entertaining my thought
13 experiment.

14 DR. KARIMI-SHAH: Thank you, Dr. Baden.
15 This is Banu Karimi-Shah, FDA. Let me first start
16 off with the nuances here of requiring another
17 trial.

18 In the face of an emergency use
19 authorization and a trial that would be done as a
20 condition of authorization, we would require that
21 trial to be done in the same patient population in
22 whom the drug was authorized. So in this case, we

1 are asking you, if authorized, who the appropriate
2 patient population would be, but for the sake of
3 discussion, if it were the population whom the
4 sponsor's defined and studied, that trial would
5 have to take place in those patients.

6 Now, if we were talking about a more general
7 trial in other viruses, this would be more
8 supportive of a potential marketing approval or a
9 new drug application for the future, but not so
10 much as a condition of authorization because,
11 again, that would be a trial that would be done in
12 a different patient population, so I think that's
13 important to draw out those differences there.

14 DR. BADEN: No. Thank you. That's very
15 helpful; so if the applicant said that they were in
16 discussion about such a trial. I was trying to
17 think through how that would inform us, but I hear
18 you, that that would stand on its own merit. Thank
19 you.

20 DR. AU: Dr. Seam?

21 DR. SEAM: I'm sorry. I had not put my hand
22 down from the prior question. I have no questions.

1 DR. AU: Okay. Great.

2 Let me ask the committee if there are any
3 questions before we move on, or any other
4 clarifying questions?

5 (No response.)

6 DR. AU: Seeing none -- thank you,
7 Dr. Karimi-Shah -- the committee will now turn its
8 attention to the task at hand, the careful
9 consideration of the data before the committee, as
10 well as public comments.

11 We will now proceed with the questions to
12 the committee and panel discussions. I would like
13 to remind the public observers that while this
14 meeting is open for public observation, public
15 attendees may not participate --

16 DR. STEVENSON: Excuse me. This is Takyiah
17 speaking. I'm so sorry to interrupt.

18 Dr. Au, could you please go to part 14 in
19 the script?

20 DR. AU: I apologize. I skipped that. I
21 will do that.

22 DR. STEVENSON: No problem. Thank you.

1 DR. AU: So retract all that. I apologize.

2 We will now proceed with the FDA charge to
3 the committee from Dr. Karimi-Shah. Thank you.

4 **Charge to the Committee - Banu Karimi-Shah**

5 DR. KARIMI-SHAH: Thank you, Dr. Au, and no
6 problem.

7 This is Banu Karimi-Shah again. First,
8 before I get started, I just want to extend a huge
9 thanks to the committee members for your thoughtful
10 and robust discussion already today. I know there
11 will be more as we go through these discussion and
12 voting questions. So I will now turn to close the
13 presentation portion of this Pulmonary-Allergy
14 Drugs Advisory Committee meeting with the formal
15 charge to the committee.

16 I'd like to take the next few minutes to
17 provide a brief reminder of the proposed use of
18 VERU-111, an overview of the benefit-risk
19 considerations, and the regulatory framework upon
20 which our decision making is based. I will then
21 close with the discussion and voting questions.

22 The proposed use of VERU-111 is reviewed on

1 this slide. It's for the treatment of SARS-CoV-2
2 infection in hospitalized patients with moderate to
3 severe COVID-19, with positive results of direct
4 SARS-CoV-2 viral testing, who are hospitalized, who
5 are at high risk for developing ARDS, and for whom
6 alternative COVID-19 treatment options authorized
7 by FDA are not accessible or not clinically
8 appropriate.

9 As part of the discussion, we will
10 specifically ask the committee to discuss the
11 proposed use with respect to the patient population
12 in whom VERU-111 should be used if authorized.

13 I will now summarize the benefit-risk
14 considerations. The FDA review team acknowledges
15 that Study 902 met its prespecified primary
16 endpoint of all-cause mortality at day 60. You
17 will recall this slide from Dr. Dharmarajan's
18 statistical presentation, which summarized the
19 primary endpoint results and showed that at
20 interim, 76.5 percent of subjects treated in the
21 Veru arm and 53.8 percent of the subjects in the
22 placebo arm remained alive at day 60. The odds

1 ratio for odds of staying alive was 3.2 in favor of
2 treatment, and the risk difference indicated a
3 23.1 percent change in the risk of mortality.

4 Among all 204 randomized subjects,
5 78.4 percent of subjects treated in the Veru arm
6 and 58.6 percent of the subjects in the placebo arm
7 remained alive at day 60. The odds ratio for the
8 odds of staying alive was 2.77 in favor of
9 treatment, and the analysis indicated a 19 percent
10 greater chance of remaining alive in the treatment
11 group.

12 In the face of an ongoing pandemic, a
13 survival benefit is difficult to discount, and
14 certainly all-cause mortality is an important and
15 clinically meaningful endpoint. As Dr. Wei
16 mentioned as part of the sponsor's presentation,
17 these results were somewhat remarkable, and
18 something that he had not previously seen. When we
19 saw these results, we experienced this feeling as
20 well. As we delved deeper, our review revealed
21 several uncertainties as reviewed by Drs. Busch and
22 Dharmarajan in their presentation.

1 You have heard this mentioned many times
2 today. While many of these issues are not unique
3 to this critical care trial and may not influence
4 the overall interpretation of results in a very
5 large trial, all of these issues together in a
6 small trial, which is more vulnerable to
7 imbalances, raise questions about the results.

8 Further, these issues raise concern that
9 even when using an objective endpoint such as
10 mortality, observed results can be subject to
11 biases in a small trial of short duration in
12 critically ill patients. I summarize these
13 uncertainties here.

14 The high placebo mortality rate in
15 Study 902, especially at U.S. and North American
16 sites, stands out at this point in the pandemic.
17 The potential unblinding events from opening study
18 drug capsules may have led to performance bias.
19 There were small imbalances in clinically relevant
20 baseline standard-of-care medications for COVID-19,
21 as well as durations of standard-of-care therapies
22 prior to randomization that suggest that standard

1 of care in Study 902 may not be representative of
2 U.S. standard-of-care practices. In addition, the
3 lack of additional data on other elements of
4 standard of care limits our ability to further
5 investigate their impact on the efficacy result.

6 With respect to timing of enrollment, some
7 subjects were already on a clinical trajectory of
8 improvement prior to randomization in Study 902,
9 complicating the interpretation of their efficacy
10 data for the proposed context of use. We do not
11 have the information to assess the effect of goals
12 of care decision making in this small trial,
13 especially important due to the potential for
14 unblinding and prior available efficacy data that
15 may have led to subconscious influence on goals of
16 care decision making.

17 Given the small sample size and unclear
18 mechanism of action in COVID-19, we have also
19 looked at available data for a drug with a similar
20 mechanism of action, colchicine, a tubulin
21 inhibitor. These data suggest a lack of efficacy
22 for colchicine on mortality. And finally, we have

1 uncertainty in whether the designated study
2 population is clinically meaningful as stated, and
3 whether the study provides adequate confidence in
4 each component of that population.

5 It is important to note that based on our
6 review and conducted sensitivity analyses, none of
7 these uncertainties or imbalances alone invalidate
8 the mortality benefit observing Study 902.

9 However, as Dr. Dharmarajan pointed out in his
10 presentation, these analyses were simplistic
11 explorations of the impact of adding additional
12 baseline factors into a logistic regression
13 analysis model and may not have accurately captured
14 the relationship between the imbalanced factors and
15 the outcome.

16 Further exploration of the effect and
17 imbalances in individual comorbidities and
18 interaction of imbalanced factors was not possible
19 due to the limitations of the sample size and lack
20 of additional data collection around many of these
21 elements.

22 Again, while not having this type of

1 information is not atypical for critical care
2 trials, these factors could be impactful in a study
3 of this small size, randomized 2 to 1, in which the
4 outcome of a few placebo patients could change the
5 result, and our exploratory analyses do not
6 entirely eliminate the concern that certain
7 baseline imbalances across treatment groups may
8 have impacted the study result. We ask the
9 advisory committee to consider these uncertainties
10 together and how they may affect the interpretation
11 of the robustness of the mortality results.

12 With respect to the evaluation of risk, the
13 evaluation of the potential risks in the VERU-111
14 development program is limited by the atypically
15 small safety database, comprising a total of
16 149 subjects who received VERU-111 for the proposed
17 use in COVID-19. Additionally, VERU-111 is a new
18 molecular entity not approved for any other
19 indication, and therefore, our ability to leverage
20 other safety information from relevant previous
21 human experience is limited.

22 We acknowledge that in the face of a

1 potential mortality benefit, there are few safety
2 signals that would contribute to an unfavorable
3 benefit-risk assessment. We have provided an
4 overview of our analysis of this limited safety
5 data, but the biggest issue for the safety
6 evaluation in this program is its small size and
7 resulting limitations, identifying significant
8 safety signals. It will be important for the
9 committee to weigh the level of uncertainty in
10 safety that is acceptable in a program with a
11 potential mortality benefit.

12 I will use the next few slides to once again
13 review the regulatory framework which FDA uses to
14 assess applications for emergency use
15 authorization. Our authority is a result of the
16 declaration enabling FDA to issue EUAs as a part of
17 the U.S. government response to the COVID-19 public
18 health emergency.

19 For those of you who have participated as
20 panel members in RACs in the past, you will note
21 that this is a different framework than what we use
22 for approval. The FDA may issue an EUA if, based

1 on the totality of scientific evidence available,
2 it is reasonable to believe that the product may be
3 effective in diagnosing, treating, or preventing a
4 serious or life-threatening disease or condition
5 that can be caused by SARS-CoV-2, and that the
6 known and potential benefits of the product
7 outweigh the known and potential risks of the
8 product; also, there is no adequate approved and
9 available alternative to the product for
10 diagnosing, preventing, or treating the disease or
11 condition.

12 Further, the FDA may require appropriate
13 conditions with respect to collection and analysis
14 of information concerning the safety and
15 effectiveness of the product with respect to the
16 use of such product during the period when the
17 authorization is in effect and a reasonable time
18 following such period.

19 This is an important point to note because
20 even in the face of issuing an authorization, FDA
21 may require additional trials in the population in
22 whom the authorization is issued in order to gather

1 more efficacy and safety data for the proposed use.
2 We will ask you to discuss considerations for
3 additional trials to be conducted, if authorized,
4 as a condition of authorization, given the
5 uncertainties noted. I have summarized these on
6 the next slide.

7 As a condition of authorization, regulations
8 require that the new study be in the same
9 population as that in which the product is
10 authorized. While the appropriate population is
11 something we will ask you to discuss, per the
12 sponsor's proposal, this would be in subjects with
13 WHO 5 and 6 severity or WHO 4 severity with
14 additional selected comorbidities.

15 Both the division and the sponsor have
16 already discussed preliminary elements of trial
17 design, and as stated in the briefing document, use
18 of a randomized double-blind, placebo-controlled
19 superiority design may be the most feasible and
20 practical, however, we seek the committee's input
21 on this proposal.

22 The proposed study should also consider

1 additional elements to account for the
2 uncertainties raised, and we will ask the committee
3 members to provide input on these additional study
4 elements, including trial size and interim decision
5 making, placebo control, active control, or
6 combinations of both, and then considerations of
7 the uncertainties raised by the FDA in Study 902 as
8 enumerated here. We will also ask the committee to
9 opine on elements of standard of care for COVID-19,
10 both pharmacological and nonpharmacological, that
11 should be taken into account in such a study.

12 Before I summarize the discussion and voting
13 questions for the committee, I want to reiterate
14 the following EUA consideration. FDA's
15 authorization of a medical product under EUA is not
16 the same as the agency's approval or licensure of a
17 product. The may be effective standard for EUAs
18 provides for a lower level of evidence in the
19 substantial evidence of effectiveness standard that
20 FDA uses for product approval. Further, a product
21 may be considered for an EUA if it's determined
22 that the known and potential benefits outweigh the

1 known and potential risks, based on the totality of
2 scientific evidence.

3 For an emergency use authorization, the
4 agency authorizes a healthcare provider fact sheet
5 and a patient fact sheet, which are similar to
6 prescribing information in the patient labeling or
7 medication guide for approved products. And as
8 part of its authorization, FDA will establish, to
9 the extent practicable, conditions in the EUA that
10 it finds necessary to protect the public health,
11 and periodically, FDA will review the circumstances
12 and appropriateness of the EUA.

13 With these EUA considerations and statutory
14 requirements in mind, we can now move to the
15 questions

16 Question 1 is a discussion question. We ask
17 the committee, discuss the strengths of the
18 all-cause mortality data, specifically considering
19 the uncertainties raised by the agency in
20 Study 902, including the high observed placebo
21 mortality rate; potential for unblinding;
22 differences in standard of care before and during

1 the trial; differences in timing of enrollment;
2 potential differences in goals of care decision
3 making; and defining the studied population.

4 Question 2 is also a discussion question.

5 We ask the committee to discuss your level of
6 concern regarding the limited size of the safety
7 database for this new molecular entity.

8 Question 3 is a voting question. We ask, do
9 the known and potential benefits of VERU-111, when
10 used for the treatment of adult patients
11 hospitalized with COVID-19 at high risk of ARDS,
12 outweigh the known and potential risks of VERU-111?

13 In part A, if you vote yes, we ask you to
14 discuss the appropriate patient population in which
15 VERU-111 should be authorized. In part B, if you
16 vote no, we ask you to discuss what additional data
17 would be necessary to assess the benefits versus
18 the risks of treatment.

19 Finally, question 4 is a discussion
20 question. We ask, if authorized, the agency
21 believes that additional data are necessary to
22 understand the benefit-risk assessment as a

1 condition of authorization. Please discuss the
2 proposed design aspects of a study to provide this
3 additional data.

4 Thank you once again for your time and your
5 attention. I will now turn the podium back to the
6 chair to begin the discussion.

7 **Questions to the Committee and Discussion**

8 DR. AU: Thank you, Dr. Karimi-Shah.

9 The committee will now turn its attention to
10 address the task at hand, the careful consideration
11 of the data before the committee, as well as the
12 public comments. We will now proceed with the
13 questions to the committee and panel discussions.
14 I would like to remind the public observers that
15 while this meeting is open for public observation,
16 public attendees may not participate, except at the
17 specific request of the panel.

18 After I read each question, we will pause
19 for any questions or comments concerning its
20 wording, then we will open the question to
21 discussion. We will start with question 1.

22 Discuss the strength of the all-cause

1 mortality data, specifically considering the
2 uncertainties raised by the agency in Study 902,
3 including the high observed placebo mortality rate;
4 potential for unblinding; differences in standard
5 of care before and during the trial; differences in
6 timing of enrollment; potential differences in
7 goals of care decision making; and defining the
8 studied population.

9 Are there any questions about the wording of
10 the discussion question?

11 (No response.)

12 DR. AU: Seeing none, if there are no
13 questions or comments concerning the wording of the
14 question, we will now open the question to
15 discussion. I would ask the panel members to use
16 the raise-hand for recognition. They're starting
17 to come up, so thank you.

18 Dr. Chertow, I'll give you the floor.

19 (No response.)

20 DR. AU: Dr. Chertow, you're on mute if
21 you're speaking.

22 CAPT CHERTOW: Got it. This is Dan Chertow.

1 Thank you for the opportunity to speak on this
2 question, and for the clear presentation of the
3 question.

4 My take on this I think should have come
5 across in the prior questions that I raised, and my
6 take is as follows; that clearly there's a profound
7 mortality difference between drug and placebo in
8 the study, but ultimately, given the questions
9 around differences in groups and potential
10 unblinding, et cetera, that may have had an impact
11 on the outcome. The fact that just three
12 individuals in the placebo group would have changed
13 a statistically significant outcome, it seems to me
14 that the data is suggestive, but it is not
15 definitive. So I think the strength of the data,
16 at best, would be considered moderate, and I'll
17 leave my comments at that. Thank you.

18 DR. AU: Thank you.

19 Dr. Gillen?

20 DR. GILLEN: Daniel Gillen. Thank you.

21 Yes, I'm fairly consistent with Dr. Chertow.
22 I would say that on face value, when we look at the

1 observed data that are here, the point estimate is
2 clearly impressive with respect to the 60-day
3 mortality. I think that it's clear that the data
4 has been analyzed in multiple ways to assess
5 sensitivity.

6 I don't think that the issue is going to
7 come from being able to adjust out differences at
8 baseline from these groups and the small imbalances
9 in this type of trial. I think the question really
10 comes down to a lack of precision overall in
11 long-term follow-up, and that's where the question
12 begins to arise, like the question as to why this
13 study was stopped prematurely relative to the
14 pre-planned sample size, to be quite honest, but
15 that's neither here nor there at this point.

16 With respect to the placebo mortality rate,
17 while it's higher in this population, I think that
18 there are potential reasons for that. I believe it
19 was Dr. Kim who had brought up a very feasible type
20 of explanation in the sense that this is a
21 fast-moving disease, different comorbidities, and
22 different treatments that folks are dealing with

1 over time. And while the sponsor said it's over a
2 short time period, it's quite a dynamic system that
3 we're dealing with. So it could very well be that
4 that baseline measure of mortality is really
5 rapidly changing, given the patient pool that we're
6 dealing with and coming into trials.

7 So I'm less concerned that this is maybe not
8 representative of where we are today. I think it's
9 open for debate, and I don't think there's evidence
10 one way or the other. But I do believe that some
11 issues with the blinding could invoke questions in
12 my mind about this, and I do think that given the
13 small trial size, that there could be easy shifts
14 in these things, depending upon what the baseline
15 severity of disease might have been or any
16 potential differences could have come through in
17 the patient population.

18 So because of that, my enthusiasm is
19 certainly tempered, though, again, on face value,
20 the point estimate itself is impressive here, but
21 it does not rise to the level of what is mostly
22 considered to be the standards that we would look

1 for on something like this. Thank you.

2 DR. AU: Thank you.

3 Dr. Shaw?

4 DR. SHAW: Yes. This is Pamela Shaw. I'd
5 just like to add a little bit to what's been said.
6 I agree with all the thoughts that have been
7 expressed so far regarding this charge, this first
8 question.

9 This is a very difficult decision. I'm
10 trying to think about the EUA and the level of
11 evidence, specifically with respect to mortality,
12 and I think that justifies this EUA at this stage.
13 I think a lot about this emergency use
14 authorization is in the U.S. population in the
15 setting of U.S. standard of care, and the Trial 902
16 had 67 individuals from the U.S. being exposed to
17 U.S. standard of care, and only 23 of those were on
18 the placebo.

19 So we're looking at this authorization, this
20 use, in a population for which we've seen 23 people
21 informing this 56.5 percent mortality rate in the
22 U.S. placebo population. I've done some work in

1 the U.S. in the COVID trials and with the COVID
2 EHR, and I'm trying to wrap my head around this
3 background rate because I think it is kind of
4 concerning to think about who that represents and
5 what is the target population.

6 I'm not sure we can say that we enrolled the
7 target population, so that makes it in the sense
8 that they seem much sicker with that high of a
9 mortality rate. I think we saw early on in the
10 pandemic, when a lot of people were on the
11 ventilator, and on pressors, and people
12 not -- there was a high mortality rate early on in
13 those WHO 7's, and in a few months that changed,
14 even in that very sick population. But then a year
15 later, I don't know, it seems the 56.5 percent is a
16 little bit concerning in a clinical trial
17 population who tends to have a better standard of
18 care than a general population.

19 So I guess my concern is the small numbers
20 may have enrolled a population a little different
21 than the target, which makes it a challenge to
22 figure out who, if there's an authorization at this

1 point. I guess my question is, is it really
2 clear -- and I'm sort of turning the question back
3 to the FDA. Do we know who we would authorize this
4 in? That's the thing I find -- it would be this
5 group of people, in the U.S., that have this really
6 high rate. I find that's a challenge, and it maybe
7 is the small numbers making us feel a little
8 uncomfortable with -- I think no one's disputing
9 this, but no matter how you turn the data around,
10 you're seeing roughly a 20 percent risk difference,
11 but how much of that can be attributed to the
12 mechanism of action of this drug, or can be
13 attributed to the expected mortality rates that we
14 should have seen that could have allowed for such a
15 large difference? It has to be a high mortality
16 rate in a background in order to see such a large
17 difference.

18 So just a lot of questions being raised by
19 these results, at least in my mind. So in terms of
20 going back to the question -- and I'll finish -- I
21 think it is an impressive number, the 20 percent
22 risk difference, but I find it probably a product

1 with the small numbers, so then that's a concern
2 when I think about there's a lot of precedence for
3 having an authorized use when there's just a small
4 exposure to this drug, really.

5 I guess sort of like what Dr. Gillen said,
6 I'm trying to understand what motivates an
7 authorization at this point, given there's only
8 been 200 people on this previous trial, and maybe
9 30 more before that. If we can't even enroll a
10 full 300, it's just sort of wrapping my head around
11 how could we get data that could help us feel
12 better about this EUA in any kind of short fashion
13 when a lot of people could get exposed to the drug
14 in the meantime?

15 So those are just some of my concerns, and
16 if I displayed any ignorances in my concerns, I'm
17 happy to be educated during this discussion period.
18 Thank you very much.

19 DR. AU: Thank you.

20 Dr. Kim?

21 DR. KIM: Edwin Kim, University of North
22 Carolina. I'm really just going to echo what I

1 think all the previous speakers have mentioned. I
2 think the data is very impressive, and no matter
3 how they seem to slice and dice it, the benefits
4 seemed to withstand all of those different
5 analyses. I think not having a clear understanding
6 of the mechanism and the one comparator of
7 colchicine not showing a clear benefit is worrisome
8 to an extent, as well, of course, all these
9 uncertainties that have been brought up.

10 My sense is all of these uncertainties and
11 all would bring down maybe the magnitude of the
12 benefit, but I don't know that I've heard enough
13 that makes me worried they would not be a benefit.
14 So that will kind of play into the next discussion,
15 I think, when we compare these benefits to the
16 risks. Thank you

17 DR. AU: Thank you.

18 Dr. Baden?

19 DR. BADEN: Yes. Thank you.

20 I think that the mortality endpoint is an
21 endpoint that we all care the most about and should
22 be cleanest in its assessment. The challenges, as

1 already raised, is it's unclear who, although I
2 would say who is people at a 30 to 50 percent
3 mortality risk, and I'm not sure the WHO scale
4 adequately captures that as used in this study.

5 The what, I'm also not sure is fully worked
6 out in terms of the dosimetry, but we have a dose
7 given that had the effect seen, so that is a good
8 place to start. The when is also not so clear
9 because some folks were sick for a long time and
10 some for a short time, and it's unclear triggers
11 for treatment and some definitions are also
12 unclear, but we know what they did, and that would
13 then be the framing.

14 There are the threats to validity that have
15 been raised, but we're still left with this
16 mortality benefit even in the face of these threats
17 to validity that nip at the sides and the heels,
18 but I'm not sure vitiate the result. As with
19 anything early in development, there are more
20 questions than answers, but the endpoint of
21 interest is such a powerful one. Over.

22 DR. AU: Thank you.

1 Ms. Schwartzott?

2 MS. SCHWARTZOTT: Hi. I am the patient
3 representative. I've currently had COVID for about
4 12 days, so excuse my voice and coughing if I do.
5 I've also had COVID at least 5 times in the past.
6 Early on in 2020, it was a really, really bad case,
7 but I survived it out of the hospital, and had it
8 several times after, which damaged my lungs.

9 So a year ago, about a year and a half ago,
10 I was hospitalized with what turned out to be
11 rhinovirus and not COVID, but they said that the
12 damage from COVID is what caused my lungs to react
13 so badly. I was one of those World Health
14 Organization's 5 or sick. I didn't quite get fully
15 to 6 because I refused the vent, but they said I
16 needed it.

17 So I have the unusual understanding for our
18 debate because I represent what the patient wants.
19 The problem is that is not always what really
20 should happen. I would have done anything to
21 breathe. So it's up to the FDA and us to look at
22 both sides to protect the patient, who will likely

1 want the drug at any cost. And while the drug
2 sounds extremely promising and the all-cause
3 mortality data is very promising, what are the real
4 results?

5 I'm questioning the true efficacy results.
6 Did the pre-standard of care cause the patient to
7 live or was it the VERU-111? It might be a mix of
8 care, as it was with me. I improved, and I lived
9 during that mix of care, obviously, without severe,
10 since I didn't have COVID anyway. But on the other
11 hand, if these results are true, it is possible
12 that we could have an additional medication that
13 improves outcomes and saves patients, and that's
14 really important.

15 I am leaning towards suggesting another
16 study because it puts the drug out there under
17 strict conditions while collecting data for
18 potential future use. I simply don't feel we have
19 enough data, but feel that this has enough promise
20 to deserve a future study.

21 Really quick, in regard to the potential
22 unblinding, that doesn't bother me quite as much.

1 The nurse might and should have noticed that the
2 color difference was there, but they still would
3 not know which was the drug and which was the
4 placebo.

5 The goals of care, that really varies from
6 doctor to doctor and nurse to nurse. I was in a
7 really big New York City hospital, and the ER doc
8 that initially treated me wanted me on the vent.
9 We're not in the same mind-set as my specialist who
10 treated me in the ICU, and fought for me and my
11 wishes, and he was right. So you could be in the
12 best hospital in the world or you could be in a
13 small hospital; that is going to change no matter
14 what, and it will on future studies, if there are
15 any.

16 I just think there are too many variables
17 for the small group that was studied. If this
18 would be back in 2020, I would have voted yes
19 immediately, but now we have other options and
20 vaccines, so I question do we need to rush this
21 into the emergency situation or should we do
22 another study? Those are just my thoughts as

1 patient representative.

2 DR. AU: Thank you for those comments.

3 Dr. Seam?

4 DR. SEAM: Sorry, Dr. Au. Did you call me,

5 Dr. Nitin Seam?

6 DR. AU: Yes.

7 DR. SEAM: Ms. Schwartzott's comments really
8 resonate with me. We all think about saving lives
9 with COVID and take that very seriously, the most
10 important thing [indiscernible]. I echo a lot of
11 her thoughts. I struggle in terms of the strength
12 of the evidence, with the low end of its 2 to 1
13 randomization, and then the early stopping really
14 makes that control group end very small, and that
15 small change can then cause that control group's
16 mortality to be out of whack, as we discussed.

17 I don't know what are the potential
18 differences, but there are many differences,
19 potential differences, that the FDA pointed out, a
20 few patients being made DNR, difference in
21 ventilator strategies that could certainly make a
22 difference and possibly explain why the control

1 group mortality is so high.

2 I do think it is an outlier when you
3 contextualize it with the timing of the second half
4 of '21, early '22, and the SOHO-COVID study just
5 came out in JAMA, looking at high flow versus
6 non-rebreather, and they have a mortality in both
7 groups [indiscernible], similar hypoxemia
8 [indiscernible] cohort, so I am concerned about
9 that.

10 I think the other question that hasn't been
11 raised in this discussion is, where would it fit
12 with the rest of our armamentarium? A small
13 minority of patients have received the other
14 therapies that we do give for this sort of patient,
15 like baricitinib and so forth, so we really have to
16 think about that. You worry you're giving
17 something else, and there's potential for harm if
18 you're not giving something else that's already
19 been approved via the EUA process that has a larger
20 end. I'll stop there. Thank you.

21 DR. AU: Thank you.

22 Dr. May?

1 DR. MAY: Susanne May. Just a correction, I
2 believe a minor one or a small one. I believe the
3 first two speakers, Dr. Chertow, had mentioned that
4 three individuals would change the results. I
5 think it was four, which is not much different than
6 three, but nevertheless, even if there were
7 4 individuals in the placebo group who would not
8 have died, the effect estimate would still be very
9 impressive. It would not be necessarily
10 statistically significant, but still very
11 impressive; I believe still almost 20 percent.

12 I am struck by the effect size. Some of the
13 concerns that were raised, particularly by the FDA,
14 they would have been known before this study was
15 started. Even with the reduction in sample size
16 from 300 to now just over 200, even with the 300,
17 there wouldn't have been more than 200 individuals
18 exposed to the treatment, which is still quite a
19 bit lower than other treatments that received this
20 approval, emergency approval.

21 I'm also wondering what we would need to see
22 for this kind of study that we couldn't have

1 anticipated upfront, with regard to some of the
2 concerns, that would make us approve this. There
3 doesn't seem to be a huge red flag with regard to
4 any of the safety outcomes. And yes, the numbers
5 are relatively small, but that didn't seem to be a
6 huge flag. There also doesn't seem to be a huge
7 flag with regard to imbalances. Yes, in totality,
8 they could have changed the results, but they would
9 have had to be all, or almost all, working at the
10 same time to really reverse a benefit.

11 So maybe it's not only discussion, but if
12 there is another question to the FDA here, it is,
13 when this study was started, some of the concerns
14 that are still raised now could have been
15 anticipated before it was started, and what would
16 the agency have wanted to see differently for this
17 study to not bring this to the advisory committee
18 but be convinced and go ahead with the emergency
19 use authorization? And that's my comment and
20 question.

21 DR. AU: Thank you, Dr. May.

22 Is there someone at FDA who can address

1 Dr. May's question?

2 DR. KARIMI-SHAH: Yes. Hi, Dr. Au. This is
3 Dr. Karimi-Shah, FDA. I'm going to ask Dr. Busch
4 to address Dr. May's question.

5 DR. AU: Thank you.

6 DR. BUSCH: Hi. This is Rob Busch. Sorry.
7 I'm just trying to unmute everything and get
8 everything set.

9 So we did mention -- find my slide -- during
10 the presentation that communications between the
11 division and the sponsor highlighted repeatedly
12 that the size of the safety database was small
13 compared to other products which had been granted
14 the EUA, and that the division proposed that at
15 least 500 subjects treated with VERU-111 would
16 provide a more robust characterization of both
17 effectiveness and safety.

18 I think that during the pandemic, there are
19 certain things that we have power to regulate and
20 certain things that we do not. If a sponsor
21 proposes a study where the sample size is not ideal
22 for our purposes, that may not be a reason to stop

1 the trial. We can give advice, but we can't force
2 that issue. I think that we had an expectation
3 that there might be another trial.

4 In addition, I think it's important to note
5 that we also cautioned against the 2 to 1
6 randomization ratio. Again, we may have expected a
7 bigger study to begin with, and we didn't
8 necessarily expect the sample size to go down
9 further.

10 In all this context, again, we are somewhat
11 limited in the power of what we can do, and we
12 didn't want to shut down research during the
13 pandemic if it seemed notable. We have to
14 acknowledge, though, too, the reason this is at an
15 advisory committee with so few subjects is because
16 of the point estimate. I don't think there was a
17 way for us to predict -- again, as the sponsor
18 presenter said, "I've never seen a risk
19 difference --" again, we keep coming back to that.

20 We might have expected that we would have
21 another trial. We might have expected that we
22 would have more people in the trial along the way

1 before the sample size changed. But we did make
2 clear to the sponsor, a few times, we would expect
3 500 subjects. So that's a reasonable discussion of
4 where our expectations stood in the context of a
5 pandemic.

6 DR. AU: Thank you.

7 Dr. May, does that address your question?

8 DR. MAY: Yes. Thank you. That was very
9 helpful. Thank you very much.

10 DR. AU: Yes.

11 Dr. Baden, is your hand up?

12 DR. BADEN: I re-raised it because I think I
13 wasn't as clear on some of my thoughts, and Dr. May
14 helped jiggle them, so thank you.

15 As we think about the threats to validity,
16 which is part of what we're getting at, the reason
17 we have a placebo group is to tell us how the
18 population being studied behaves, and this
19 population being studied, whatever classification
20 we have at baseline, is a 30 to 50 percent
21 mortality population. That's what it is, whether
22 or not we have adequate ways to describe it at

1 baseline when we enroll them.

2 Then the threats to validity if
3 randomization works may be the play of chance or
4 may be because of differential handling of the
5 participants, and that's what some of these issues
6 are about unblinding. If we believe that
7 unblinding leading to the goals of care and the
8 application of standard of care was so differential
9 that it would change the mortality outcome, then
10 that changes our ability to interpret the efficacy.

11 If on the other hand we're not as convinced
12 that that's a threat to validity because the
13 doctors caring for the patient will always be
14 aggressive in caring for the patient, as discussed
15 today, there are ways that things can infuse
16 themselves into that discussion. But even though
17 I'm concerned about the time to enrollment and
18 concerned about the high placebo rate,
19 randomization should have mitigated those concerns.
20 So it's really differential unblinding leading to
21 differential management post-randomization that
22 would be the threat to validity on the mortality

1 outcome that I think is the issue in terms of study
2 conduct; and that the placebo group is telling us
3 the population that they were studying, whether or
4 not it's like other populations -- it may not
5 be -- but this is the population they were
6 studying.

7 Then the other issue that's ruminating in
8 terms of larger numbers, which of course we all
9 want, I'm trying to put myself on the DSMB. If
10 this were a 500-person study, or a 1,000-person
11 study, or a 5,000-person study, at what point -- if
12 you're on the DSMB and you see a mortality
13 difference like this, would you allow the study to
14 continue?

15 So I just want to be careful that we think
16 carefully about what actually is operationalizable
17 in the field, given the data that were seen in real
18 time and we're seeing now; because even though I
19 want more data desperately, I also can understand
20 how a safety committee would be appropriately
21 concerned about letting a study go on where there's
22 a big mortality difference, and then how would that

1 be looked at by us and others.

2 Since we're in a discussion mode, I'm
3 sharing more ruminations than dogmatic or
4 definitive insights. They told us the population
5 they studied, and are the factors that would lead
6 to differential post-randomization care a threat to
7 validity for the endpoint seen or not, because that
8 is ultimately whether or not we believe the
9 findings. Thank you.

10 DR. AU: Thank you.

11 Dr. Seam, your hand is up. Can I ask if you
12 just didn't put it down from the previous or you
13 have another point? Oh, it just went down. I'll
14 assume that is you didn't have any additional
15 points.

16 Dr. Carlson?

17 DR. CARLSON: Thank you.

18 I think it's been a great discussion, and I
19 think there is still a lot of benefit potentially
20 for this drug. I am following up on a comment that
21 Dr. Baden made about all liking more data, and I'd
22 just like a little clarification from the FDA

1 whether those data would be required
2 pre-authorization or can it be obtained post.

3 Then the second comment was that I believe
4 the sponsor had raised their hand and had a point
5 to clarify, but hadn't yet been called on. That's
6 my commentary.

7 DR. AU: Thank you.

8 We'll start with the FDA, and I did not see
9 the sponsor's hand, so I apologize about that.

10 FDA?

11 DR. KARIMI-SHAH: Yes. Hi. This is Banu
12 Karimi-Shah, FDA. Thank you for your question.

13 Part of the discussion and part of the
14 question today is if more data is required, when to
15 require it? As you heard in our presentation, it
16 can be a condition of authorization. So if you all
17 feel that there's enough here to authorize with a
18 condition, then the data can be obtained
19 post-authorization. However, if a decision
20 ultimately comes down not to authorize, then the
21 further data would be acquired either before
22 another authorization request were to come in or

1 potentially a marketing application.

2 So if we don't authorize the current
3 request, we don't require any further data from the
4 sponsor, but if we were to authorize, then the data
5 could be required. The study could be required as
6 a condition of authorization.

7 Is that responsive to your question?

8 DR. CARLSON: Yes. Thank you.

9 DR. AU: Great.

10 I'm sorry. Let me ask, I think the sponsor
11 had their hand up. Did they have a comment?

12 DR. BARNETTE: Yes, thank you, Dr. Au. This
13 is Gary Barnette from the sponsor.

14 The question has been asked multiple times
15 today, what number of patients needs to switched?
16 Basically, deaths need to be switched from placebo
17 treatment for this to lose statistical
18 significance. And in the break, we did run some
19 analyses. I had our independent group, Dr. Wei,
20 run some analyses on this, and there's multiple
21 ways to do this specific analysis. But I would ask
22 Dr. Wei to share his analysis the way he did it,

1 and I think the number is a lot higher than four.

2 Dr. Wei?

3 DR. WEI: Thank you, Gary.

4 This is L.J. Wei. Allow me just to share
5 very quickly what I did during the lunch hour. I
6 appreciate our FDA colleague presenting the
7 tipping-point analysis, and the gentleman claimed
8 that we need 4 people moving from placebo, 4 deaths
9 to treatment arm. That would bring down the
10 significance level or bring up, if you want to say.

11 I did a very simple calculation. For my
12 calculation, I needed 6 patients probably, not only
13 four. But remember, if we move with 6 deaths from
14 placebo to treatment arm, that means you
15 artificially make the number of deaths to 12, not
16 six. So I'd like to emphasize six is not really a
17 correct number we should have cited. In fact, you
18 actually make this difference enlarged to 12. So
19 that's my point.

20 Another point, if you'll allow me, Chairman,
21 thinking about the RECOVER trial, which
22 demonstrates dexamethasone is a factor, that trial

1 is a 2 to 1 ratio; two means placebo patients, one
2 is the treatment arm. And with a open label, they
3 didn't have a prespecified sample size at all, and
4 during the trial, after the trial is over, they
5 found out there were a very sick patient, so that's
6 a benefit for the patient, but the death rate
7 difference is only 11 percent.

8 I just want to mention the drug trial,
9 RECOVER, so-called by UK people, was not really
10 ideal even compared to this current [indiscernible]
11 trial. Thank you very much.

12 DR. AU: Thank you.

13 Dr. Lee?

14 DR. LEE: I just wanted to rebut on that
15 because regarding the dexamethasone trial, it's a
16 much larger trial, and there was biological
17 plausibility.

18 The other thing is I don't think we are
19 arguing about the point estimates being impressive.
20 I think it's really the question about robustness
21 of the data affected by lingering uncertainties,
22 mainly related to the small sample size. I just

1 want to bring that up because I think these trials
2 are very difficult to do -- I recognize that
3 completely -- but we are charged to make a
4 recommendation to the FDA related to emergency use
5 authorization of a drug we don't really understand,
6 and then a very small sample size and some
7 lingering uncertainties. So that's my comment
8 there.

9 DR. WEI: Sorry, ma'am. If I may, for the
10 RECOVERY trial, we only had 300 patients in the
11 traded arm; not very large.

12 DR. AU: I'm sorry. I'm going to interrupt
13 the sponsor. Please wait to be called on.
14 Actually, I'm going to curtail this conversation
15 because this is really not about other trials. I
16 really don't feel like this is about the question
17 at hand, so I'm going to curtail that part of the
18 conversation.

19 I saw Dr. Shapiro's hand go up.

20 Dr. Shapiro?

21 DR. SHAPIRO: I'll drop it. It was about
22 that as well, just that the dexamethasone was a

1 totally different time of the pandemic, a different
2 thing, but we'll curtail that conversation.

3 DR. AU: Thank you.

4 DR. KARIMI-SHAH: Dr. Au, this is
5 Dr. Karimi-Shah. I'm sorry. Could the FDA have an
6 opportunity to respond to the new analyses that was
7 presented?

8 DR. AU: Yes, absolutely.

9 DR. KARIMI-SHAH: Thank you so much. I had
10 raised my hand, but I know I'm sort of low down on
11 the list of the hand-raisers here.

12 Could I please ask Dr. Dharmarajan if he
13 would respond to the analysis?

14 DR. DHARMARAJAN: Yes. Thank you. This is
15 Said Dharmarajan from the FDA.

16 I will just briefly explain how we got to
17 the number 4. What we did was the primary analysis
18 was a logistic regression analysis model which
19 controlled for treatment and four other baseline
20 covariates. So in this analysis module, we looked
21 at the subjects who had the most influence on the
22 treatment effect estimate, and we saw that if we

1 changed the four subjects that had the most
2 influence -- and these four subjects had an outcome
3 of death, so if you change the death status to
4 being alive, then the analyses you did are not
5 nominally significant results at the 0.05 level.

6 So that is how we arrived at the number 4,
7 and again, pointing out that this was a conditional
8 treatment effect estimate and adjusting for the
9 covariates. So we ran the analysis and we checked
10 which were the most influential patients, and saw
11 how many of them would be required; in other words,
12 what would be the minimum amount of patients
13 required to kind of get the results.

14 DR. AU: Thank you.

15 I'm going to move to Dr. Gillen.

16 DR. GILLEN: [Inaudible] -- opined, but I
17 just had a quick clarification, given what the FDA
18 just said.

19 By definition of influence, then, what you
20 did was look at the delta-betas, I presume, on the
21 treatment effect. Was that your definition of the
22 4 people that had the highest influence? I just

1 want to contextualize how you did what you did.

2 DR. DHARMARAJAN: Yes. This is Sai
3 Dharmarajan again from the FDA. And yes, you're
4 absolutely right. You're exactly right. It's
5 delta-betas.

6 DR. GILLEN: Okay. Thank you.

7 DR. AU: Dr. Karimi-Shah, I see your hand is
8 up. Is that from the previous or do you have
9 another comment you'd like to make?

10 DR. KARIMI-SHAH: Thanks, Dr. Au, and thank
11 you for calling on me again. Banu Karimi-Shah. I
12 just wanted to reiterate Dr. Lee's point that
13 RECOVERY enrolled thousands of subjects, and we
14 have a lot of prior information on dexamethasone.
15 That point was made by Dr. Lee, but thank you.

16 DR. AU: Great.

17 DR. Gillen, your hand is still up. Do you
18 have another point you'd like to make?

19 (No response.)

20 DR. AU: Okay. I'll take that as a no.

21 If there are no other comments -- oh,
22 Ms. Schwartzott?

1 MS. SCHWARTZOTT: Okay. Listening to all
2 these comments and this discussion, my thinking is
3 evolving. The doctors that enrolled these patients
4 originally, hopefully took the risk because there
5 was a clear need when other treatments were not
6 working.

7 It bothers me that halting this treatment
8 that is so promising takes away an option, but I'm
9 still concerned about the lack of data. It also
10 bothers me that there's a placebo group, even
11 though I understand why it's there. But if I'm
12 that upset about the placebo group, that means that
13 I have faith in the drug. So I feel strongly that
14 we continue with this data collection to determine
15 the less controlled use in the past -- or in the
16 future.

17 Now, here's the debate. If you require data
18 collection under emergency use, should you be doing
19 that or voting no and requiring a new trial? My
20 question is, if the future data shows safety and
21 efficacy concerns after enrollment and treatment of
22 future patients in the emergency use, maybe this is

1 the most efficient way to go. What would that look
2 like if those -- would it immediately be pulled?
3 Would we come back for more discussion? Which is
4 the more efficient, faster approach for more data
5 collection?

6 I hope that's not too much --

7 DR. AU: No, I think that's a really
8 important point. I think that part of the
9 conversation will continue to evolve as we go to
10 the different questions.

11 Do you have any other points? Otherwise, I
12 want to shift to Dr. May.

13 MS. SCHWARTZOTT: That's a no.

14 DR. AU: Okay. Great.

15 Dr. May?

16 DR. MAY: Yes. Susanne May. I just wanted
17 to clarify again the differences in analysis that
18 were done by the FDA, as well as by the sponsor
19 with regard to those individuals.

20 The way that I understood it with the
21 question that Dr. Gillen asked as well on the
22 DS [ph] betas, this is not requiring 8 individuals,

1 as Dr. Wei was saying for his analysis. It is
2 just truly 4 individuals that were picked to be the
3 ones that had the most influence on the analysis.

4 So I do truly believe that it is just the
5 four if they are picked as having the biggest
6 influence, and it does not require more than four
7 to change the results to be not statistically
8 significant, and that was also my comment.

9 DR. AU: Great.

10 Let me see if I can summarize this
11 discussion. I found the discussion incredibly
12 robust. I think, in general, there was mostly
13 consensus, and I would, actually, no dissent but
14 some variations on interpretation.

15 What I heard from the group -- and at the
16 end, please correct me or add to anything that I
17 may have missed -- was the trial results, if you
18 look at the point estimates on face, are
19 impressive; that the effect is clinically
20 meaningful and large, and perhaps different than
21 other competing potential products out there.

22 The underlying concerns are really around

1 the stability of the estimates and the fact that
2 the overall number is really among the smallest
3 that we would have seen among the other types of
4 trials out there. That's in the context of this
5 still going on pandemic and how its continued to
6 evolve over time, but part of the questions come
7 back to issues of internal validity and whether or
8 not small differences in underlying control arms
9 would really affect the internal validity of the
10 study.

11 We've recognized, as the discussion has
12 been, that the overall number of patients that
13 would need to shift are not that large. Even if
14 you used the largest number that was presented, it
15 would still represent about 10 percent of the
16 population. So overall, the number needed to change
17 the outcome of the trial is relatively small, and
18 it speaks to the underlying instability in the
19 estimate.

20 There are also issues around more rare types
21 of risks may not be realized in a population that
22 was of this size, so it comes back to conversation

1 about what is truth and some uncertainty about
2 whether or not we truly understand what truth is in
3 this context. There was a number of discussions
4 about what a future study might look like and how
5 that data might be collected, either prior or after
6 an EUA, and it seems to me that both of those
7 possibilities are on the table.

8 I think those are the major points that I
9 heard. If there are any others that anyone thinks
10 I failed to mention, I'm happy to entertain those
11 now.

12 (No response.)

13 DR. AU: Fine. I think we can go on to
14 question number 2. Question 2 is, discuss your
15 level of concern regarding the limited size of the
16 safety database for this new molecular entity.

17 If there are no questions or comments
18 concerning the wording of the question, we will now
19 open the question to discussion. Are there any
20 questions or concerns about the wording?

21 (No response.)

22 DR. AU: Great. Let's go on to the

1 discussion.

2 I'll just open as we're waiting for people
3 to raise their hands. This is David Au. I feel
4 like we've actually had a fair discussion of this
5 topic already, but I think it would be useful to
6 kind of recapitulate some of them for the record.

7 Dr. Chertow, we'll start with you.

8 CAPT CHERTOW: Okay. This is Dan Chertow.
9 Thank you for the question. I really appreciate
10 the conversation and the clarifications about my
11 three versus four comment, and then the subsequent
12 discussion around it. I thought it was very
13 helpful.

14 As it relates to this question, I reflect on
15 our charge and the statute that the FDA uses to
16 make these EUA determinations. The wording of that
17 states, "known and potential benefits and known and
18 potential risks." So I think that most folks in
19 this group -- and I don't want to speak for folks,
20 but I don't think anybody in the group would say
21 that the benefits are, quote/unquote, "known beyond
22 a doubt." There has been doubt that was raised,

1 but I think most folks would agree that there are
2 data to support potential benefit of the drug.

3 Then if you take the flip side of it and
4 say, "Well, what about known or potential risks?" I
5 think, based upon the data that was presented,
6 understanding that the group that has been studied,
7 with this new entity, is a small group, whether you
8 include the population from the prostate cancer, or
9 not -- studies -- that if you look at the wording
10 of the charge, known and potential risks, things
11 that fall into the known category, that seems so
12 far, understanding limited size seems to be an
13 empty. I don't think anything falls in the known
14 category.

15 There are a few things that were raised that
16 would fall into the potential category, although
17 those risks, when compared to the potential
18 life-saving benefit, seemed, on average, small. So
19 I realize we're making our decisions -- of course,
20 the comments, the discussion are quite
21 helpful -- but I go back to what is the language
22 that's guiding us. And I would be interested to

1 know if anybody in the group interprets the
2 language differently, and/or guidance from the FDA
3 saying, "Dr. Chertow, you're interpreting the
4 language incorrectly." That's it. Over.

5 DR. AU: Thank you.

6 Let me call on the FDA for a moment to
7 follow up that on your interpretation because I
8 think that would be helpful to the group.

9 DR. KARIMI-SHAH: Hi. This is
10 Dr. Karimi-Shah, FDA. I can respond to
11 Dr. Chertow's question.

12 Again, from the wording in the charge, yes,
13 it's based on the totality of scientific evidence,
14 first of all, if the known and potential benefits
15 of the product to treat this condition outweigh the
16 known and potential risks, so you have that wording
17 correct. And again, there is leeway in the wording
18 for this very reason because the standard for
19 emergency use authorization is a different standard
20 than the approval standard.

21 So again, this is something that we are
22 asking for your interpretation of because it is not

1 straightforward but, again, you do have the wording
2 correct in terms of how you're thinking about the
3 issue.

4 DR. AU: Thank you very much.

5 Dr. Gillen?

6 DR. GILLEN: Thank you. Daniel Gillen.

7 I'll put this in context of the way I think
8 about most safety problems, and that is with
9 safety, were concerned with rare events, and it's
10 generally not the thing that we have observed; it's
11 the things that we're worried about not having yet
12 observed.

13 It is true, for me anyway, that mortality is
14 certainly probably the biggest safety endpoint, and
15 we've already discussed that ad nauseam with
16 respect to the study and talked about the benefits
17 based upon the observed data. But I think that
18 when we think about why a trial size of 500 might
19 be recommended, well, when you think about having
20 300 patients treated, you can think about the upper
21 bound of a 95 percent confidence interval if you
22 haven't seen a rare safety event occur yet, and

1 that's going to be approximately 3 over N, so that
2 gives you about a 1 percent upper bound.

3 To this point, if we just take the 902
4 data -- and I know we can also include some of the
5 901 data; I would be a little hesitant of including
6 the prostate cancer data -- we're at about
7 2.1 percent upper bound if I include the 901 data
8 along with the 902 data, and that's not exactly
9 reassuring on rare safety signals in a brand new
10 molecule.

11 So again, all of this goes into the context
12 of the original sample size wasn't huge, it was
13 300, but dropping it down to 210 removes 30 percent
14 of the sample size, 30 percent of the treated
15 patients that you're going to see. So when we
16 think about the role of sample size, particularly
17 with respect to safety, we want to think about the
18 precision of those extremely rare events.

19 So I guess it's coming across now that I do
20 have a concern about the level of that limited
21 safety sample size data that we have. Again, a lot
22 of it is offset by the fact that the mortality

1 signal that we've seen to this point is strong, but
2 there are still rare events that could be occurring
3 that we may not be observing in this patient
4 population. Thank you.

5 DR. AU: Thank you.

6 Let's see. Dr. Baden?

7 DR. BADEN: Lindsey Baden.

8 This question I think is easy to answer.

9 Level of concern regarding limited size of the
10 safety database for a new molecular entity,
11 extremely high. Level of concern is through the
12 roof, very high. I'm not even worried about rare
13 events. I'm worried about common events. However,
14 I look at this in relation to the outcome of
15 greatest concern mortality. So in the context of
16 high mortality, the amount of safety data for other
17 kinds of events I'm less concerned about.

18 If the mortality benefit were substantially
19 lower, then this becomes a much greater concern.
20 So at least as I think about it, I think about it
21 in relation to the totality of the data in terms of
22 what kind of safety am I worried about that would

1 outweigh the kinds of benefit that are being
2 proposed. So level of concern, very high, even for
3 common events; on the other hand, what set of
4 events would outweigh mortality? Over.

5 DR. AU: Thank you.

6 Dr. Evans, you had your hand up briefly.
7 Did you have a point that you'd like to make?

8 DR. EVANS: Well, I actually briefly had it
9 up because I was just trying to get some things in
10 the record as you'd requested, and that seems to
11 have been accomplished. I'm sorry. First of all,
12 this is Scott Evans.

13 I am somewhere between Dr. Gillen and
14 Dr. Baden on this current topic because, as stated,
15 not only is it a new molecule, it's one where the
16 mechanism action is not clear to me. I know that
17 there's a demonstrated effect on microtubule
18 function and how it actually functions to exert an
19 antiviral effect, and there are inferences about
20 impact on inflammasome activation. But I am
21 certainly not clear on the mechanism of action,
22 which I think further drives up my concern about

1 the level of scrutiny we have to give to potential
2 safety events because we just don't know what we're
3 looking for.

4 I think that's what Dr. Gillen was alluding
5 to earlier, but I do think that's an important
6 concern. And I think it's informative that FDA had
7 previously recommended 500 or more patients at
8 least to start off with. So I'll stop there.

9 Thanks.

10 DR. AU: Thank you.

11 Dr. Shaw?

12 DR. SHAW: Yes. This is Pamela Shaw. I
13 just wanted to state some of my concerns for the
14 record regarding the safety database. I share some
15 of the concerns that have been expressed. It is a
16 small number of individuals that have been exposed.
17 We don't really understand the safety, and we're
18 looking at the potential benefit or efficacy, and
19 we're nervous about it because of the small 2 to 1
20 randomized trial that was stopped early, or with
21 fewer people than originally planned.

22 My concern about the EUA, if we think that

1 this mortality benefit is robust, the 20 percent
2 risk difference, you really only need another trial
3 of 200 people to see that with 80 percent or more
4 power. So I'm trying to understand the rush in
5 terms of the risk-benefit of the EUA now, which is
6 somehow we don't think we can enroll 200 people in
7 a short period of time to get more information both
8 on safety or efficacy. And I'm not saying 200 is
9 the right number, but I'm trying to think, if we do
10 the EUA, what conditional safety information can we
11 get if we're on the one hand saying we need EUA
12 because we can't do another small trial, given the
13 original request of at least 500 people?

14 So I guess I'm not seeing the argument for
15 why this is different than before. I heard from
16 the FDA that the only reason we're here is because
17 of the effect size, because ordinarily for an EUA,
18 I think I heard you wouldn't be doing it with just
19 less than 100 people in the U.S.. We wouldn't be
20 doing it with so little evidence with our new
21 molecular entity, but it's this risk difference.

22 So for me, I'm just not convinced that it's

1 enough to push us against what's been usual safety
2 accumulation before unleashing this to a broader
3 use. Those are some of my thoughts on a general
4 level of discomfort that there hasn't been enough
5 data accrued to motivate an EUA with such a small
6 amount of safety data; not enough evidence on
7 efficacy or safety at this point. I find it
8 concerning. Thank you.

9 DR. AU: Thank you so much.

10 Dr. Kim?

11 DR. KIM: Edwin Kim, University of North
12 Carolina. Normally, I think, yes, the limited size
13 of the safety database with a new molecular entity
14 would have me quite concerned, but here, I think
15 what I've tried to balance out in my head is it's
16 going to be the idea that this is intended for a
17 21-day course while hospitalized, as opposed to
18 long-term use of some other medication like
19 colchicine.

20 This is in patients that are at high risk
21 for ARDS, as well as mortality, as we've spoken
22 about previously, so I think those are a couple of

1 the factors that have me, I guess, more tolerant, I
2 guess, is maybe the best word I would use of this
3 limited size.

4 Additional data accumulated, whether in a
5 study or in real life, is going to be critical here
6 to truly understand that, but I think a limited
7 dosing -- if I'm understanding correctly, 21 days
8 and that's it, in a hospital setting, in a patient
9 that is otherwise at high-risk -- has me, again, a
10 little bit more willing to tolerate a level of
11 risk. Thank you.

12 DR. AU: Thank you.

13 Dr. Gillen, do you have follow-up?

14 DR. GILLEN: Yes. Daniel Gillen. Thank
15 you, and I just wanted to clarify something with
16 respect to Dr. Baden's comments regarding what I
17 was saying. I don't disagree with Dr. Baden, and I
18 appreciate the fact that -- and as I mentioned,
19 mortality is the number one safety outcome that I
20 would be thinking of.

21 If I were taking the mortality rates that we
22 saw in the placebo arm at face value, that those

1 were a fact, then it would lower my concern about
2 the rare events. The issue that I struggle with
3 here is that it's highly variable relative to what
4 we've seen across multiple studies -- you saw this
5 in the FDA's document -- and we don't know where
6 that mortality rate is going off into the future
7 because of such a fast-changing environment that
8 we're dealing with.

9 So if we're talking about approval of a drug
10 that's going to be used down the road, I do think,
11 for multiple individuals as we come through with
12 different concomitant medications and other
13 settings, we do need to worry about the rare event
14 that might come up in a brand new molecule for
15 which we have a limited understanding of the
16 mechanism of action.

17 So that's my take on this, and why I stated
18 what I stated about the rare events, and how many
19 subjects we would need to roll out of 1 percent and
20 then rate [indiscernible]. Thank you.

21 DR. AU: Thank you.

22 I actually rose my hand, so I'll lower it

1 now. I just wanted to actually kind of add on to
2 what Dr. Kim had said and in context of Dr. Shaw as
3 well, which is this is an ongoing pandemic with
4 still a number of people, 3 to 400 people, dying a
5 day. So I think the issue that we're balancing is
6 a competing risk issue. What is the potential
7 benefit for that individual patient who's in the
8 hospital versus the risk of the other people who
9 would be exposed to drug who are also in the
10 hospital?

11 So I just wanted to contextualize the
12 decision. I agree with what everyone has said thus
13 far, which is that the safety data set is very
14 limited, and is inadequate to be able to really
15 make any definitive comments about. But I just
16 wanted to point in terms of risk balance from a
17 patient perspective, I wonder where patients would
18 also fall on understanding a potential for benefit
19 against a potential for risk. That's all I wanted
20 to add. Thank you.

21 Dr. May?

22 DR. MAY: Susanne May. Regarding safety,

1 one other concern that can come up is that people
2 get the drug that may not need it at all, and I was
3 wondering, and I noticed that in the New England
4 Journal of Medicine paper that shows the study
5 characteristics of patients, they included at least
6 one individual in each of the groups that had an
7 oxygen saturation level of 100 percent. Unless
8 that's a mistake, I thought that was part of the
9 exclusion criteria, that it would have to be less
10 than or equal to 94.

11 So I'm wondering whether there were a number
12 of individuals in this study that did not meet
13 inclusion criteria or met exclusion criteria that
14 received the drug, and how that would influence our
15 view of safety and the limited safety data, and
16 potentially having individuals that received the
17 drug but actually didn't need it.

18 DR. AU: Thank you. Do you want that
19 comment to go to -- do you want that query
20 addressed by the sponsor or by FDA, or both?

21 DR. MAY: I think it could probably be the
22 sponsor with regard to meeting exclusion or

1 inclusion criteria, but the FDA might have that
2 data as well.

3 DR. BARNETTE: Mr. Chairman, this is Gary
4 Barnette. Is it ok if I address that?

5 DR. AU: Please do.

6 DR. BARNETTE: Thank you.

7 Again, this is Gary Barnette. What you're
8 seeing in the New England Journal of Medicine paper
9 is not the inclusion/exclusion criterion number;
10 it's actually the number on day 1. So those
11 patients were already on supplemental oxygen.
12 Every patient coming into the study, and I think
13 Dr. Busch mentioned, we collected the data in their
14 charts or in their emergency room visit, what their
15 O2 levels were before they came into the study, and
16 as long as they were less than 94. We didn't
17 dechallenge them from oxygen and then measure their
18 O2 levels to see if they were eligible; we used
19 their hospital levels coming in.

20 DR. AU: Thank you for that answer.

21 DR. MAY: Very helpful, yes. Thanks.

22 DR. AU: Dr. Seam, I'm going to give you the

1 privilege of being the last person to comment.

2 Thank you.

3 DR. SEAM: Thank you. I'll be brief. I
4 think the only other thing I'd say in terms of this
5 safety database, as we discussed before, this would
6 be given to the same patients who would also be
7 receiving things like baricitinib, tocilizumab, and
8 other things, and a minority of patients received
9 that, so we're not sure about that interaction.

10 DR. AU: Great. Thank you.

11 Let me see if I can summarize some of the
12 comments from the committee, and please, as I
13 mentioned last time, let me know if I've really
14 missed any important concepts here.

15 Overall, I think, again, there was general
16 consensus from the committee that there was really
17 a lack of a significant safety database in the
18 sense that the number of patients that were
19 enrolled in the actual trial were smaller than the
20 number that would have been in the original trial,
21 in that there are additional concerns around the
22 fact that this is really a new substance that

1 doesn't have a clear mechanism of action, so we're
2 not exactly clear what the safety signals may
3 present.

4 There was some comment around what is the
5 urgency around an emergency use authorization in
6 the context of ongoing availability of treatment,
7 and whether or not it would be beneficial to have a
8 more significant safety database in that context.
9 I think that needs to be offset, as was brought up,
10 by the issues of a known mortality or demonstrated
11 mortality benefit if you take the trial data on
12 face. But I think, in general, as I noted earlier,
13 I think there's a consensus that there is
14 insufficient amount of information in the safety
15 data to be confident about a lot of rare events, or
16 even common events, and then also around drug-drug
17 interactions and the like.

18 Let me send this back to the committee and
19 see if there any points that people made that I've
20 missed.

21 I see Ms. Schwartzott.

22 MS. SCHWARTZOTT: I asked some questions

1 about the timeline and the control of the emergency
2 use criteria. I'm wondering how strict the
3 emergency use criteria can be. Can the enrollment
4 criteria be limited to severe cases like the World
5 Health Organization's 5 and 6 levels when other
6 treatments have not worked, and the patient is
7 deteriorating? How strict can we go on that?

8 Also, how often are those data collections
9 viewed by the FDA? How much control is there; and
10 then what the timeline would be for emergency use
11 if we chose to go that route instead of requiring
12 another full trial? It seems to me that it would
13 be a more efficient use to have control over the
14 emergency use, and move it forward that way, than
15 to start all over again with a trial that would
16 likely take a lot longer. That's just my thoughts
17 and question.

18 DR. AU: Thank you.

19 Can the FDA comment on some of those for us,
20 please?

21 DR. KARIMI-SHAH: Hi. This is
22 Dr. Karimi-Shah from FDA.

1 Thank you for your question,
2 Ms. Schwartzott. I think it had multiple parts to
3 it. The first part of it, I think what you are
4 asking was if we could restrict the further data
5 that's required to a more severe population than
6 what the authorization is issued in? Was that your
7 question?

8 MS. SCHWARTZOTT: Yes. I'm concerned, just
9 as other doctors were, that maybe it was being
10 used for patients like in category 4. I question
11 if that was really necessary.

12 DR. KARIMI-SHAH: If I understand your
13 question, I think that, again, that's one of the
14 questions that we're asking the committee, is the
15 appropriate population, and if this were to be
16 authorized, who that population would be.

17 As per the statutory requirements for a
18 condition of authorization, the trial to be
19 conducted would be in the patient population in
20 whom it was authorized because that would really be
21 the only way in which we could gather data for the
22 authorized population.

1 So if the committee feels that there's only
2 enough data for, let's say, the WHO 5 and 6
3 category, and that's in whom it should be
4 authorized, then the condition of authorization
5 would then be in those patients. It kind of goes
6 to reason that if you're thinking that the
7 condition of authorization trial should only be in
8 a certain population, that it probably shouldn't be
9 authorized in the broader population to begin with.

10 In terms of the timeline, what I can say is
11 we always review the data as expeditiously as
12 possible as it comes in, and it's really based on
13 the information available to us. We try to make a
14 determination that the criteria for issuance are
15 met. So before we issue that condition of
16 authorization, we would negotiate those timelines
17 on any condition with the sponsor. So there's some
18 flexibility there, but there's also an element of
19 expeditiousness and efficiency.

20 MS. SCHWARTZOTT: Thank you.

21 DR. AU: Thank you. I think that was an
22 important question.

1 I don't think I necessarily need to
2 summarize again, but I do think we're at a
3 opportunity to have a short break. I know it's
4 3:52 Eastern Time right now.

5 Can I give everyone five minutes just to
6 rest and stretch a little bit, and then we'll come
7 back to question number 3, which is a voting
8 question, and then question number 4, which is a
9 discussion question again. So why don't we come
10 back in five minutes or at 57 after the hour?
11 Thank you.

12 (Whereupon, at 3:52 p.m., a recess was
13 taken.)

14 DR. AU: Welcome back, everyone. We will
15 now move on to the next question, which is a voting
16 question. Takyiah Stevenson will provide the
17 instructions for the voting.

18 DR. STEVENSON: Question 3 is a voting
19 question. Voting members will use the Adobe
20 Connect platform to submit their votes for this
21 meeting. After the chairperson has read the voting
22 question into the record, and all questions and

1 discussion regarding the wording of the vote
2 question are complete, the chairperson will
3 announce that voting will begin.

4 If you are a voting member, you will be
5 moved to a breakout room. A new display will
6 appear where you can submit your vote. There will
7 be no discussion in the breakout room. You should
8 select the radio button that is the round circular
9 button in the window that corresponds to your vote,
10 yes, no, or abstain. You should not leave the "no
11 vote" choice selected.

12 Please note that you do not need to submit
13 or send your vote. Again, you need only to select
14 the radio button that corresponds to your vote.
15 You will have the opportunity to change your vote
16 until the vote is announced as closed. Once all
17 voting members have selected their vote, I will
18 announce that the vote is closed.

19 Next, the vote results will be displayed on
20 the screen. I will read the vote results from the
21 screen into the record. Thereafter, the
22 chairperson will go down the roster and each voting

1 member will state their name and their vote into
2 the record. You can also state the reason why you
3 voted as you did, if you want to, however you
4 should also address any subparts of the voting
5 question, if any.

6 Are there any questions about the voting
7 process before we begin?

8 (No response.)

9 DR. AU: Great.

10 I will read question 3. Do the known and
11 potential benefits of VERU-111, when used for the
12 treatment of adult patients hospitalized with
13 COVID-19 at high risk of ARDS, outweigh the known
14 and potential risks of VERU-111? If yes, discuss
15 the appropriate patient populations in which
16 VERU-111 should be authorized. If no, discuss what
17 additional data would be necessary to assess the
18 benefit versus risks of treatment.

19 Are there any questions or issues about the
20 wording of the voting question?

21 (No response.)

22 DR. AU: If there are no questions or

1 comments concerning the wording of the question, we
2 will now begin the voting on question 3.

3 DR. STEVENSON: We will now move voting
4 members to the voting breakout room to vote only.
5 There will be no discussion in the voting breakout
6 room.

7 (Voting.)

8 DR. STEVENSON: Voting has closed and is now
9 complete. Once the vote results display, I will
10 read the vote results into the record.

11 (Pause.)

12 DR. STEVENSON: The vote results are
13 displayed. I will read the vote totals into the
14 record. The chairperson will go down the list, and
15 each voting member will state their name and their
16 vote into the record. You can also state the
17 reason why you voted as you did, if you want to,
18 however, you should also address any subparts of
19 the voting question.

20 There are 5 yeses, 8 noes, and zero
21 abstentions.

22 DR. AU: Thank you.

1 We will now go down the list and have
2 everyone who voted state their name and vote into
3 the record. You may also provide justification for
4 your vote, if you wish.

5 We'll start with Dr. Chertow.

6 CAPT CHERTOW: Daniel Chertow, and I voted
7 yes, and the rationale was based upon the language
8 for our charge. It was my impression that there
9 were neither clearly known benefits nor clearly
10 known harm or risk, but that the potential
11 benefits, based upon the data that are available,
12 outweighed the potential risks, based upon the data
13 that are available in the context of this patient
14 population that is hospitalized for severe and
15 critical illness under monitoring for a drug that's
16 going to be administered for a short interim.

17 Over.

18 DR. AU: Thank you.

19 Dr. Gillen?

20 DR. GILLEN: Yes. Daniel Gillen. I voted
21 no. The reason why, given the data that we have
22 currently, I believe that we have a limited -- both

1 efficacy and safety -- data set with a new
2 molecule, where we don't have a full understanding
3 of the mechanism of action. I don't know if we're
4 ever guaranteed to know that completely, but
5 certainly we're far from it at this point.

6 I have to say, whether or not I should have
7 considered this, I think that, at this point,
8 taking these data and putting this out under an EUA
9 would likely harm our ability to answer this
10 question truly in the long run, which I wish would
11 have been done before, actually, with a reasonable
12 sample size. So that fear of actually being able
13 to fully understand the risk-benefit profile in
14 patients partly led to my decision. Thank you.

15 DR. AU: Thank you.

16 David Au. I voted yes for the exact same
17 rationale as Dr. Chertow.

18 Dr. Kim?

19 DR. KIM: Edwin Kim, University of North
20 Carolina. I voted yes. As previously mentioned, I
21 think the benefit of protecting against mortality,
22 although maybe the magnitude is not as big because

1 of some of these uncertainties, I think there is
2 likely a benefit to be had, and the risks of a
3 short course, 21-day, in-hospital treatment I think
4 are going to be manageable. So the benefits do
5 outweigh the risks, in my opinion. Thank you.

6 DR. AU: Thank you.

7 Dr. Lee?

8 DR. LEE: Janet Lee. I voted no, and it was
9 mainly because of the concerns related to
10 robustness affected by the lingering uncertainties
11 and the small sample size. In reference to the
12 second portion of the question that's asked, if no,
13 I would have liked additional sample size, and
14 perhaps going forward, maybe a superiority design
15 proposal as recommended by the FDA would increase
16 my confidence level. Over.

17 DR. AU: Thank you.

18 Ms. Schwartzott?

19 MS. SCHWARTZOTT: I voted yes, kind of along
20 the same lines as Dr. Chertow and Dr. Kim. I felt
21 that the benefit of avoiding death was greater than
22 the risk of the adverse event, considering that it

1 is in a hospital setting, but I do feel there
2 should be future control by the FDA. Thank you.

3 DR. AU: Thank you.

4 Dr. Baden?

5 DR. BADEN: I agree with all of the previous
6 voters, both yes and no, in that I think we're all
7 on the edge of how --

8 DR. AU: I'm sorry, Dr. Baden. Could I have
9 you state your name before --

10 DR. BADEN: Oh. Lindsey Baden, Brigham and
11 Women's, Boston. I agree with the prior voters who
12 voted both yes and no because we're all on the edge
13 of how do we weigh the efficacy signal and the
14 absence of a safety signal with the absence of
15 safety data. And as already stated, in this
16 population of severely ill individuals and -- I
17 kept stating before -- 30 percent mortality, I'm
18 not sure what led to the WHO 4. It's the WHO 5's
19 and 6's, hospitalized, failed maximal standard of
20 care, who, as discussed, hundreds are dying a day
21 across the country, let alone elsewhere, how can we
22 generate data while leveraging the EUA statute to

1 provide additional therapies? And I think we can
2 do both.

3 I think if focused on the population that
4 was studied, then as Dr. Chertow said, the wording
5 of the statute is the known -- what we anticipate
6 the benefits and the risks to be on balance, it's
7 favorable, as I don't like mortality.

8 So I voted yes. I think there are ways to
9 focus the authorization to the population that's
10 more likely to benefit and ways to generate data
11 that can continue to inform us about safety and
12 efficacy, and that we can do both. But I would
13 like this to be available to those of us taking
14 care of patients the next day, to week, to month,
15 who have no other options and are facing a sad
16 mortality rate. Over.

17 DR. AU: Thank you.

18 Can I ask you one follow-up, which is what
19 is the appropriate population for which VERU-111
20 would be authorized, or should be authorized, do
21 you think?

22 DR. BADEN: Yes. In my view, hospitalized,

1 WHO 5 and 6, failing standard of care, the maximum
2 standard-of-care therapy. I think that's as best
3 as I can sift through the data available because
4 there's a lot of opacity of exactly who was studied
5 and what was done, but that would be the
6 population, from what I'm aware of at this point,
7 that I would favor.

8 DR. AU: Thank you.

9 Dr. Seam?

10 DR. SEAM: Nitin Seam. I voted no. I
11 think, again, as Dr. Baden said, I think a lot of
12 agreed, most of us agreed, about a lot of the
13 [indiscernible]. I think for me, fundamentally, I
14 worry about the efficacy question. The mortality
15 with such a low end is quite high for what we're
16 seeing right now, the standards of current care met
17 for this population.

18 I echo with Dr. Baden. I think the group we
19 want to study is high-flow nasal cannula,
20 non-invasive ventilation, or mechanically
21 ventilated patients, but those patients,
22 particularly a group receiving steroids, as well as

1 baricitinib, toci, and so forth. So I'd like to
2 see a larger trial with a proper placebo group, a
3 1 to 1 trial with a larger endpoint.

4 DR. AU: Thank you. Could you comment on
5 whether you think any additional data would be
6 necessary or just the volume of patients would be
7 necessary in terms of being able to assess the
8 benefit versus risk of treatment?

9 DR. SEAM: Yes. Well, I think it's an
10 interesting question. I think, for me, the WHO 4
11 with a mortality of 27 and some percent is quite
12 high. Again, I think the sponsor's mentioned they
13 had people who had multiple comorbid criteria. I'm
14 really not sure about all those being,
15 quote/unquote, "at risk for ARDS," and I'm not sure
16 about the other studies that include WHO 4, how
17 many of those had. So I would say groups 5 and 6
18 would be the group I think should be studied as
19 well.

20 Again, with 5 and 6, if possible in a future
21 study, really understanding the elements of
22 critical care, or standardizing the process, or is

1 everyone receiving low tidal ventilation, is there
2 a threshold for prone positioning, and all the
3 standards that we use, and the typical processes
4 that we're managing in our ICUs for COVID.

5 DR. AU: Thank you very much.

6 Dr. Shaw?

7 DR. SHAW: Yes. Pamela Shaw. I voted no.
8 I think why, as to question B, is I don't think I'm
9 able to judge the potential benefit with the data
10 so far. Particularly in the target population, you
11 would be exposed to the emergency use
12 authorization, which too few people in the United
13 States subject to the standard of care -- that we
14 would kind of understand in the United
15 States -- have been exposed to this drug so far.

16 So for me, I really think I do need to see
17 an additional trial to get that number exposed
18 closer to the 500 or so; that is what the FDA was
19 generally comfortable with. In addition, if that
20 was just a smaller trial, even repeating the trial
21 that was done, we'd be able to really have good
22 power to see if that effect size was at all robust

1 or repeatable, and potentially in this better
2 defined population. I think that would be
3 tremendously helpful from both understanding the
4 potential benefit and the potential risk.

5 Also, I think the uncertain mechanism of
6 action and the better blinding is adding to this
7 inability to judge the efficacy, so some
8 information on viral load trajectories would also
9 be helpful in that additional data.

10 DR. AU: Thank you.

11 Dr. Walker?

12 DR. WALKER: Hi. Dr. Roblena Walker. I
13 agree with Dr. Shaw and the other committee members
14 who have expressed no. I think the limitation of
15 efficacy data, as well as the safety data, is what
16 made my determination to vote no, and moving
17 forward, I think additional baseline data would
18 need to be incorporated into another study.

19 In addition to that, looking at the sample
20 size, along with the demographics of the sample
21 size, was a concern of mine, too, and a closer
22 assessment of the biological chemistry of the drug

1 among additional comorbidities I think would also
2 be useful. Thank you.

3 DR. AU: Thank you very much.

4 Dr. Evans?

5 DR. EVANS: This is Scott Evans from
6 Houston, and I voted no. I found this to be a
7 challenging vote because I certainly agree that
8 there is an impressive point estimate for the
9 effect. But as has been said by a few colleagues
10 already, it's hard to know whether to believe that
11 effect because of the potential anomalies observed
12 in the placebo mortality; some peculiarities of the
13 viral burden patterns; and potential imbalance
14 factors between the groups in the setting of a
15 small size, where only a small number of outcomes
16 would need to be changed to influence results.

17 We have, as has been also mentioned, poor
18 [indiscernible] in the mechanism of action, and
19 related to that, I have concerns that the current
20 data are not necessarily representative of the
21 proposed context of use. And actually taking that
22 a step further, listening to my colleagues, I'm not

1 even sure what the right context of use is, because
2 what I've heard said by other members of this
3 committee is this might be something we could throw
4 at people who were failing everything else we could
5 do. And if the mechanism of action is as proposed,
6 that is likely too late to intervene. If we
7 understand mechanism correctly, the patient might
8 benefit much more at an early stage, perhaps the
9 patient who is newly diagnosed and rapidly failing,
10 not someone who's been sitting on the wards 14 or
11 30 days, and certainly not one who's already
12 received maximal therapy.

13 That's what I would look for in follow-on
14 data, would be a better clarification of who are
15 the populations that are responsive, and certainly
16 broaden the number of patients in the trial. Thank
17 you.

18 DR. AU: Thank you very much.

19 Dr. Shapiro?

20 DR. SHAPIRO: Yes. Dave Shapiro. I voted
21 no. I think the multiple concerns raised over
22 efficacy and safety due to the small sample size,

1 combined with the place where we are right now with
2 the evolution of the virus itself, and the
3 immunity, and the current therapy, there are
4 hundreds dying a day. If they're dying of ARDS and
5 lower lung disease, it should be pretty easily
6 achievable to get a larger study and prove it.

7 DR. AU: Very good

8 Dr. May?

9 DR. MAY: Susanne May. I voted no, and just
10 adding on to Dr. Shapiro's comments, one of the
11 other main things that didn't convince me to
12 approve this is the lack of robustness of the
13 results, even though they're impressive, for a new
14 molecular entity that has no direct evidence to
15 support the antiviral activity. I would think that
16 it does require a second study that should have a
17 substantial number of patients in the U.S. Those
18 were my comments.

19 DR. AU: Thank you, Dr. May.

20 Let me see if I can summarize. We have a
21 vote of 5 to 8, which is obviously a split
22 decision. On the other hand, I don't actually

1 think we actually have that much dissidence in
2 terms of the rationale. I think it was just a
3 matter of where people fell on the judgment side.

4 Overall, I think the ways that the yeses
5 kind of weighed were they took a little more stock
6 in the potential of benefit versus the potential of
7 harm, while still acknowledging that there were a
8 number of important limitations to the data, and
9 that those data included the instability of the
10 estimates and confidence that we had within the
11 trial results, mostly around sample size, issues
12 around mechanism, as well as some issues
13 representative of the U.S. population and
14 treatments for standard of care.

15 I think that all kind of speaks a little bit
16 to what we would want to see in terms of an
17 appropriate case in population. I don't think
18 we're here to kind of design a study, but the
19 consensus I think I heard was really more around
20 WHO 5 and 6, with some consideration around 3, and
21 how should this drug be used in the context of
22 failure of other therapies?

1 I do think that also raised the issue that
2 in terms of data collection or in study design,
3 there needed to be better standardization of
4 current treatment therapies, current therapies that
5 are available to patients, either the collection or
6 standardization in the enrollment process.

7 Finally, among several people, there was a
8 discounting of a need for emergency use
9 authorization just because the way the pandemic has
10 shifted over time, that therapies and mortality are
11 smaller than they were or less than they were
12 before. But even in that context, because of the
13 number of ongoing deaths, it seemed like there was
14 the ability to recruit a new study sample in this
15 for a new trial. I appreciate the committee's vote
16 and summary of that.

17 We will now move on to question 4, which is
18 a discussion question. I'll read it now.

19 If authorized, the agency believes that
20 additional data are necessary to understand the
21 benefit-risk assessment as a condition of
22 authorization. Please discuss the proposed design

1 aspects of the study to provide this additional
2 data.

3 If there are no questions or comments
4 concerning the wording of the question, we will now
5 open the question to discussion.

6 (No response.)

7 DR. AU: I don't hear any questions or
8 concerns, so let's go ahead and open the question
9 for discussion. Could people use the raise hand
10 function again?

11 Dr. Lee?

12 DR. LEE: Can you hear me?

13 DR. AU: Yes, I can hear you.

14 DR. LEE: I just wanted to ask about the
15 study population because you had suggested that
16 some folks had thought subjects with WHO 5 and 6
17 severity -- but then there was some discussion
18 about WHO 4 severity because maybe WHO 5 and 6
19 populations, it was a little bit too late. And I
20 just wanted a little bit of discussion surrounding
21 that component. That might be helpful.

22 DR. AU: Thank you for bringing that up,

1 Dr. Lee.

2 I do think that's a reasonable point in the
3 context of the trial results that included WHO 4
4 patients. At least the data presented by the
5 sponsor, it didn't look like there was significant
6 heterogeneity of treatments based on WHO stage at
7 least.

8 I see that there are a number of hands up.
9 Is there anyone who would like to comment on
10 Dr. Lee's concern?

11 DR. BADEN: I mean, I'm happy to try and
12 comment. I may not be able to -- this is Lindsey
13 Baden in Boston.

14 I'm happy to try and comment, Dr. Lee, but
15 it's also just how I've been thinking about this
16 problem, like everyone else. I'm not sure the WHO
17 staging properly captured the enrollment here, or
18 at least it's not fitting for me in terms of the
19 overall literature and how it's used.

20 The issue of WHO group 4, and with
21 comorbidity, I think that there can be study
22 designs that can allow us to collect information

1 and realize that we may not properly understand the
2 mortality in a given population within safety
3 analysis that's been used in a variety of studies,
4 whereas as events occur, the DSMB can look at it.

5 I'm uncomfortable with requiring a sample
6 size that allows a very high mortality in a group.
7 At some point, if the mortality is higher than we
8 expect and there's a difference between the groups,
9 the role of the DSMB and the IRB is to make sure
10 that we don't excessively expose risk to the
11 volunteers, and that's all volunteers, not just
12 volunteers in a given group.

13 So I worry that the WHO framing doesn't give
14 us the granularity that any of us want, so that a
15 study in my mind can be designed that uses that
16 kind of criteria but has a way to follow, monitor,
17 and a DSMB review as each death occurs. And if
18 it's as high as it was in the study that we've been
19 discussing, then it shouldn't take very long for a
20 threshold to be met, but that threshold may not be
21 met with 500 enrolled. That threshold may be met
22 with a much smaller number open to all the

1 criticism that we've been -- discussion that we've
2 been having, but I think it would allow more data.

3 That could be the same thing with WHO 5 and
4 6. One could imagine, if not authorized, a study
5 that has a safety event rate monitoring that can
6 minimize mortality. If authorized, and authorized
7 for a certain group, then one could imagine the
8 group not in the authorization, for argument's
9 sake, WHO 4 with comorbidity. They could be
10 randomized to placebo or active and have the safety
11 monitoring that could allow the kind of insight
12 that we all want.

13 So I don't know if that completely addresses
14 it. I'm just not sure that the WHO 4, 5, 6 has the
15 granularity that any of us want. There's a WHO 10.
16 There are a variety of different staging systems,
17 so this is not homogeneous. It's quite a complex
18 area, in my view, staging the risk at time zero of
19 presentation, using this ordinal scale and having
20 the kind of predictability that we wanted. Study
21 designs can take that into consideration,
22 mitigating the inadequacies of the WHO scale.

1 Over.

2 DR. AU: Thank you.

3 Let me ask the committee if there's any
4 other discussion points on this. I appreciate the
5 comment, Dr. Baden.

6 DR. SEAM: Dr. Au, it's Nitin Seam. Just
7 going back to Dr. Lee's original point, I think
8 that's something we do struggle with. Is it the
9 antiviral effect versus an anti-inflammatory
10 effect? If we accept the paradigm that early on
11 antivirals like this will be more beneficial, and
12 then reducing inflammation as you go up the ordinal
13 scale.

14 I think that's the challenge, and I don't
15 think we have enough information. And certainly
16 correct me if I'm wrong, but I believe the FDA
17 virology review didn't really feel like they had a
18 good handle on that in terms of plausibility
19 mechanism-wise, so I think that's a struggle there.

20 Just in terms of in 2022, you would expect,
21 if you're looking at a group with a higher
22 mortality -- I think Dr. Baden's points are very

1 fair, but those will typically be the patients with
2 ARDS with lower P to F ratios, so those would
3 typically be those patients on the ordinal scale 5
4 or 6. But that's a different point than, again,
5 what Dr. Lee was talking about; are we thinking
6 about the antiviral versus anti-inflammatory
7 effect. I'll stop there.

8 DR. AU: Let me follow up with the committee
9 on this, and then we'll see if anyone else has a
10 comment on Dr. Lee's point, and then we can move on
11 from there.

12 One of the issues that came up in this
13 discussion and speaks to this issue is the timing,
14 and how should FDA -- does anyone have a comment or
15 thought about how the FDA should consider time
16 since infection; time since symptom initiation;
17 time since hospitalization, in terms of enrollment
18 criteria? Because we saw with the NATIVE trial
19 that there was quite a bit of variability that led
20 to some other questions around whether or not
21 patients were actually improving prior to
22 initiation of treatment.

1 So does anyone have a recommendation around
2 those points?

3 (No response.)

4 DR. AU: We don't have to. We can leave
5 that for the FDA to negotiate with the sponsor, but
6 it does speak to mechanism of why this compound
7 might be beneficial.

8 DR. EVANS: This is Scott Evans. Your
9 comments are in line with what I was saying in
10 response to question number 3, which is, in my
11 impression, this agent may be most likely to be
12 effective in the first days of symptoms, so perhaps
13 suggesting initiation by day 2 or day 3 of
14 hospitalization makes more mechanistic sense to me
15 than trialing it many days into the progression of
16 disease.

17 DR. AU: I don't think we're here to design
18 the trial on behalf of FDA or the sponsor, but just
19 to give them consideration.

20 Are there any more comments regarding
21 Dr. Lee's, otherwise we'll go to Dr. Baden.

22 DR. SHAW: This is Pamela Shaw. I did have

1 a comment.

2 DR. AU: Sorry.

3 DR. SHAW: Okay. Thanks.

4 I just wanted to comment specifically about
5 the target population and even timing. One thing
6 that often complicates these COVID-19 studies is
7 that many people were already hospitalized. They
8 were not hospitalized because of the COVID-19
9 diagnosis, but cancer or immunocompromised.

10 So I wasn't sure if this may help in terms
11 of understanding all the background therapy,
12 whether or not in the next trial, at least
13 stratifying on this, and whether or not someone's
14 being hospitalized for COVID-19 or whether they
15 were folks who were already hospitalized, that
16 could be a variable that a modest size trial would
17 be important to think about. That's all.

18 DR. AU: Thank you.

19 Let's move on to Dr. Baden. You had a
20 separate point, I believe, so the floor is yours.

21 DR. BADEN: No. I think we've been having
22 the discussion, and I've sort of shared my

1 reflections. I think that the data to date are in
2 the severely ill with COVID and because of COVID.
3 So I think the mitigation that this tool may have
4 is in that context. And the question is, how do we
5 generate more data to convince us all that we're on
6 the right path? We've been discussing the issues,
7 I've been reflecting, so I have little to add to
8 the discussion, to this point. Thank you.

9 DR. AU: Great.

10 Dr. Seam?

11 DR. SEAM: I'm sorry. I have nothing to
12 add.

13 DR. AU: Okay. Great.

14 DR. KARIMI-SHAH: Dr. Au?

15 DR. AU: Yes?

16 DR. KARIMI-SHAH: This is Dr. Karimi-Shah,
17 and we really do appreciate all of the
18 considerations that the committee is giving. And
19 you're absolutely right, we'll have to take all of
20 these things back in the consideration of the
21 design of another trial, but we really do welcome
22 any specific input, trial design, how to deal with

1 these uncertainties, and we appreciate any specific
2 considerations that the committee could provide as
3 we take this back into further consideration. So I
4 just wanted to clarify that. Thank you.

5 DR. AU: Thank you. I appreciate that.

6 Dr. Chertow?

7 CAPT CHERTOW: Hi. Dan Chertow. Just one
8 comment about a proposal for a future design is to
9 include biomarkers not just around the virus, but
10 also around the host immune response, and ideally
11 around the host group immune response that is along
12 the mechanistic pathway by which this drug is
13 hypothesized to have a benefit.

14 This is challenging because it requires
15 capturing certain sample types, whether it's blood,
16 or PBMCs, or otherwise, and characterizing them in
17 a careful way to begin to unravel the types of
18 questions that people are asking around what is the
19 right dose; what is the right time of
20 administration relative to when the illness starts;
21 what's the right duration of administration; and
22 what's the right population?

1 The truth is that one can try to glean that
2 from doing statistics on large studies and
3 different populations, but ultimately biologies
4 revealed in the samples, and correlating those
5 findings with the meaningful clinical endpoints, I
6 think is our path forward to beginning to
7 understand that.

8 So I would strongly encourage the sponsor to
9 do that, and think about it carefully, and FDA to
10 encourage this evaluation longitudinally of
11 biomarkers; not just relevant to viral load, but to
12 the proposed host response. Over.

13 DR. AU: Thank you.

14 Dr. Shaw?

15 DR. SHAW: I'm sorry. My hand should not be
16 raised if you're talking to Pamela. Sorry about
17 that.

18 DR. AU: No worries. No worries.

19 Ms. Schwartzott?

20 MS. SCHWARTZOTT: This is Jennifer
21 Schwartzott. I think that there's a need to be
22 variable with the requirements for the study,

1 whether it be enrollment, the time of enrollment in
2 it, the level of the patient, or any of these
3 categories, because this disease is so variable.

4 When I went into the hospital, I was already
5 at level 5, really straddling level 6 because they
6 wanted to vent me. But I had been walking around
7 fine the day before, and the day before that; zero
8 issues whatsoever. So this can happen really,
9 really fast. All my other times with COVID, it was
10 the same thing.

11 So different people go in with different
12 comorbidities, but they also have different levels
13 quickly or that last for a long time, where it
14 could change, so it should be up to the particular
15 physician to make those determinations.

16 Let's see. I just feel that the FDA should
17 also monitor the overuse, though, to make sure that
18 it is not being put through just to study the drug,
19 which I would hope they wouldn't do. It should be
20 based on the patient. Thank you very much.

21 DR. AU: Thank you.

22 Dr. Lee?

1 DR. LEE: Oh, I thought Dr. Shapiro was
2 ahead of me.

3 DR. SHAPIRO: Go ahead, Janet.

4 DR. LEE: I just wanted to follow up on this
5 short comment because I was thinking along the
6 lines of what Dr. Shaw had said, and just
7 practically speaking, I think the subjects with
8 WHO 5 and 6 severity would be easier to identify.
9 These are the people probably at high risk for
10 ARDS. I think the WHO 4 severity might be a little
11 bit tougher even with the additional selected
12 comorbidities, and I think one of the colleagues
13 had mentioned one of the criteria might be just
14 hospitalized for COVID-19 because many people come
15 in with incidental COVID-19.

16 So I don't know if that would be something
17 that's helpful to the FDA, but at least the WHO 5
18 are the ones with the high-flow, non-invasive
19 ventilation; and 6, these are the people who are
20 really at risk for ARDS, and then maybe the ones
21 who may be failing the current therapies available.
22 That's just my comment there. Thank you.

1 DR. AU: Thank you.

2 Dr. Shapiro?

3 DR. SHAPIRO: I would just say that as you
4 design the new study to really think about what's
5 killing people now and in the next few months to
6 come with the current variants and this state. For
7 example, yes, we could tip patients into ARDS.
8 That's great. You probably want to get them a
9 little bit earlier. It doesn't have a direct
10 predilection like it might have at the beginning of
11 the study. And other patients are just getting
12 their underlying disease tipped over by
13 COVID -- cardiac disease and other -- and it could
14 have an effect on those, even independent of ARDS.
15 I don't want to complicate things, but I would take
16 a careful look at the current modes of people dying
17 today.

18 DR. AU: Great. Thank you.

19 Any other discussions? I think this has
20 been a useful discussion for FDA.

21 (No response.)

22 DR. AU: If no other points, let me see if I

1 can summarize a little bit. This is going to be a
2 little more challenging for me.

3 Well, I think I heard a number of
4 discussions, but I think one of the points is that
5 we need to triangulate and converge on
6 understanding why this compound may work, and the
7 idea there was a number of points around
8 uncertainty about mechanism of action. Because
9 there was this concern about mechanism of action,
10 it went to questions around the dosing, the timing,
11 the administration, and the population.

12 When considering the study design and the
13 future execution of studies, maybe something that
14 actually has more mechanistic orientation that
15 includes biomarkers and indicators of the host
16 immune response to help in understanding the
17 outcomes data to make sure that the data is
18 consistent, which has been one of the common themes
19 throughout this discussion; do we have internal
20 validity and do all the data converge on the same
21 answer?

22 There were also discussions around to ensure

1 that there is proper heterogeneity of treatment
2 effects, and particularly around particular
3 demographic populations in that the virus and its
4 effect on mortality has continued to change over
5 time, and that using criteria that may have
6 provided some degree of homogeneity or estimated
7 population effects may not necessarily be valid
8 today; so thinking about whether or not the WHO
9 classification, which is an ordinal
10 scale -- whether or not that's really the correct
11 way to think about the enrollment population, as
12 well as thinking about why these patients may be
13 dying today as opposed to why they died two years
14 ago. I think those are all incredibly insightful
15 and valuable suggestions back to the agency.

16 Let me pause and again ask the committee if
17 there was something that you think that I missed in
18 that summary.

19 DR. BADEN: Dr. Au, Dr. Baden here. May I
20 comment?

21 DR. AU: Absolutely.

22 DR. BADEN: Terrific job, complicated

1 concept. I really want to amplify the concept that
2 mechanism of action is critically important.
3 Antiviral effects versus anti-inflammatory effects,
4 it is very tricky to try to do a study that
5 addresses both. So I would commend the applicant
6 and the agency in thinking very carefully about one
7 study fits all mechanisms because they probably do
8 have different kinetics and manifest differently in
9 different populations.

10 At least given what's been presented today,
11 I am unconvinced there are any data on antiviral
12 effect, but it would be very important, as you
13 think of clinical studies, to separate those and
14 make sure the questions asked really leverage the
15 mechanistic pathway just as discussed. Thank you.

16 DR. AU: Thank you. I appreciate that.

17 Any other comments?

18 (No response.)

19 DR. AU: Hearing none, I think before we
20 adjourn, are there any last comments from the FDA?

21 DR. KARIMI-SHAH: Yes. Thank you so much,
22 Dr. Au. This is Banu Karimi-Shah, FDA.

1 Wow. Thank you so much. I'd like to really
2 take this opportunity on behalf of my team here at
3 FDA to thank the committee members for their
4 efforts, both in the really robust discussion today
5 and the work that you all have clearly put in to
6 prepare for this advisory committee meeting.

7 The preparation is no small task, given the
8 amount of information we give you to digest, and we
9 realize this. A special thank you for those of you
10 who have been here for two days in a row with us,
11 including our chair, Dr. Au. We appreciate the
12 time you take out of your busy lives to help us
13 discuss these matters that are important to the
14 public health.

15 So as we go forward, we have a lot to think
16 about with all of your input, and we'll certainly
17 take into consideration all of the things that you
18 have discussed as we complete our review and make
19 our determination regarding the authorization.

20 I'd also just like to take this opportunity
21 to thank the sponsor, who has been really
22 responsive to all of our inquiries throughout the

1 review of this EUA and has been very professional
2 to work with. Then finally, I'd like to thank my
3 team, who has worked efficiently and thoughtfully
4 to bring this forward for public discussion, which
5 you can see the work that goes into this.

6 So thank you again, and with that, I'll turn
7 it back to Dr. Au to close the meeting.

8 **Adjournment**

9 DR. AU: Thank you so much.

10 I will echo what you said. I could hear the
11 passion in the sponsor's presentation, and I've
12 heard it repeated many times that they've been
13 working hand-in-hand with the FDA, which is
14 definitely appreciated.

15 I want to thank everyone for the degree of
16 preparation. These are long meetings and somewhat
17 challenging environments in this virtual world of
18 ours. But I do feel like what we do here is for
19 the public good, so I think we should all feel
20 great about the conversation. It was robust and
21 in-depth, and it was greatly appreciated by many.

22 So I just wanted to thank everyone, and I'll

1 go ahead and adjourn the meeting. Thank you so
2 much.

3 (Whereupon, at 4:51 p.m., the meeting was
4 adjourned.)

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22