

Analytical and Clinical Validation of Pharmacogenetic tests

Kellie Kelm, Ph.D.

Division of Chemistry and Toxicology Devices Office of In Vitro Diagnostics and Radiological Health Center for Devices and Radiological Health

Outline

- Analytical validation
- Clinical validation
- Considerations
 - Clinical considerations
 - Analytical considerations for both genotyping tests and next generation sequencing

Premarket FDA review of IVDs

- Driven by the <u>intended use</u> of the device
 - The types of validation studies that are needed depend on the claims that are made in the intended use

- The <u>risk</u> of an IVD is based on the consequences of a false result
 - Class I = Low risk: Usually exempt from Premarket FDA review
 - Class II = Moderate risk: Requires a predicate device and 510(k) clearance
 - Class III = High risk and novel intended uses: Requires premarket approval (PMA)

Intended use

- Pharmacogenetic test example:
 - "is a qualitative genotyping assay which can be used as an aid to clinicians in determining therapeutic strategy for the therapeutics that are metabolized by the CYP2C19 gene product, specifically *2, *3, and *17."
 - Class II example; 510(k)

Pharmacogenetics

- Different from "classic" genetic tests
 - Many potential patients to be tested
 - "phenotype" usually not obvious prior to treatment
 - Wide population differences in alleles and frequencies
 - Rare allele combinations often hard to validate
 - Test results could drive drug safety/effectiveness

Test Performance

- Analytical validity
 - Does my test measure the analyte(s) I think it does?
 - Correctly?
 - Reliably?
- Clinical validity
 - Does my test result correlate with the expected clinical presentation?
 - How reliably?

- Repeatability/Reproducibility
 - Will I get the same result in repeated tests over time?
 - Will I get the same result as someone else testing the same sample?
 - Repeated testing of a set of samples. Tested from sample extraction through test result to capture entire testing process. Should include multiple operators, instruments, lots and days.
 - For a distributed kit, testing of the same samples at multiple sites.

- Accuracy
 - Will I get results that are the same as "Truth"?
 - "Truth" is typically bi-directional sequencing results
 - Study should include samples with all possible genotypes unless genotype is rare
 - Study should have sufficient samples to determine accuracy with set confidence

- DNA input study
 - What is the minimum and maximum amount of DNA that can be the input for the test and still provide an accurate result?
 - Test what you recommend on the package insert

- Potential Interferences
 - Endogenous and exogenous interferences could depend on:
 - Sample type
 - Impact of eating, drinking, etc. on DNA from saliva
 - Extraction method
 - Intended use population
 - Candidate for Plavix could have high cholesterol, triglycerides

Examples of Clinical Validity Support

- Information from peer-reviewed, published studies demonstrating a relationship between the genetic test result and the selected clinical presentation, e.g., Cystic fibrosis and ΔF508
- Prospective analysis of a retrospective study (e.g., using banked samples)
- Prospectively performed study

Clinical Considerations

- Often genetic studies are performed in homogenous populations. Other variants/genetic factors could be important in other races/ethnicities (see COAG study). Use of a limited genetic panel could cause harm.
- Different interpretations of the clinical validity of genetic variants
 - Which genotypes are PM? Should IMs be included?
- Results of studies evaluating CYP450 status and clinical outcomes have discrepant results (e.g., 2D6 and tamoxifen, 2C9 + VKORC1 and warfarin)
- Lack of improvement in clinical presentation/outcome over standard of care that does not incorporate genetic information

Analytical Considerations for Pharmacogenomics Testing

- Technical issues
 - Pseudodeficiencies
 - Rare variants not detected by a test
 - Assumption that *1 call means wild type (rare variants could occur)
 - Rare variants could prevent primer binding
 - One SNP may occur in >1 CYP450 genotype; are you calling a *2 or *10 for CYP2C19?

Analytical Considerations for Pharmacogenomics Testing

- Some tests take two days from sample processing through test result
 - Added time for shipping to laboratory
- The shortest test has a one hour turnaround (performed in a clinical laboratory)

Analytical Considerations for Pharmacogenomics Testing

- Next generation sequencing
 - Different technology may lead to different results, especially outside consensus sequences
 - Different interpretations of pathogenic, likely pathogenic, benign, etc.
 - Gene panels from different laboratories include different variants

Summary

- Analytical validation of pharmacogenetic tests should be robust
 - Including assessment of accuracy, reproducibility/repeatability, appropriate DNA input, potential interferences
- Clinical validity information can come from several sources
- There are analytical and clinical considerations to keep in mind for pharmacogenetic tests

Thank you!

kellie.kelm@fda.hhs.gov

301-796-6145

