Statistical Approaches to Establishing Bioequivalence Guidance for Industry

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this draft document should be submitted within 60 days of publication in the *Federal Register* of the notice announcing the availability of the draft guidance. Submit electronic comments to https://www.regulations.gov. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the *Federal Register*.

For questions regarding this draft document, contact (CDER) David Coppersmith at 301-796-9193.

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> December 2022 Biopharmaceutics

> > **Revision 1**

Statistical Approaches to Establishing Bioequivalence Guidance for Industry

Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 Email: druginfo@fda.hhs.gov https://www.fda.gov/drugs/guidances-drugs

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> December 2022 Biopharmaceutics

> > **Revision 1**

TABLE OF CONTENTS

I.	IN	TRODUCTION1
	A.	Overview1
	B.	Statistical Guidance Background2
II.	GE	INERAL CONSIDERATIONS
	A.	Study Design
	В	Data Preparation8
	C.	Statistical Models11
III.	SP	ECIFIC SITUATIONS 14
	A.	In Vitro Bioequivalence and Population Bioequivalence14
	B.	Statistical Methods for Narrow Therapeutic Index and
		Highly Variable Drug Products19
	C.	Comparative Clinical Endpoint Bioequivalence Studies
	D.	Studies in Multiple Groups22
	E.	Bioequivalence Statistics for Adhesion and Irritation Studies
	F.	Dose Scale for Bioequivalence Assessment24
	G.	Bioequivalence Studies Using Multiple References
V.	AP	PENDICES
	A.	Choice of Specific Replicated Crossover Designs
	B.	Rationale for Logarithmic Transformation of Pharmacokinetic Data27
	C.	SAS Program Statements for Average Bioequivalence Analysis of
		Replicated Crossover Studies

Draft – Not for Implementation

 $\begin{array}{c}
1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\end{array}$

Statistical Approaches to Establishing Bioequivalence Guidance for Industry¹

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the FDA staff responsible for this guidance as listed on the title page.

I. INTRODUCTION

15 Requirements for submitting bioavailability (BA) and bioequivalence (BE) data in

16 investigational new drugs (INDs), new drug applications (NDAs), abbreviated new drug

17 applications (ANDAs), and supplements; the definitions of BA and BE; and the types of in vitro

and in vivo studies that are appropriate to measure BA and establish BE are set forth in part 320

19 (21 CFR part 320). This guidance provides recommendations on how to meet provisions of part20 320 for all drug products.

21

In general, FDA's guidance documents do not establish legally enforceable responsibilities.
Instead, guidances describe the Agency's current thinking on a topic and should be viewed only
as recommendations, unless specific regulatory or statutory requirements are cited. The use of
the word *should* in Agency guidances means that something is suggested or recommended,
but not required.

27 28

29

A. Overview

This guidance provides recommendations to sponsors and applicants who intend to use
 equivalence criteria in analyzing in vivo or in vitro BE studies for INDs, NDAs, ANDAs, and

32 supplements to these applications. This guidance discusses statistical approaches for BE

33 comparisons and focuses on how to use these approaches both generally and in specific

34 situations. When finalized, this guidance will replace the guidance for industry *Statistical*

- Approaches to Establishing Bioequivalence, which was issued in February 2001 (2001
 guidance). This guidance provides recommendations on the topics covered in the 2001 guidance
- as well as recommendations on additional topics, including missing data and intercurrent events,
- adaptive design, and specific situations, such as narrow therapeutic index drugs and highly
- 39 variable drugs.
- 40

¹ This guidance has been prepared by the Office of Generic Drugs in the Center for Drug Evaluation and Research (CDER) in cooperation with CDER's Office of Translational Sciences and Office of Pharmaceutical Quality at the Food and Drug Administration.

Draft – Not for Implementation

41 Defined as *relative BA*, the assessment of BE involves comparison between a test (T) and

42 reference (R) drug product, where T and R can vary depending on the comparison to be

43 performed (e.g., to-be-marketed formulation versus clinical trial formulation, generic drug versus

reference listed drug (RLD), originally approved formulation versus postapproval formulation
 changes). Although BA and BE are closely related, BE comparisons normally rely on (1) a

46 criterion, (2) a confidence interval for the criterion, and (3) a predetermined BE limit. BE

47 comparisons could also be used in certain pharmaceutical product line extensions, such as

48 additional strengths, new dosage forms (e.g., changes from immediate release to extended

49 release), and new routes of administration.² In these contexts, the approaches described in this

50 guidance can be used to determine BE. The general approaches discussed in this guidance may

also be useful when assessing pharmaceutical equivalence (i.e., the identical dosage form and route(s) of administration that contain identical amounts of the identical active drug ingredient)

53 or performing equivalence comparisons in clinical pharmacology studies and other areas.

54

55 This guidance is intended to encourage the use of science-based approaches to making statistical

56 BE assessments. Given the evolving nature of statistical approaches and technologies, FDA

57 encourages generic and new drug applicants to propose and discuss novel methodologies (e.g.,

58 model-based BE and novel adaptive designs for comparative clinical endpoint BE studies) with

59 the Agency through appropriate regulatory meetings, as described below.

60 61

B. Statistical Guidance Background

62 63 In the July 1992 guidance on Statistical Procedures for Bioequivalence Studies Using a Standard Two-Treatment Crossover Design (the 1992 guidance), the Center for Drug Evaluation and 64 65 Research (CDER) recommended that a standard in vivo BE study design be based on the 66 administration of either single or multiple doses of the T and R products to healthy subjects on separate occasions, with random assignment to the two possible sequences of drug product 67 68 administration. The 1992 guidance further recommended that statistical analysis for 69 pharmacokinetic (PK) measures, such as area under the curve (AUC) and peak concentration 70 (C_{max}), be based on the two one-sided tests procedure to determine whether the average values 71 for the PK measures determined after administration of the T and R products were comparable. 72 This approach is termed *average BE* (ABE) and involves the calculation of a 90% confidence interval for the ratio of the averages (population geometric means) of the measures for the T and 73 74 R products. To establish BE, the calculated confidence interval should fall within a BE limit, usually 80 to 125% for the ratio of the product averages.³ In addition to this general approach, 75 the 1992 guidance provided specific recommendations for (1) logarithmic transformation of PK 76

data, (2) methods to evaluate sequence effects, and (3) methods to evaluate outlier data.

² For example, to submit an ANDA that is not the same as its RLD because it has a different strength, dosage form, or route of administration than that of the RLD, an applicant first must obtain permission from FDA through the citizen petition process. See section 505(j)(2)(C) of the Federal Food, Drug and Cosmetic Act (21 U.S.C. 355(j)(2)(C)); 21 CFR 314.93(b). Such petitions are referred to as suitability petitions.

 $^{^{3}}$ For a broad range of drugs, a BE limit of 80 to 125% for the ratio of the product averages has been adopted for use of an average BE criterion. Generally, the BE limit of 80 to 125% is based on a clinical judgment that a test product with BA measures outside this range should be denied market access.

Draft – Not for Implementation

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93	In addit 2001 gu <i>individu</i> of the varesponse while the guidance at least a of these their use This gu 2001 gu Overvie	ion to reit idance in <i>al BE</i> . B ariabilitie es. Howe e populat e also inc some of t designs i e in screen idance pro- idance, a w section	terating the key p troduced two ad oth of these app s of the PK metre ever, the individu- tion BE approach cludes discussion he subjects recein in that guidance ning for outliers. ovides recomme s well as recomment above, when fin	points from the 1 ditional approac roaches, unlike t rics of the two pr ual BE approach n is mainly used of <i>replicated cr</i> ve at least one o included their im ndations on the t nendations on sc nalized, this guid	992 guidance and hes to assessing B he <i>average BE</i> app oducts being comp is not currently us for certain in vitro <i>ossover designs</i> — f the products mon plications for pos opics covered by to me additional top lance will replace	replacing that gu E: <i>population BE</i> proach, include a pared, as well as the ed in the regulate BE studies. The crossover desig re than once. The sible carryover effect the 1992 guidance ics. As noted in the the 2001 guidance	idance, the and comparison the average ory setting 2001 ns in which discussion fects and e and the he e.
94 05	TT A	CENED	AL CONSIDED	ATIONS			
93 06	11.	GENERA	AL CONSIDER	ATIONS			
90		A \$4	udy Dosign				
9/	1	A. 51	uuy Design				
90		1 5					
99		<i>I. Ex</i>	perimental Desig	n			
100		0	Nonnanliaa	tad dagiona			
101		a.	Nonreplica	lied designs			
102	1	ntional m	amountinested day	ion analy as the	standard true form	vulation truc noni	ad true
103	A conve		onreplicated des	agin, such as the	standard two-torn	araga or populati	ou, two-
104	is above	e clossov	comparisons U	e useu to general	umstances such a	s products with a	on approach pparant
105	long hol	If lives w	bara araggayar g	hudios ara improv	unistances, such a	s products with a	pparent,
100	long ha	11-11VCS W		indies are imprav	lical, parallel desi	glis call be used.	
102		h	Replicated	crossover design	ng		
100		0.	Replicated	crossover design	15		
110	Replica	ted crosse	ver designs can	he used irrespec	tive of which RF	annroach is select	ted to
111	establis	h RF alth	ough they are n	ot necessary whe	en an average or n	approach is screet	roach is
112	used W	When a ref	ference_scaled R	F approach is us	ed replicated cros	sover designs are	critical to
112	allow eq	stimation	of within-subject	t variances for t	e R (and T if a fu	lly replicated stud	ly is used)
114	measure	es In nar	ticular the follo	wing four-neriod	two-sequence to	vo-formulation d	esion is
115	recomm	ended for	r fully replicated	BE studies (see	Appendix A for f	urther discussion	of
116	replicate	ed crosso	ver designs)				01
117	repricati						
/					Period		
				1	2	3	Λ
	~		_	1	-	5	7
	Seqi	uence	1	T	R	T	R

R

Т

R

Т

2

Draft – Not for Implementation

as

	Period
126	
125	interaction variance components.
124	shown below, could be used. A fully replicated design can estimate the subject-by-formulation
123	Other fully replicated crossover designs are also possible. For example, a three-period design,
122	
121	administration. Each period should be separated by an adequate washout period.
120	For this design, the same lots of the T and R formulations should be used for the replicated
119	
118	

		1 0110 0		
		1	2	3
Sequence	1	Т	R	Т
	2	R	Т	R

127

128 The following three-period, three-sequence, two-formulation, partially replicated design can also 129 be used for assessing reference-scaled BE, though it cannot fully estimate the subject-by-

be used for assessing reference-scaled BE, though it cannot fully estimate the sub formulation interaction variance component (as a fully replicated design can).

131

		Period		
		1	2	3
Sequence	1	Т	R	R
	2	R	Т	R
	3	R	R	Т

132 A greater number of subjects would be needed for the three-period designs compared to the

133 recommended four-period design to achieve the same statistical power to conclude BE.

134 135

c. Adaptive design

An adaptive design is a clinical trial design that allows for prospectively planned modifications
to one or more aspects of the design based on accumulating data from subjects in the trial. An
adaptive design can be a group sequential design, or other design with one or more adaptive
features.⁴ For example, Potvin's methods (Potvin et al. 2008, Xu et al. 2016)⁵ are a combination

141 of a group sequential design and an adaptive design with sample size re-estimation.

142

⁴ See the guidance for industry *Adaptive Designs for Clinical Trials of Drugs and Biologics* (November 2019). We update guidances periodically. For the most recent version of a guidance, check the FDA guidance web page at <u>https://www.fda.gov/regulatory-information/search-fda-guidance-documents</u>.

⁵ Potvin, D., C.E. DiLiberti, W.W. Hauck, A.F. Parr, D.J. Schuirmann, and R.A. Smith, 2008, Sequential Design Approaches for Bioequivalence Studies With Crossover Designs, Pharmaceutical Statistics: The Journal of Applied Statistics in the Pharmaceutical Industry 7, no. 4: 245-262; Xu, J., C. Audet, C.E. DiLiberti, W.W. Hauck, T.H. Montague, A.F. Parr, D. Potvin, and D.J. Schuirmann, 2016, Optimal Adaptive Sequential Designs for Crossover Bioequivalence Studies, Pharmaceutical Statistics (15) 1:15-27.

Draft – Not for Implementation

Adaptive design can provide ethical advantages⁶ and statistical efficiency. When appropriately 143 144 implemented, adaptive designs can reduce resources used, decrease time to study completion, 145 and increase the chance of study success, especially when the prior information needed for the 146 study design is limited. However, use of adaptive designs can also have limitations. For 147 example, adaptive designs may call for certain statistical methods to avoid increasing the chance 148 of erroneous conclusions and introducing bias in estimates and for complex adaptive designs, 149 such methods may not be readily available.⁷ The decision to use or not use an adaptive design is 150 at the applicant's discretion. 151 152 In general, the design, conduct, and analysis of a proposed adaptive study design should satisfy 153 the following recommendations: 154 155 The details of the adaptive design should be completely specified prior to initiation of the • 156 study and documented accordingly. For example, prospective planning should include 157 prespecification of the anticipated number and timing of interim analyses, the type of 158 adaptation, the statistical inference methods to be used and the specific algorithm 159 governing the adaptive decision. If a study should be stopped early (e.g., for futility or 160 for success in demonstrating BE), detailed stopping criteria should be pre-specified and 161 scientifically justified. 162 163 The applicant should establish that estimation of treatment effect will be sufficiently • reliable, and the chance of erroneous conclusions will be adequately controlled. The 164 165 Agency will accept appropriately designed BE studies that are scientifically justified. Support might include published literature in peer-reviewed journals in which the 166 167 applicant's proposed approach is validated or simulation results meeting desired criteria 168 (e.g., the Type I error probability of the proposed approach is controlled at a nominal 169 level of 0.05 for a BE test). Appropriate details (e.g., literature references, proofs, 170 simulation codes/results) for the methodology should be submitted. 171 172 The applicant should ensure that study integrity will be appropriately maintained. A • 173 comprehensive written data access plan defining how study integrity will be maintained 174 in the presence of the planned adaption should be included in the protocol or statistical 175 analysis plan (SAP). This applies to both adaptive comparative clinical endpoint BE 176 studies and PK BE studies, whether blinded or unblinded by design. 177 178 For details, refer to the guidance for industry Adaptive Design for Clinical Trials of Drugs and

179 *Biologics* (November 2019).

⁶ See footnote 4. For example, the ability to stop a trial early if it becomes clear that the trial is unlikely to demonstrate equivalence can reduce the number of patients exposed to the unnecessary risk of an ineffective investigational treatment and allow subjects the opportunity to explore more promising therapeutic alternatives. ⁷ See footnotes 4 and 5.

Draft – Not for Implementation

180 Due to the increased complexity of adaptive studies and uncertainties regarding their operating 181 characteristics, applicants are encouraged to contact the Agency early to discuss their proposed 182 adaptive study designs and statistical methods via the controlled correspondence,⁸ pre-ANDA

- adaptive study designs and statistical methods via the controlled correspondence,⁸ pre-1
 meeting,⁹ pre-IND meeting, or pre-NDA meeting pathway.¹⁰
- 184
- 185 186

d. Design with sparse sampling

For certain generic products, a sparse BE design is used, where the sampling for each subject is done at a single or very limited number of time points rather than the number needed to get a full concentration profile. For example, some ophthalmic products are studied using a sparse BE design, where only a single sample is collected from a single eye of each subject, at one assigned sampling time point for that subject. More generally, a sparse BE study design can be a parallel design where each subject should receive only one treatment, T or R, but not both. Alternatively, a crossover sparse study design can be used where each subject receives both test and reference

- 194 treatments (e.g., in subjects undergoing indicated cataract surgery for both eyes).
- 195

196 For a sparse BE study design, the mean concentration for each product at each time point of 197 measurement is calculated by using the mean concentration of the subjects measured at each time 198 point to derive the mean profile for each product. Based on the trapezoid rule, the AUC_{0-t} for 199 each product is computed as a weighted linear combination of these mean concentrations at each time point through time t. The AUC_{0-t} is the area under the concentration – time curve from 200 201 zero to the time t. C_{max} and T_{max} (time to maximum observed concentration) can be determined accordingly. The ratios of AUC_{0-t} and C_{max} between the test and the reference product are used 202 203 to assess BE. Estimation of the standard deviation and confidence interval for the ratio of 204 AUC_{0-t} may be done by bootstrap or parametric methods (e.g., Bailer's methods (Bailer 1988)¹¹ for a parallel study design), and that for the ratio of C_{max} may be done by bootstrap methods. BE 205 206 is supported if the 90% confidence interval for the ratio of AUC_t between the test and the 207 reference product lies within the BE margin (80.00%, 125.00%). Model-based approaches can 208 be considered when they can reliably control the error rate of concluding BE for bio inequivalent products (Type I error).¹² 209

210

211 For complicated issues such as other forms of sparse design or alternative statistical methods,

- applicants are encouraged to contact the Agency early to discuss their proposed study design and
- statistical methods via the controlled correspondence, pre-ANDA meeting, pre-IND meeting, or
- 214 pre-NDA meeting pathway.¹³

⁸ See the guidance for industry *Controlled Correspondence Related to Generic Drug Development* (December 2020).

⁹ See the guidance for industry *Formal Meetings Between FDA and ANDA Applicants of Complex Products Under GDUFA* (October 2022).

¹⁰ See the draft guidance for industry *Formal Meetings Between the FDA and Sponsors or Applicants of PDUFA Products* (December 2017). When final, this guidance will represent FDA's current thinking on this topic.

¹¹ Bailer, A.J., 1988, Testing for the Equality of Area Under the Curves When Using Destructive Measurement Techniques, Journal of Pharmacokinetics and Biopharmaceutics, 16(3): 303-309.

 ¹² Zhao, L., M.-J. Kim, L. Zhang, and R. Lionberger, 2019, Generating Model Integrated Evidence for Generic Drug Development and Assessment, Clinical Pharmacology and Therapeutics, 105(2): 338-349.
 ¹³ Z. - Content of Conten

¹³ See footnotes 8, 9, and 10.

Draft – Not for Implementation

216 2. Sample Size Determination

217

215

218 It is an applicant's responsibility to design an adequately powered BE study for the proposed 219 study. We recommend that applicants enroll enough subjects to power the study at a level of 0.8 220 or higher, for a BE test to be carried out with a type 1 error rate of 0.05 (see section III.C.1.a for 221 more details). When determining the sample size, rates of attrition and noncompliance (e.g., 222 protocol violation) should be taken into consideration. Enough subjects should be recruited, 223 randomized, and dosed at the beginning of the study to ensure that the desired number of 224 evaluable subjects will be available for analysis. All eligible subjects who were dosed should be 225 included in the analysis. For BE studies, add-on subjects after the pre-specified number of 226 subjects have been reached are generally not encouraged except in an adaptive study design with 227 a pre-specified adaptation to add subjects and statistical methods to control the Type I error rate 228 under the nominal level.

229

230 The number of subjects to be included in a study should be based on an appropriate sample size calculation for the proposed study design. 14,15,16 For example, the standard 2×2 cross-over study 231 232 will use a particular calculation while studies with a different design or set of endpoints will use

233 different calculations. For sample size re-estimation in an adaptive study design, refer to Section

- 234 II.A.1.c. Adaptive Design.
- 235

236 Sample size and power calculation should be supported by established scientific practice. For 237 complex study designs with no analytical solutions for sample size calculation, simulation can be 238 used to estimate the needed sample size in order to reach a desired power. The method by which 239 the sample size is determined should be given in the protocol, together with the estimates of any 240 quantities used in the calculations (such as variances, mean values, response rates, the assumed 241 effect size). The basis for these estimates should also be given. For example, variance estimates 242 can be obtained from the biomedical literature and/or pilot studies. It is important to investigate 243 the sensitivity of the sample size calculated to a variety of deviations from the assumed 244 estimates. This may be facilitated by providing a range of sample sizes appropriate for a 245 reasonable range of deviations from the assumptions or alternative approaches supported by 246 published peer-reviewed literature.

247

248 Applicants should enter a sufficient number of subjects in the study to allow for dropouts.

249 Dropouts generally should not be replaced because replacement of subjects during the study

250 could complicate the statistical model and analysis. Applicants who wish to replace dropouts

251 during the study should indicate this intention in the protocol. The protocol should also state

252 whether samples from replacement subjects, if not used, will be assayed. If the dropout rate is

253 high and applicants wish to add more subjects, a modification of the statistical analysis may be

¹⁴ Chow, S.-C. and J.-P. Liu, 2008, Design and Analysis of Bioavailability and Bioequivalence Studies, 3rd Edition, New York: Chapman and Hall/CRC.

¹⁵ Draft guidance for industry Bioequivalence Studies with Pharmacokinetic Endpoints for Drugs Submitted Under an ANDA (August 2021). When final, this guidance will represent FDA's current thinking on this topic.

¹⁶ Patterson, S.D. and B. Jones, 2017, Bioequivalence and Statistics in Clinical Pharmacology, 2nd Edition, New York: Chapman and Hall/CRC.

254	recommended.	Additional subjects should not be included after data analysis unless the study		
255	was designed from the beginning as an adaptive design.			
256				
257	In general, for	PK BE or in vitro BE studies, sample size calculation should be based on BE		
258	metrics (e.g., A	AUC, C _{max}) after log-transformation; for comparative clinical endpoint BE studies,		
259	sample size cal	culation should be based on the un-transformed comparative clinical endpoints		
260	unless otherwis	se noted in the relevant FDA product-specific guidance (PSG). ¹⁷ The number of		
261	evaluable subje	ects in a PK BE study should not be less than 12. For highly variable drug		
262	products, a min	nimum of 24 subjects are recommended for BE assessment. ¹⁸		
263	-			
264	В.	Data Preparation		
265		-		
266	The drug conce	entration in biological fluid determined at each sampling time point should be		
267	furnished on th	e original scale for each subject participating in the study. The PK measures of		
268	systemic expos	sure should also be furnished on the original scale. The variables for a		
269	comparative cl	inical endpoint BE study should also be furnished on the original scale. The		
270	mean, standard	l deviation, and coefficient of variation for each variable should be computed and		
271	tabulated in the	e final report.		
272				
273	1.	Log-Transformation		
274				
275	A general appr	oach to assessing BE is to compare the log-transformed BA measures after		
276	administration	of the T and R products.		
277				
278		a. Logarithmic transformation for PK measures		
279	T 1 · · 1			
280	This guidance	recommends that PK BE measures (e.g., AUC and C_{max}) be log-transformed (see		
281	Appendix B).	The choice of common or natural logs should be consistent and should be stated in		
282	the study repor	t. The limited sample size in a typical BE study precludes a reliable		
283	to tost for norm	of the distribution of the data set. Sponsors and/or applicants are not encouraged		
284	of amon distribution	tailing of error distribution after log-transformation, nor should they use normality		
283	Justification al	ution as a reason for carrying out the statistical analysis on the original scale.		
200	be statistically	analyzed on the original rather than on the log scale		
207 288	be statistically	anaryzed on the original rather than on the log scale.		
200 280				
209 200				
290				
291				

¹⁷ For the most recent version of a product-specific guidance, check the product-specific web page at <u>https://www.accessdata.fda.gov/scripts/cder/psg/index.cfm</u>.

¹⁸ Davit, B. and D. Conner, 2010, Reference-Scaled Average Bioequivalence Approach. In: I. Kanfer and L. Shargel, editors. Generic Drug Product Development — International Regulatory Requirements for Bioequivalence, New York, NY: Informa Healthcare, 271-272; Food and Drug Administration, Advisory Committee for Pharmaceutical Science, October 5-6, 2006.

292 293 294	b. I e	Data transformation for comparative pharmacodynamic and clinical endpoint BE study
295	The decision on whether	er and how to transform a variable for a comparative pharmacodynamic
296	(PD) or comparative cli	inical endpoint BE study should be specified in the protocol, especially
297	for the primary variable	e(s). The basis for the variables should also be given in the protocol. For
298	example, these variable	es can be obtained from the biomedical literature and/or pilot studies.
299	Similar considerations	apply to other derived variables, such as the use of change from baseline,
300	percentage change from	a baseline, the area under the curve of repeated measures, or the ratio of
301	two different variables.	Subsequent clinical interpretation should be carefully considered.
302	Regarding comparative	clinical endpoint studies, in general the log-transformation is not
303	used. For example, in t	the case of the Fieller's confidence interval for the ratio of two means, the
304	raw (untransformed) da	ta are used for the confidence interval derivation. ¹⁹
305		
306	c. 1	Negative values for baseline corrected PK or PD endpoints
307		
308	Because data transform	ation and scales might affect BE conclusions, they should be chosen
309	carefully and appropria	tely justified in the protocol. ²⁰ If a baseline correction results in a
310	negative plasma concer	itration value, the value should be set equal to 0 before calculating the
311 212	baseline-corrected AUC	J.
312 312	2 Missing	Data and Interconnect Exercise
313 214	2. Missing	Data and Intercurrent Events
314	Subjects may have miss	sing data in the study for various reasons (e.g. subject's refusal to
316	continue in the study w	vorsening of conditions or emergence of adverse events subject's failure
317	to meet scheduled appo	intments for evaluation) Subjects may also have intercurrent (post-
318	randomization) events (that affect either the interpretation or the existence of the measurements
319	associated with the que	stion of interest (e.g., noncompliance with the protocol for various
320	reasons, use of rescue n	nedication due to lack of efficacy, death). Missing data and intercurrent
321	events can introduce pr	oblems such as bias, misleading inference, loss of precision and loss of
322	power, which make it h	ard to interpret the trial outcome.
323		-
324	The ICH (Internal Cour	ncil for Harmonization) E9(R1) Addendum introduces the concept of an
325	estimand, which is a pro-	ecise description of the treatment effect reflecting the clinical question
326	posed by a particular st	udy objective. ²¹ The trial protocol of a BE study should include the
327	following components	of an estimand: (1) the treatment of interest and alternative treatment(s) to
328	which comparison will	be made: e.g., test drug compared with reference drug; (2) the analysis
329	population for BE asses	ssment; (3) the variable (or endpoint) to be measured for each subject
330	(e.g., AUC or C_{max}); (4)) the specification of how to account for intercurrent events in assessing
331	the scientific question of	of interest (for example, in a comparative clinical endpoint BE study with

¹⁹ Fieller, E., Some Problems in Interval Estimation, 1954, Journal of the Royal Statistical Society, 16(2): 175-185. ²⁰ For example, see Sun, W., S. Grosser, and Y. Tsong, 2017, Ratio of Means vs. Difference of Means as Measures

of Superiority, Noninferiority, and Average Bioequivalence, Journal Biopharmaceutical Statistics, 27(2): 338-355. ²¹ Guidance for industry *E9(R1) Statistical Principles for Clinical Trials: Addendum: Estimands and Sensitivity* Analysis in Clinical Trials, Revision 1 (May 2021).

Draft – Not for Implementation

a binary endpoint, subjects who discontinue study treatment early due to lack of treatment effect

333 should be included as treatment failures); and (5) the population-level summary for the variable

to compare between treatment conditions, e.g., the geometric mean ratio of the test to referencedrug in a PK BE study.

336

337 The protocol should include plans to minimize missing data. The trial protocol should

338 prospectively define anticipated causes of missing data, the corresponding statistical assumptions

339 about reasons for the missing data, and how missing data will be treated in the statistical

340 analysis. The treatment of missing data in the statistical analysis should be justified such that 341 valid statistical inferences can be made under the assumptions about the missing data

- 341 vand statistica 342 mechanism.
- 343

344 Statistical methods for handling missing data include complete case analysis, available case

345 analysis, weighting methods, imputation, and model-based approaches. For example, in a two-

346 way crossover study, a complete case analysis could be a general linear model as implemented in

347 SAS PROC GLM, which removes all subjects with any missing observations for any variables

348 included in the GLM model (i.e., removes subjects missing one or both periods). An available

349 case analysis could be done using SAS PROC MIXED, which uses all observed data (e.g., in a

two-way crossover study, uses all subjects with one or two complete periods of data).

351

352 Approaches for handling missing data and the statistical methods for the primary BE analysis

(e.g., GLM vs. MIXED) should be pre-specified in the study protocol or SAP. Depending on the
 nature of the assumed or likely missing data mechanism, statistical methods from any of these

355 categories may be appropriate. The validity of a statistical approach to handle missing data 356 depends on a variety of factors, including, but not limited to, the mechanism for missingness, the

357 fraction of incomplete cases, the values that are missing, specifics of the analysis, and definition 358 of the estimand. Sensitivity analyses using alternative approaches may also be used in the

359 of the estimated. Sensitivity analyses using aternative approaches may also be used in the 359 statistical analysis to address missing data. Sensitivity analyses should be pre-specified in the 360 trial protocol to evaluate the robustness of conclusions to deviations from the assumptions about

- 361 the missing data mechanism. The applicant should provide detailed information about reasons 362 for missing data and any observed intercurrent events.
- 363

For a particular drug product, if the PSG recommends certain approaches to handling missing data, the applicants should refer to that PSG. Applicants may choose to contact the Agency via the controlled correspondence, pre-ANDA meeting, pre-IND meeting, or pre-NDA meeting pathway to discuss their proposed approach to handling missing data if such an approach is different from what is recommended in the PSG or if the applicants have further questions.

369 370

371

3. Outlier Detection

372 Outlier data in BE studies are defined as subject data for one or more BA measures that are 373 discordant with corresponding data for that subject and/or for the rest of the subjects in a study.

Because BE studies are usually carried out as crossover studies, the most important type of

374 Because BE studies are usually carried out as crossover studies, the most important type of 375 subject outlier is the within-subject outlier, when one subject or a few subjects differ notably

375 subject outlier is the within-subject outlier, when one subject of a few subjects differ hotably 376 from the rest of the subjects with respect to a within-subject T-R comparison. The existence of a

377	subject outlie	er with no protocol violations and for which there are not bioanalytical errors could
378	indicate one	of the following situations:
379		
380		a. Product failure
381		
382	Product failu	re could occur, for example, when a subject exhibits an unusually high or low
383	response to c	one or the other of the products because of a problem with the specific dosage unit
384	administered	This could occur, for example, with a sustained and/or delayed-release dosage
385	form exhibit	ing dose dumping or a dosage unit with a coating that inhibits dissolution.
386		
387		b. Subject-by-formulation interaction
388		
389	A subject-by	-formulation interaction could occur when an individual is representative of subjects
390	present in the	e general population in low numbers for whom the relative BA of the two products
391	is markedly of	different from that for most of the population, and for whom the two products are
392	not bioequiv	alent even though they might be bioequivalent in most of the population. In the
393	case of produ	ict failure the unusual response could be present for either the T or R product
394	However in	the case of a subpopulation even if the unusual response is observed on the R
395	product ther	e could still be concern about lack of bioequivalence of the two products. For these
396	reasons and	icants should not remove data from the statistical analysis of BE studies solely
397	because thos	e data are identified as statistical outliers
398		e duit die Rentified as statistical oditiers.
399	In general o	utlier data (whether due to product failure, subject-by-formulation interaction, or
400	another cause	e) may only be removed from the BE statistical analysis if there is real-time
401	documentatio	on demonstrating a protocol violation during the clinical and/or
402	analytical/ex	perimental phase of the BE study Applicants should include a prospective plan in
403	the BE study	protocol for handling subjects (experimental outliers) in the BE statistical analysis.
404	Data from re	dosing studies are not considered valid evidence to support removal of outlier data
405	from the stat	istical analysis. All subject data should be submitted, with potential outliers flagged
406	with appropr	iate documentation as part of the submission. However, for a replicated PK BE
407	study. if refe	rence-scaled average BE is used, the applicant should ensure that the calculated
408	intra-subject	variability is not inflated due to extreme values or situations.
409	5	
410	To character	ize aberrant observations for exploratory or quality control purposes, the choice of
411	the appropria	ate technique depends on whether there are outlying subjects or outlying
412	observations	as well as on the study design.
413		
414	C.	Statistical Models
415		
416	1.	General Statistical Criteria for Bioeauivalence
417		J = J
418	The general s	structure of a BE criterion is that a function (Θ) of population measures should be
419	demonstrated	to be no greater than a specified value (θ) . Using the terminology of statistical
420	hypothesis te	esting this is accomplished by testing the hypothesis H_0 : $\Theta > A$ versus H_1 : $\Theta < A$ at a
120	mypointesis it	sting, and is accomptioned by testing the hypothesis 110. O-0 versus 11a. Ovo at a

421 422	desired level of significance, often 5%. Rejection of the null hypothesis H ₀ (i.e., demonstrating that the estimate of Θ is statistically significantly less than θ) results in a conclusion of BE.				
423 424 425	a. Use of confidence intervals to do two one-sided tests				
425 426 427	In BE assessment we are frequently interested in testing whether a parameter (for example, the difference of means for a T and R product for a specific endpoint) is contained within a defined				
428 429	interval, call it $[\theta_1, \theta_2]$. The recommended method for doing such a test is the <i>Two One-Sided</i> <i>Tests Procedure</i> . ²² A one-sided statistical test is carried out to determine whether the parameter				
430 431	is $\geq \theta_1$, and a second one-sided test is carried out to determine whether the parameter is $\leq \theta_2$; both tests are carried out at a level of significance α , which is usually 0.05. If both tests are				
432 433	successful (that is, we reject the null hypothesis in both cases), we conclude that the parameter is contained in $[\theta_1, \theta_2]$.				
434 435	These two one-sided tests are sometimes carried out by calculating a 100 (1-2 α) % confidence				
436	interval for the parameter and determining whether this confidence interval is completely				
437	contained in the interval $[\theta_1, \theta_2]$. For this confidence interval method of carrying out the tests to				
438 439	be valid, the confidence interval should be an <i>equal tails</i> confidence interval. If the lower and upper confidence limits of the 100 (1-2a) % confidence interval are L ₁ and L ₂ , respectively, then				
440	the confidence interval is <i>equal tails</i> if L_1 , by itself, is at least a 100 (1- α) % lower confidence				
441	bound for the parameter and L ₂ , by itself, is at least a 100 (1- α) % upper confidence bound for				
442	the parameter.				
443					
444	In some cases, there may not be general agreement as to the best choice of a particular statistical				
445 446	interest is the difference between the success probabilities for a T and R product for a binary				
447	endpoint). In such cases, careful consideration should be given to the choice of statistical methods for doing the two one sided tests, which may are may not correspond to a confidence.				
449	interval method.				
450					
451	2. Statistical Information and Implementation of Criteria for PK Measures (AUC _{0-t} ,				
452	$AUC_{0-\infty}$, and C_{max})				
453					
454	We recommend that applicants provide the following statistical information for AUC_{0-t} ,				
433 456	AUC _{0-∞} , and C _{max} :				
457	• Geometric means for the formulations tested				
458	 Arithmetic means for the formulations tested 				
459	• Geometric mean ratios of Test vs. Reference and their corresponding 90% confidence				
460	intervals or 95% upper confidence bounds (e.g., for highly variable drugs or narrow				
461	therapeutic index drugs)				

²² Schuirmann, D. J., 1987, A Comparison of the Two One-Sided Tests Procedure and the Power Approach for Assessing the Equivalence of Average Bioavailability, Journal of Pharmacokinetics and Biopharmaceutics, 15(6): 657-680.

Draft – Not for Implementation

462

463 Recommended statistical information for other types of outcome measures is discussed in section464 III: Specific Situations.

465

To facilitate BE comparisons, for crossover studies, the measures for each individual should be displayed in parallel for the formulations tested. For each BE measure, the ratio of the individual geometric mean of the T product to the individual geometric mean of the R product should be tabulated side by side. The summary tables should indicate in which sequence each subject received the product.

471

472 Statistical analyses of BE data are typically based on a statistical model for the logarithm of the 473 BA measures (e.g., AUC and C_{max}). The model is a mixed-effects or two-stage linear model. 474 Each subject, j, theoretically provides a mean for the log-transformed BA measure for each formulation, μ_{Ti} and μ_{Ri} for the T and R formulations, respectively. The model assumes that 475 476 these subject-specific means come from a distribution with population means μ_T and μ_R , and between-subject variances σ_{BT}^2 and σ_{BR}^2 , respectively. The model allows for a correlation, ρ , 477 between μ_{Ti} and μ_{Ri} . The subject-by-formulation interaction variance component, σ_D^2 , is related 478 479 to these parameters as follows:

480

481 482 σ_D^2 = variance of (μ_{T_i} - μ_{R_i})

$$= (\sigma_{BT} - \sigma_{BR})^2 + 2 (1-\rho)\sigma_{BT}\sigma_{BR}^{[23]}$$

484

483

For a given subject, the observed data for the log-transformed BA measure are assumed to be independent observations from distributions with means μ_{Tj} and μ_{Rj} , and within-subject variances σ_{WT}^2 and σ_{WR}^2 . The total variances for each formulation are defined as the sum of the withinand between-subject components (i.e., $\sigma_{TT}^2 = \sigma_{WT}^2 + \sigma_{BT}^2$ and $\sigma_{TR}^2 = \sigma_{WR}^2 + \sigma_{BR}^2$). For analysis of crossover studies, the means are given additional structure by the inclusion of period and sequence effect terms.

491

The applicant may also consider prespecifying inclusion of important demographic and baseline
 prognostic covariates in the statistical model for parallel studies. This sort of adjustment can
 increase the precision and power of the statistical analysis and compensate for any lack of

495 balance between treatment groups with no inflation of Type 1 error.

- 496
- 497
- 498
- 499

²³ Schall, R., and H. G. Luus, 1993, On Population and Individual Bioequivalence, Statistics in Medicine, 12(12): 1109-1124.

Draft – Not for Implementation

500 III. SPECIFIC SITUATIONS²⁴

501

502A.In Vitro Bioequivalence and Population Bioequivalence503

504 This section discusses statistical methods for assessment of in vitro BE, including population BE 505 (PBE), a similarity index (f₂), statistical approaches respectively for in vitro release tests (IVRT), 506 in vitro permeation tests (IVPT) and in vitro abuse-deterrent formulations (ADF) comparative 507 studies, and a profile comparison approach based on Earth Mover's Distance (EMD).

508 509

510

1. Population Bioequivalence

511 One of the recommended statistical approaches for evaluating in vitro BE is population BE 512 (PBE). To test for PBE, the null and alternative hypotheses are given as follows:

513 $H_0: \theta \ge \theta_P \quad \text{vs.} \quad H_a: \theta < \theta_P$

514 where $\theta = \frac{(\mu_T - \mu_R)^2 + \sigma_T^2 - \sigma_R^2}{\sigma_R^2}$ if the estimated $\sigma_R > \sigma_0$ or $\theta = \frac{(\mu_T - \mu_R)^2 + \sigma_T^2 - \sigma_R^2}{\sigma_0^2}$ if the estimated 515 $\sigma_R < \sigma_0$

515 $\sigma_R \leq \sigma_0$.

516 Here, μ_T and μ_R are the population means, σ_T^2 and σ_R^2 are the population variances of the log-517 transformed measure for T and R products, respectively; σ_0^2 is a regulatory constant for variance; 518 and θ_P is the PBE limit. The concept of PBE is to compare the difference of the T and R

- 519 products with that of the reference versus reference itself. This comparison can be denoted in
- 520 terms of the population difference ratio as follows:

521
$$\sqrt{\frac{E(Y_T - Y_R)^2}{E(Y_R - Y_R')^2}} = \sqrt{\frac{(\mu_T - \mu_R)^2 + \sigma_R^2 + \sigma_T^2}{2\sigma_R^2}} = \sqrt{\frac{\theta}{2}} + 1.$$

The regulatory constant variance, σ_0^2 , is set based on the following considerations. Due to the low variability of in vitro measurements, this guidance recommends that the ratio of geometric means should fall within 0.90 and 1.11. As a result, an upper BE limit of 1.11 is recommended for the average BE limit for in vitro data. Assuming $\sigma_R^2 = \sigma_T^2 = \sigma_0^2$, $\mu_T - \mu_R = \ln 1.11$ and the maximum allowable limit for population difference ratio is 1.25, this leads to the recommended choice of $\sigma_0^2 = 0.01$.

528

529 The determination of PBE limit, θ_P , is based on the consideration of average BE criterion and 530 the addition of variance terms to PBE criterion as the following form:

531
$$\frac{(\mu_{\rm T} - \mu_{\rm R})^2 + \sigma_{\rm T}^2 - \sigma_{\rm R}^2}{\max\{\sigma_0^2, \sigma_{\rm R}^2\}} = \frac{\text{Average BE limit + Variance term}}{\text{Scaled variance term}}.$$

532

The FDA recommended allowance for the variance term is 0.01. This value may be adjusted depending on the average BE limit for in vitro data based on further communication with the

535 Agency. Accordingly, the PBE limit, θ_P , is recommended as follows:

²⁴ Some specific situations are addressed in the following subsections with specified choices of BE criteria. Further discussion regarding these specified choices can be found in the guidances cited in those subsections.

Draft – Not for Implementation

536
$$\theta_P = \frac{(\ln 1.11)^2 + 0.01}{0.01} = 2.089$$

537

538 A linearized form is recommended to use to test $H_0: \theta \ge \theta_P$. That is, testing $H_0: \theta \ge \theta_P$ is equivalent to testing $H_0: \gamma \ge 0$ where $\gamma = (\mu_T - \mu_R)^2 + (\sigma_T^2 - \sigma_R^2) - \theta_P \sigma_R^2$ if the estimated $\sigma_R > \sigma_0$ or $\gamma = (\mu_T - \mu_R)^2 + (\sigma_T^2 - \sigma_R^2) - \theta_P \sigma_0^2$ if the estimated $\sigma_R \le \sigma_0$. Here, $\gamma_1 = (\mu_T - \mu_R)^2$, $\gamma_2 = \sigma_T^2$ and $\gamma_3 = \sigma_R^2 + \theta_P \sigma_R^2$ if the estimated $\sigma_R > \sigma_0$ or $\gamma_3 = \sigma_R^2 + \theta_P \sigma_0^2$ if the 539 540 541 estimated $\sigma_R \leq \sigma_0$. 542 Suppose $\hat{\gamma}_U$ is a 95% upper confidence bound for γ . Then, PBE is supported if and only if $\hat{\gamma}_U \leq$ 543 0. Based on the work of Howe $(1974)^{25}$ and Ting et al. $(1990)^{26}$, an approximate 95% upper 544 confidence bound for γ is given as follows: 545 $\hat{\gamma}_{U} = \hat{\gamma}_{1} + \hat{\gamma}_{2} - \hat{\gamma}_{3} + \sqrt{(\tilde{\gamma}_{1} - \hat{\gamma}_{1})^{2} + (\tilde{\gamma}_{2} - \hat{\gamma}_{2})^{2} + (\tilde{\gamma}_{3} - \hat{\gamma}_{3})^{2}}$ 546 547 where $\hat{\gamma}_1$, $\hat{\gamma}_2$, and $\hat{\gamma}_3$ are point estimators of γ_1 , γ_2 , and γ_3 , respectively; $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ are 95% 548 upper confidence bounds for γ_1 and γ_2 and $\tilde{\gamma}_3$ is a 95% lower confidence bound for γ_3 . For 549

further detail, see, e.g., the draft PSGs for Budesonide suspension (September 2012) and
 Fluticasone Propionate metered spray (June 2020).²⁷

552 553

554

2.

For a comparison of dissolution profiles, similarity is assessed using the similarity index, f₂
(Shah et al., 1998),²⁸ as described in detail in the guidance for industry *Immediate Release Solid Oral Dosage Forms Scale-Up and Postapproval Changes: Chemistry, Manufacturing, and Controls, In Vitro Dissolution Testing, and In Vivo Bioequivalence Documentation* (November
1995). In particular, given that all profiles are conducted on a minimum of 12 individual dosage
units, 2 profiles are similar if the value of their similarity factor f₂ is between 50 and 100.

561 562

563

3. In-Vitro Release Test

564 When an in-vitro release test (IVRT) is used to support a demonstration of BE for topical 565 dermatological drug products as part of an in vitro characterization-based BE approach, a two-

566 stage, nonparametric statistical approach is recommended, and described in the draft guidance

567 for industry In Vitro Release Test Studies for Topical Drug Products Submitted in ANDAs

568 (October 2022).²⁹ The statistical approach is the same as that used to assess the equivalence of

569 drug release rates for non-sterile semisolid dosage forms evaluated by a comparative IVRT study

570 in the context of certain postapproval changes; this is shown in detail in the guidance for industry

²⁵ Howe, W.G., 1974, Approximate Confidence Limits of the Mean of X+Y Where X and Y are Two Tabled Independent Random Variables, Journal of the American Statistical Association, 69:789-794.

²⁶ Ting, N., R.K. Burdick, F. Graybill, S. Jeyaratnam, and T.F.C. Lu, 1990, Confidence Intervals on Linear Combinations of Variance Components That Are Unrestricted in Sign, Journal of Statistical Computation and Simulation, 35:135-143.

²⁷ When final, these guidances will represent FDA's current thinking on these topics.

²⁸ Shah, V.P., Y. Tsong, P. Sathe, and J.P. Liu, 1998, In Vitro Dissolution Profile Comparison—Statistics and Analysis of the Similarity Factor, f2, Pharmaceutical Research, 15(6):889-896.

²⁹ When final, this guidance will represent FDA's current thinking on this topic.

Draft – Not for Implementation

571 Nonsterile Semisolid Dosage Forms — Scale-Up and Postapproval Changes: Chemistry, 572 Manufacturing, and Controls; In Vitro Release Testing and In Vivo Bioequivalence 573 Documentation (May 1997). 574 The assessment of equivalence by an IVRT involves a comparison of the median in vitro drug 575 576 release rates of two formulations using a non-parametric statistical test which is resistant to 577 outliers that are expected to occur under the particular testing conditions. 578 579 In-Vitro Permeation Test 4. 580 581 When an in-vitro permeation test (IVPT) is used to support a demonstration of BE for topical 582 dermatological drug products as part of an in vitro characterization-based BE approach, a mixed 583 scaled criterion is recommended, and described in detail in the draft guidance for industry In Vitro Permeation Test Studies for Topical Drug Products Submitted in ANDAs (October 2022).³⁰ 584 585 According to that methodology, a confidence interval is calculated for each of the endpoints, log-586 transformed maximum flux (J_{max}) and log-transformed total (cumulative) amount (AMT) 587 permeated. The permeation test is performed with excised skin sections from patients 588 undergoing a surgical procedure or from cadaver donors and the statistical test uses the within-589 reference standard deviation, S_{WR} , as the threshold that prompts use of either the unscaled or 590 scaled confidence interval. 591 592 The mixed-scaled criterion uses the within-reference standard deviation as a threshold, independently, for each endpoint. Specifically, for I_{max} or log-transformed total (cumulative) 593 amount permeated, the reference-scaled average BE approach is used for the endpoint only if it 594

has a $S_{WR} > 0.294$. The regular ABE approach (refer to Schuirmann, 1987)³¹ is used for the endpoint with $S_{WR} \le 0.294$.

598 In the reference-scaled average BE approach, the hypotheses to be tested are:

599
600
$$H_0: \frac{(\mu_T - \mu_R)^2}{\sigma_{WR}^2} \ge \theta$$

$$H_a:\frac{(\mu_T-\mu_R)^2}{\sigma_{\mu_R}^2} < \theta$$

602 Here we determine the 100(1- α)% upper confidence bound for $(\mu_T - \mu_R)^2 - \theta \sigma_{WR}^2$ 603 where:

604 - $\mu_T - \mu_R$ = mean difference of T and R products

605 -
$$\sigma_{WR}^2$$
 = within-subject variance of R product

606 -
$$\theta = \frac{(\ln (m))^2}{(\sigma_{W0})^2}$$
, $m = 1.25$, and $\sigma_{W0} = 0.25$ (regulatory constant)

607 For the T product to be bioequivalent to the R product, both of the following conditions must be 608 satisfied for each endpoint tested:

³⁰ When final, this guidance will represent FDA's current thinking on this topic.

³¹ See footnote 22.

Draft – Not for Implementation

609	
610	a. The 95% upper confidence bound for $(\mu_T - \mu_P)^2 - \theta \sigma_{WP}^2$ must be less than
611	or equal to zero (numbers should be kept to a minimum of four significant
612	figures for comparison).
613	
614	b. The point estimate of the T/R geometric mean ratio must fall within the pre-
615	specified limits $\left[\frac{1}{m}, m\right]$, where $m = 1.25$.
616	
617	In the case of the non-scaled approach, we calculate the $100(1-2\alpha)$ % confidence interval for
618	$\mu_T - \mu_R$ as
619	
620	$\bar{I}_{.} \pm t_{(1-\alpha),(n-1)} * \sqrt{\frac{S_I^2}{n}}$
621	,
622	where:
623	- \overline{I} is the point estimate for the mean difference of T and R products
624	- S_t^2 stimate of inter-donor variability
02.	
625	- $t_{(1-\alpha),(n-1)}$ is the 100 $(1-\alpha)$ percentile of the student's t-distribution with $(n-1)$
626	degrees of freedom
()7	a is the much on of domains
027	- n is the number of donors
628	- the value of α is usually set at 0.05
629	
630	For the T product to be bioequivalent to the R product, the $100(1-2\alpha)\%$ confidence interval for
631	$\mu_T - \mu_R$ must be contained within the limits $\begin{bmatrix} 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$
632	tested where $m = 1.25$
633	tested, where $m = 1.25$.
634	5 Abuse-Deterrent Formulation Comparative Studies
635	5. Abuse-Delerrent Pormulation Comparative Studies
636	An ADE is a formulation that has abuse-deterrent properties, which are defined as drug product
637	properties that are expected to meaningfully deter certain types of abuse even if they do not fully
638	properties that are expected to meaningfully deter certain types of abuse, even if they do not fully prevent abuse 32 . The general BE statistical considerations for in vitro ADE comparative studies
639	prevent abuse. The general DD statistical considerations for in vitro ADT comparative statics presented in this guidance align with the guidance for industry – <i>Abuse-Deterrent Opioids</i> –
640	Evaluation and Labelino ³³ and the guidance for industry – General Principles for Evaluating the
641	Abuse Deterrence of Generic Solid Oral Onioid Drug Products (November 2017) The notential
642	route of abuse (i.e. ingestion (oral route) injection (narenteral route) insufflation (nasal route) or
643	smoking (inhalation route)) and its relevance to ADF design feature(s) will determine how an
644	annicant should evaluate the abuse deterrence of the product utilizing a tier-based approach. To
645	support in vitro ADF comparative studies the Agency recommends applicants provide
045	support in vitro ADI comparative studies, the Agency recommends applicants provide

 ³² See the guidance for industry *Abuse-Deterrent Opioids - Evaluation and Labeling* (April 2015).
 ³³ Ibid.

Draft – Not for Implementation

646 justification for the sample size, statistical test, and number of batches to assess the abuse-deterrent 647 properties and demonstrate consistency of abuse-deterrent performance throughout the drug 648 product shelf-life and lifecycle (i.e., postapproval changes). Applicants should consider a 649 standardized accept/reject criterion based on delta or confidence interval relevant to the abuse-650 deterrent outcome. The Agency recommends the use of relevant statistics (e.g., sampling plans) 651 to support evaluation of abuse-deterrent properties.

652

653 For ANDA submissions, a non-inferiority approach should be taken when comparing T product with R product to conclude that T product is no less abuse deterrent than R product.³⁴ The Agency 654 655 recommends inferential analyses to evaluate the abuse deterrence of T product versus R product. 656 In the analyses, a hierarchical set of null hypotheses serves as a gatekeeper for subsequent null 657 hypotheses, evaluating the abuse deterrence of T and R products under progressively more 658 challenging conditions. A hierarchical inferential approach is used to maintain a fixed family-wise 659 experiment Type I error rate. Typically, the acceptable Type I error probability (α) will be set at 660 5%.

- 661
- 662 663

6. Earth Mover's Distance Based Profile Comparison Approach

664 EMD is a statistical metric that measures the discrepancy (distance) between distributions without a prior assumption of the distribution.³⁵ The EMD has been recommended in a profile 665 comparison approach to assess equivalence of particle size distribution profile,³⁶ where the 666 667 profile exhibits complex distribution (i.e., multiple peaks) that cannot be accurately described by 668 some conventional descriptors (e.g., the D50 and SPAN). The EMD-based profile comparison 669 approach is briefly described as follows. To assess equivalence between the T and R product 670 formulations in the particle size distribution shape, an average profile of all R product samples 671 (i.e., R center) is calculated and serves as the reference profile to compute the distance between 672 an R or a T product sample to the R center using the EMD algorithm. After obtaining the profile 673 distances between each R product sample and the R product average (R – R center distance), and 674 the profile distances between each T product sample and the R product average (T - 'R center' 675 distance), a statistical equivalence method, e.g., the PBE, is then applied to the two groups of 676 distances to indicate whether the T and R products are statistically equivalent in the particle size 677 distribution shape. For details, refer to Rubner et al. (2000).³⁷

678

Importantly, considering the increasingly emerging technologies and methods for in vitro BE
 studies, applicants are encouraged to contact the Agency early to discuss their proposed study

designs and statistical methods via the controlled correspondence, pre-ANDA meeting, pre-IND

- 682 meeting, or pre-NDA meeting pathway.³⁸
- 683

³⁴ Guidance for Industry *Evaluating the Abuse Deterrence of Generic Solid Oral Opioid Drug Products* (November 2017).

³⁵ Rubner, Y., C. Tomasi, and L.J. Guibas, 2000, The Earth Mover's Distance as a Metric for Image Retrieval, International Journal of Computer Vision, 40(2):99-121.

³⁶ Draft PSG for industry on Cyclosporine emulsion (October 2016). When final, this guidance will represent the FDA's current thinking on this topic.

³⁷ See footnote 35.

³⁸ See footnotes 8, 9, and 10.

684 685	В.	Statistical Methods for Narrow Therapeutic Index and Highly Variable Drug Products
686 687 688	1.	Statistical Method for Narrow Therapeutic Index Drugs
689 690 691 692	If a drug is a r The statistical average BE te	harrow therapeutic index drug, a fully replicated cross-over design should be used. analysis should be carried out using both the ABE and the reference-scaled sts for both AUC and C_{max} .
693	The reference	-scaled average BE is evaluated by testing the null hypothesis:
694		$H_0: \frac{(\mu_T - \mu_R)^2}{\sigma_{WR}^2} \ge \theta$
695	versus the alte	ernative hypothesis:
696		$H_a: \frac{(\mu_T - \mu_R)^2}{\sigma_{MR}^2} < \theta$
697 698	where	WA
699 700		μ_T is the population average response of the log-transformed measure for the Test formulation.
701 702	_	μ_R is the population average response of the log-transformed measure for the Reference formulation.
703	_	σ_{WR}^2 is the population within subject variance of the Reference formulation.
704	_	$\theta = \frac{[\ln(\Delta)]^2}{\sigma_{W0}^2}$ is the BE limit.
705 706 707	_	Δ and σ_{W0}^2 are predetermined constants. Refer to the draft guidance for industry <i>Bioequivalence Studies With Pharmacokinetic Endpoints for Drugs Submitted Under an ANDA</i> (August 2021) for the values of Δ and σ_{W0}^2 . ³⁹
708 709 710	Testing is usu conclusion of	ally done at α =0.05 and that rejection of the null hypothesis supports the bioequivalence.
711 712 713	Narrow therap unscaled avera	beutic index BE studies should pass both the reference-scaled approach and the age BE limits of 80.00 to 125.00%.
714 715 716 717	In addition, th The within-su sided F test.	e test/reference ratio of the within-subject standard deviation should be evaluated. bject variability comparison of the T and R drug products is carried out by a one- The null hypothesis for this test is the following.
718	$H_0 : \frac{\sigma_{WT}}{\sigma_{WR}} \ge \delta$	

³⁹ When final, this guidance will represent FDA's current thinking on this topic.

Draft – Not for Implementation

719

720 And the alternative hypothesis is:

721 722 $H_a: \frac{\sigma_{WT}}{\sigma_{WR}} < \delta$

723

where σ_{WT} is the within-subject standard deviation for the test product, σ_{WR} is the within-subject standard deviation for the reference product and δ is the limit to declare the within-subject variability of the test product is not greater than that of the reference product (refer to the draft guidance for industry *Bioequivalence Studies With Pharmacokinetic Endpoints for Drugs Submitted Under an ANDA* (August 2021) where δ was set to 2.5).⁴⁰

729 730

• The 100(1- α)% CI for σ_{WT}/σ_{WR} is given by

731
$$\bullet \left(\frac{s_{wt}/s_{wR}}{\sqrt{\frac{F_{\alpha}}{2}(v_1,v_2)}}, \frac{s_{wt}/s_{wR}}{\sqrt{\frac{F_{1-\alpha}}{2}(v_1,v_2)}}\right)$$

Here, $\alpha = 0.1$, $F_{\frac{\alpha}{2}}(v_1, v_2)$ and $F_{1-\frac{\alpha}{2}}(v_1, v_2)$ are the values of the F-distribution with v_1 (numerator) and v_2 (denominator) degrees of freedom that has probability of $\alpha/2$ and 1- $\alpha/2$ to its right, respectively.

735

737

736

2. Statistical Method for Highly Variable Drugs

If a drug is a high variable drug, a partial or fully replicated cross-over design should be used.
The statistical analysis should be carried out using the mixed scaling approach below for both
AUC and C_{max}.

742 The mixed scaling approach:

743 744

745

746

741

If the estimated within-subject standard deviation of the RLD is < 0.294, the two one-sided test procedure should be used to determine BE for the individual PK parameter. Otherwise, the reference-scaled procedure should be used to determine BE for the individual PK parameter together with a point estimate constraint for the estimated test/reference geometric mean ratio.

together with a point estimate constraint for the estimated test/reference geometric mean ratio.

For the reference-scaled approach the upper BE limit for Test/Reference ratio of geometric means is $\Delta = \frac{1}{0.8}$, the regulatory constant is $\sigma_{w0} = 0.25$ and the point estimate constraint is 80.00 to 125.00%.

752

Refer to the draft guidance for industry *Bioequivalence Studies With Pharmacokinetic Endpoints for Drugs Submitted Under an ANDA* (August 2021) for further details.⁴¹

755

⁴⁰ When final, this guidance will represent FDA's current thinking on this topic.

⁴¹ When final, this guidance will represent FDA's current thinking on this topic.

756		C.	Comparative Clinical Endpoint Bioequivalence Studies		
757					
758	For so	me pro	ducts, the PSG may recommend an appropriately designed comparative clinical		
759	endpoint BE study. In particular, a comparative clinical endpoint BE study is an option to be				
760	consid	ered fo	r measuring BA or demonstrating BE of dosage forms intended to deliver the active		
761	monety	v locall	y, e.g., topical preparations for the skin, eye, and mucous membranes; oral dosage		
762	forms	not inte	ended to be systemically absorbed, e.g., an antacid; bronchodilators administered by		
763	oral in	halatio	n.		
764	Ŧ	1.1			
765	In gen	eral, th	ese studies will have a randomized, parallel group design, with three arms: test,		
/66	referer	ice, and	a placebo/vehicle.		
/6/		A 1			
/68	•	A plac	cebo/vehicle arm is recommended to demonstrate that the I product and R product		
/69		are ac	tive and to establish that the study is sufficiently sensitive to detect differences		
//0		betwe	en products at the lower end of the dose/response curve.		
//1	To oct	hlich I	PE it is recommended that the following compound hypotheses (continuous		
772	10 esta	int or d	ishotomous and point) he tested. Priorition of the null hypothesis supports the		
774	conclu	sion of	Fequivalence of the two products		
775	conciu	.51011 01	equivalence of the two products.		
776	For a c	ontinu	ous endnoint:		
777	The ni	ill hype	ous enapoint. othesis for this test is:		
778	The ne	in nypy			
779	Ho: ut	$/\mu_{R} < 6$	θ_1 or $\mu_T / \mu_B > \theta_2$		
780	• • •	1=			
781	versus	the alt	ernative hypothesis:		
782	$H_a: \theta_1$	< μ _T /μ	$\mu_{\rm R} < \theta_2$		
783					
784	where	:			
785		—	μ_T = mean of the primary endpoint for the test group, and		
786		_	μ_R = mean of the primary endpoint for the reference group.		
707					
181	T1	.11 1	athenia II is universed with a Towne Lemma (a) of 0.05 (true one sided tests) if the		
/88	1 ne nt	iii nype amfidae	Sinesis, H_0 , is rejected with a Type 1 error (α) of 0.05 (two one-sided tests) if the		
700	90% C		the interval for the ratio of the means between 1 and K products (μ_T / μ_R) is		
790 701	contai	lied wit	$\lim \lim \lim \operatorname{Interval} [\sigma_1, \sigma_2].$		
791	Forad	lichoto	mous endnoint:		
793	The ni	ill hype	athesis for this test is:		
794	The ne	in nype			
795	Ho. π_{T}	_πρ< Λ	1 or π_{T-} $\pi_{P} > \Lambda_{2}$		
796	110. 101	<u>π<u></u>Δ</u>	$\Delta_1 \circ 1 \circ$		
797	versus	the alt	ernative hypothesis:		
798	$H_a: \Delta_1$	$<\pi_{\rm T}$ -	$\pi_{\rm R} < \Delta_2$		
799					

Draft – Not for Implementation

800	where:		
801		_	$\pi_{\rm T}$ = the success rate of the primary endpoint for the treatment group, and $\pi_{\rm R}$ = the
802			success rate of the primary endpoint for the reference group.
803			
804 805 806	The nu estimat produc	ll hyp ted 90 ts (π _T -	othesis, H ₀ , is rejected with a Type I error (α) of 0.05 (two one-sided tests) if the % confidence interval for the difference of the success rates between T and R $-\pi_R$) is contained within the interval [Δ_1 , Δ_2].
807			
808 809 810	•	For c the te $(p \le 0)$	ontinuous and binary endpoints, in order to demonstrate adequate study sensitivity, est product and reference product should both be statistically superior to placebo (05) with regard to the primary endpoint
Q11		φ	(5) with regard to the primary endpoint.
812 813 814	•	Refer popul a give	to PSGs for comparative clinical endpoint BE study designs, definitions of study lations, regulatory constant (e.g., equivalence interval limit), and analyses specific to en product.
815			
816		D.	Studies in Multiple Groups
817			
818	There	can be	multiple sources of group ⁴² effects in BE studies. Sometimes, groups reflect
819	factors	arisin	g from study design and conduct. For example, a PK BE study can be carried out in
820	two or	more	clinical centers and the study may be considered a multi-group BE study. The
821	combin	nation	of multiple factors may complicate the designation of group. Therefore, sponsors
822	should	minin	nize the group effect in a PK BE study as recommended below:
823			
824		(1) D	ose all groups at the same clinic unless multiple clinics are needed to enroll a
825		sı	ifficient number of subjects.
826			
827		(2) R	ecruit subjects from the same enrollment pool to achieve similar demographics
828		aı	nong groups.
829			
830		(3) R	ecruit all subjects, and randomly assign them to group and treatment arm, at study
831		0	utset.
832			
833		(4) Fo	ollow the same protocol criteria and procedures for all groups.
834			
835		(5) W	/hen feasible (e.g., when healthy volunteers are enrolled), assign an equal sample
836		si	ze to each group.
837			
838	Bioequ	ivaler	nce should be determined based on the overall treatment effect in the whole study
839	popula	tion.	In general, the assessment of BE in the whole study population should be done
840	withou	t inclu	iding the treatment and group interaction(s) term in the model, but applicants may
841	also us	e othe	r pre-specified models, as appropriate (Fleiss 1986, Permutt 2003, Tsiatis et al.

⁴² In literature, the term *group* is sometimes referred to as *subgroup*.

Draft – Not for Implementation

2008).⁴³ The assessment of interaction between the treatment and group(s) is important, 842 843 especially if any of the first four study design criteria recommended above are not met and the 844 PK BE data are considered pivotal information for drug approval. If the interaction term of group and treatment is significant (Alosh et al. 2015, Grizzle 1965),⁴⁴ heterogeneity of treatment 845 846 effect across groups should be carefully examined and interpreted with care. If the observed 847 treatment effect of the products varies greatly among the groups, vigorous attempts should be 848 made to find an explanation for the heterogeneity in terms of other features of trial management 849 or subject characteristics, which may suggest appropriate further analysis and interpretation.

850

851 It is important that statistical methods and models for the primary BE analysis are fully pre852 specified in the protocol or SAP (e.g., in an ANDA study, the applicant should pre-specify

detailed statistical criteria and models to be used if the interaction term of group and treatment is

applicable). In addition, the statistical model should reflect the multigroup nature of the study.

855 For example, if subjects are dosed in two groups in a crossover BE study, the model should

reflect the fact that the periods for the first group are different from the periods for the second group, i.e., the period effect should be nested within the group effect.

858

When there are multiple centers with very few subjects in some centers and sponsors want to
combine centers in the analysis, any rules for combination should be pre-specified in the protocol
or SAP and a sensitivity analysis is recommended. More complicated scenarios may be
discussed with the appropriate CDER review division before submission.

863

864

E. Bioequivalence Statistics for Adhesion and Irritation Studies

865

In terms of the statistical method used in irritation, sensitization or/and adhesion studies for
Transdermal and Topical Delivery Systems, refer to the Statistical Consideration section in the
draft guidance for industry Assessing *the Irritation and Sensitization Potential of Transdermal and Topical Delivery Systems for ANDAs* (October 2018) and the Considerations for Statistical
Analysis section in the draft guidance for industry *Assessing Adhesion With Transdermal and Topical Delivery Systems for ANDAs* (October 2018).⁴⁵

872

- 873
- 874

⁴³ Fleiss, J.L., 1986, Analysis of Data from Multiclinic Trials, Controlled Clinical Trials, 7(4):267-275; Permutt, T., 2003, Probability Models and Computational Models for ANOVA in Multicenter Clinical Trials, Journal of Biopharmaceutical Statistics, 13(3):495-505; Tsiatis, A.A., M. Davidian, M. Zhang, and X. Lu, 2008, Covariate Adjustment for Two-Sample Treatment Comparisons in Randomized Clinical Trials: A Principled Yet Flexible Approach, Statistics in Medicine, 27(23):4658-4677.

⁴⁴Alosh, M., K. Fritsch, M. Huque, K. Mahjoob, G. Pennello, M. Rothmann, E. Russek-Cohen, F. Smith, S. Wilson, and L. Yue, 2015, Statistical Considerations on Subgroup Analysis in Clinical Trials, Statistics in Biopharmaceutical Research, 7(4):286-303; Grizzle, J.E., 1965, The Two-Period Change-Over Design and Its Use in Clinical Trials, Biometrics, 21(2):467-480.

⁴⁵See also the draft guidance for industry *Assessment of Adhesion for Topical and Transdermal Systems Submitted in New Drug Applications* (July 2021). When final, these guidances will represent FDA's current thinking on these topics.

Draft – Not for Implementation

875 F. Dose Scale for Bioequivalence Assessment

876
877 In this method, the BE assessment is based on relative bioavailability of the test and reference
878 formulations at the site(s) of action. The relative bioavailability, F, is the ratio of the doses of
879 test and reference formulations that produce an equivalent PD response.

880

Generally, the F is estimated by fitting an Emax model that describes the within-study dose response relationship. Among available statistical methods for Emax model fitting, nonlinear
 mixed effect (NLME) modeling is recommended, because the NLME modeling is capable of
 characterizing between-subject variability and residual unexplained variability, and less sensitive
 to aberrant observation and missing values.

- 886
- 887 For model fitting details, refer to the PSG on Orlistat oral capsule.⁴⁶
- 888889 To determine BE, the 90% confidence interval for F can be estimated by a bootstrap procedure.
- 890 Each bootstrap estimation includes the calculation of F by fitting the selected model to a sample
- dose-response data set, which is generated by resampling with replacement. To maintain the
- 892 correlation of observations within subject, resampling by subject (remaining observations from
- all T and R treatment arms) is recommended rather than resampling by observations. The
- 894 Agency has also recommended using Efron's bias corrected and accelerated method to compute a
- 895 90% confidence interval for F.⁴⁷ Alternatively, the 90% confidence interval for F can be
- 896 estimated without a bootstrap procedure, directly from the point estimate of logF and its standard
- 897 error calculated using NLME modeling.
- 898

Given the complexity of dose scale analysis for comparative PD BE studies, applicants are
 encouraged to contact the Agency early to discuss their proposed study designs and statistical
 methods (e.g., alternative modeling approaches, impact of the missing data and the handling
 strategy) via the controlled correspondence, pre-ANDA meeting, pre-IND meeting, or pre-NDA
 meeting pathway.⁴⁸

- 904
- 905 906

G. Bioequivalence Studies Using Multiple References

907 In BE studies with more than two reference treatment arms (e.g., a three-period study including 908 two references, one from the European Union (EU) and another from the United States, or a 909 four-period study including test and reference in fed and fasted states), the BE determination 910 should be based on the comparison between the relevant test and reference products, using only 911 the data from those products. The BE analysis for this comparison should be conducted 912 excluding the data from the non-relevant treatment(s) — for example, in a BE study with a T 913 product, an EU reference product, and a U.S. reference product, the comparison of the T product 914 to the U.S. reference product should be based on an analysis excluding the data from the EU 915 reference. However, full data from the BE studies, including data comparing the T product that

⁴⁶ Draft PSG for industry on Orlistat oral capsule (August 2021). When final, this guidance will represent FDA's current thinking on this topic.

⁴⁷ Ibid.

⁴⁸ See footnotes 8, 9, and 10.

- 916 is the subject of the application with non-U.S. reference products, should be submitted in the
- 917 application for completeness. The applicant may discuss the study design and statistical
- 918 approach with the appropriate CDER review division before study conduct.
- 919
- 920

Draft – Not for Implementation

921 V. APPENDICES922

- A. Choice of Specific Replicated Crossover Designs
 Appendix A describes why FDA prefers replicated crossover designs with only two sequences,
 and why the Agency recommends the specific designs described in section II.A.1.b of this
 guidance.
- 929 929 930

1. Reasons Unrelated to Carryover Effects

Bach unique combination of sequence and period in a replicated crossover design can be called a
cell of the design. For example, the two-sequence, four-period design recommended in section
II.A.1.b has eight cells. The four-sequence, four-period design below has 16 cells.

935			Period			
936 937			1	2	3	4
938						
939		1	Т	R	R	Т
940						
941		2	R	Т	Т	R
942	Sequence					
943	-	3	Т	Т	R	R
944						
945		4	R	R	Т	Τ

946

947 The total number of degrees-of-freedom attributable to comparisons among the cells is just the 948 number of cells minus one (unless there are cells with no observations).

949

950 The fixed effects that are usually included in the statistical analysis are sequence, period, and

treatment (i.e., formulation). The number of degrees-of-freedom attributable to each fixed effect

952 is generally equal to the number of levels of the effect, minus one. Thus, in the case of the two-953 sequence, four-period design recommended in section V.A.1, there would be 2-1=1 degree-of-

955 sequence, four-period design recommended in section V.A.1, there would be 2-1-1 degree-of-954 freedom due to sequence, 4-1=3 degrees-of-freedom due to period, and 2-1=1 degree-of-freedom

955 due to treatment, for a total of 1+3+1=5 degrees-of-freedom due to period, and 2 1 1 degree

956 effects. Because these 5 degrees-of-freedom do not account for all 7 degrees-of-freedom

957 attributable to the eight cells of the design, the fixed-effects model is not saturated. There could

be some controversy as to whether a fixed-effects model that accounts for more or all of the

- 959 degrees-of-freedom due to cells (i.e., a more saturated fixed-effects model) should be used. For
- 960 example, a sequence-by-period-by-treatment interaction effect might be included, which would961 fully saturate the fixed-effects model.
- 962

963 If the replicated crossover design has only two sequences, use of only the three main effects

964 (sequence, period, and treatment) in the fixed-effects model or use of a more saturated model

965 makes little difference to the results of the analysis, provided there are no missing observations,

966 967	and the study will be the sa	is carried out me for the mai	in one § n-effec	group o ts mode	f subjec el and f	ets. The loor the satu	east squares point estimate of $\mu_T - \mu_R$ arated model.
908	If the replicat	ad amongoyon d	agian h	0.5 m 0 m	a than t		naag thaga advantagag ara na langar
909	If the replicat	ed crossover d	esign n	as more	than t	wo sequer	ices, these advantages are no longer
970	present. Man	h-effects mode	IS WIII	general	ly prod	uce differ	ent point estimates of $\mu_T - \mu_R$ than
9/1	saturated mod	iels (unless the				n each sec	juence is equal), and there is no well-
972	accepted basi	s for choosing	betwee	n these	differe	ent estimat	tes (though $\mu_T - \mu_R$ from the
9/3	saturated mod	Thus use of d			ropriate	e for use fi	a the reference-scaled average BE
9/4	assessment).	Thus, use of d	esigns	with on	d affac	sequences	s minimizes of avoids certain
975	ambiguities d	lue to specific	choices	of fixe	d effec	is to be in	ciuded in the statistical model.
970	2	Doggova Dol	at ad to	Carrows	Low Eff	anta	
9//	2.	Reasons Rela	iiea io	Carryo	ver Ejje	ecis	
978	One of the re	accord to use th	a faire		four	maniad da	an described above is that it is
9/9	thought to be	asons to use in	e lour-s	sequenc	e, lour	-period de	sign described above is that it is
980	thought to be	opumar n cari	yover	effects	are mer	uded in th	e model.
901	Similarly the	two soquonoo	thraa	noriad	docian	ic thought	to be entimel emong three period
902	roplicated are	rwo-sequence	, unce-	of the	a dosign	is mought	angly balanced for correspondences
905	moning that	and tractman	t is prov	of thes	e desig	other treat	tmont and itself an equal number of
085	times		i is pice		y cach		inent and risen an equal number of
985	unies.						
987				р	eriod		
988				1	ciidu		
989				1	2	3	
990				1	2	5	
991			1	Т	R	R	
992		Sequence	1	-			
993		Sequence	2	R	Т	Т	
994			-		-	-	
995	With these de	esigns, no effic	iency is	s lost by	y includ	ling simpl	e first-order carryover effects in the
996	statistical mo	del. However.	if the	oossibil	ity of c	arryover e	effects is to be considered in the
997	statistical ana	lysis of BE stu	dies, th	ne possi	bility o	of direct-b	y-carryover interaction should also be
998	considered. I	f direct-by-car	ryover	interact	tion is p	oresent in	the statistical model, these favored
999	designs are no	o longer optim	al. Ind	eed, the	TRR/I	RTT desig	n does not permit an unbiased within-
1000	subject estim	ate of $\mu_T - \mu_R$	in the	presenc	e of ge	neral dire	ct-by-carryover interaction.
1001	5		L	L	0		5
1002	The issue of v	whether a pure	ly main	-effects	s model	l or a mor	e saturated model should be specified,
1003	as described i	in the previous	section	n, also i	s affect	ted by pos	sible carryover effects. If carryover
1004	effects, inclue	ding direct-by-	carryov	ver inter	raction,	, are inclu	ded in the statistical model, these
1005	effects will be	e partially cont	founded	l with s	equenc	e-by-treat	ment interaction in four-sequence or
1006	six-sequence	replicated cros	sover o	lesigns,	but no	t in two-s	equence designs.
1007	-	-					-
1008	In the case of	the four-perio	d and t	hree-pe	riod de	signs reco	mmended in section II.A.1.b, the
1009	estimate of μ	$T - \mu_R$, adjuste	ed for fi	irst-ord	er carry	vover effec	ets, including direct-by-carryover

1010	interaction, is	s as efficient or more efficient than for any other two-treatment replicated crossover					
1011	designs.						
1012	2	Two Davied Deplicated Cuescoury Designs					
1015	5.	Two-Ferioa Replicated Crossover Designs					
1014	For most dru	ig products, two period replicated crossover designs such as the Balaam design					
1015	(which uses t	the sequences TR RT TT and RR) should be avoided. However, the modified					
1010	Ralaam desig	an (TR RT RR) may be useful for particular drug products (e.g. a long half-life					
1017	drug for whi	ch a two-period study would be feasible but a three-or-more-period study would					
1010	not) when re	ference-scaled average BE is needed.					
1020		leiche Seulea average DD is neededi					
1021	B.	Rationale for Logarithmic Transformation of Pharmacokinetic Data					
1022							
1023	1.	Clinical Rationale					
1024							
1025	The FDA Ger	neric Drugs Advisory Committee recommended in 1991 that the primary comparison of					
1026	interest in a B	E study is the ratio, rather than the difference, between average PK parameter data from					
1027	the T and R for	ormulations. Using logarithmic transformation, the general linear statistical model					
1028	employed in t	he analysis of BE data allows inferences about the difference between the two means on					
1029	the log scale,	which can then be retransformed into inferences about the ratio of the two averages					
1030	(geometric means) on the original scale. Logarithmic transformation thus achieves a general						
1031	comparison b	ased on the ratio rather than the differences.					
1032							
1033	2.	Pharmacokinetic Rationale					
1034	XX 7 (1 1 1						
1035	westlake obs	erved that a multiplicative model is postulated for PK measures in BA/BE studies (i.e., hyperbolic transmission of the draw is					
1030	AUC and C_{ma}	$_{\rm ax}$, but not $I_{\rm max}$) (we strake 19/3 and 1988). Assuming that elimination of the drug is					
1037	avtrovocoulor	route of administration.					
1038	extravascular						
1039							
1040	AUC	$_{0-\infty} = F^*D/CL$					
1041							
1042		$= F^*D/(V^*Ke)$					
1043							
1044	where F is the	e fraction absorbed, D is the administered dose, and F*D is the amount of drug absorbed.					
1045	CL is the clea	rance of a given subject that is the product of the apparent volume of distribution (V) and					
1046	the eliminatio	n rate constant (Ke). The use of AUC as a measure of the amount of drug absorbed					
1047	involves a mu	illiplicative term (CL) that might be regarded as a function of the subject. For this reason,					

⁴⁹ Westlake, W. J., 1973, The Design and Analysis of Comparative Blood-Level Trials, J. Swarbick, editor, Current Concepts in the Pharmaceutical Sciences, Dosage Form Design and Bioavailability, Philadelphia: Lea and Febiger, 149-179.

⁵⁰ Westlake, W. J., 1988, Bioavailability and Bioequivalence of Pharmaceutical Formulations, Biopharmaceutical Statistics for Drug Development, 329-352.

1048 1049 1050	Westlake contends that the subject effect is not additive if the data are analyzed on the original scale of measurement.
1050 1051 1052 1053	Logarithmic transformation of the AUC data will bring the CL (i.e., V*Ke) term into the following equation in an additive fashion:
1055 1054 1055	$\ln AUC_{0-\infty} = \ln F + \ln D - \ln V - \ln Ke$
1056 1057	Similar arguments were given for C_{max} . The following equation applies for a drug exhibiting one compartmental characteristic:
1058 1059 1060	$C_{max} = (F^*D/V) * exp(-Ke^*T_{max})$
1061 1062	where again F, D and V are introduced into the model in a multiplicative manner. However, after logarithmic transformation, the equation becomes:
1063 1064 1065	$\ln C_{\max} = \ln F + \ln D - \ln V - Ke^* T_{\max}$
1066 1067	Thus, log transformation of the C_{max} data also results in the additive treatment of the V term.
1068 1069 1070	C. SAS Program Statements for Average Bioequivalence Analysis of Replicated Crossover Studies
1070 1071 1072 1073 1074	The following illustrates an example of program statements to run the unscaled average BE analysis using PROC MIXED in SAS version 9, with SEQ, SUBJ, PER, and TRT identifying sequence, subject, period, and treatment variables, respectively, and Y denoting the response measure (e.g., log (AUC), log (C_{max})) being analyzed:
1075 1076 1077 1078 1079 1080 1081 1082	PROC MIXED; CLASSES SEQ SUBJ PER TRT; MODEL Y = SEQ PER TRT/ DDFM=SATTERTH; RANDOM TRT/TYPE=FA0(2) SUB=SUBJ G; REPEATED/GRP=TRT SUB=SUBJ; ESTIMATE 'T vs. R' TRT 1 -1/CL ALPHA=0.1;
1082 1083 1084 1085 1086 1087	The <i>Estimate</i> statement assumes that the code for the test formulation precedes the code for the reference formulation in sort order (this would be the case, for example, if T were coded as 1 and R were coded as 2). If the R code precedes the T code in sort order, the coefficients in the Estimate statement would be changed to -1 1.
1087 1088 1089	In the <i>Random</i> statement, TYPE=FA0(2) could possibly be replaced by TYPE=CSH or UNR.
1090 1091 1092	In the <i>Model</i> statement, DDFM=SATTERTH could possibly be replaced by DDFM=KR2. However, the detailed model specification should be pre-specified in the protocol or SAP and data driven post hoc selection of the model is not allowed.

Draft – Not for Implementation

1093

- 1094 Additions and modifications to these statements can be made if the study is carried out in more
- than one group of subjects or other complicated scenarios. Alternative software could also be
- 1096 used if same results are generated as in PROC MIXED in SAS.