Environmental Assessment for Food Contact Notification FCN 2162
https://www.fda.gov/Food, see Environmental Decisions under Ingredients and Packaging (Search FCN 2162)

1. **Date:**
 August 13, 2021

2. **Name of Applicant/Petitioner:**
 Kuraray Co., Ltd.
 Kuraray America, Inc.
 Kuraray Europe GmbH
 Kuraray GC Advanced Materials Co., Ltd.

3. **Address:**
 All communications on this matter are to be sent in care of Counsel for Notifier:
 Mitzi Ng Clark, Partner
 Keller and Heckman LLP
 Three Embarcadero Center, Suite 1420
 San Francisco, CA 94111
 Telephone: 415-948-2838
 E-mail: clark@khlaw.com

4. **Description of Proposed Action**

 A. Requested Action
 The action requested in this Notification is to establish a clearance for the food-contact substance (FCS), styrene block polymer with 1,3-butadiene, hydrogenated (CAS Reg. No. 66070-58-4), when used in food-contact materials. The FCS is intended for use in contact with fatty foods under Conditions of Use A through H. The FCS is not for use in contact with infant formula and human milk. Such uses were not included as part of the intended use of the substance in the FCN.

 B. Need for Action
 The FCS is intended to be used as a component of food-contact materials. The FCS is typically used with other polymers to improve elasticity, clarity, impact resistance, and puncture resistance of articles in contact with food.

 C. Location of Use/Disposal
 Finished food-contact materials containing the FCS will be utilized in patterns corresponding to the population density and will be widely distributed across the country. Thus, it is anticipated that disposal will occur nationwide. According to U.S. Environmental Protection

 [1] FDA’s Food Types and Conditions of Use are defined in Tables 1 and 2 at: https://www.fda.gov/food/packaging-food-contact-substances-fcs/food-types-conditions-use-food-contact-substances.
Agency (EPA) data for 2018, approximately 50.0% of municipal solid waste is currently deposited in land disposal sites, 11.8% is combusted with energy recovery, 23.6% is recycled, 8.5% is composted. The remaining 6.1% consists of food that was processed through other food management pathways.² The use of the FCS in food-contact materials will not significantly impact the disposal patterns of the polymeric resins in which they are used.

5. Identification of the Subject of the Proposed Action

The subject of this notification is styrene block polymer with 1,3-butadiene, hydrogenated (CAS Reg. No. 66070-58-4). The FCS is a high molecular weight polymer. The polymer cannot be represented by a discrete chemical structure due to the presence of multiple monomeric repeating units. A generalized chemical structure of this substance may be represented as follows:

![Chemical structure of FCS]

6. Introduction of Substances into the Environment

Under 21 C.F.R. § 25.40(a) (“Environmental assessments”), an environmental assessment ordinarily should focus on relevant environmental issues relating to the use and disposal from use, rather than the production, of FDA-regulated materials. The Notifier is not aware of any information to suggest that there are any extraordinary circumstances in this case indicative of any significant adverse environmental impact as a result of the manufacture of the subject FCS. Consequently, information on the manufacturing site and compliance with relevant emissions requirements is not provided here.

² Advancing Sustainable Materials Management: 2018 Fact Sheet. Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Landfilling in the United States, U.S. Environmental Protection Agency, Office of Resource Conservation and Recovery, November 2020, available at: https://www.epa.gov/sites/production/files/2020-11/documents/2018_ff_fact_sheet.pdf. According to this report, of the total 292.4 million tons of municipal solid waste (MSW) generated in 2018, approximately 50.0% generally was land disposed, 11.8% was combusted with energy recovery, 23.6% is recycled, and 8.5% is composted. The remaining 6.1% consists of food that was processed through other food management pathways.
No significant environmental release is expected when the subject FCS is used in the manufacture of food-contact materials. The FCS will be entirely incorporated into finished articles, and essentially all of it is expected to remain with these materials throughout the use/disposal of the finished materials by the consumer. Any waste material generated during the manufacture of the finished articles, *e.g.*, plant scraps, is expected to be discarded as part of the finished article manufacturer’s overall nonhazardous solid waste in accordance with established procedures.

Disposal by the ultimate consumer of the finished food-contact materials will be by conventional rubbish disposal and, hence, primarily by sanitary landfill or incineration.

The FCS is composed of carbon and hydrogen. Thus, the combustion products of the FCS include carbon dioxide. The carbon content of the FCS has been calculated based on the elemental composition of the FCS (available in a confidential attachment to the EA).

In accordance with 40 C.F.R. § 1508.27, the analysis of the significance of environmental impacts must include the degree to which the action threatens a violation of federal, state, or local laws imposed for the protection of the environment. In this context, 40 C.F.R. § 98.2(a)(3), requires stationary fuel combustion sources which emit 25,000 metric tons (MT) CO\(_2\) equivalents (CO\(_2\)-e) or more per year to report their GHG emissions to the U.S. Environmental Protection Agency (EPA). Municipal solid waste (MSW) combustion facilities are stationary fuel combustion sources pursuant to 40 C.F.R. 98.30(a). The GHG emissions resulting from the use and disposal of the FCS relate to the incineration of articles containing the FCS in MSW combustion facilities. Such facilities are regulated by the U.S. Environmental Protection Agency (U.S. EPA) under 40 C.F.R. § 98, which “establishes mandatory GHG reporting requirements for owners and operators of certain facilities that directly emit GHG.” Part 2 of this regulation (40 C.F.R. § 98.2) describes the facilities that must report GHG emissions and sets an annual 25,000 metric ton carbon dioxide equivalent (CO\(_2\)-e) emission threshold for required reporting.

To evaluate the significance of the environmental impact of these GHG emissions, we refer to 40 C.F.R. § 1508.27, which defines ‘significantly’ as it relates to assessing the intensity of an environmental impact in NEPA documents. 40 C.F.R. § 1508.27(b)(10) states that, when evaluating intensity of an impact, one should consider “whether the action threatens a violation of Federal, State, or local law or requirements imposed for the protection of the environment.” GHG emissions from MSW combustion facilities are regulated under 40 C.F.R. § 98.2. Further, the FCS will not significantly alter the emissions from properly operating MSW combustors. Therefore, incineration of the FCS will not cause MSW to threaten a violation of applicable emission laws and regulation (*i.e.*, 40 C.F.R. 60 and/or relevant state and local laws).

Based on the confidential market volume, the expected carbon dioxide equivalent emissions, as shown in the confidential attachment to the EA, are below 25,000 metric tons on an annual basis. As the estimated GHG emissions are below the threshold for mandatory reporting, no significant environmental impacts are anticipated resulting from combustion of the FCS in MSW combustion facilities. Further, the FCS will not significantly alter the emissions from properly operating MSW combustors as the FCS contains carbon, oxygen, and hydrogen, elements that are commonly found in MSW. Therefore, incineration of the FCS will not cause
MSW combustors to threaten a violation of applicable emission laws and regulations (i.e., 40 C.F.R. Part 60 and/or relevant state and local laws).

Only extremely small amounts, if any, of the FCS constituents are expected to enter the environment as a result of the landfill disposal of food-contact articles, in light of the EPA regulations governing MSW landfills. EPA’s regulations require new MSW landfill units and lateral expansions of existing units to have composite liners and leachate collection systems to prevent leachate from entering ground and surface water, and to have ground-water monitoring systems (40 C.F.R. Part 258). Although owners and operators of existing active municipal solid waste landfills that were constructed before October 9, 1993 are not required to retrofit liners and leachate collection systems, they are required to monitor groundwater and to take corrective actions as appropriate.

7. Fate of Emitted Substances in the Environment

A. Air

No significant effects on the concentrations of and exposures to any substances in the atmosphere are anticipated due to the proposed use of the FCS. As referenced in the Confidential Attachment, the FCS is a high molecular weight polymer and does not readily volatilize. Thus, no significant quantities of any substances will be released upon the use and disposal of food-contact materials manufactured with the FCS.

The FCS will make up a very small portion of the total municipal solid waste currently combusted. Therefore, the FCS will not significantly alter the emissions from 40 C.F.R. Part 60-compliant operating municipal solid waste combustors, and incineration of the FCS will not cause municipal solid waste combustors to threaten a violation of applicable emissions laws and regulations. See Confidential Attachment for additional details.

B. Water

No significant effects on the concentrations of and exposures to any substances in freshwater, estuarine, or marine ecosystems are anticipated due to the proposed use of the subject FCS. The fate of the FCS is the aqueous environment does not need to be addressed because no significant introductions of substances into the environment were identified in Item 6.

C. Land

Considering the factors discussed above, no significant effects on the concentration of and exposures to any substances in terrestrial ecosystems are anticipated as a result of the proposed use of the subject FCS. In particular, the nature of the FCS is expected to result in virtually no leaching of FCS components under normal environmental conditions when the food contact articles in which they are contained are disposed of. Furthermore, the very low production of the FCS for use in food-contact applications (as noted in the confidential attachment to the EA) precludes any substantial release to the environment of its components. Thus, there is no expectation of any meaningful exposure of terrestrial organisms to these substances as a result of the proposed use of the FCS.
Considering the foregoing, we respectfully submit that there is no reasonable expectation of a significant impact on the concentration of any substance in the environment due to the proposed use of the FCS in the manufacture of food-contact materials. Therefore, the environmental fate of substances does not need to be addressed due to the fact that no significant introduction of substances into the environment as a result of the proposed use of the FCS were identified as discussed under Item 6.

8. Environmental Effects of Released Substances

As discussed above, the only substances that may be expected to be released into the environment upon the use and disposal of food-contact materials fabricated with the FCS consist of very small quantities of combustion products and extractables, if any. None of these potential releases presents any significant toxicological concern at the low levels at which they could occur upon use and disposal of food-contact materials containing the FCS. Based on these considerations, no significant adverse effect on organisms in the environment is expected as a result of the disposal of food-contact materials containing the FCS. In addition, the use and disposal of the polymers containing the FCS is not expected to threaten a violation of applicable laws and regulations, e.g., the Environmental Protection Agency’s regulations in 40 C.F.R. Part 60 (“Standards of performance for new stationary sources”) that pertain to municipal solid waste combustors and Part 258 that pertain to landfills.

9. Use of Resources and Energy

As is the case with other food packaging materials, the production, use and disposal of the FCS involves the use of natural resources such as petroleum products, coal, and the like. The manufacturer of the FCS will consume comparable amounts of energy and resources as manufacturer of similar polymers that are already permitted for use in such applications, as the raw materials used in the production of the FCS are commercially manufactured materials that are produced for use in a variety of applications. Therefore, the use of this alternative product will have no significant impact on the use of resources and energy.

Plastics containing the FCS are expected to be disposed of according to the same patterns when they are used in place of the currently used plastic articles with or without comparable additives. Because the FCS is used at a low level in the production of food-contact materials (as noted in the confidential attachment to the EA), there will be no significant impact on current or future recycling programs.

10. Mitigation Measures

As shown above, no significant adverse environmental impacts are expected to result from the use and disposal of articles fabricated with the subject FCS. This is primarily due to the minute levels, if any, of leaching of components of the FCS from finished food-contact materials, and the insignificant impact on environment concentrations of combustion products of the FCS. Thus, no significant adverse environmental impacts were identified that require mitigation procedures.
11. **Alternatives to the Proposed Action**

No significant potential adverse effects are identified herein which would necessitate alternative actions to that proposed in this Notification. If the proposed action is not approved, the result would be the continued use of the materials that the subject FCS would replace. Such action would have no environmental impact.

12. **List of Preparers**

1. Mitzi Ng Clark, J.D., Partner, Keller and Heckman LLP, Three Embarcadero Center, Suite 1420, San Francisco, CA 94111. Mrs. Clark has over 18 years of experience drafting Food Additive Petitions, FCN submissions, and Environmental Assessments.

2. Mark Hepp, Ph.D. in Chemistry, Staff Scientist, Keller and Heckman LLP, 1001 G Street, NW, Suite 500 West, Washington, DC 20001. Dr. Hepp has over 10 years of experience preparing FCN submissions, including their Environmental Assessments.

13. **Certification**

The undersigned official certifies that the information provided herein is true, accurate, and complete to the best of her knowledge.

Date: August 13, 2021

Mitzi Ng Clark
Counsel for Kuraray GC Advanced Materials Co., Ltd.

14. **List of References**

The following footnotes are found within the Environmental Assessment document:

1. FDA’s food types and Conditions of Use are defined in Tables 1 and 2 at https://www.fda.gov/food/packaging-food-contact-substances-fcs/food-types-conditions-use-food-contact-substances.

15. Attachments

1. Confidential Attachment to Environmental Assessment.