

**FOOD AND DRUG ADMINISTRATION (FDA)
Center for Biologics Evaluation and Research (CBER)
168th Vaccines and Related Biological Products Advisory
Committee (VRBPAC) Meeting**

OPEN SESSION

**Web-Conference
Silver Spring, Maryland 20993**

September 30, 2021

This transcript appears as received from the commercial transcribing service after inclusion of minor corrections to typographical and factual errors recommended by the DFO.

ATTENDEES

COMMITTEE MEMBERS	
Hana El Sahly, M.D. - Chair	Baylor College of Medicine
Paula Annunziato, M.D.	Merck
Archana Chatterjee, M.D., Ph.D.	Rosalind Franklin University
CAPT Amanda Cohn, M.D.	National Center for Immunizations and Respiratory Diseases; Centers for Disease Control and Prevention
Hayley Gans, M.D.	Stanford University Medical Center
Holly Janes, Ph.D.	Fred Hutchinson Cancer Research Center
Michael Kurilla, M.D., Ph.D.	National Institutes of Health
Myron Levine, M.D., D.T.P.H., F.A.A.P	University of Maryland School of Medicine
H. Cody Meissner, M.D.	Tufts University School of Medicine
Paul Offit, M.D.	The Children's Hospital of Philadelphia
Steven A. Pergam, M.D., M.P.H., FIDSA	Seattle Cancer Care Alliance
Andrea Shane, M.D., M.P.H., M.Sc.	Emory University School of Medicine & Children's Healthcare of Atlanta
Paul Spearman, M.D.	University of Cincinnati School of Medicine
Geeta Swamy, M.D.	Duke University
TEMPORARY VOTING MEMBERS	
Jay Portnoy, M.D.	Children's Mercy Hospital, Kansas
David Wentworth, Ph.D.	Centers for Disease Control and Prevention
FDA PARTICIPANTS/SPEAKERS	
Peter Marks, W., M.D., Ph.D.	Food and Drug Administration

Willie Vann, Ph.D.	Food and Drug Administration
Marion Gruber, Ph.D.	Food and Drug Administration
Monica Young, Ph.D.	Food and Drug Administration
Philip Krause, M.D.	Food and Drug Administration
CDR Valerie Marshall, M.P.H., P.M.P.	Food and Drug Administration
Jay Slater, M.D.	Food and Drug Administration
Anissa Cheung, M.S.c.	Food and Drug Administration
Celia M. Witten, Ph.D., M.D.	Food and Drug Administration
FDA ADMINISTRATIVE STAFF	
Prabhakara Atreya, Ph.D.	Food and Drug Administration
Kathleen Hayes, M.P.H.	Food and Drug Administration
Michael Kawcynski	Food and Drug Administration
Monique Hill, M.H.A.	Food and Drug Administration

TABLE OF CONTENTS

TOPIC I - OPENING REMARKS: CALL TO ORDER.....	5
ADMINISTRATIVE ANNOUNCEMENTS, ROLL CALL, CONFLICT OF INTEREST STATEMENT	6
OVERVIEW OF RESEARCH/SITE VISIT PROCESS, CBER	17
OVERVIEW OF THE OFFICE OF VACCINES RESEARCH AND REVIEW (OVRR) & OVERVIEW OF THE DIVISION OF BACTERIAL, PARASITIC AND ALLERGENIC PRODUCTS (DBPAP)	24
OVERVIEW OF THE LABORATORY OF BACTERIAL POLYSACCHARIDES	34
OPEN PUBLIC HEARING - NO REGISTERED SPEAKERS	46
BREAK FOR CLOSED SESSION	47
TOPIC II: STRAIN SELECTION FOR THE INFLUENZA VIRUS VACCINES FOR THE 2022 SOUTHERN HEMISPHERE INFLUENZA SEASON	48
CONFLICT OF INTEREST STATEMENT	49
INTRODUCTION AND PRESENTATION OF QUESTIONS.....	53
WORLD SURVEILLANCE	58
OPEN PUBLIC HEARING - NO REGISTERED SPEAKERS	131
COMMITTEE DISCUSSION, RECOMMENDATIONS AND VOTE	132
ADJOURN MEETING	151

1 **TOPIC I - OPENING REMARKS: CALL TO ORDER**

2

3 **MR. MICHAEL KAWCYNISKI:** Good morning and
4 welcome to the 168th meeting of the Vaccines and
5 Related Biological Products Advisory Committee meeting.
6 We are ready to get started. Today, just like normal,
7 I am Mike Kawcynski. I will be periodically jumping in
8 in the meeting to make sure it runs smoothly. Today,
9 our chair is Dr. El Sahly. Dr. El Sahly, are you ready
10 to get started?

11 **DR. HANA EL SAHLY:** I am. Thank you, Michael.

12 Good morning everyone and I want to welcome the members
13 of VRBPAC, the participants, and the public for the
14 168th meeting of VRBPAC during which we will have two
15 topics, first a presentation of the Laboratory of
16 Bacterial Polysaccharides, Division of DBPAP, site
17 visit review. The second topic will be the strain
18 selection for the influenza virus vaccine 2022,
19 southern hemisphere.

20 I want to remind everyone to use their raise

1 your hand function on your Adobe Connect and turn your
2 camera on when you are asking a question or providing a
3 comment on the presentation. This way I can tell who's
4 in order asking for a comment, and we will take it from
5 there. Next on the agenda is Kathleen Hayes who will
6 do some administrative announcements.

7

8 **ADMINISTRATIVE ANNOUNCEMENTS, ROLL CALL, CONFLICT OF**
9 **INTEREST STATEMENT**

10

11 **MS. KATHLEEN HAYES:** Thank you, Dr. El Sahly.
12 My name is Kathleen Hayes and it's my pleasure to serve
13 as the Designated Federal Officer for today's 168th
14 VRBPAC meeting. On behalf of the FDA, the Center for
15 Biologics Evaluations and Research, and the Committee,
16 I would like to welcome everybody to today's virtual
17 meeting. As Dr. El Sahly stated, the meeting will have
18 two topics, topic one, to here an overview of the
19 research program in the Laboratory of Bacterial of
20 Polysaccharides within the Division of Bacterial,
21 Parasitic and Allergenic Products, and then our second

1 topic, to make recommendations on the selection of
2 strains to be included in an influenza virus vaccine
3 for the 2022 southern hemisphere influenza season.

4 Today's meeting topic was described in the
5 Federal Register Notice that was published on August
6 24th. Now, I would like to acknowledge the
7 contributions of a few other members of the DSAC team,
8 including our director, Dr. Prabhakara Atreya, Ms.
9 Monique Hill, Dr. Jeannette Devine, and Ms. Christina
10 Vert, who assisted in preparing for this meeting. I
11 would also like to express my thanks to Mr. Mike
12 Kawcynski for facilitating the meeting today. For any
13 media or press-related questions, you may contact the
14 FDA's Office of Media Affairs at fdaoma@fda.hhs.gov.
15 The transcriptionist for today's meeting is Ms. Linda
16 Giles.

17 We're going to begin our meeting by taking a
18 formal roll call for the committee members and
19 temporary voting members. When it's your turn, please
20 turn on your video camera and unmute your phone and

1 then state your first and last name, your expertise,
2 and your organization. When finished, turn off your
3 camera and we'll proceed to the next person. Please
4 see our member roster slide in which we'll begin with
5 our chair, Dr. El Sahly. Dr. El Sahly, go ahead.

6 **DR. HANA EL SAHLY:** Morning everyone. Hana El
7 Sahly, Baylor College of Medicine. I am in the
8 department of molecular virology and microbiology. I
9 (audio skip) work centers and clinical vaccine (audio
10 skip).

11 **MS. KATHLEEN HAYES:** Thank you. Dr. Cohn.

12 **CAPT AMANDA COHN:** Good morning everyone. Dr.
13 Amanda Cohn. I'm with the National Center for
14 Immunization and Respiratory Diseases. I am a
15 pediatrician with expertise in vaccine policy.

16 **MS. KATHLEEN HAYES:** Thank you. Dr. Shane.

17 **DR. ANDREA SHANE:** Good morning. My name is
18 Andrea Shane. I am at Emory University and Children's
19 Healthcare of Atlanta. I am in Pediatric Infectious

1 Diseases and my area of expertise is in the study of
2 infectious diseases in children. Thank you.

3 **MS. KATHLEEN HAYES:** Thanks. Dr. Chatterjee.

4 **DR. ARCHANA CHATTERJEE:** Good morning. My
5 name is Archana Chatterjee. I am the dean of Chicago
6 Medical School and Vice President for Medical Affairs
7 at Rosalind Franklin University. I'm a pediatric
8 infectious diseases specialist with expertise in
9 vaccines. Thank you.

10 **MS. KATHLEEN HAYES:** Thank you. Dr. Meissner.

11 **DR. H. CODY MEISSNER:** Good morning and thank
12 you. My name is Cody Meissner and I'm a Professor of
13 Pediatrics at Tufts Children's Hospital in Boston.

14 **MS. KATHLEEN HAYES:** Thank you, Dr. Meissner.
15 Dr. Swamy.

16 **DR. GEETA SWAMY:** Good morning. Geeta Swamy.
17 I'm a Professor of Obstetrics and Gynecology at Duke
18 University.

1 **MS. KATHLEEN HAYES:** Thank you. Dr. Gans.

2 **DR. HAYLEY GANS:** Good morning. Dr. Hayley
3 Gans, pediatric infectious disease at Stanford
4 University. I do research (audio skip).

5 **MS. KATHLEEN HAYES:** Thank you. Dr. Janes.

6 **DR. HOLLY JANES:** Good morning. I'm Holly
7 Janes. I'm a professor (audio skip) --

8 **MS. KATHLEEN HAYES:** You're coming in a little
9 quiet, Dr. Janes.

10 **DR. HOLLY JANES:** Okay.

11 **MS. KATHLEEN HAYES:** That's better.

12 **DR. HOLLY JANES:** Is this better?

13 **MS. KATHLEEN HAYES:** Yeah.

14 **DR. HOLLY JANES:** Okay. Thank you. My name
15 is Holly Janes and I'm a Professor of Biostatistics at
16 the Fred Hutchinson Cancer Research Center. I work in
17 vaccine evaluations and HIV (audio skip).

1 **MS. KATHLEEN HAYES:** Thank you. Dr. Portnoy.

2 **DR. JAY PORTNOY:** I'm Dr. Jay Portnoy. I'm a
3 Professor of Pediatrics at the University of Missouri-
4 Kansas City School of Medicine and an
5 allergist/immunologist at Children's Mercy Hospital in
6 Kansas City.

7 **MS. KATHLEEN HAYES:** Thank you. Dr. Kurilla.

8 **DR. MICHAEL KURILLA:** Good morning. Michael
9 Kurilla. I'm the Director of the Division of Clinical
10 Innovation at the National Center for Advancing
11 Translational Science within the National Institutes of
12 Health. I'm a pathologist by training and a background
13 in infectious disease product development including
14 vaccines.

15 **MS. KATHLEEN HAYES:** Thank you. Dr. Levine is
16 going to be joining us for the second topic and so is
17 Dr. Annunziato. We're going to move onto Dr. Spearman.

18 **DR. PAUL SPEARMAN:** Hi, I'm Paul Spearman.
19 I'm Director of Infectious Diseases at Cincinnati

1 Children's Hospital. I direct a basic science
2 laboratory working on HIV and other viruses. I work in
3 the area of clinical trials of vaccines. Thanks.

4 **MS. KATHLEEN HAYES:** Thank you. Dr. Offit.

5 **DR. PAUL OFFIT:** Good morning, I'm Paul Offit.
6 I'm a Professor of Pediatrics in the Division of
7 Infectious Diseases at Children's Hospital of
8 Philadelphia and the University of Pennsylvania School
9 of Medicine. My expertise is in the area of vaccines.

10 **MS. KATHLEEN HAYES:** Thank you. Dr. Pergam.

11 **DR. STEVEN PERGAM:** Thanks Kathleen. I'm
12 Steve Pergam. I'm an associate professor at Fred
13 Hutchinson Cancer Research Center in Washington,
14 infectious disease (audio skip) adult physician by
15 training. My specific focus is (audio skip) infections
16 (audio skip).

17 **MS. KATHLEEN HAYES:** Thank you. Dr. Wentworth
18 is also going to be joining us for topic two. He will
19 be a temporary nonvoting member for today. Thank you
20 all the committee members for your introductions. I

1 also wanted to verbally acknowledge CBER leadership and
2 management, including Dr. Marks, Dr. Witten, Dr. Young,
3 Dr. Gruber, Dr. Krause, Dr. Chumakov, Dr. Slater, and
4 Dr. Burns, some of who will be joining the meeting
5 later today, and others who will presenting during the
6 first topic of our meeting.

7 Before we begin with the Conflict of Interest
8 Statement, I wanted to remind everybody with our
9 virtual format to please keep yourself on mute to avoid
10 feedback. Then, if you have your hand raised and are
11 called upon to speak by Dr. El Sahly, please speak
12 slowly and clearly so that your comments are accurately
13 recorded for transcription and captioning. I will now
14 proceed with reading the first Conflict of Interest
15 Statement.

16 The Food and Drug Administration is convening
17 virtually today, September 30th, 2021, for the 168th
18 meeting of the Vaccines and Related Biological Products
19 Advisory committee under the authority of the Federal
20 Advisory Committee Act of 1972. Dr. Hana El Sahly,
21 from Baylor College of Medicine, is serving as the

1 chair for this meeting today for both topic one and
2 topic two. With the exception of the industry
3 representative member, all standing and temporary
4 voting members of our PAC our appointed Special
5 Government Employees or Regular Government Employees
6 from other agencies. They're authorized to participate
7 in closed sessions when they are held.

8 Dr. Paula Annunziato, of Merck, will serve as
9 the industry representative to this committee.
10 Industry representatives act on behalf of all related
11 industry and bring general industry perspectives to the
12 committee. However, industry representatives are not
13 appointed as special government employees and serve
14 only as nonvoting members of the committee. They are
15 not authorized to attend any closed sessions,
16 therefore, industry representatives are expected to
17 leave when the open sessions end.

18 Dr. Jay Portnoy is serving as the temporary
19 consumer representative for this committee. Consumer
20 representatives are appointed Special Government
21 Employees and are voting members of the committee and,

1 hence, do have voting privileges and they do
2 participate in the closed sessions when they're held.

3 The meeting today will have two Conflict of Interest
4 Disclosure Statements read prior to each topic session
5 that will occur during the meeting.

6 For topic one, the following information on
7 the status of this committee is compliant with federal
8 ethics and conflict of interest laws, including but not
9 limited to 18 USC Section 208, is being provided to
10 participants in today's meeting and to the public. In
11 the morning today, September 30th, 2021, under topic
12 one, the VRBPAC committee will meet in open session to
13 hear overview presentations on the research programs
14 conducted in the Laboratory of Bacterial
15 Polysaccharides, Division of Bacterial, Parasitic and
16 Allergenic Products, Office of Vaccine Research and
17 Review, Center for Biologics Evaluation and Research.

18 Per agency guidance, these sessions are
19 determined to be non-particular matters which would
20 have no impact on outside financial interests, hence,
21 no affected firms are identified and members are not

1 screened for this topic. After the overview
2 presentations are completed in the open session, the
3 meeting will be closed from 10:45 a.m. to 11:45 a.m. to
4 permit discussions where disclosure would constitute a
5 clearly unwarranted invasion of personal privacy.

6 We would like to remind members and
7 consultants that if they have any personal or
8 professional conflicts with any individuals that are
9 subject to the closed meeting deliberations, then
10 participants need to inform the DFO and exclude
11 themselves from such involvement. Their exclusion
12 would be noted for the record. This concludes my
13 reading of the first Conflict of Interest Statement for
14 the public record. I would like to hand it back over
15 to Dr. El Sahly. Thank you.

16 **DR. HANA EL SAHLY:** Thank you, Kathleen. We
17 Will begin presentations this morning with Dr. Monica
18 Young. Dr. Monica Young is senior advisor to the
19 associate director for research at the FDA. I want to
20 remind you, Dr. Young, to turn on your camera, unmute
21 your phone, and we are all ears.

1

2 **OVERVIEW OF RESEARCH/SITE VISIT PROCESS, CBER**

3

4 **DR. MONICA YOUNG:** Thank you, Dr. El Sahly.

5 In the next few minutes, I will give an overview of the
6 CBER research program, including how the research
7 program is evaluated and how site visit reports are
8 used. CBER regulates a number of complex products,
9 including blood and blood products, cell and gene
10 therapies, tissues, vaccines, therapeutic probiotics
11 and over 400 allergenic products. CBER has scientists
12 with broad areas of expertise to cover the variety of
13 topics and challenges that arise when regulating
14 biologics.

15 Here on this slide are four main goals of
16 CBER's current strategic plan to support CBER's mission
17 and advance the scientific basis for regulation of
18 biologics, human tissues and blood. Goal two is
19 conducting biologics research with the goal to conduct
20 research to address challenges in the development and
21 regulatory evaluation of medical products. CBER takes

1 a collaborative approach to regulating biologics
2 including review of data submitted by sponsors,
3 internal discussions, post-market surveillance and
4 active research.

5 The research programs are investigator
6 initiated and range from basic to targeted studies
7 related to regulated products. The research program
8 helps to ensure understanding of advance techniques
9 that are the source of data in regulatory decisions.

10 The research program helps to ensure efficient,
11 effective, and credible review and fosters regulatory
12 decisions based on science. CBER's research and review
13 are integrated. What I mean by this, is that a
14 regulatory review team in CBER includes a chemistry,
15 manufacturing and control, or CMC, product reviewer who
16 evaluates aspects of the submission, such as scientific
17 rationale, data for proof of concept, production
18 techniques and resulting product, quality control
19 testing and clinical assays.

20 Some of the CMC product reviewers are what we
21 call researcher-reviewer. A researcher-reviewer review

1 regulatory submissions and lead research programs.
2 This schematic demonstrates how CBER's research
3 programs fills gaps in scientific knowledge and helps
4 to overcome obstacles in product development. As the
5 public health needs arise, novel products are needed
6 and come with regulatory challenges. Some of these
7 challenges include major questions such as how best to
8 characterize complex products or how best to design
9 non-clinical studies to provide predictive assessment
10 of safety and efficacy and how to overcome potential
11 contamination of biologic products.

12 This is where we apply science to developing
13 new tools, standards and approaches to assess the
14 safety, efficacy, quality and performance of FDA
15 regulated products. The discovery of new tools assist
16 in regulatory policy and decision making. The outcome
17 of regulatory science provides improved data to assess
18 the benefit and risk ratio of products and in many
19 cases leads to the licensure of novel biologics.

20 Currently, CBER's core research facilities
21 include flow cytometry, confocal and electron

1 microscopy, a high-performance integrated virtual
2 environment we call HIVE, which provides bioinformatic
3 support for next-generation sequences analysis. We
4 have a biotechnology core facility with state-of-the-
5 art instrumentation as well as a vivarium and
6 biosafety-level-three laboratory.

7 CBER is active in leveraging resources and
8 fostering collaborations. This chart shows you the
9 type of formal collaboration for FY21. CBER has
10 collaborations nationally, internationally and across
11 sectors within the government and within the agency as
12 well. The pie chart shows the formal external
13 leveraging mechanisms that were used this year. It
14 ranges from Confidential Disclosure Agreements all the
15 way to Employee Invention Report. There are many
16 benefits to the CBER research program.

17 The research program allows scientists to
18 prepare for future innovative products and public
19 health challenges as well as develop tools and data
20 that are available to all stakeholders and support
21 development for product classes. The research program

1 attracts and maintains highly trained scientists with
2 necessary expertise to review regulatory submissions,
3 and the studies conducted fill knowledge gaps that
4 inform policy development and regulatory decision
5 making.

6 Now we'll look at how office management and
7 CBER leadership evaluates research programs.
8 Management review includes the annual review of
9 research of a program at the project level, in addition
10 to horizon scanning, which is done by the offices in
11 the Regulatory Science Council, we refer to as the RSC.
12 The Regulatory Science Council is composed of
13 leadership across the center. External review of the
14 research programs are conducted every four years in the
15 form of site visits.

16 CBER's evaluation framework includes mission
17 relevance -- this takes into account the alignment with
18 similar office goals and objectives -- dissemination,
19 which includes presentations and publications; impact -
20 - this is the impact that that program has on
21 scientific community and regulated stakeholders.

1 Lastly, unique contribution to regulatory practice.
2 This is to evaluate the scientific outcomes of the
3 research program and how it enhances CBER's regulatory
4 mission. Over the last few years we have developed
5 tools to track components that make up the evaluation
6 framework.

7 Site visit review teams are subcommittees to
8 the advisory committee. I want to thank the chair for
9 your leadership. The draft report of the site visit
10 has been distributed to the advisory committee. The
11 advisory committee will accept, amend or reject the
12 report and send back to the site visit team. Once
13 approved by the full advisory committee, the final
14 report is very valuable and is used in many ways. It's
15 used by PIs for improving the research programs, by
16 supervisors for internal review of the program's
17 progress, and by management where resource allocation
18 decisions may be impacted by the report.

19 I want to thank everyone on the site visit
20 review team for writing the report and entities for
21 evaluating the report. Thank you and with that I will

1 stop here for any questions.

2 **DR. HANA EL SAHLY:** Thank you, Dr. Young. I
3 turn to my colleagues. Should anyone have a comment or
4 a question for Dr. Young, please raise your hand. No
5 raised hands. Maybe I'll begin.

6 Briefly, how did the structure that you just
7 described serve CBER, I guess, during the Pandemic?
8 Probably a lot of realignment and adjustments had to be
9 made. Does the structure allow itself for efficiency
10 during this pandemic?

11 **DR. MONICA YOUNG:** Could you elaborate on what
12 you mean by structure?

13 **DR. HANA EL SAHLY:** The review, the horizon
14 scanning, the project reviews, the structure of
15 changing gears that does research.

16 **DR. MONICA YOUNG:** How was that affected by
17 the pandemic?

18 **DR. HANA EL SAHLY:** Yeah.

19 **DR. MONICA YOUNG:** Yes, so there were several
20 labs affected during the pandemic, of course, that had
21 to stop, actually, a lot of their research for at least

1 six months. There were some of the COVID-related
2 research that was able to continue, but the review
3 still proceeded. We still went through our annual
4 reporting. We were able to get the lab started back
5 up, and now we're at a better place. I would say that
6 there was definitely an impact. We didn't have site
7 visits for the year 2020 after March 16th. There was a
8 bit of an impact, but I do see things are slowly
9 getting back to normal.

10 **DR. HANA EL SAHLY:** Thank you, Dr. Young for
11 the overview. Next, I want to introduce Dr. Jay
12 Slater, who is the director of the Division of
13 Bacterial, Parasitic and Allergenic Products at OVRR at
14 the FDA. Dr. Slater, please turn on your -- there you
15 go.

16

17 **OVERVIEW OF THE OFFICE OF VACCINES RESEARCH AND REVIEW**
18 **(OVRR) & OVERVIEW OF THE DIVISION OF BACTERIAL,**
19 **PARASITIC AND ALLERGENIC PRODUCTS (DBPAP)**

20

21 **DR. JAY SLATER:** Thank you so much for giving

1 me the opportunity to speak today. Just to clarify,
2 it's my job to transition from the previous
3 presentation's background about the Center for
4 Biologics Research Program and the next presentation
5 that you'll be hearing from Dr. Vann about the Lab of
6 Bacterial Polysaccharides. I am the Director of the
7 Division of Bacterial, Parasitic and Allergenic
8 Products. I'll be talking today about both the Office
9 of Vaccines, which is above me and about my division.

10 Let's go ahead and talk about what OVRR
11 regulates. You all know this. We regulate vaccines,
12 allergenic products, live biotherapeutic products,
13 including both probiotics and fecal microbiota for
14 transplantation, as well as bacteria phage. It's a
15 pretty broad pallet that OVRR regulates. OVRR's
16 mission is to protect and enhance the public health by
17 assuring the availability of safe and effective
18 products within our purview.

19 The OVRR, obviously the core activity is to
20 review, evaluate and take appropriate actions on INDs,
21 BLAs, amendments, supplements for vaccines and related

1 products, and to participate in inspections. We also
2 develop policies and procedures governing the premarket
3 review of regulated products, and we conduct research
4 related to these products. The OVRR research mission
5 is designed to complement and support the regulatory
6 mission by focusing on issues related to the
7 development of these safe and effective products.

8 Here is an organizational chart of the Office
9 of Vaccines. As you know, Drs. Gruber and Krause are
10 the Director and Deputy Director of the Office of
11 Vaccines. Within the Office of Vaccines, there is the
12 Division of Vaccines and Related Product Applications
13 run by Dr. Doran Fink and Dr. Loris McVittie, which is
14 responsible for administration of these applications
15 and, in large measure, the clinical review. Then we
16 have two so-called research divisions.

17 The Division of Viral Products and the
18 Division of Bacterial, Parasitic, and Allergenic
19 Products, or as one of my colleagues once called it, we
20 are the division of not-viral products. Again the
21 research goals are laid out here. Research goal number

1 one is to enhance the safety of the preventative
2 vaccines. Research goal two is to improve the
3 effectiveness of the vaccines through the development
4 of models. Research goal number three is to enhance
5 the availability of those vaccines.

6 For this group, I think it's an obvious point,
7 but I really want to emphasize the importance of
8 research and the regulation of vaccines and related
9 products. It's important that the FDA itself do
10 research. That comes from several different reasons.
11 One is the emphasis on safety and vaccines. Obviously,
12 these are products for mass use, often universal use.
13 The recipients are healthy individuals typically, often
14 children. It's extremely important that we, in
15 particular, be on the cutting edge of research
16 involving safety of these products.

17 Again, obvious to everybody here, but there
18 are new manufacturing technologies that are rapidly
19 evolving. It's really important that our reviewers
20 keep pace with that technology. There's an extremely
21 high level of scrutiny by the public. These regulatory

1 decisions that we make have to be based on science. An
2 increasing number of anti-vaccine organizations and
3 groups are adding to that scrutiny. It really makes it
4 critically important that on our review teams we have
5 active scientists who really can understand and
6 interpret the available science in the best way
7 possible.

8 Obviously, we have to be nimble. We have to
9 respond to public health threats, antibiotic
10 resistance, C-diff, emerging adventitious agents. We
11 want to keep all of our research results in the public
12 domain. It's really a key principle here that we
13 expect our research efforts to be published, to be
14 publicly available, to be to the full benefit of the
15 American public. Our research is broad, it's
16 collaborative, it is investigator-initiated. This is
17 the key aspect of our research efforts.

18 We do expect it to be excellent. It's one of
19 the reasons that we are such strong supporters of the
20 site visit program. We expect to be flexible. That
21 will allow rapid adaptation to regulatory needs. As

1 such -- and you just heard about this -- we do have
2 this research-regulator model where we integrate our
3 researchers into product review. Out of a hundred or
4 so people in my division, we do have a certain percent
5 that are only doing research and not doing any
6 regulatory work. I would say half to two-thirds of the
7 people in my division who are researchers also do
8 regulatory work.

9 Now I'm going to turn to my division, Division
10 of Bacterial, Parasitic and Allergenic Products. I'm
11 the director. Dr. Drusilla Burns is the deputy
12 director. We have four labs within the division. The
13 Lab of Bacterial Polysaccharides, which you see here on
14 the upper left-hand corner, is the one that you're
15 going to be discussing in greater detail today. There
16 are three other labs, the Lab of Respiratory and
17 Special Pathogens, the Lab of Mucosal Pathogens with
18 Cellular Immunology, and the Lab of Immunobiochemistry.

19 We're going to discuss all of these labs very
20 quickly in the next few slides. It's useful to discuss
21 what our different labs do in terms of our overall

1 research-regulatory portfolio in DBPAP. This is a list
2 and it's by organisms rather than by specific
3 scientific areas. This is not a perfect way to
4 represent what we do, but it'll work pretty well for
5 the next few slides at least. You're all aware we
6 regulate products based on non-invasive toxin producers
7 that are listed here, including *bacillus anthracis*,
8 *Bordetella pertussis*, the various *clostridium* species
9 and *Corynebacterium diphtheriae*.

10 We also regulate vaccines and other products
11 based on invasive organisms with a protective response
12 to polysaccharides, certainly to a large extent *H. flu*
13 and *strep pneumoniae*, to a somewhat lesser extent with
14 *Neisseria meningitidis*, although it's still an
15 important response. We regulate investigative products
16 and licensed products for the intracellular organisms
17 listed here. Increasingly, products having to do with
18 enteric infections, parasitic infections -- although of
19 course this is all investigational only -- and other
20 emerging threats: *staph aureus*, allergenic products,
21 live biotherapeutic products, and microbiome-related

1 products.

2 To break this down and leave this slide up,
3 just changing color patterns, the Lab of Respiratory
4 and Special Pathogens really focuses largely on these
5 toxin producers. To a lesser degree, they participate
6 in our division-wide effort in studying responses to
7 staph aureus. The Lab of Mucosal Pathogens and
8 Cellular Immunology focuses largely on the
9 intracellular organisms and the enteric organisms.

10 It participates in the review and research of
11 staph aureus-related products and is involved in
12 investigational work with malaria, live biotherapeutic
13 products, phage, microbiome-related products, as well
14 as products aimed at C. diff. Finally, the Lab of
15 Immunobiochemistry, which on this slide only has
16 representation for its involvement with allergenic
17 products. This is the lab that I'm a member of.

18 Frankly, it's one of the weaknesses of this
19 way of representing it. There are over 1,200 varied
20 allergenic products. Most of them are not
21 standardized, which actually makes them very, very

1 difficult to regulate. There are a number of newer
2 products that are out there that are coming along with
3 a wide variety of technology. This is a very busy lab
4 indeed from both a regulatory and a research point of
5 view.

6 Finally, the Lab of Bacterial Polysaccharides,
7 which you will be reviewing today. They are involved
8 with largely products aimed at H. flu, meningococcus,
9 and strep pneumoniae, as well as some work involved
10 with plasmodium. That's not a major focus of their
11 work. The site visit, when it last heard from all five
12 principle investigators in the division and heard from
13 four staff scientists or staff fellows who work under
14 the principle investigators (audio skip).

15 Again, I'd like to thank the site visit
16 committee for their thorough review and for their
17 commitment and time both on the day of the site visit
18 and in the weeks and months afterwards putting together
19 the site visit report. We really value what you have
20 to say. We take it to heart. We do implement it in
21 terms of our guidance to the principle investigators

1 and the lab chief. I really wish to extend a full
2 thanks to the site visit committee and to the entire
3 advisory committee for considering these issues. I'm
4 happy to take any questions.

5 **DR. HANA EL SAHLY:** Thank you, Dr. Slater. I
6 see Dr. Cody Meissner has a question. Dr. Cody
7 Meissner, please turn on your camera and your phone.

8 **DR. CODY MEISSNER:** Thank you, Dr. El Sahly
9 and thank you, Dr. Slater, for that overview. One
10 question I had relates to *Borrelia burgdorferi*. I
11 didn't see that listed on your slides. I'm thinking
12 particularly about the current study of monoclonal
13 antibodies with a long half-life, for example. Is that
14 something that will fall into your purview?

15 **DR. JAY SLATER:** Thank you for that question.
16 Yeah, we should probably put *Borrelia burgdorferi* back
17 on the list and indicate what role it plays on our
18 regulatory efforts. That said, we are not involved in
19 the direct review of monoclonal antibody products.
20 That's a different part of the agency. We, however,
21 would be focused on any investigational vaccine efforts

1 in that direction. Yes, I think point well taken. It
2 should be on the list.

3 **DR. CODY MEISSNER:** Thank you.

4 **DR. HANA EL SAHLY:** Any other questions from
5 the committee members?

6 **MR. MICHAEL KAWCYNISKI:** As a reminder to all
7 committee members just in case you forgot, at the top
8 of the screen is the Raise Your Hand option. That's
9 how we will determine how we call on you.

10 **DR. HANA EL SAHLY:** I see no raised hands.
11 With that, I want to thank you again, Dr. Slater, for
12 this overview. I want to welcome Dr. Willie Vann. Dr.
13 Willie Vann, please turn on your camera and your phone
14 audio. Dr. Willie Vann is the chief of the Laboratory
15 of the Bacterial Polysaccharides. He will provide an
16 overview of the lab. Take it, Dr. Willie Vann.

17

18 **OVERVIEW OF THE LABORATORY OF BACTERIAL POLYSACCHARIDES**

19

20 **DR. WILLIE VANN:** Good morning. My name is
21 Willie Vann. I'm chief for the Laboratory of Bacterial

1 Polysaccharides. The Laboratory of Bacterial
2 Polysaccharides investigates the biochemistry, biology
3 and chemistry of virulence factors of encapsulated
4 bacteria. These basic research fields are related to
5 the regulatory activities of the Laboratory of
6 Bacterial Polysaccharides, which include but are not
7 limited to review and approval of biological license
8 applications and IND submissions related to vaccines
9 against encapsulated pathogens, evaluation of
10 manufacturing and changes in manufacturing, and on-site
11 inspections and technical meetings with the
12 manufacturers.

13 The Laboratory of Bacterial Polysaccharides
14 also serves as a CBER resource for expertise in
15 glycobiology, as exemplified by cross-cutting
16 collaborations such as glycosylation of viral vaccines.
17 The laboratory currently consists of six research
18 programs managed by six principle investigators. Five
19 of these principle investigators were reviewed at the
20 last site visit. The sixth was not reviewed because
21 that person was in the laboratory less than a year

1 before the site visit. I'll come to that principle
2 investigator later.

3 There were five research groups that were
4 reviewed, one cellular immunology. The principle
5 investigator there is Dr. Mustafa Akkoyunlu who looks
6 at the interaction of carbohydrate antigens with the
7 immune system, addressing such questions as why infants
8 respond poorly to polysaccharide vaccines and how that
9 can be improved. Dr. Margaret Bash is the principle
10 investigator for the molecular epidemiology group,
11 looks at the role of non-capsular antigens in
12 protection.

13 Some of these noncapsular antigens are now
14 components of vaccines against meningococcus group B.
15 Dr. John Cipollo is the principle investigator of the
16 vaccine structure group. This studies the role of
17 glycoconjugates in host pathogen interactions using
18 mass spectrometry. For example, he's one of the groups
19 who characterizes glycosylation of viruses in viral
20 vaccines. The structural biology group and the
21 principle investigator there is Dr. Daron Freedberg.

1 He studies the structure and the conformation of
2 capsular polysaccharides with the objective of actually
3 understanding what the immune system sees when it sees
4 a polysaccharide or a carbohydrate-based vaccine.

5 The glycobiology group, which I'm the
6 principle investigator, we study the biosynthesis of
7 capsular polysaccharides as a toolbox for developing
8 better ways of manufacturing and analyzing capsular
9 polysaccharide-based vaccines. Since we are research
10 and reviewers, during this review period we have had
11 several major accomplishments. These major
12 accomplishments require many months of review by a
13 multidisciplinary team.

14 In 2018, we were part of the team that
15 licensed Vaxelis, which imposed diphtheria and tetanus
16 toxoids and acellular pertussis vaccine adsorbed,
17 inactivated polio, haemophilus b conjugate, and
18 hepatitis B recombinant vaccine. In 2020 we licensed a
19 new meningococcal tetravalent glycoconjugate vaccine.
20 In 2021 we were reviewing two original biological
21 license applications for the licensure of two new

1 vaccines. These were new vaccines against strep
2 pneumonia. Subsequent to the site visit, these
3 vaccines have now been licensed.

4 In addition to these major accomplishments, we
5 had several other things that we've done during this
6 four-year review period. We reviewed hundreds of IND
7 submissions. We have reviewed and approved over 200
8 biological license application supplements. These are
9 supplements that actually relate to changes in
10 manufacturing which actually have to be reported to the
11 agency. The laboratory is organized to address
12 existing issues related to vaccines against
13 encapsulated pathogens and in anticipation of issues
14 arising from the evolution and growth of glycoconjugate
15 vaccines based on technological advances.

16 In the next slide is a historical and future
17 trajectory of polysaccharide vaccines to give you an
18 example of what we mean by evolution. The first
19 polysaccharide-based vaccines were pure
20 polysaccharides, and that was back prior to the '80s
21 and up to the '80s, where the polysaccharide purified

1 from the bacteria was used as a vaccine. It worked in
2 adults with short-term protection but did not work in
3 infants. Based on knowledge of the immunology of
4 vaccines, the second generation of vaccines was
5 developed by conjugating polysaccharide to a carrier
6 protein.

7 This results in a boostable response and also
8 protection in infants and children. These vaccines are
9 still being produced, and there are still second-
10 generation vaccines being developed. These are very
11 complex products and propose challenges for regulation
12 and for manufacturing. Taking advantage of newer
13 developments in metabolic engineering and advances in
14 glycoconjugate science, third-generation vaccines are
15 being developed and are being presented to the agency
16 that are based on metabolic engineering of bacteria to
17 produce vaccines in various forms.

18 This third-generation vaccine itself is
19 involving in newer techniques for glycoengineering. A
20 fourth generation of vaccines that are coming along is
21 based on things that we've learned over the years about

1 glycoconjugate vaccines and the structure of
2 carbohydrates, where synthetic carbohydrates are based
3 on both knowledge and rational design are used to make
4 glycoconjugate vaccines. To that end, the Laboratory
5 of Bacterial Polysaccharides has expanded to another
6 research group that we deemed synthetic biology.

7 We have hired a new recruit to head that as a
8 principle investigator for that group. That principle
9 investigator is Dr. Maria Florencia Haurat who is in
10 charge of the synthetic biology research group, and
11 she's studying metabolic engineering of
12 glycoconjugates. That's a part of CBER's initiative
13 for advanced manufacturing. As with most of the
14 scientific community, the SARS-CoV-2 pandemic resulted
15 in decreased research activities across the FDA. In
16 March of 2020, all non-COVID related research projects
17 in CBER were halted.

18 There were, however, two SARS-CoV-2 related
19 projects that were allowed to operate at approximately
20 25 percent work capacity during this period. The work
21 capacity is based on allowed building occupancy. Those

1 were projects that were headed by Dr. Akkoyunlo, who I
2 believe was studying projects related to the cytokine
3 storm caused by CoV-2, and Dr. John Cipollo, who's
4 looking at the glycosylation of spike protein. In
5 September of 2020, based on CBER policy, some of the
6 laboratory staff of LBP resumed non-COVID related
7 projects, working for about 8 to 16 hours per week on a
8 voluntary basis.

9 Subsequent to that, that has actually been
10 increased. Now I think we're up to allowed 30 hours
11 per week, yet it's still on a voluntary basis. I wish
12 to thank the site visit committee for their
13 constructive input into evaluating our research
14 program. Thank you for your attention. Any questions?

15 **DR. HANA EL SAHLY:** Thank you, Dr. Vann, for
16 the overview. I see Dr. Portnoy. Dr. Portnoy, please
17 turn on your microphone and camera.

18 **DR. JAY PORTNOY:** Hello. Thank you for the
19 presentation. I think your work is doing is great, and
20 I really appreciate the report that you did. Something
21 you said during your report stimulated a question in my

1 mind, and that was the glycosylation of the spike
2 protein for the Coronavirus that we're fighting right
3 now. Has your group developed any evidence that the
4 glycosylation would make a difference in terms of
5 vaccine production because we know that messenger RNA
6 produced by protein is non-glycosylated? Would
7 glycosylation possibly change the effectiveness of a
8 vaccine?

9 **DR. WILLIE VANN:** We don't know for the spike
10 protein particularly. I think taking advantage of the
11 work that Dr. Cipollo has done with influenza, he does
12 know with flu that glycosylation actually does affect
13 function and glycosylation can affect the interaction
14 of that vaccine with the immune system and also can
15 affect production because with flu, for example, he can
16 produce that in various substrates. Changing
17 substrates can actually affect glycosylation. We're
18 gathering information that could be useful. We don't
19 know for sure yet.

20 **DR. JAY PORTNOY:** It sounds like an important
21 avenue of research to pursue. Thank you very much.

1 **DR. HANA EL SAHLY:** Dr. Hayley Gans.

2 **DR. HAYLEY GANS:** Thank you so much for that
3 presentation, Dr. Vann. I had a couple of questions
4 that are mostly structural and visionary. One of them
5 relates to recruitment and detention of diverse
6 workforce. I just had a couple of questions about how
7 your lab and your whole system works towards that, and
8 particularly for promotion of those individuals within
9 your laboratory system. My second question relates to
10 any collaborations between the laboratories that you
11 have -- there was some mention in the first slide --
12 and partnerships with academia and other external and
13 how that might actually allow you to progress at a more
14 rapid (audio skip).

15 **DR. WILLIE VANN:** I'll briefly answer your
16 last question first in that there are extensive
17 collaborations with academia and not just in this
18 country, around the world. Yes, there's lot of
19 collaboration with the scientific community in these
20 fields. You wanted to know about career development, I
21 presume. Right? One of the things that actually

1 happened at this site visit is we had four scientists
2 who actually were up for review, who were actually up
3 for a promotion or who actually we had promoted.

4 We asked the site visit committee to evaluate
5 their research progress. What we do is we have staff
6 scientists that actually are researcher-reviewers.
7 They have a role in review of products. They're a part
8 of chemistry and manufacturing review teams and also
9 clinical assay review teams. They are very active. A
10 very important part of their research, in fact more
11 than half of it, is actually original research. We
12 evaluate them based on, one, how they perform in
13 review, and we evaluate them based on how their
14 research program goes, how they perform, their
15 creativity, and productivity. Is that addressing your
16 question or do you have further questions?

17 **DR. HAYLEY GANS:** Thank you. Thank you for
18 that clarification. I was curious about mitigation of
19 biases. I understand that there is only four people at
20 (audio skip) limits the amount of (audio skip).

21 **DR. WILLIE VANN:** To address the diversity

1 issue, at least in my lab, we have a fairly diverse
2 lab, to be honest with you. There are all sorts of
3 people but people from various backgrounds, quite
4 different backgrounds, including people who are
5 immigrated from other countries, African Americans,
6 Hispanic people. My lab isn't that big, but it's
7 actually quite diverse. When I go out looking for
8 people, I look for who actually can best do the job.
9 That's probably the only way to do it, but I try to
10 include people if I can.

11 **DR. HANA EL SAHLY:** Dr. Vann, quick question.
12 You mentioned that the lab is still not functioning at
13 full capacity. Did I catch that correctly?

14 **DR. WILLIE VANN:** That is correct.

15 **DR. HANA EL SAHLY:** Are there plans in the
16 near future for expanding to full time?

17 **DR. WILLIE VANN:** That's above my pay grade as
18 to when that's going to happen.

19 **DR. HANA EL SAHLY:** Any other questions for
20 Dr. Vann? I see no raised hands. Thank you so much,
21 Dr. Vann, for the presentation and for all the work

1 you've been doing. Next, we will take a 10-minute
2 break. It's 8:35, so we will reconvene at 8:45.

3

4 **[BREAK]**

5

6 **MR. MICHAEL KAWCYNISKI:** Welcome back from that
7 little break to the 168th meeting of the Vaccines and
8 Related Biological Products Advisory Committee. Dr. El
9 Sahly, are you ready to take it away?

10

11 **OPEN PUBLIC HEARING - NO REGISTERED SPEAKERS**

12

13 **DR. HANA EL SAHLY:** Thank you, Michael. The
14 next session is designated for the open public hearing.
15 However, no formal oral requests were received, and we
16 will be now moving to the closed session. Michael, let
17 us know when we are in the closed session, please.

18 **MR. MICHAEL KAWCYNISKI:** Let me make an
19 announcement here. We are going to be moving to the
20 closed session. This session will take us all the way
21 through up to our lunch time. We will reconvene to the

1 public session immediately following. For the viewers,
2 to keep you entertained, we will be putting up some
3 music just so that you're entertained during this
4 timeframe. Keep in mind we'll probably be coming back
5 -- Kathleen, can you confirm with me -- roughly around
6 12:15. Does that sound about correct?

7 **MS. KATHLEEN HAYES:** That may be a bit early
8 since we're running ahead of schedule. It'll be
9 following a lunch.

10 **MR. MICHAEL KAWCYNISKI:** Again, at this time,
11 we will be moving to the closed session. At this time,
12 I will be moving you in a second here. I'm going to
13 send you off over the closed session now. To the
14 public, like I said, we are going to play some music
15 for you and at least give you something to be
16 entertained during this timeframe. For that, thank
17 you, and we will see you and reconvene right after
18 lunch.

19 **BREAK FOR CLOSED SESSION**

20

1 TOPIC II: STRAIN SELECTION FOR THE INFLUENZA VIRUS

2 VACCINES FOR THE 2022 SOUTHERN HEMISPHERE INFLUENZA

3 **SEASON**

4

21

1 **CONFLICT OF INTEREST STATEMENT**

2

3 **MS. HAYES:** Great. Thank you, Dr. El Sahly.

4 Okay. I'm going to read the second conflict of
5 interest statement for today's meeting. The Food and
6 Drug Administration is convening virtually today,
7 September 30, 2021, for 168th meeting of the Vaccines
8 and Related Biological Products Advisory Committee
9 under the authority of the Federal Advisory Committee
10 Act of 1972. This afternoon, for topic two, the VRBPAC
11 committee will meet in open session to discuss and make
12 recommendations on the selection of strains to be
13 included in the influenza virus vaccine for the 2022
14 southern hemisphere influenza season.

15 This topic has been determined to be a
16 particular matter involving specific parties. With the
17 exception of the industry representative member, all
18 standing and temporary voting or temporary non-voting
19 members of our PAC are appointed special government
20 employees or regular government employees from other
21 agencies and are subject to federal conflict of

1 interest laws and regulations. Based on today's
2 agenda, all financial interests reported by committee
3 members and consultants, no conflict of interest
4 waivers have been issued under 18 U.S. Code 208 in
5 connection with this meeting.

6 Dr. Jay Portnoy is serving as a temporary
7 consumer representative for this committee. Consumer
8 representatives are appointed special government
9 employees and are screened and cleared prior to their
10 participation in the meeting. They are voting members
11 of the committee and hence do have voting privileges
12 and they do participate in the closed sessions as held.
13 Dr. Paula Annunziato of Merck is currently serving as
14 the industry representative to this committee.

15 Industry representatives act on behalf of all
16 related industry and bring general industry perspective
17 to the committee. However, industry representatives
18 are not appointed as special government employees and
19 serve as non-voting members of the committee. They are
20 not authorized to attend any closed sessions as held.
21 We have the following consultant serving as the

1 temporary non-voting member and speaker for this
2 meeting, Dr. David Wentworth.

3 Dr. David Wentworth is employed by the Centers
4 for Disease Control and Prevention as Chief of the
5 Virology Surveillance and Diagnosis Branch in the
6 Influenza Division. He's an internationally known
7 expert in influenza virus epidemiology, worldwide
8 influenza disease burden, and influenza virus vaccines.
9 Dr. Wentworth is a regular government employee and has
10 been screened for conflict of interest and cleared to
11 participate as both a speaker and as a temporary non-
12 voting member for today's meeting.

13 Disclosure of conflicts of interest for
14 speakers follow applicable federal laws, regulations,
15 and FDA guidance. As a speaker and temporary non-
16 voting member, Dr. David Wentworth is not only allowed
17 to response to clarifying questions from committee
18 members but is also authorized to participate in
19 committee discussions in general. However, he is not
20 authorized to participate in the committee voting
21 process.

1 FDA encourages all meeting participants,
2 including open public hearing speakers, to advise the
3 committee of any financial relationships that they may
4 have with any affected firms, its products, and, if
5 known, its direct competitors. We would like to
6 remind members, consultants, and participants that if
7 the discussions involve any other product or firm not
8 already on the agenda for which an FDA participant has
9 a personal or imputed financial interest, the
10 participants need to inform the DFO and exclude
11 themselves from such involvement and their exclusion
12 will be noted for the record.

13 This concludes my reading of the conflict of
14 interest statement for the public record. And I would
15 like to hand the meeting back over to Dr. El Sahly.
16 Thank you.

17 **DR. HANA EL SAHLY:** Thank you, Kathleen.
18 Happy to introduce now Ms. Anissa Cheung who is the
19 Regulatory Coordinator at the Division of Viral
20 Products. She will do the introduction to the meeting
21 and the presentation. Ms. Cheung.

1

2 **INTRODUCTION AND PRESENTATION OF QUESTIONS**

3

4 **MS. ANISSA CHEUNG:** Thank you. Can you hear
5 me?6 **DR. HANA EL SAHLY:** We can.7 **MS. ANISSA CHEUNG:** Okay, thank you. My name
8 is Anissa Chueng and I am working for the Division of
9 Viral Products as a regulatory coordinator. And I'm
10 going to introduce the topic for today's VRBPAC
11 meeting. The purpose of today's VRBPAC discussions is
12 to make recommendations for the strain of influenza A
13 H1N1 and H3N2 and B viruses to be included in the 2022
14 southern hemisphere formulations of influenza vaccines
15 licensed in the U.S.16 Since 2016, U.S. vaccines manufacture has been
17 approved to produce southern hemisphere formulations of
18 the egg-based influenza vaccine. Vaccine strain
19 recommendations and subsequent approval for southern
20 hemisphere formulations follow the same process as the
21 northern hemisphere. After my introduction, you will

1 hear the presentation from our CDC colleague, Dr.
2 Wentworth, to present the epidemiology data of the
3 circulating strain. You will hear the surveillance
4 data from the U.S. and around the world summarized from
5 the most recent WHO southern hemisphere strain
6 selection consultation.

7 You will also hear the antigenic relationships
8 among the contemporary viruses and the candidate
9 vaccine strain. Among the method and techniques that
10 you will be hearing about include the hemagglutination
11 inhibitions and virus neutralization test using post-
12 infection ferret sera and panels of sera from humans
13 receiving recent inactivated influenza vaccines. Also
14 some data on the antigenic cartography as well as
15 phylogenetic analysis of HA and NA genes for all these
16 recent circulating strains and candidate vaccine
17 strain.

18 Oh, sorry, I have to -- to quickly review the
19 previous recommendation for the 2021 influenza
20 vaccines. For the southern hemisphere influenza
21 vaccines, last year on September 25th WHO recommended

1 the following strain: for the egg-based trivalent
2 influenza vaccines in the 2021 influenza season,
3 southern hemisphere, winter, an A/Victoria/2570/2019
4 (H1N1)pdm09-like virus, an A/Hong Kong/2671/2019
5 (H3N2)-like virus, a B/Washington/02/2019-like virus
6 which is from the B/Victoria lineage.

7 For the quadrivalent vaccines containing two
8 influenza B viruses the WHO recommended the above three
9 viruses and a B/Phuket/3073/2013-like virus which is
10 from the B/Yamagata lineage. On October 2nd, 2020
11 VRBPAC met and recommended the same strain as the WHO
12 for U.S. manufacture of the southern hemisphere
13 formulation. For the northern hemisphere influenza
14 vaccines earlier this year on February 26th WHO
15 recommended the following strain: for the egg-based
16 trivalent influenza vaccines in the 2021-2022 influenza
17 season for the northern hemisphere, winter, an
18 A/Victoria/2570/2019 (h1N1)pdm09-like virus, an
19 A/Cambodia/e0826360/2020 (H3N2)-like virus, and a
20 B/Washington/02/2019-like virus which is from
21 B/Victoria lineage.

1 For the quadrivalent vaccines containing two
2 influenza B viruses the WHO recommended the above three
3 viruses and a B/Phuket/3073/2013-like virus which is
4 from the B/Yamagata lineage. A week later, on March
5 5th, VRBPAC met and recommended the same strain as WHO
6 for U.S. manufacture of northern hemisphere
7 formulation. So to summarize where we are at this
8 point, the WHO met last week and made recommendation
9 for strain that should be included in the southern
10 hemisphere 2022 influenza vaccines.

11 The WHO recommended the following strain for
12 the egg-based trivalent vaccines for use in the 2022
13 southern hemisphere: an A/Victoria/2570/2019
14 (H1N1)pdm09-like virus, an A/Darwin/9/2021 (H3N2)-like
15 virus, a B/Austria/1359417/2021-like virus which is
16 from a B/Victoria lineage. For the quadrivalent
17 vaccines containing two influenza B viruses the WHO
18 recommended the above three viruses and a
19 B/Phuket/3073/2013-like virus which is from a
20 B/Yamagata lineage.

21 The H3N2 and the B/Victoria lineage strains

1 are the two new strains recommended by the WHO for the
2 2022 southern hemisphere influenza vaccines. So very
3 soon you are going to hear the presentation from Dr.
4 Wentworth. And after his talk the committee will
5 discuss which influenza strain should be recommended
6 for the antigenic composition of the 2022 southern
7 hemisphere formulation of influenza virus vaccine
8 produced by the licensed U.S. vaccines manufacturer.

9 And at the end of the discussion the committee
10 will be asked to vote for the following questions:
11 first, for the composition of egg-based trivalent 2022
12 southern hemisphere formulations of influenza vaccine
13 does the committee recommend inclusion of an
14 A/Victoria/2570/2019 (H1N1)pdm09-like virus, inclusion
15 of an A/Darwin/9/2021 (H3N2)-like virus, inclusion of
16 B/Austria/1359417/2021-like virus from the B/Victoria
17 lineage? Second, for quadrivalent 2022 southern
18 hemisphere formulations of influenza vaccines does the
19 committee recommend inclusion of a B/Phuket/3073/2013-
20 like virus, a B/Yamagata lineage as the second
21 influenza B strain in the vaccine?

1 I believe this is my last slide and thank you
2 for your attention.

3 **DR. HANA EL SAHLY:** Thank you, Ms. Cheung. Do
4 we have any questions for Ms. Cheung before we move to
5 (audio skip). I do not see any raised hands.

6 It is my pleasure now to introduce Dr. David
7 Wentworth who is the Chief of Virology Surveillance and
8 Diagnosis Branch Influenza Division at the National
9 Center for Immunization and Respiratory Diseases at the
10 CDC. Dr. Wentworth is going to go over the data that
11 led to the strains recommended by WHO. Dr. Wentworth.

12

13 **WORLD SURVEILLANCE**

14

15 **DR. DAVID WENTWORTH:** Hello, thank you. Can
16 you hear me okay?

17 **DR. HANA EL SAHLY:** We can.

18 **MR. MICHAEL KACZYNSKI:** Yes, we can.

19 **DR. DAVID WENTWORTH:** Okay, great. All right,
20 thanks very much. I'm gonna turn my video off just so
21 that --

1 **MR. MICHAEL KACZYNSKI:** You're good, Dr.
2 Wentworth. You're good. You're good. All right.

3 **DR. DAVID WENTWORTH:** Okay, thank you. So
4 we'll get started here. Do I have control of the
5 slides, Mike?

6 **MR. MICHAEL KACZYNSKI:** Give me one second.
7 There, take it away.

8 **DR. DAVID WENTWORTH:** Thank you --

9 **MR. MICHAEL KACZYNSKI:** There you go.

10 **DR. DAVID WENTWORTH:** -- very much.
11 Excellent. So here is the outline of what we will be
12 talking about today. I'll provide an overview of the
13 recommendations and then we'll go into some of the
14 influenza activity that we saw, which was very low due
15 to the Covid pandemic. Then I'll describe the
16 (H1N1)pdm09 viruses, and I'll be focusing on the major
17 highlights there. This is in part because the
18 recommendation is the same as the northern hemisphere
19 2021 and 2022 season, and the southern hemisphere 2021
20 recommendation.

21 I'll also be talking about H3N2 viruses. I'll

1 spend more time on this one, provide details central to
2 the recommendation, which is an update from the
3 previous 2021 southern hemisphere recommendation. And
4 I'll be describing some of the similarities and
5 differences between the northern hemisphere 2021-2022
6 recommendations which we're getting this fall. And
7 some may have already gone out and received it, so good
8 job doing that. The B/Victoria lineage, we'll be
9 providing details central to the recommendation there
10 as well.

11 It was an update from the previous southern
12 hemisphere 2021 recommendation. And for the B/Yamagata
13 I will not cover the recommendation remains the same
14 and there is no circulation of lineage -- this lineage
15 during this period. Okay. So the WHO consultation
16 meeting really depends on year-round surveillance
17 conducted by the Global Influenza Surveillance and
18 Response system, also known as GISRS. Within this
19 system there are WHO collaborating centers such as your
20 CDC, National Influenza Centers, WHO Essential
21 Regulatory Laboratories or ERLs, and WHO H5 reference

1 laboratories.

2 And it's supported also by many countries and
3 partners including the GISAID which is the Global
4 Influenza Sequence Database structure. And it's been
5 heavily used for SARS sequence information as well. So
6 the WHO consultation meeting was held from September 13
7 through 24th, 2021. It was a virtual meeting. It was
8 chaired by Kanta Subbarao, who's pictured there to the
9 right, and 10 advisors were participating in the
10 meeting. Eight of the advisors are focused on the
11 seasonal influenza and represent their corresponding
12 WHO Collaborating Center or Essential Regulatory
13 Laboratory. They're pictured below.

14 And then there were 42 observers from WHO CCs,
15 ERLs, academia, H5 Reference Laboratories, as well as
16 the veterinary sector. Actually, this week is ongoing
17 the Zoonotic vaccine consultation meeting where our
18 pre-pandemic viruses are selected. And that's
19 happening right now and that's part of -- the old flu
20 is part of that as well. And then we have experts from
21 WHO regional offices, et cetera. So here were the

1 recommendations and I already alluded to this in the
2 outline.

3 For the quadrivalent egg-based vaccines the H1
4 stayed the same, A/Victoria/2570 from 2019, the H3,
5 they're highlighted in blue. Those that changed is
6 updated to -- for the southern hemisphere to recommend
7 an A/Darwin/9/2021 (H3N2) virus and the B/Victoria
8 lineage was updated to a B/Austria/1359417/2021 virus.
9 And the B/Phuket stayed the same, 3073. And the green
10 boxes indicate what would be used in the trivalent
11 vaccine. And then for cell and recombinant-based
12 vaccines, again, the H1 recommendation remain the same
13 as an A/Wisconsin/588.

14 The cell for H3 was recommended the Darwin/6,
15 closely related to the Darwin/9/2021 and a cell isolate
16 of the B/Austria/1359417. So there was both an -- we
17 call that an egg cell pair. So the same swab an
18 isolate was obtained in an egg, and an isolate was
19 obtained from cell culture. And then B/Phuket was
20 recommended. Okay. This slide illustrates the number
21 of specimens processed by GISRS at a weekly level. I

1 think people don't appreciate how much -- how big this
2 GISRS network is. And we're typically -- and this is
3 over a number of years. The key is down here, 2018-
4 2021.

5 So the number of put specimens tested can be,
6 you know, range from the peaks of more than 150,000
7 weekly down to about 40,000 weekly down in these weeks,
8 you know, 24 through 25, 26, those kinds of timeframes.
9 And many people think because of the Covid-19 pandemic
10 there wasn't testing but you can actually see the past
11 two years in the yellow 2020 and the red 2021, there
12 has been more testing than average. But despite a lot
13 of that testing the percent positivity's been quite
14 low.

15 Usually this Y-axis here is in the thousands,
16 not the hundreds. But you can see on a weekly basis we
17 are still getting the viruses that are testing positive
18 over the course of the year. And then the color coding
19 in these bar charts show the blues are the A(H1) and
20 the H3, so that the influenza A viruses are all the
21 different color blues. The lightest blue being -- I

1 hope you can all still hear me. My computer was doing
2 something funny. The lightest blue being the H1N1, the
3 aqua being H3, and the dark being not subtyped. And
4 then the B/Victoria lineages are the orange. Or, I
5 mean, the B lineages are the orange, the Victoria being
6 dark, Yamagata being very light. And you can see very
7 few Yamagata lineage viruses there, for example, that
8 were detected.

9 All right. And then for the southern
10 hemisphere we had a very similar kind of range of
11 viruses but even lower detections as you can see on the
12 Y-axis. Now looking at the percentage of positive
13 influenza A and B viruses from February to August 2021
14 you can see that the type A viruses represented 40% of
15 this pie chart here, that you can see over here. And
16 the type (H1N1)pdm09 represent 20%, and the H3
17 dominated with 80%. But the type B viruses, they
18 represented more than the type A at 60%. And
19 B/Victoria far, far greater than B/Yamagata.

20 And so you can see that B/Yamagata, this
21 little slice of the pie here, where it was detected.

1 All right. Moving on to the influenza activity
2 globally. Here you can see, again, the H1's and H3's
3 are in the blue colors and the influenza A and the B
4 are in the orange colors. And so you can see -- this
5 just gives you a sense of the distribution of influenza
6 virus by type and subtype globally. You can see, for
7 example, that in China there was an awful lot of
8 influenza B and little influenza A.

9 In the U.S. we're more of a half and half
10 portions during this time period. And in parts of
11 Africa like western Africa there was more H1 than H3
12 and more A than B but in South Africa it was different.
13 And so that gives you a good sense of the geographic
14 distribution of the activity. Now this slide
15 illustrates the genetic characterization of influenza
16 viruses by the WHO-CCs going from the period February
17 to August 2020 and February to August 2021.

18 And so you can see there was just more viruses
19 circulating in the 2020 timeframe than there has been
20 in the 2021 period. But there were still a number of
21 viruses characterized across all these different

1 subtypes and lineages. Again, with the Yamagata being
2 no viruses in this timeframe for characterization.

3 Okay, so now we're getting into the H1N1 viruses. Here
4 you can see the number of H1N1 viruses detected by the
5 GISRS in the past couple of seasons. Again, 2020 is
6 yellow and 2021 is this orange/red color.

7 And you can compare that to the 2019 season
8 where you see the large peak of viruses detected. But
9 here you can see this fall during the spring of 2020 as
10 the Covid-19 pandemic really took hold. And then it
11 flatlined across there as far as the circulation of
12 H1N1. So there's been a very low level circulation of
13 H1N1, even lower than B or H3N2 viruses. This slide
14 illustrates the activity as a percent positive
15 globally. And so you can see the different countries
16 where activity was detected at zero to 20% level.
17 Quite a few countries globally and continents globally
18 had that.

19 And you can also see in parts of western
20 Africa very high positivity's, you know, 40% to 80%
21 positivity rates there and in parts of Europe, et

1 cetera. Now this slide I'll take a little bit of time
2 on because it is very full of information. But the
3 main points are listed in the bullets. And so with the
4 H1 HA phylogenetic tree, which is shown on the right-
5 hand side here, starting with some of the older viruses
6 down here in the older clades -- 731, blah, blah, all
7 these coming up the tree. Until we get into clade
8 five, which is the dominate clade right now, 5A being
9 the most common.

10 And so that's kind of moving the evolution
11 this way from the past. But you can also see where it
12 bifurcates or splits into two different groups. And so
13 we have the 5A1 viruses which are colored in this
14 salmon color here, the 6B1.5A1 viruses. And they
15 really split right about here at this D187, 189
16 position. So there's a D187A, Q189E substitution
17 that's generally a hallmark. And there's a genetic
18 split, but it encodes that substitution.

19 And then many of these viruses have been
20 circulating. You can see over here, these are the
21 months of the year. This is basically 2021 in the

1 middle to the right-hand side of all these lines. And
2 these orange dashes mean these were from Africa. And
3 then you can see specifically those from western Africa
4 like Togo, for example, which is this virus here. And
5 so these 5A1 viruses, as I mentioned, share these 187.
6 It also is the 2020 - '21 vaccine prototype antigen.

7 And that's illustrated by that arrow here,
8 this Hawaii/70 virus that now they use in assays that
9 I'll show you later. And I mentioned the recent
10 viruses from South Africa. I didn't mention we see
11 very few viruses with this unique substitution, G155E.
12 But that, we know, is an important site and so we've
13 included it. That's like this one here, this North
14 Carolina/04 or 01/2021. And we've included it in some
15 assays but I'll show you that. Now getting into the
16 5A2 viruses.

17 This is this area shaded in blue. It
18 encompasses this Wisconsin/588 northern hemisphere '21-
19 '22 cell prototype. So that's this season. So this is
20 the prototype of the vaccine virus we'll be getting
21 this fall and it's also the southern hemisphere 2022

1 recommendation. Okay. These often share this
2 substitution here N156K. Again, a very important
3 antigenic region of the virus. So we keyed in on that
4 pretty early on in the emergence of this group of
5 viruses.

6 I mentioned the vaccine recommendations and it
7 includes recent viruses from India which you can see
8 here, you know, this is May, June, July, into August.
9 You know, August is getting to a point where you don't
10 see very many viruses for this type of selection
11 because they have to be identified and sequenced, et
12 cetera. So right up to the minute is what I'm trying
13 to say there. Now, getting into a very simple way of
14 looking at antigenic data. This is called antigenic
15 cartography.

16 We've talked about this before. But it's a
17 way to take data from tables and put it graphically
18 onto a map. And what you can see are these viruses
19 with the HA from the 6B.1A subclades 5A1, those 187
20 viruses, they're down here, and the 5A2 viruses,
21 they're up here, form two antigenically distinct

1 groups. They're easy to see on this chart or graphic
2 scale. The viruses of each subclade cluster together,
3 as you can see here. And you can see here, there was a
4 whole bunch of 5A2 viruses circulating prior to
5 September 2020.

6 And they're -- the older viruses are indicated
7 in gray in this document, on this picture. And then we
8 have the 5A viruses that have the G155E. These are
9 shown in this yellow color. So they're forming a
10 slightly different group. Again, they're in this 5A
11 group but they're a slight different emergence from the
12 5A1's, like the Hawaii/70 prototype. Okay. Now this
13 slide illustrates human post-vaccination sera analysis
14 of the (H1)pdm09 viruses. And this is now showing you
15 data from sera collected from recipients of the
16 northern hemisphere 2020 - '21 vaccine.

17 So last year's vaccine sera was collected
18 about December or so from people that had been
19 vaccinated and then used for this analysis. And so, we
20 have sera panels from pediatric populations from six to
21 35 months, all the way through over 65-years-old from a

1 variety of vaccine platforms, egg-based, cell-based
2 platforms, and also high dose vaccine here in the
3 elderly. And the easy takeaway from this is blue is
4 good.

5 And the orange colors represent statistically
6 significant reductions in neutralization by that
7 antisera against various viruses tested, which are at
8 the top of these columns. And so, the 5A1 viruses are
9 this whole group of viruses here until we get to the
10 blue box. And then the 5A2 viruses are these blue
11 boxed viruses. And so what you can see for the most
12 part is the 5A1 viruses are pretty well neutralized by
13 sera from these vaccines which was a 5A1 vaccine. And
14 the 5A2 viruses -- sorry, the 5A2 viruses are not
15 neutralized so well or escape.

16 And that's shown -- that's -- basically the
17 take home is in this bullet here. The GMT to the 5A2
18 viruses were low in all the serum panels. We can see
19 that as you track your eye down. This is data from CDC
20 as well CBER, NIBSC. So multiple Collaborating Centers
21 or Essential Regulatory Laboratory's finding the same

1 type of data. Okay. So now, this is a good piece of
2 interesting information. The southern hemisphere 2021
3 vaccine was a 5A2 vaccine, so it was a Wisconsin/588-
4 like vaccine.

5 And so now we can take sera from Australia,
6 from adult and elderly population. And we can see how
7 well it works against the 5A2 viruses which were poorly
8 covered using the vaccine before. And how it cross
9 protects against these 5A1 viruses very well. Most of
10 the viruses tested, some of these that I showed you on
11 the tree that had unique substitutions, such as these
12 new emerging 166/186 substitutions with Togo/881 virus
13 or the G155E. So that was the only virus that really
14 showed low reactivity with this new sera. And so
15 that's the take home message here.

16 Post-vaccination sera from the southern
17 hemisphere, which is a 5A2 virus, inhibits both 5A2 and
18 most 5A1 viruses. With the exception being that odd
19 G155E viruses which are relatively rare. But we keep
20 our eye on them now. Okay. So here's the H1N1
21 summary. There was low circulation, but (H1N1)pdm09

1 viruses were detected in West Africa, India, and
2 sporadically in a few other regions. The great
3 majority of the HA gene sequences belong to the 5A
4 subclades with 5A1 HA proteins predominant in West
5 Africa.

6 They had a few additional substitutions which
7 we tested in the human serology and ferret serology
8 data. And the 5A2 virus HA proteins were seen in
9 recent viruses from India. And those I pointed out on
10 the time tree where some of the most recent viruses
11 circulating are these. They have a few additional
12 substitutions, which I won't read out. But just for
13 context there you can see they're still evolving. And
14 characterization with the ferret antisera showed that
15 the 5A1 and 5A2 viruses are antigenically distinct from
16 each other.

17 And antisera to 5A1 viruses well recognized
18 5A1 viruses but not 5A2 and vice versa with the
19 Wisconsin/588 sera. And that's evidence for them being
20 antigenically distinct from each other. Now given that
21 antigenic distinction, we found that post-vaccination

1 sera collected from humans vaccinated with the northern
2 hemisphere reacted well with the 5A1 viruses but not
3 those 5A2 viruses. Whereas, those given the southern
4 hemisphere 2021 vaccines with their 5A2 antigens had
5 sera that inhibited both 5A2 viruses and well
6 recognized viruses representing most of the 5A1 groups
7 that are circulating.

8 As far as antiviral susceptibility, we always
9 look at this. It's not really part of vaccine strain
10 selection but it's a good time to understand whether
11 there's resistance emerging out there. And the good
12 news is we didn't find any resistance, really, in the
13 H1N1 viruses. I won't read those to you, you can read
14 that. Okay. Now we're going to turn our attention to
15 the H3N2 viruses. And so, we can buckle up for this.
16 The H3N2's are a quite dynamic set of viruses. Again,
17 now looking -- focusing at the H3N2 viruses protected
18 as part of the GISRS network.

19 Again, seeing lots of viruses circulating in
20 previous seasons and very low circulation in the past
21 couple of seasons. But you can see here in weeks 30

1 through 36, and probably this downturn is a reporting
2 lag, some increase in the H3N2 viruses that are
3 circulating. And where are those circulating? You can
4 see on this map the percent positivity. Again, color
5 coded in this key here. We saw quite a bit of
6 circulation in Southeast Asia and in South Asia and
7 India. Also in Nepal, in parts of Africa -- northern
8 Africa and a little bit in Western Africa and some
9 parts of Europe.

10 Okay. And so we had viruses in all these
11 locations, including the Middle East, to look at. And
12 this gives you a very 50,000-foot view of the
13 phylogenetics of the hemagglutinin gene of the H3N2
14 viruses with quite a bit of time to look at them. And
15 I put this in on purpose because I want to illustrate
16 that many clades co-circulate. That's what you can see
17 here. In 2019 we had 3a viruses and 2a viruses all co-
18 circulating around the globe at that time. And that's
19 dictated here.

20 And now we saw the emergence of many 2a1b
21 subclades. That's highlighted in the salmon color with

1 the 2a1b, 1a, 1b, 2a, and 2b which I'll be walking
2 through. And the 2a1b1a clades and 2a represent some
3 of the most recent viruses circulating. You'll see
4 that out here on these tiny little dashes that I'll
5 drill into in more detail on this next slide. Okay.
6 So this next slide, again, is a highly integrated tree
7 with a lot of information on it. We're going to walk
8 through it a little bit slowly.

9 The take homes here, nearly all the viruses
10 now have this 2a1b HA gene which continues to
11 diversify. And so the 2a1b now have this -- the 1b
12 group of viruses represented by the Hong Kong/45.
13 That's down here on the tree. This was the southern
14 hemisphere 2021 vaccine prototype virus. It's hard to
15 read probably but it's in the red there. And they had
16 these common amino acid substitutions, this 135K and
17 137F that gave rise to this whole group of viruses that
18 really dominated at one point.

19 They also -- this branch point also has the 1a
20 viruses which are this bullet here, represented by this
21 New York/21, for example, which is a serology antigen.

1 And they diversified further into something like this
2 Togo/771 at the top of this little section of the tree
3 and Niger/8749 right here. And then the most recent
4 viruses are these 2a viruses represented by this boxed
5 out salmon color here. That's where the 2021 - '22
6 northern hemisphere vaccine prototype is, the Cambodia
7 virus.

8 It's the Cambodia/E0826360 from 2020 that you
9 all recommended or included in the vaccine in the
10 spring in March for us this fall. And then the 2022
11 southern hemisphere recommended prototype is up here
12 for your consideration, the Darwin/6. And so the two -
13 - these are closely related viruses, they're in this 2a
14 group. A little bit further evolved to this group now
15 is this 2a2 or are these 2a2 viruses represented by
16 this Bangladesh/1006. That's basically at the base of
17 this group of viruses in this tree.

18 So they often have this 159 change which is
19 this bunch of changes here, 159 being a pretty
20 important amino acid in antigenicity. So now this
21 slide illustrates the final geography a little bit

1 easier than that detailed slide I just showed you in
2 that HA tree. And what it's really showing you in this
3 left-hand panel is the September 2020 to January 2021
4 versus the right-hand panel February 2021 to August
5 2021.

6 And what you can see is this transition of the
7 subclades, the 2a1b subclades, the global distribution
8 of the 1a and 1b, which are these yellow and aqua
9 colored dots decreasing, and the distribution of the 2a
10 viruses which are the more greens and the lighter kind
11 of mustard color here, the 2a viruses increasing. And
12 you can see that the 2a2, this forest green virus,
13 increased and the 2a1 viruses continued to circulate.
14 So we've got a decrease in the 1a1b and an increase in
15 the 2a happening.

16 Now this gives you an impression of what all
17 that genetic changes are doing to the protein. It's
18 the major antigen in our vaccine, that's the
19 hemagglutinin. On the left, southern hemisphere
20 vaccine prototype, the Hong Kong/45 cell. And it's
21 illustrating a variety of important regions of the HA

1 molecule. The receptor binding site is circled here.
2 And so that's where the virus attaches, the actual part
3 of the molecule attaches to the host cell. And you can
4 see these major antigenic sites such as B and A right
5 around that receptor binding pocket.

6 So our antibodies in these sites really block
7 that ability of the virus to bind. And antigenic sites
8 E and D also play a role as well as C. And so you can
9 see they're all color coded here. Now when we look at
10 our northern hemisphere 2021-2022 prototype, the
11 Cambodia virus, I won't read that whole number to you
12 again, you can see all these changes are highlighted in
13 red around the molecule. You can see multiple changes
14 in many important epitopes, primarily in antigenic site
15 B and A here. And you can also have a look at this
16 Darwin/6 which is the recommendation.

17 It shares many of these same changes but has
18 this additional Y159N. You can now see where it is on
19 the molecule right up near the top and very close to
20 the receptor binding pocket. And the T160I which also
21 is important because it removes the glycosylation motif

1 at position 158. So kind of important substitutions
2 but just a few additional substitutions on top of
3 what's there in the Cambodia virus. Now this slide is
4 an overview of the neutralization data to antisera by
5 the antisera to the antigens recommended for the '21
6 southern hemisphere vaccine virus. And so that was
7 Hong Kong/45-like.

8 You can see multiple Collaborating Centers
9 here. Again, low levels of viruses compared to normal
10 but still representative of the viruses circulating in
11 each of the catchment areas. And you can see that 92%
12 would be considered low to that vaccine virus. So
13 that's not a good situation with the cell-like
14 candidate. And it gets worse when we take the egg
15 antigen with 100% of those being considered low or
16 eight-fold reduced or more. So moving now to the
17 neutralization by Cambodia.

18 So this really isn't relevant to the southern
19 hemisphere per se, but it could be a choice that the
20 southern hemisphere could use similar to the northern
21 hemisphere. And you can see definitely better coverage

1 than the Hong Kong/45 with 64% being considered like
2 and only 36% being considered low. A little bit
3 greater with the egg and that's always expected. The
4 next slide. This is now showing you antigenic
5 cartography from the two centers. All the centers
6 participate in this but it's hard to show all that
7 data.

8 Here we're showing data from our center in
9 Atlanta as well as data from Melbourne on the right-
10 hand side. So we use something called HINT which
11 stands for High Content Imaging Neutralization Test to
12 look at the viruses and how well the antisera to
13 viruses neutralize them. And so we can see that these
14 are forming different groups. So there's the Hong
15 Kong/45 cell-like virus is this orange dot or kind of
16 fuchsia dot and the Cambodia recommendation is this
17 orange dot.

18 And you can see many of the viruses in this
19 time period are clustering with this orange group of
20 viruses and overlapping a bit with the Hong Kong/45
21 serum. And then we have this Bangladesh virus, this

1 2a2 group of viruses are colored in this kind of a
2 mustard color, a brown color, and a lighter yellow
3 color. We were interrogating whether this additional
4 substitution at 156 mattered or not. And the data
5 illustrates that it really doesn't matter. You're
6 seeing viruses of all flavors, the dark, the light, and
7 the medium orange colors all clustering very closely
8 together with antisera to this Bangladesh/1006.

9 And then CC Melbourne has very similar data
10 but they had a lot more of these viruses with the 156S
11 circulating in their tested viruses. So you can see
12 that here, this darker color. But you can also see
13 where the Bangladesh/1006, which is very similar to the
14 Darwin/6 that is recommended as well as Darwin/11 which
15 is the qualified manufacturer cell candidate, and
16 Darwin/9 which is the egg virus that was recommended.
17 All very antigenically related to this group here and
18 divergent distinct from Cambodia or Hong Kong.

19 All right. Now we'll look at the human serum
20 post-vaccination analysis with the H3N2 viruses now
21 relative to the cell propagated Hong Kong. And so you

1 need to set things at 100% to do the analysis. And
2 then we are looking across -- and again, orange -- any
3 orange color meaning significant reductions in
4 neutralization. And the major clades of each of these
5 viruses that are named at the top of the columns here
6 are listed above just for simplicity. We have the 1b,
7 the 1a, the 2a1, and the 2a2 viruses as well as 3a
8 viruses.

9 And really what you can see is these 2a
10 viruses, which I just boxed out with the pointer,
11 really represented some of the viruses with the lowest
12 reactivity to serum after vaccination with the previous
13 vaccine candidate. And the take home is really here
14 that multiple serum panels show these 2a viruses escape
15 neutralization. And that these 2a2 viruses, like you
16 can see here -- you can cast your eye down this
17 Bangladesh column, and down the Wisconsin/02, and
18 Delaware/01, as well as the Darwin/6.

19 All showing, you, Delaware/01 and Darwin/6 are
20 basically the same hemagglutinin molecule but just from
21 different isolates across the world. Anyway, the two

1 2a2 viruses are the lowest. And now we're looking at
2 the antigenics. So now you can actually see some data.
3 I won't show you all these tables, that's what the
4 cartography is for, but it's nice to look at some
5 specifics here.

6 So if we take ferret antiserums for the
7 southern hemisphere 2021 recommended viruses, that's
8 these two columns here, Darwin/726 would be equivalent
9 of Hong Kong/45 and Hong Kong/2671 is the egg
10 prototype. And so the red coloring here is greater
11 than eight-fold reductions. And so you can see that a
12 lot of the viruses tested, they did test antigens in
13 this timeframe, are quite low to this. So they're
14 poorly inhibiting the clade 2a1 and 2a2 viruses. They
15 do a pretty good job on the other virus clades but not
16 many of those represent recent test viruses.

17 The dates are over here of some of these
18 isolates. And so when you take a look at the northern
19 hemisphere reference virus, like the Cambodia virus --
20 here's a cell and egg, you can see pretty good
21 reactivity, or at least modest reactivity with these

1 recent viruses. And good reactivity with the 1a
2 viruses which are like themselves. And so from that
3 you're seeing they inhibited the 1a, 1b, 2a1 viruses
4 but show some reductions in the 2a2 viruses tested.

5 And then if you look at sera against the 2a2
6 reference virus, which is here, and the cell is this
7 first column down here, Darwin/6. You can see how well
8 the light-yellow color -- it's less than four-point
9 reductions to the homologous titer of 640 here, how
10 well all of these circulating viruses from Darwin,
11 Nepal, Philippines, Victoria, were against that virus.
12 Darwin/11 is the qualified manufacturing cell line
13 isolate. So if you're using cell culture vaccines that
14 would be the seed.

15 And then for egg-based vaccine, Darwin/9 is
16 the seed prototype and that is also showing quite good
17 reactivity for an egg isolate for those most recent
18 viruses. Now this slide moves us now to the antigenic
19 cartography showing you serum circles. So now, how
20 well -- so everything within the circle is considered
21 covered very well, four-fold or less by, say, for

1 example, serum against Darwin/6. It covers all these
2 viruses and comes out to the 2a virus, 2a1-like
3 viruses.

4 So we're covering these 2a2 but comes out to
5 these 2a1's and starts covering those as well. And
6 here's the Darwin egg, it's a little tighter serum
7 circle. But again, really do a good job covering the
8 diversity of that new group of viruses. So to
9 summarize the H3N2. Hopefully, I have been clear about
10 this. This is a complicated set of viruses usually and
11 a lot of evolution there. We saw in many countries,
12 areas, and territories that were reporting influenza A
13 viruses that H3N2 subtypes were detected.

14 But some of the details are here. They are in
15 countries in Southeast Asia, South Asia, Middle East,
16 Africa, Oceania, North America, Europe. With regard to
17 the biogenetics of the hemagglutinin gene for the
18 circulating H3N2 virus over this period, all really
19 belong to this 2a1b subclade. And that nomenclature is
20 getting quite long and I understand that. That's why I
21 short-handed it often when I'm discussing it to the 1a

1 group which have those amino acids, the 1b group, and I
2 folded here the 2a which represent most of the viruses
3 now that are kind of taking over.

4 And they have split into this 2a1 group and
5 the 2a2 group. But they are quite genetically related
6 viruses. And so the viruses in the 2a2 represent an
7 increase in proportion. We showed you that in some of
8 the maps where we're now pushing towards the 2a2
9 dominating over 2a1, which dominate over 1a and 1b.
10 But as with always H3N2 viruses there's co-circulation
11 of these different groups both in different geographic
12 regions and simultaneously in various regions. To
13 summarize the antigenic characteristics.

14 The 2a2 viruses are antigenically distinct.
15 And that's really illustrated by this data here.
16 Ferret antisera to Hong Kong neutralizes the 1a1b virus
17 as well. And 2a1 virus is a cross-protection against
18 those pretty well. So it was a good vaccine choice.
19 But it neutralizes the 2a2 viruses poorly. The
20 Cambodia virus for the northern hemisphere 2021-2022
21 season reacts well with 1a, so it's kind of back

1 protecting against some of the older viruses, the 1b
2 and of course the 2a1 viruses which is its subclade.

3 But the 2a2 viruses, we're showing some
4 reductions there, that sera. And then the Darwin/6
5 recommendation for the '20-'22 season in the southern
6 hemisphere well recognizes the 2a2 viruses but doesn't
7 do a very good job against the 2a1 viruses. So it's a
8 little bit more reduced than the other way around and
9 it poorly reacts with 1a and 1b viruses. Now to
10 summarize the serology.

11 We've found that the studies with the serum
12 panels that vaccinated against the Hong Kong/2671-like
13 or Hong Kong/45-like viruses which are in that 1b
14 clade, the GMT's, the Geometric Mean Titers were
15 significantly reduced against the cell culture
16 propagated 2a1's. That was kind of a burnt orange
17 color. And then the darker orange color were those 2a2
18 viruses. And for the antiviral susceptibility, again,
19 the good news is we're in good shape.

20 Of the viruses that were tested, collected
21 after January 2021, none showed reduced inhibition to

1 neuraminidase inhibitors and all were expected to be
2 susceptible to baloxavir. Now I'm going to change our
3 attention to the influenza B viruses. And this slide
4 is a familiar slide now. It kind of looks the same for
5 all the viruses, this VRBPAC meeting, which it
6 typically doesn't. But again, decreasing in the spring
7 of 2020. And then continuing to be very low
8 circulation in most parts of the world in 2021.

9 However, there were some countries in the
10 world that had high circulation including -- and that
11 will be shown here. China, for example, had very high
12 levels of influenza B viruses circulating, as well as
13 parts of Africa and Europe and even in some of the
14 Americas. We had pretty good circulation. And so we
15 had representative viruses to analyze from those
16 epidemics and outbreaks. This is illustrating the
17 phylogenetic tree of the B/Victoria viruses. Again,
18 this is a high-level tree.

19 You can see from 2017 through 2021 here,
20 you're not expected to see the details. But we had a
21 number of clades that have co-circulated over those

1 years. And you can again see how global the
2 circulation is. And we had this clade 1A.3, which is
3 this big black bar here, which really dominated prior
4 to the Covid pandemic. Which you can see all back
5 here. And then the pandemic having happened really in
6 the beginning of the spring of 2020 dramatic decreases
7 in the viruses around.

8 And then what reemerged after that bottleneck,
9 that Covid bottleneck, are these clade 1A.3a viruses
10 which I highlighted in the blue color here. And you
11 can see those, a lot of them, in China, for example.
12 And they diversified into two groups. And we're going
13 to look closely at that on the next slide. Here you
14 can see this clad 1A.3. It's all the viruses really in
15 this tree that predominated prior to the Covid
16 pandemic. The southern hemisphere 2021 vaccine virus
17 is shown down here, B/Washington/02/2019 on this tree,
18 so it's this V1A.3.

19 And you can see all this evolution happening
20 right at -- throughout all these viruses here. And
21 part of this clade 1A.3 (N150K) substitutions. That's

1 this group of substitutions here. So they represented
2 a very minor group of viruses prior to Covid-19 and
3 expanded after Covid-19. And really represent most of
4 the recent viruses. And they've split into these two
5 groups, the 3a1 which are highlighted in this blue box
6 at the top. And you can see when they circulated, all
7 the dashes here, and where they circulated.

8 So this is red, this is in China. And then
9 3a2 viruses which are represented by this more salmon
10 colored box down here. And that's where the southern
11 hemisphere recommendation sits, the B/Austria/1359417
12 group. This has increased steadily in recent months.
13 And you can see that in this time series slices here.
14 And it's more globally disbursed. You see how there's
15 multiple colors here. In Europe in green; North
16 America, blue; Western Africa in orange; and China in
17 red. So it's also in China.

18 And it's displacing the 3a1 group in China.
19 So you can see here the 3a1 group dominating originally
20 and now the 3a2 group displacing it and these guys
21 diminishing. So that's kind of an interesting

1 phenomenon happening in China. Probably a microcosm of
2 what we'll all see. Some of the viruses like this, so
3 the B/Austria I already pointed out, and the
4 B/Michigan/01, very similar to this B/Austria virus
5 that's listed here. That will be in some of the
6 serological assays I'll show you.

7 So this reiterates what I just told you. That
8 globally we're seeing a lot of these 3a viruses. The
9 3a1's being a darker color, it's a little bit hard to
10 see in China. But still over the whole time period
11 representing a majority. And the 3a2 viruses in this
12 lighter blue color such as that. And so you can just
13 how those are more distributed than the 3a1 viruses
14 even with our travel restrictions. So now we can look
15 at the neutralization of the B/Victoria viruses by
16 antisera recommended for the -- against viruses
17 recommended for the 2021 southern hemisphere.

18 And that was the B/Washington/02 cell virus.
19 And you can see a little bit of difference by the
20 different centers, for example. The U.S., the CDC had
21 about 60/40 split with being -- 60% being like.

1 Although very low numbers but still quite real. And
2 then CNIC having very high numbers. This is the China
3 National Influenza Center having very high numbers of
4 viruses to test but really driving a percentage that
5 are considered low. The Francis Crick Institute.

6 So overall we had 18 percent that were
7 considered like and 82 percent considered low. That's
8 suggesting we need to update the vaccine. A very
9 similar phenomenon, and actually a slight improvement
10 with the egg antigen. And this actually has a
11 molecular reason. And that's because the egg virus has
12 lost a glycosylation site that is naturally missing in
13 the new emerging clade. So there's actually a little
14 better cross-reactivity in this instance. Now this
15 gives you a picture of cartography looking at the
16 different viruses.

17 So you can see the B/Washington sera pointed
18 in this black box here. The different virus types that
19 were circulating and focusing on these bottom viruses
20 here, the two green ones, the 3a1 and 3a2, those
21 represent the most recent viruses. The 3a1's having a

1 little bit more cross-reactivity to that Washington
2 sera. And the 3a2's, the lighter colored, being a
3 little bit outside of that four-fold reduction in the
4 serum circle. Here is the Washington egg, similar
5 phenomenon.

6 And then here is the new recommended candidate
7 which does a really nice job against this new emerging
8 group but doesn't cross-protect well against the 3a1
9 viruses, the darker green viruses or the predecessor
10 viruses like Washington/02. It appears that virus
11 doesn't have as much breadth, really, as the
12 Washington/02 virus did. But it does represent the
13 antigenically distinct clade that's emerging. Now
14 human sera, it always looks better because we have
15 great cross-reactivity against influenza B viruses in
16 humans generally.

17 And so what you can see here is these are now
18 looking at titers relative to the vaccine antigens,
19 cell Washington, the Washington cell virus here. And
20 you can see nice reactivity with the 3a viruses. So
21 these have that 150K change but don't have additional

1 substitutions like the 3a1 viruses which have that
2 additional 220M that's listed on the tree. I didn't
3 walk you through all these minor changes. But that was
4 some of the major substitutions in that virus. And you
5 can see that gives us some reductions in the human
6 sera.

7 And the 3a2 viruses in two different flavors.
8 This is this Michigan/01 and a Maryland/01. So this is
9 a lot like the Delaware/6 that's named. They have the
10 127T, 144L substitutions. Probably likely very
11 important. You can see some reductions in some serum
12 panels but not huge reductions. Pretty good cross-
13 reactivity with the Washington egg antigen. But still
14 an indication that there are reductions in some of the
15 human serum. And the take home from this -- I started
16 to put these bullets in just to help because the human
17 serology is a lot to walk through.

18 The geometric mean titers and the sum of the
19 serum panels were reduced to the 3a1 and 3a2 viruses.
20 Now looking at some of the reference viruses and
21 potential candidate vaccine viruses that there are to

1 choose from. The recommendation in the southern
2 hemisphere was this Washington/02. Some of the recent
3 viruses isolated serving here as test antigens. The
4 homologous titer of 160. So you can see this 3a1
5 covering pretty well, only a two-fold reduction.
6 That's highlighted in the blue color, the 3a1 clade.

7 Whereas the 3a2 clade there were viruses from
8 Cote d'Ivoire, Singapore, Gansu, you know, these are
9 parts of China. There are more, Singapore and
10 Philippines. So you can see how disseminated they are
11 getting lower against that group. Serum against one of
12 our candidates, that would be a 3a1 viruses, doesn't
13 react very with this 3a2 viruses but reacts very well
14 with itself, with its own group. And then the 3a2
15 group of viruses having a titer of 1280 reacting very
16 well with all the 3a2 testing antigens.

17 Even though they have additional mutations, et
18 cetera from that B/Austria virus. But not so well
19 against the 3a1 group of viruses. For the B/Yamagata,
20 I mentioned this earlier but just for posterity I have
21 included this slide. We had sporadic detections of the

1 virus in 2021 but none were confirmed by Collaborating
2 Centers and no viruses with collection made after March
3 2020 were available for characterization. So I won't
4 show you any data on that. And then to summarize
5 influenza B viruses.

6 The B/Vic lineage viruses predominated by a
7 huge margin and no Yamagata lineage viruses were
8 available for analysis, as I just told you. The HA
9 phylogenetics of the B/Victoria lineage show that all
10 the HA belonged to 1a3 now. These have a
11 characteristic deletion and substitution in the HA1.
12 There are subgroups of the 1A.3a viruses with HA genes
13 that have additional substitutions such as that N150K
14 substitution have emerged and split into 3a1 and 3a2
15 groups which are antigenically distinguishable.

16 The 3a1 having V substitutions like V220M seen
17 almost exclusively in China. And the 3a2 with these
18 substitutions listed seen in Asia, Africa, Oceania,
19 Europe and North America as well as parts of Asia,
20 including China. The number and proportion of the 3a2
21 viruses have been increasing steadily in the recent

1 months and they are geographically disbursed as you can
2 just see from that point above. The second part of our
3 summary for B viruses shows that the antigenic
4 characteristics using ferret antisera, the subgroup 3a1
5 and 3a2 viruses are drifted from the B/Washington/02
6 viruses.

7 And the 3a1 and 3a2 viruses are antigenically
8 distinguishable from each other. You can kind of
9 remember those cartography maps that I showed with the
10 different colored green dots fostering in different
11 spots. The antisera to the B/Austria, the recommended,
12 the new recommendation is a 3a2 virus well inhibited
13 viruses from the 3a2 subclade that does show reduced
14 inhibition to the other viruses. Even post-vaccination
15 sera shows that the geometric mean titers of some of
16 the serum panels were significantly reduced against the
17 3a1 viruses and the 3a2 viruses.

18 And the anti-viral susceptibility, again,
19 thank goodness, we're in good shape there. All viruses
20 analyzed showed normal susceptibility to the
21 neuraminidase and endonuclease inhibitors. And I'm

1 gonna end with some acknowledgements of our WHO
2 Collaborating Centers in Bei Jing, Melbourne, London
3 Tokyo, and as well as the WHO Geneva staff. This, of
4 course, is built on the foundation of GISRS without
5 which, you know, that's about 180 laboratories globally
6 that serve as National Influenza Centers without which
7 we couldn't do any of this work. And they are the
8 boots on the ground.

9 And they've also done this all while being
10 very instrumental in the Covid pandemic as most of
11 those GISRS laboratories are detecting SARS
12 Coronavirus-2 and analyzing it. Our partners at the
13 University of Cambridge. I list those on the slides
14 and they do the cartography. The Essential Regulatory
15 Laboratories, U.S. partners, the Association for Public
16 Health Laboratories, United States Air Force School of
17 Aerospace Medicine, USAFSAM as we like to say, Naval
18 Health Research Center.

19 And then fitness forecasting. I didn't show
20 you any data from the fitness forecasting partners this
21 go round. But they're really led by two teams, two

1 different groups, Michael Lässig and Marta Łuksza, as
2 well as Trevor Bedford and Richard Neher in a different
3 group. And then all of our CDC Influenza Division
4 staff. Special thanks to Becky Kondor, who's the
5 deputy director of our Collaborating Center, Min
6 Levine, who helps a lot with the human serology,
7 particularly the H3.

8 Larisa Gubareva works on all the antiviral
9 resistance as well as NA antigenicity, and John Steel
10 who runs the team that does a lot of antigenic
11 characterization of all the seasonal viruses. And with
12 that I will end with a disclaimer from the CDC. Thank
13 you, very much.

14 DR. HANA EL SAHLY: Thank you, Dr. Wentworth.
15 I am putting your video on. I have a couple of quick
16 questions to get us started. So for the southern
17 hemisphere influenza virus vaccine, H3 (audio skip)
18 which seems to cross-neutralize or the sera seems to
19 (audio skip) 2a1 better than the other way around. Did
20 I catch that right?

21 DR. DAVID WENTWORTH: So you're talking about

1 the H3, right? So it's the 2a1 vaccine sera seems to
2 cross-neutralize against the 2a2, and particularly the
3 other clades, a little bit better than the 2a2 virus
4 does against the 2a1 or particularly the other clades,
5 the 1a and the 1b. Now we know the 1a and the 1b are
6 declining but they still circulate. And so it's kind
7 of an important point just to see, you know, partly why
8 these strains are selected.

9 And the Cambodia strain, you know, that's
10 going into our arms this fall, or up our noses if it's
11 live attenuated, is really nice in the fact that it
12 really protects well against 1a and 1b viruses, as well
13 as the 2a1 viruses which it comes from. And shows some
14 cross-protection against the 2a2. Whereas we're still
15 seeing an increase in that 2a2 viruses. And the
16 anticipation is, six months from now in the southern
17 hemisphere they'll be displacing the 2a1 viruses.

18 And so that's why, while they may not have as
19 much breadth in their antigenic cross-reactivity
20 backwards in time, it's a little bit safer because they
21 represent the most divergent antigenically group that's

1 emerging, right. So you have to weigh that balance, I
2 think.

3 **DR. HANA EL SAHLY:** And then the year before
4 they got the Washington, right?

5 **DR. DAVID WENTWORTH:** Yeah, so for the 3a, for
6 the H3 viruses the year before in the southern
7 hemisphere it was the Hong Kong/45-like virus. So that
8 one was the same for both the northern and the southern
9 hemisphere. And the one that was different between the
10 northern and the southern hemisphere was the H1. And
11 the H1 viruses being the more updated one being given
12 in the southern hemisphere. And that's the same one
13 that's in our vaccine this fall for the H1.

14 **DR. HANA EL SAHLY:** And compared to the --

15 **DR. DAVID WENTWORTH:** It's four different
16 groups and it's quite -- sorry, that it's like that but
17 we have a lot to do in this hour.

18 **DR. HANA EL SAHLY:** So are we seeing -- in the
19 fall of 2021 are we seeing a higher number of isolates
20 compared to the fall of 2020 for --

21 **DR. DAVID WENTWORTH:** Yeah, that's a great

1 question. It's just a -- I would say just slightly
2 higher so far. Not a lot higher yet. You know, we've
3 been watching very closely. There's been ILI,
4 influenza like activity happening, but a lot of that I
5 think has been driven by both rhinovirus and RSV. And
6 we are starting to see more viruses coming into the --
7 each of the state public health labs and then they're
8 being forwarded on to the CDC now. And they do
9 represent quite a few different viruses.

10 Like we're getting H3, not too many H1, and B
11 viruses, B/Victoria viruses. So it appears -- it
12 appears a little bit more than last fall at this time,
13 I would say.

14 **DR. HANA EL SAHLY:** Yeah. That's how I
15 gathered but I wanted your opinion. One of the earlier
16 slides you've shown, did I get it also correctly that
17 it seems that H3 and 2 have increasing in proportion
18 although the absolute remains a B as the prevalent or
19 the --

20 **DR. DAVID WENTWORTH:** Yeah. That one it's
21 very tricky to work out because there's such regional

1 differences, country differences. So, for example,
2 China really didn't have any H3 or H1, but they just
3 had so much B virus. So when you do that whole global
4 thing it gets quite diluted in what's predominating.
5 Even if you do it by hemisphere. But anyway, I think
6 we're seeing that the H3 viruses -- I mean, where they
7 were, they caused pretty significant epidemics. Like
8 Cambodia had a pretty significant epidemic, you know,
9 in the late spring.

10 And Bangladesh and India and Nepal seeing
11 quite a bit of H3 now and India also seeing some H1 in
12 multiple provinces in the north and the south.

13 **DR. HANA EL SAHLY:** So we have a few raised
14 hands. Dr. Hayley Gans.

15 **DR. DAVID WENTWORTH:** Hi, Hayley.

16 **DR. HAYLEY GANS:** Hi. Thank you, thank you so
17 much. I just had a couple of questions. One question,
18 it doesn't seem like you have any data coming out of
19 South America at all. Like even some of the larger
20 countries like Brazil which might be very relevant to
21 the discussion today. That's one question. The other

1 question -- I'll just say three questions and you can
2 answer them as you want. So, the lack of data from
3 South America. It also looked like when you had, at
4 least for the H1N1 where you actually had sera from the
5 southern hemisphere, but it was all in adults.

6 So I didn't see any pediatric related data and
7 updated sera to that. So I just wondered about that.
8 And then the third question I think related to H3, or
9 maybe it was in the B, where there was very much an age
10 dependent antigen. So where there was some reduced GMT
11 it looked like it was all in the pediatric population.
12 Actually, I think this is now to the B. And I just
13 wondered about that too and if we're not hitting it
14 right maybe for the pediatric population?

15 **DR. DAVID WENTWORTH:** Thank you, very much for
16 your question. So make sure I hit them all and if I
17 don't, remind me. So with regard to the southern
18 hemisphere. You might remember that graph I showed
19 where in the northern hemisphere we were getting
20 viruses still on the Y-axis of being in the hundreds,
21 and in the southern hemisphere it was in the tens, like

1 10, 20, 40, weekly. And most of those were coming more
2 from like Australia and their catchment area than in
3 South America.

4 We really just didn't have any viruses from
5 South America to look at in this period. And we're
6 pretty -- I mean, basically, you know, when you think
7 of influenza viruses circulating, it's a big iceberg
8 and we only see the tip. And with the Covid pandemic
9 it's like the iceberg went down a little bit more.
10 And in some parts, you know, some parts of the world we
11 really just didn't, you know, we didn't see any. And
12 it's whether, you know, the surveillance, some of it
13 impacted negatively -- influenza surveillance, some
14 impacted negatively by, you know, people working hard
15 on SARS Coronavirus-2, or Covid-19.

16 And some of it just because potentially all
17 the mitigation and potential viral interference between
18 the viruses really reducing influenza circulation. So
19 we just didn't have -- while the PAHO network of WHO,
20 that region, really worked hard to test, we didn't have
21 positives that we could analyze in this time period.

1 So we often get viruses and sometimes they're delayed.
2 We've also had a lot of shipping issues. So we have to
3 do things -- when we're talking about what we're trying
4 to make decisions on, we're very particular about the
5 collection dates of the swabs that we're analyzing.

6 We have some -- we have received some
7 materials from the PAHO region but they were really
8 earlier viruses, prior to February. Anyway, so there's
9 that piece. The second piece was, I think the serology
10 in the pediatric population. And you're right, it was
11 the influenza B. And it's always that pediatric
12 population where you can see antigenic distinction a
13 little bit easier than in other populations. And the
14 reason is, is our younger populations haven't been
15 infected naturally as frequently, nor have they often
16 been vaccinated as frequently, right.

17 So they don't have as much memory and cross-
18 reactive antibodies that come up when they're
19 immunized. And so really that's what you're seeing
20 there. And as you point out, the pediatric population
21 is a very important consideration in our vaccine

1 viruses. What we do know is in general the influenza B
2 antigens do produce a little bit more cross-reactive
3 response than the influence A antigens and so -- even
4 in our pediatric population. And so, it's really a
5 tricky business to select that vaccine virus,
6 particularly for that one group.

7 But almost any influenza B vaccine in that
8 group kind of creates, not a huge titer, but a broader
9 titer. And so 3a2 is just as good as 3a1 and probably
10 both are better than like an older B/Washington type in
11 that population with the assessment of the committee.
12 And then your third question I may have forgotten
13 already. I apologize.

14 **DR. HAYLEY GANS:** No, no problem at all. I
15 was just curious, because it didn't seem like there was
16 any pediatric data from your southern hemisphere --

17 **DR. DAVID WENTWORTH:** Oh, yeah, yeah, yeah.
18 So we --

19 **DR. HAYLEY GANS:** -- sera that you were able
20 to obtain for the --

21 **DR. DAVID WENTWORTH:** Yeah, yeah. We don't

1 get sera -- so that serum, that's collected in
2 Australia, from their population. And we get it from
3 the WHO Collaborative Center in Australia. They ship
4 it to us and then we can test it. They don't get as
5 much sera from that age group. So they have a higher
6 age groups that they get sera from. And you can see,
7 the U.S., we've really invest a lot in serum in part as
8 a response to VRBPAC wanting to see more data in sera.
9 So we have many different age groups slices in the U.S.
10 serum channels.

11 **DR. HAYLEY GANS:** Got it.

12 **DR. DAVID WENTWORTH:** And so, it kind of
13 points that out for some of the other serum channels
14 that we have available. We just don't have --

15 **DR. HAYLEY GANS:** Thank you.

16 **DR. DAVID WENTWORTH:** We just don't have
17 access to those is the basic, short answer to that
18 question.

19 **DR. HANA EL SAHLY:** Thank you, Dr. Gans. Dr.
20 Paul Spearman.

21 **DR. PAUL SPEARMAN:** Hi, thank you very much

1 for that presentation. As usual a lot of data to see
2 and many slides. But it seems to back up the choices
3 for the southern hemisphere, the changes. So I think
4 that really seems to be very logical. But my question
5 is more about vaccine strategy as we go forward with --
6 especially in regard to the B/Yamagata, you know,
7 inclusion in quadrivalent vaccine. How much value is
8 that really giving us now with very, very little
9 circulating Yamagata?

10 And is it -- would it even be possible to, for
11 instance, instead include two subclade members of H3N2
12 with all the diversity going on there? And wouldn't we
13 end up protecting more individuals from hospitalization
14 and death?

15 **DR. DAVID WENTWORTH:** Right. I think that's a
16 great question and something that we are, you know,
17 actively discussing. So let's just talk about -- well,
18 I'll take the B/Yamagata piece first. We have an
19 opportunity here partly driven by, you know, hugely
20 different B/Victoria viruses emerging and disseminating
21 globally, likely inducing a lot of cross-protection,

1 acting as kind of a natural vaccine against Yamagata.
2 So this is now me waving my hands. I mean, it's a bit
3 of a hypothesis. But we have an opportunity with
4 Yamagata being so low.

5 But remember, there were detections, we just -
6 - they were very high CT values and our viruses
7 couldn't be isolated. So during this time period there
8 were detections of B/Yamagata. And of course, we don't
9 know all the viruses circulating in all the people.
10 And we have already started discussions within the WHO
11 of, well, what's the timeline of a Yamagata vaccine if
12 we can really illustrate that none have been detected
13 over a period of time, right. But the idea would be
14 you want to keep it in the vaccine because we have an
15 opportunity to eliminate it, right, as a pathogen.

16 So we went to keep it in the vaccine, number
17 one. So in quadrivalent vaccines, B/Yamagata should be
18 in there. You can see the trivalent is used in many, you
19 know, in the U.S. we use mostly quadrivalent vaccines.
20 But you can see trivalent is still recommended and used
21 in many parts to the world. So right now, that's not

1 even included in the trivalent. So we'll see how well
2 the B/Victoria helps induce cross-protection against
3 that Yamagata there. And so there's that one piece,
4 keep it in the vaccine. I really do like the idea of -
5 - you know, we have now manufacturing capacity for four
6 different antigens in the vaccine.

7 And so the potential to put two antigens of a
8 subtype, particularly H3 which has that huge diversity
9 that we're always struggling with, is great. And I
10 think -- but we do need a number of things to happen.
11 We need studies in animals and -- pre-clinical studies
12 in animals, some clinical studies in humans looking at,
13 well, if we put two H3's in there is one immunodominant
14 and the other one nothing? You know, do we do no harm,
15 do we get a synergistic impact or an additive impact?
16 So those studies really haven't been done.

17 And so that's going to need to happen. And
18 then there's some of the regulatory pieces that my FDA
19 colleagues can tell us. But, you know, we all think
20 probably a little too simplistically about it. That
21 it's a great idea and we need to investigate it but it

1 can't be done instantly.

2 **DR. PAUL SPEARMAN:** Right. No, thank you. I
3 didn't think about eliminating Yamagata. That's really
4 a good point.

5 **DR. HANA EL SAHLY:** I understand the issue of
6 it cannot be done instantly. But I must say that issue
7 appears, you know, resurfaces almost every -- after
8 every flu season. And I propose this in different
9 circles.

10 **DR. DAVID WENTWORTH:** Good.

11 **DR. HANA EL SAHLY:** And I'm not getting much
12 traction, at least to begin the studies, you know. We
13 have some animal data with multiclade H5, multiclade
14 H2N2. At least in animal data looks good but (audio
15 skip) H3N2 in animals and then humans was (audio skip).
16 I hope someone is listening and we can get some
17 tractions.

18 **DR. DAVID WENTWORTH:** Yeah, there's great
19 opportunity there. I agree with you.

20 **DR. HANA EL SAHLY:** Dr. Michael Kurilla.

21 **DR. MICHAEL KURILLA:** Thank you. David, I'm -

1 - you may have said this and I missed it. But I'm
2 curious about the source of the human sera that you're
3 -- that you used for testing. Because there -- is it
4 an aggregate of total population or is it
5 distinguishing between people who were vaccinated the
6 previous year versus people who were not vaccinated?
7 And in the vaccinated sense, is it distinguishing
8 between people who are habitually vaccinated every year
9 versus those who are occasionally?

10 We have seen examples of where people who are
11 vaccinated year after year after year display still
12 adequate but reduced responses to those vaccines. So
13 I'm wondering how that is done and whether or not we
14 really have a true overview of what the population
15 susceptibility could be to the new circulating strains.

16 **DR. DAVID WENTWORTH:** Yeah, great question.
17 Thank you very much. So we get serum from two
18 different vaccine platforms, or really three sometimes.
19 We have serum from people vaccinated with the egg-based
20 -- well, four. Egg-based vaccines, both high dose and
21 regular, so the elderly population, some of which get

1 the high dose. Then we also get people -- recipients
2 of flu cell vax. And in some years, we can even get
3 recipients of flu blog.

4 Now, what we don't have is part of your
5 question, a very good question, is it's really just a
6 cross-section of our population that was willing to get
7 vaccinated that year with that particular product that
8 I just described, right. And so, it's a little bit
9 convenient, right. So you have to be able to get the
10 sera very early. Or actually just, you know, we'll be
11 collecting that sera, it'll start, but people are
12 enrolled now. And so, we want to get it as early as
13 possible so that we can actually use it before the next
14 strain selection.

15 And so we don't have great data on whether or
16 not they were vaccinated before. We don't know --
17 there certainly -- I don't treat it as a cross-section
18 of our population's immunity. That would need a
19 different type of study where we're really looking at
20 non-vaccinated people. So one of the key questions,
21 you know, it's always good to think about what's the

1 question we're trying to address. The question that
2 we're trying to address is whether or not the vaccine
3 that we gave last time around has -- works, you know,
4 neutralizes most of the viruses pretty well or doesn't.

5 And then of the viruses that it doesn't, are
6 those likely to increase proportionally or not? So are
7 they old viruses, are they new viruses, are they very
8 rare viruses? And so I think you raise a lot of great
9 questions. They take a different type of study than
10 we're doing to answer, to address some of those
11 questions. And even the question about, you know,
12 repeated vaccination and reduced response. I think
13 that one it would be really fun to go into some detail
14 about that. But people talk about that reduced
15 response and I think a little bit incorrectly
16 sometimes.

17 Because -- so for example, maybe the first
18 time you're vaccinated you go from a titer of say 40 to
19 320. And then next year I get vaccinated and my
20 baseline might be 160. And so I only go up to 320 or
21 640. And they say, well that increase is reduced

1 compared to the increase that I had the first time I
2 was vaccinated. But that's obvious. Like, that's
3 what's gonna happen. And so I think there's some
4 studies that literally show somewhat of a decline in
5 titer. And so that's the more important thing to try
6 to wrestle with.

7 But I don't -- I think a lot of them are
8 looking at a reduced increase rather than a reduction
9 in long titer. Because one of the key important
10 things, and I will show this again next time we meet
11 when we'll have a little bit more time, is that almost
12 any vaccination, you know, in our hands with the serum
13 that we get increases the titer of these flows, you
14 know the raw titer from their baseline. And against
15 all of the different viruses that we're testing. And
16 so that's why we use this geometric mean titer business
17 to look at the reductions comparatively, right.

18 And so what I'm trying to say there is, like
19 even a vaccine against the Hong Kong/45 does increase
20 neutralization against these really recent viruses.
21 And it brings some people from 20 to above 80 in their

1 titer. And so that's still considered protective, you
2 know, when you look at the correlates of protection of
3 flu. And so, in part we're using that very sensitive
4 assay on the human sera with statistics to illustrate,
5 you know, because we have such poly clonal response
6 there is a reduction to this group.

7 Anyway, it gets a little bit beyond -- those
8 kinds of studies that I just described are a little bit
9 beyond what we do for vaccine strain selection
10 remembering the question.

11 **DR. HANA EL SAHLY:** Thank you, Dr. Kurilla.
12 Dr. Holly Janes.

13 **DR. HOLLY JANES:** Thank you. I wanted to
14 probe a little bit further and follow up on one of the
15 questions Dr. Gans raised around kind of the geographic
16 representativeness of the viruses that you have and
17 those that are characterized. You know, I remember one
18 the groups of viruses you showed had a great
19 predominance of viruses from China, for example. And
20 other regions that were not represented at all.

21 So I'm wondering, can you elaborate on, you

1 know, to what extent CDC and WHO and this network can,
2 you know -- or attempt to be more active with regard to
3 capture of viruses in a fashion that is representative
4 of the geographic diversity in viruses? And represents
5 them, you know, seeks to attempt to represent them
6 proportional to their frequency in terms of
7 distribution as opposed to passive capture.

8 And obviously this is of greater importance in
9 the context of Covid where, as you mentioned, you know,
10 there's greater potential for kind of missing capture
11 of viruses in certain geographic regions that are
12 overburdened, you know, due to the pandemic. So to
13 what extent is there effort to attempt to generate kind
14 of a fair representation of the viruses that are
15 characterized? So that we can, you know, accurately
16 assess, you know, when there's an apparent diminution
17 in neutralization?

18 Whether that, you know, representative of
19 diminution in terms of southern hemisphere viruses at
20 large versus, you know, just those that are more
21 frequently characterized in your slides?

1 **DR. DAVID WENTWORTH:** Yeah, you guys are
2 bringing up very good points. So this one actually
3 we're doing a lot on this more with the WHO and the CDC
4 directly. So I'll try to walk through a few things.
5 One, this is a very unusual time where we're not seeing
6 as many viruses. Normally we see the viruses move
7 geographically very rapidly. We don't have these
8 pockets of evolution that happen. And kind of like I
9 was saying about Western Africa, Togo, we're not sure
10 if the viruses there will really disseminate, for
11 example.

12 But we were -- there is great surveillance
13 there, active infections, and we were getting viruses.
14 So there's just not as many flu viruses around. And I
15 tried to make that point by saying the GISRS is testing
16 150,000 specimens weekly and not finding positives. So
17 that's -- it's true that there's just not as much virus
18 around. So it's a very unusual time. But beyond that,
19 we've been -- for many years now both the WHO and the
20 CDC have been trying to strengthen the GISRS network by
21 doing more training on detection across many countries.

1 We, in the United States and the WHO, help
2 support distribution of reagents and protocols for
3 detection in real time PCR in part to all the national
4 influenza centers globally through something called the
5 International Reagent Resources. It used to be called
6 the Influenza Reagent Resource but it became
7 international with SARS because we're distributing
8 reagents for SARS as well through that mechanism. And
9 so what that does is it provides real time PCR kits
10 toward all the national influenza centers.

11 So many per month so they can continually
12 survey through a different -- obviously different
13 countries have different approaches for surveillance.
14 Like, you know, some use a hospital network, some will
15 use more outpatient physician networks, et cetera. But
16 that doesn't really matter for flu. The most important
17 part is regular surveillance in that network and
18 continuous month, month, month, month. And so,
19 detection.

20 And then we also developed, last year --
21 because we knew a lot of testing for SARS was

1 happening, and some at the expense of flu, the CDC
2 developed something called Flu- SC2 Real-Time-PCR
3 method which we publish now. This simultaneously
4 detects influenza A, influenza B, SARS Coronavirus-2,
5 and has an internal housekeeping gene in it, you know,
6 a human gene target in it. So it's a quadruplex that
7 you can just run one assay on and detect all three of
8 those pathogens.

9 And so you can detect co-infections better and
10 you can just distinguish between flu and SARS very
11 rapidly in the same test. And that's also being
12 distributed through the IRR so that people testing
13 regularly for SARS can also see flu there. So you'd
14 pick up flu that might go in the trash can, so to
15 speak. So that's happened. The WHO supports all of
16 this through a lot of training efforts, regional
17 training efforts for different -- like we did a
18 training in PAHO on that flu SC2, we've done a training
19 in the EMRO region on the flu SC2.

20 And then we're also working in the genomic
21 space to be bringing genetic sequencing closer to the

1 swab, so to speak. So having -- really disseminating
2 that ability. So that's really going to happen a lot
3 in the next couple of years synergizing with what's
4 been happening with SARS. I hope that kind of
5 addresses your question. But we also have, within CDC,
6 I should mention, something that we're calling the Deep
7 and WIDE project. So we always have done more wide
8 like with lots of different countries small amounts of
9 virus everywhere.

10 But we are developing programs where in
11 certain regions in the world where we know there's a
12 lot of influenza transmission happening, and maybe
13 year-round, we do many more sample per month. And, for
14 example, Bangladesh is one of our sites. And that's
15 why you're seeing some of these Bangladesh viruses.
16 You may remember the last VRBPAC we had a Bangladesh
17 2a2 virus, you know, as one of our refence antigens.
18 So that was the whole, you know, that gave us a little
19 window on these -- before these 2a2 viruses really got
20 more highly prevalent, a little window on that ahead of
21 time.

1 **DR. HANA EL SAHLY:** The time is up but we can
2 take last two questions. We have Dr. Portnoy.

3 **DR. JAY PORTNOY:** Thank you. Two questions.

4 Number one, we were talking about removing the Yamagata
5 strain to make room for another strain. Is there some
6 intrinsic limit to the number of strains that can go in
7 there? There's some reason why we can't have a, like a
8 pentavalent virus or more strains added to the
9 influenza vaccine? And my other question is what has
10 the progress been on converting some of these over to a
11 messenger RNA platform for developing vaccines?

12 **DR. DAVID WENTWORTH:** Yeah, very exciting
13 times. Again, another maybe potential silver lining of
14 the very bad SARS pandemic, right. So the intrinsic
15 limit -- I don't, you know, this kind of gets out of my
16 area, right, but I'll just comment on it. There's two
17 -- I always bring up the regulatory. So now if you go
18 with say, you know, pentavalent or something,
19 decavalent vaccine, you would need to be able to
20 produce in the timeframe that's needed. So that goes
21 to how you provide the vaccine and how many vaccines

1 you're going to produce.

2 And then importantly you would need the
3 studies to show, just like we did when the quadrivalent
4 was developed, it didn't hurt the other antigens in
5 there to add more, right. And I kind of alluded to
6 that with just the two H3's which is rather simple.
7 You get to a pentavalent or a decavalent you got more
8 of those questions. Now certainly, some vaccine
9 platforms may be more amendable to this and that --
10 those studies need to happen. Not just MRA but other
11 vaccine platforms.

12 But one of the issues now is really if you
13 talk with the manufacturers -- again, a little bit
14 outside of my range but I'll comment on it. They
15 pretty much race from the time the vaccine is made
16 until the vials are filled and given to people to get
17 those four batches done, right. So right now, the
18 manufacturing window is about as tight as it can be to
19 manufacture. You know, it's not just one vaccine, it's
20 not just SARS Coronavirus-2, it's H1, H3, B/Yam and
21 B/Vic all at the same kind of concentration, right.

1 So they basically are often doing two of the
2 vaccine viruses at risk before the meeting is even
3 named in order to meet the demands for fall and have it
4 all be vialed and be able to be distributed in October,
5 September/October. So I think there is -- but that's
6 the classic technology of egg-based vaccines or the
7 cell-based vaccine. I'm not quite sure about the
8 recombinant vaccine what, you know, what their scale up
9 could be as far as multi-valency and what their
10 turnaround time is.

11 And certainly, there's a lot of effort in mRNA
12 vaccines, for example, or nucleic acid vaccines. And
13 there have been effort in flu already, prior to SARS
14 Coronavirus, looking at these technologies. So I'm
15 very excited about that because I do think that would
16 be, you know, potentially if the titers could get as
17 high as we get titers for SARS Coronavirus that's a
18 very good thing for flu vaccine. And then also the
19 multivalency has potential as well as some maybe
20 designed molecule potential is very important.

21 So I think a lot of potential.

1 **DR. JAY PORTNOY:** Yeah. The other thing
2 though is that because it's made through mRNA the
3 protein is produced internally to the cell, which
4 intrinsically could create a much better immune
5 response than something that's administered exogenously
6 like the vaccines currently are. Well, thank you.

7 **DR. DAVID WENTWORTH:** You're welcome. Yeah,
8 very good point.

9 **DR. HANA EL SAHLY:** Our last question comes
10 from Dr. Meissner. Dr. Meissner. Dr. Meissner. You
11 are on mute, Dr. Meissner.

12 **MR. MICHAEL KACZYNSKI:** There you go, Cody.
13 You're unmuted. Cody, you got your own phone muted.

14 **DR. CODY MEISSNER:** I'm sorry.

15 **DR. DAVID WENTWORTH:** Oh, there we go.

16 **MR. MICHAEL KACZYNSKI:** There you go.

17 **DR. CODY MEISSNER:** Okay, thank you. I
18 wondered if you could comment a little bit more on your
19 thoughts about why influenza didn't circulate to a
20 better extent during this pandemic period? What was
21 it? You mentioned less travel and non-pharmacologic

1 interventions. Do you think there's a -- might be a
2 virus/virus interaction between Coronavirus and the
3 influenza viruses? And the reason I was -- I mean, I
4 was thinking about, we worry about the Coronavirus in
5 the sense that more people who become infected, the
6 greater the likelihood that there will be mutations and
7 new variants will emerge.

8 And if there was so much less influenza virus
9 replication or infections this past season, do you
10 think that might have an impact on the development of
11 new strains? Recognizing that Coronaviruses are a
12 linear RNA and basically influenza viruses are
13 segmented. But is that an issue with influenza as
14 well?

15 **DR. DAVID WENTWORTH:** Yeah. I mean, so I'll
16 just try to address that. It's a very good question.
17 So I think undoubtedly a lot of mitigation factors
18 really helped to reduce the influenza virus. And the
19 travel restrictions helped to reduce global
20 dissemination. And so that's why we saw these pockets
21 of evolution that we don't normally see. You know,

1 even, for example, I really pointed out the influenza B
2 viruses, those 3a1's really evolved in China. They
3 then didn't disseminate much from China. And we did
4 see them periodically in other places but they weren't
5 as successful.

6 And so, we saw detections but they didn't
7 continue on. So there's clearly those mitigation
8 factors that we know helped suppress SARS. It doesn't
9 feel like it because we had a pandemic. But I can only
10 imagine what it would have been like had we not had
11 those mitigation factors, right. So I think that that
12 is probably an important point. And then on top of
13 that mitigation, you know, masks and hand washing and
14 things like that, you do have natural immunity to the
15 flu that you don't have against the SARS Coronavirus.

16 And so, as I mentioned, you know, you already
17 have antibodies that cross-react with the very newest
18 strains. You just don't have very high levels of them.
19 And you certainly have antibodies and CTL responses to
20 many parts of the virus that diminish replication once
21 it actually infects you, you know? So there's kind of

1 the -- I envision it as a layering. You've got a mask
2 and you have immunity, you're less likely to catch flu
3 because you're now reducing the chances of being in
4 contact with the virus.

5 And then when you are in contact with it you
6 already have some level of immunity. There's that
7 piece. I do think, you know, a lot of research needs
8 to be done on the viral interference piece. Clearly
9 the viruses are very distinct from each other. And
10 neutralizing type antibodies won't cross-react between
11 SARS Coronavirus-2 and flu. But that's not to say that
12 you don't have some parts of the nuclei caps in protein
13 of SARS and the nuclea, you know, and the nucleal
14 protein of flu, both of which are designed to bind RNA
15 and have very similar features.

16 Some CTL responses could cross-react to that,
17 et cetera. So you could kind of envision it's a
18 pathogen, there's some cross-protective natures there.
19 I think also probably what's likely is a bit of innate
20 immunity. So if you're infected, you know, with SARS
21 before the flu infection, say two weeks before flu, you

1 still have a little bit higher level of an immune
2 response altogether. So I think I'm pretty much hand
3 waving here. But I do think it's probably more than
4 just the mitigation. There's something about the sweep
5 of a pandemic virus that suppressed influenza a little
6 bit.

7 **DR. CODY MEISSNER:** Thank you.

8 **DR. HANA EL SAHLY:** Also, school aged children
9 are home and they are kind of the engine every year.
10 They've been home for a while. Okay. Well, that was
11 last question. Thank you all for your attention and
12 thank you, Dr. Wentworth, for walking us through these
13 complex data every year or every (audio skip). We will
14 be on a 10-minute break. So it's now 1:20 eastern. We
15 will be reconvening at 1:30 eastern.

16

17 **[BREAK]**

18

19 **OPEN PUBLIC HEARING - NO REGISTERED SPEAKERS**

20

21 **DR. HANA EL SAHLY:** Welcome back, everyone,

1 for the continuation of our Topic II meeting. The next
2 session is designated for the Open Public Hearing;
3 however, no one registered in advance for this
4 particular session. So we will be moving with the
5 Committee Discussion session.

6

7 **COMMITTEE DISCUSSION, RECOMMENDATIONS AND VOTE**

8

9 **DR. HANA EL SAHLY:** I want to encourage
10 everyone to contribute to the discussion. We will be
11 discussing the southern hemisphere influenza virus
12 strains selection, which was so aptly described a
13 little while ago by Dr. Wentworth. To sum it up, two
14 strain changes have occurred between last year and this
15 year southern hemisphere vaccine. Namely the H3N2,
16 which continues to diversify within the a1b. And it's
17 now 2a2, which is now included as the prototype Darwin
18 strain. And the Influenza B/Victoria, which is now
19 changed from Washington to Austria. (Audio skip)
20 account for the diversification observed within the
21 Victoria lineage.

1 And it's hard to predict what's going to
2 happen in terms of circulation, but schools are back,
3 people are letting down their guard. As we heard just
4 a minute ago, people are travelling more often. So the
5 importance of the influenza vaccination and following
6 the strain diversification for current and future
7 recommendations are all the more important.

8 I have no particular comment, except
9 distilling some of the soft process that went on with
10 this (audio skip) vaccine. No antigen more than H1,
11 H3, N2 that keep being brought up to the surface (audio
12 skip) twice a year. The issue of neuraminidase
13 contribution and neuraminidase updates to vaccines.
14 (audio skip) horizon; however, these are all research
15 questions are kind of beyond (audio skip) our goal
16 today. I have no particular concern given the data
17 described (audio skip).

18 I will go around the virtual table, and ask my
19 colleagues to comment, or ask questions, or final
20 thoughts before we move on to the voting. And I'm
21 going to go down the list as it appears on my computer,

1 Dr. Amanda Cohn. Dr. Cohn, can you hear me? Okay we
2 will circle back. Dr. Andrea Shane.

3 **MR. MICHAEL KACZYNSKI:** Dr. Shane is
4 connecting her audio, so give it a second. We'll just
5 keep going down the list. To the members, we're going
6 to go right down alphabetically. So, just that you
7 know so Dr. El Sahly can call on you. All right. Take
8 it away, Dr. El Sahly.

9 **DR. HANA EL SAHLY:** Dr. Archana Chatterjee.

10 **DR. ARCHANA CHATTERJEE:** I do not have any
11 concerns with the selection of the strains for the
12 southern hemisphere vaccine.

13 **DR. HANA EL SAHLY:** Thank you. Dr. Cody
14 Meissner,

15 **DR. CODY MEISSNER:** Thanks, Hana. I concur
16 and I think that the selections of the strains for the
17 southern hemisphere are as reasonable as can be made at
18 this time. And hopefully we'll get the right strains.
19 So, if we're voting, I vote for it.

20 **DR. HANA EL SAHLY:** Thank you, Dr. Meissner.
21 Dr. Geeta Swamy.

1 **DR. GEETA SWAMY:** Dr. El Sahly, I don't have
2 anything to add and I don't have any concerns about the
3 recommendation.

4 **DR. HANA EL SAHLY:** Thank you. Dr. Hayley
5 Gans.

6 **DR. HAYLEY GANS:** Thank you. I think that
7 this has been a really robust conversation. And I
8 would say I don't have any concerns from what we know.
9 It was only because southern hemisphere unfortunately
10 we don't have strains necessarily from places that
11 we're worried about. But hopefully with the data we
12 have we're getting the (audio skip).

13 **DR. HANA EL SAHLY:** Dr. Holly Janes.

14 **DR. HOLLY JANES:** Thank you. I just wanted to
15 thank Dr. Wentworth for his presentation and for the
16 discussion he led. It's been very insightful. And
17 given the challenges with anticipating the future over
18 the coming year, I don't have any concerns. It's a
19 challenging circumstance to forecast, and I think the
20 recommendation is the best we can do.

21 **DR. HANA EL SAHLY:** Thank you, Holly. Dr. Jay

1 Portnoy.

2 **DR. JAY PORTNOY:** Thank you. I've also
3 enjoyed the discussion. I'm overwhelmed by the amount
4 of information that was presented; it's just
5 mindboggling. Since there weren't very many strains of
6 influenza last year, it's hard to predict what strains
7 are going to be prevalent next year. You did the best
8 you can, so I don't have any objections to the strains
9 that are being proposed.

10 I am excited about the prospect of the
11 messenger RNA platform because that a much quicker
12 onset. It's easier to make the vaccine more quickly,
13 manufacturing process is more rapid. So it may be
14 possible to modify the strains quicker and more
15 conveniently in the future once the platform is
16 established. So I'm hoping that that will make this
17 decision much easier in future years. Thank you.

18 **DR. HANA EL SAHLY:** Good research question,
19 Dr. Portnoy. Dr. Michael Kurilla.

20 **DR. MICHAEL KURILLA:** Thank you. The remark
21 is more of a question for the FDA. This is going to

1 be, I think because I'm rotating off VRBPAC, this will
2 be my last flu strain selection. And, in looking at
3 this, I really begun to wonder what advice is the FDA
4 actually looking for from the VRBPAC in this case,
5 because, quite frankly, the flu strains seem like a
6 take it or leave it from the WHO. I'm not sure if
7 there's an alternative mechanism, if VRBPAC ever voted
8 no.

9 So, I'm not really sure what it is that
10 they're really seeking from us, because it's either
11 make these vaccines, use these strains for the vaccine,
12 or don't make a vaccine at all. I don't know that
13 there's any other way to do any other flu strains
14 selection. So, that's it.

15 **DR. HANA EL SAHLY:** Dr. Gruber.

16 **DR. MARION GRUBER:** Yeah, I would like to
17 comment on that. This is an interesting question.
18 What I would like to say to that is that the WHO
19 recommendations for both the southern hemisphere as
20 well as the northern hemisphere, two strains are
21 really, as you all know, based on global surveillance

1 data. And these recommendations are supposed to
2 provide a guide to national regulatory authorities as
3 well as the vaccine manufacturers, for the development
4 and the production of the flu vaccine.

5 But the WHO also notes in their recommendation
6 that it's the responsibility of each national
7 regulatory authority, such as the FDA in the United
8 States, to approve the composition and the formulation
9 of the vaccine used in that country. So, that
10 responsibility lies with the NRA. And of course we go
11 by the WHO recommendations, but in the end it is an FDA
12 decision what to approve in terms of composition and
13 formulation. And this is why we convene the VRBPAC, to
14 hear their recommendations and their discussions and
15 deliberations regarding the flu bio-strains that should
16 be included in U.S. FDA licensed influenza vaccine.

17 It's a bit of a challenging question for me to
18 answer, what would we do if the VRBPAC would not
19 recommend that. But then again I think the emphasis is
20 really here. It's a global enterprise; it's a global
21 collaboration to really arrive at these WHO's

1 recommendations every year, but again, the reason why
2 we convene the VRBPAC is really because it lies with
3 the individual NRAs to finally approve these flu
4 strains. And that's my comment to the question. Thank
5 you very much.

6 **DR. HANA EL SAHLY:** Thank you, Dr. Gruber.
7 Dr. Myron Levine.

8 **DR. MYRON LEVINE:** Hi, I very much enjoyed
9 this VRBPAC and this discussion. I think it's a good
10 start on influenza virus surveillance to see so many
11 acute respiratory specimens being examined, so few flu
12 viruses (audio skip) particularly, and yet (audio skip)
13 observation stand out.

14 One in this very large amounts (audio skip) of
15 virus in China, and another, thinking back to 2009 when
16 the last pandemic of flu began, when you put a world map
17 looking at (audio skip), it was a gaping hole. And that
18 gaping hole was (audio skip). I was so impressed today
19 to see that there were H1 and N1 viruses, a whole
20 aggregation of them from several countries and West
21 Africa. So, on the global scene it's interesting to see

1 that.

2 I thought David Wentworth's explanation
3 of the immunology of the cartography of the genomics
4 was superlative and based on his explanations I'm very
5 comfortable with the suggested recommendations to be
6 made for change.

7 I believe this is going to be my last flu
8 selection, virus selection meeting as well. And I'd
9 like to thank Marion Gruber and Kathleen, and all the
10 others and it's been great to interact with the other
11 members of the VRBPAC and I'll miss you all.

12 **DR. HANA EL SAHLY:** Thank you, Dr. Levine.
13 Dr. Paul Offit. And just a quick reminder to everyone
14 that now we are gathering thoughts around what was
15 presented. And then after the vote we will take why
16 someone voted in one way or another. Just a little
17 reminder. Paul?

18 **DR. PAUL OFFIT:** Thanks, Hana. I don't have
19 anything to add other than to again thank Dr. Wentworth
20 for just a clear and compelling presentation. It gives
21 us the kind of information we need to make the best

1 decision, so, thank you.

2 **DR. HANA EL SAHLY:** Dr. Paul Spearman.

3 **DR. PAUL SPEARMAN:** Thanks, Hana. I don't
4 have anything further to add. I think that was really
5 strong evidence provided for choosing these strains in
6 the face of current limitations of all the systems we
7 have. Thanks.

8 **DR. HANA EL SAHLY:** Thanks, Paul. Dr. Paula
9 Annunziato.

10 **DR. PAULA ANNUNZIATO:** Thank you for the
11 opportunity to comment. As was mentioned by Dr.
12 Wentworth, incredible amount of coordination is
13 required between these surveillance networks for
14 influenza, the researchers, the regulatory agencies and
15 of course the vaccine manufacturers in order to produce
16 these life-saving vaccines on time for biannual
17 campaigns that need to occur every year. And this
18 committee has such an important role in this
19 enterprise. And so, I want to thank everybody for
20 their thoughtful consideration, their very careful
21 comments. And, I know that everybody who's involved in

1 this ecosystem is listening carefully to what is being
2 deliberated today. So, thank you very much, and
3 especially, thank you, to Dr. Wentworth.

4 **DR. HANA EL SAHLY:** Thank you. Dr. Steven
5 Pergam.

6 **DR. STEVEN PERGAM:** Thanks. I think I'm one
7 of the last, so I'll try to make this brief.
8 Obviously, Dr. Wentworth discussions are always
9 amazingly interesting and comprehensive. And so, I
10 think we all walk away from this being more educated
11 about flu after every one of his talks. I have no
12 concerns about the strain selection.

13 **DR. HANA EL SAHLY:** Dr. Amanda Cohn.

14 **CAPT. AMANDA COHN:** I just want to add my
15 appreciation. I have no concerns about the strain
16 selection. I'm sorry I didn't get to meet some of the
17 members in real life, who are departing soon, but I
18 look forward to working with you in the future. And I
19 think this is maybe Dr. Gruber's last meeting too, for
20 strain selection. So, I just want to send all my
21 appreciation for her many, many years of leadership.

1 **DR. HANA EL SAHLY:** Dr. Andrea Shane.

2 **DR. ANDREA SHANE:** Thank you very much. I
3 also just wanted to echo my appreciation for Dr.
4 Wentworth's presentation. I really learned a
5 tremendous amount from this one and all of the others.
6 And I do not have any concerns with the recommendations
7 for strain selection. Thank you.

8 **DR. HANA EL SAHLY:** Any final comments from
9 the FDA before we proceed to the vote, or process and
10 the vote. Kathleen, I hand this back to you for the
11 process of voting and the vote.

12 **MS. KATHLEEN HAYES:** Thank you, Dr. El Sahly.
13 Just as a reminder to everybody, please only vote if
14 you are a voting member. And you'll have two minutes
15 to cast your vote. We'll have Dr. El Sahly ready the
16 question out loud for the record. And then once all of
17 the votes are in, I will read all of the individual
18 votes out loud. Dr. El Sahly, if you could read the
19 first question, please.

20 **DR. HANA EL SAHLY:** For the composition of
21 egg-based trivalent, 2022 southern hemisphere

1 formulation of influenza vaccine, does the committee
2 recommend the inclusion of an A/Victoria/2570/2019
3 (H1N1)pdm09-like virus; and of an A/Darwin/9/2021
4 (H3N2)-like virus; inclusion of a
5 B/Austria/1359417/2021-like virus -- (B/Victoria
6 lineage). Yes or no?

7 **MS. KATHLEEN HAYES:** Thank you, if you could
8 cast your votes at this time, please (long pause).
9 Okay, looks like we have all votes in for this
10 question. And we do have a unanimous vote with 14 out
11 of 14 members voting yes. So I will just read the
12 votes aloud.

13 Dr. Pergam voted yes.

14 Dr. Meissner voted yes.

15 Dr. Cohn voted yes.

16 Dr. El Sahly voted yes.

17 Dr. Shane voted yes.

18 Dr. Spearman voted yes.

19 Dr. Swamy voted yes.

20 Dr. Offit voted yes.

21 Dr. Gans voted yes.

1 Dr. Chatterjee voted yes.

2 Dr. Janes voted yes.

3 Dr. Levine voted yes.

4 Dr. Portnoy voted yes.

5 And Dr. Kurilla voted yes.

6 So that closes out this first voting question.

7 And we can now move to voting question number two. Dr.

8 El Sahly, if you could read it, please?

9 **DR. HANA EL SAHLY:** For Quadrivalent 2022

10 southern hemisphere formulations of influenza vaccines,

11 does the committee recommends the inclusion of a

12 B/Phuket/3073/2013-like virus -- (B/Yamagata lineage) -

13 - as the second flu B strain in the vaccine.

14 **MS. KATHLEEN HAYES:** Yes, thank you. Please

15 cast your votes now. Okay; and all votes are in for

16 voting question number two. Again, we have a unanimous

17 14 out of 14 voting yes.

18 Dr. Pergam voted yes.

19 Dr. Shane voted yes.

20 Dr. Cohn voted yes.

21 Dr. El Sahly voted yes.

1 Dr. Portnoy voted yes.
2 Dr. Spearman voted yes.
3 Dr. Swamy voted yes.
4 Dr. Offit voted yes.
5 Dr. Gans voted yes.
6 Dr. Chatterjee voted yes.
7 Dr. Meissner voted yes.
8 Dr. Janes voted yes.
9 Dr. Levine voted yes.

10 And Dr. Kurilla voted yes.

11 So we can close out voting question number
12 two. And I can at this point hand the meeting back
13 over to Dr. El Sahly to go around the table for the
14 explanation of votes. Thanks, everybody.

15 **DR. HANA EL SAHLY:** Thank you, Kathleen. So,
16 the next item on the agenda is to discuss the rationale
17 of our vote. I will begin. The rational for my vote
18 are the data presented by Dr. Wentworth. They were in
19 line with the epidemiology and (audio skip) as we know
20 it today. Then we go around the table, Dr. Cohn.

21 **CAPT. AMANDA COHN:** My rationale is the same;

1 based on the data that Dr. Wentworth presented today, I
2 voted yes.

3 **DR. HANA EL SAHLY:** Thank you. Dr. Shane.

4 **DR. ANDREA SHANE:** Thank you very much. I
5 also voted to approve based on the data that we
6 reviewed today, as well as an understanding of the
7 epidemiology. Just as a comment, it would be wonderful
8 to have more pediatric data as well, but obviously
9 we're limited by the strains that we have and the
10 access to the data that we have, so thank you very
11 much.

12 **DR. HANA EL SAHLY:** Thank you. Dr.
13 Chatterjee.

14 **DR. ARCHANA CHATTERJEE:** Yes, I also voted to
15 approve the current slate of selected virus, based on
16 the data presented by Dr. Wentworth. And I have
17 nothing else to add. Thank you.

18 **DR. HANA EL SAHLY:** Dr. Meissner.

19 **DR. CODY MEISSNER:** Thank you. I agree with
20 what's been stated. My only hope is that we have
21 selected the correct strains. And that we are not

1 forced to encounter two pandemic viruses at the same
2 time. And, also, just commented, I look forward to
3 seeing some effectiveness data using a test negative
4 design, if that's possible, comparing the egg-based
5 vaccine with recombinant and soluble influenza
6 vaccines. Over.

7 **DR. HANA EL SAHLY:** Thank you, Dr. Meissner.
8 Dr. Swamy.

9 **DR. GEETA SWAMY:** I voted yes based on the
10 data as presented. And appreciate all the work of the
11 team in order to get that.

12 **DR. HANA EL SAHLY:** Thank you, Dr. Swamy. Dr.
13 Gans.

14 **DR. HAYLEY GANS:** Thank you. Thank you to the
15 committee members for their wonderful conversations,
16 obviously, Dr. Wentworth. But mostly thank you to our
17 colleagues all around the world. That was the reason
18 we had the data that we did. And, I too, of course,
19 would like to put in a plug for just getting more
20 pediatric data points, particularly serologic, as we
21 move forward. So, our colleagues around the world who

1 are collecting the data hopefully can expand some of
2 their surveillance. But, with what we have, I feel
3 comfortable.

4 **DR. HANA EL SAHLY:** Thank you, Dr. Gans. Dr.
5 Janes.

6 **DR. HOLLY JANES:** Thank you to the committee
7 and the presenters. I don't have anything to add. I
8 feel comfortable based on the data that were (audio
9 skip) .

10 **DR. HANA EL SAHLY:** Thank you. Dr. Portnoy.

11 **DR. JAY PORTNOY:** Thank you. I also agree
12 with the comments that were described before the data
13 clearly supports selecting these strains, and that's
14 why I voted the way I did. The concern about pandemic
15 influenza that was voiced is -- my concern is that
16 there are animal reservoirs of influenza. And in many
17 cases influenza pandemic arises from those sources. So
18 it's really hard to predict when that will happen.
19 Hopefully, that won't happen when we already have
20 another pandemic, but we'll just keep our fingers
21 crossed. And thank you for the great conversation.

1 **DR. HANA EL SAHLY:** Thank you. Dr. Kurilla.

2 **DR. MICHAEL KURILLA:** Yeah, I think David
3 presented a very detailed and compelling rationale for
4 strain selection and I think it is, even with limited,
5 limited influenza data, I think it's the best that we
6 can do at this point. And, so, fully support it.

7 **DR. HANA EL SAHLY:** Thank you. Dr. Levine.

8 **DR. MYRON LEVINE:** Given the data available,
9 the explanation of the data by Dr. Wentworth, I'm
10 convinced that the recommendation was rational. And
11 that is why I voted in favor.

12 **DR. HANA EL SAHLY:** Thank you, Dr. Levine.

13 Dr. Offit.

14 **DR. PAUL OFFIT:** The rational for my decision
15 was based on the strength of the data presented. Thank
16 you.

17 **DR. HANA EL SAHLY:** Dr. Spearman.

18 **DR. PAUL SPEARMAN:** Similarly, I voted yes
19 because the data really supported the strain selection
20 as presented. Thank you.

21 **DR. HANA EL SAHLY:** Thank you. Dr. Pergam.

5 I would just say that I'm very interested to
6 see with these pockets of development of individual
7 areas, how this will change when we come out of the
8 pandemic. And, I think, these meetings are going to be
9 even more interesting when we start to see strain
10 evolution in the consorts post-pandemic. So, it'll be
11 quite interesting to have discussions in the future.

12

ADJOURN MEETING

14

1 times.

2 **DR. MARION GRUBER:** Thank you so much, Dr. El
3 Sahly that really means a lot to me. And it was just
4 like six months ago, even though it was many years ago,
5 that I asked you if you could chair the VRBPAC. And I
6 really, really thank you for your time and your
7 insight. And I think it has been wonderful to have you
8 and all of the members on this committee.

9 I do understand that many will rotate off in
10 January, and I wanted to take the opportunity to thank
11 you all for your time and for your insight, and really
12 for helping the FDA to make the right decisions. So,
13 really, your time is very much appreciated.

14 And I think that it's probably the last
15 opportunity that I have to thank you all. So, again,
16 your help is very much appreciated, and will be very
17 much appreciated in the future. So, thank you. Bye.

18 **DR. HANA EL SAHLY:** Okay, I hand this over
19 back to you Kathleen.

20 **MS. KATHLEEN HAYES:** Thank you, Dr. El Sahly.
21 I would just like to echo everyone's comments thanking

1 the committee and speakers today for their time. I
2 know it was a bit of an early morning this morning but
3 thank for all of your contributions. And on that note,
4 the meeting for today is adjourned.

5

6 **[MEETING ADJOURNED FOR THE DAY]**