Vaccines and Related Biological Products
Advisory Committee October 14-15, 2021
Meeting Presentation

Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please send an e-mail to: ocod@fda.hhs.gov and include 508 Accommodation and the title of the document in the subject line of your e-mail.
Safety and Immunogenicity of a 50 µg Booster Dose of mRNA-1273 (Moderna COVID-19 Vaccine)

ModernaTX, Inc.

Vaccines and Related Biological Products Advisory Committee
October 14, 2021
Safety and Immunogenicity of a 50 µg Booster Dose of mRNA-1273 (Moderna COVID-19 Vaccine)

Jacqueline Miller, MD, FAAP
Senior Vice President
Therapeutic Area Head, Infectious Diseases
ModernaTX, Inc.
Proposed Use of Moderna Vaccine as a Booster

- Administration of a single 50 µg (0.25 ml) booster dose at least 6 months after completion of a primary series in:
 - Individuals 65 years of age and older;
 - Individuals 18 - 64 years of age at high risk of severe COVID-19; and
 - Individuals 18 - 64 years of age whose frequent institutional or occupational exposure to SARS-CoV-2 puts them at high risk of serious complications of COVID-19 including severe COVID-19
Proposed mRNA Vaccination Schedules

Individuals ≥ 18 Years
- **Dose 1**: 100 µg (0.5 mL)
- **Dose 2**: 100 µg (0.5 mL)
- **Booster**: 50 µg (0.25 mL)

4 Weeks → ≥ 1 Month → ≥ 6 Months Post Dose 2

Immunocompromised ≥ 18 Years
- **Dose 1**: 100 µg (0.5 mL)
- **Dose 2**: 100 µg (0.5 mL)
- **Dose 3**: 100 µg (0.5 mL)

4 Weeks → ≥ 1 Month → ≥ 6 Months Post Dose 2
Outline of Presentation

- Background
- Update on vaccine efficacy (Study 301)
- Antibody persistence 6-8 months after vaccination
- Breakthrough disease in vaccinated individuals from July – August, 2021
- 50 µg booster dose (Study 201B)
 - Rationale for dose selection
 - Study design
 - Safety data
 - Immunogenicity of 50 µg booster dose vs the original virus (D614G) and Delta variant
- Summary
Background
Review of Safety and Efficacy from Phase 3 Study 301

- 30,375 subjects who received at least one dose
 - 15,180 mRNA-1273 recipients
 - 15,166 placebo recipients
- 94.1% vaccine efficacy in per protocol cohort\(^1\)
 - Based on 9-week median follow-up post-dose 2
- Observed to have acceptable safety profile\(^1\)
- 100 µg 2-dose regimen authorized for emergency use for individuals ≥ 18 years old

1. Baden et al NEJM, 2020
Use of Moderna COVID-19 Vaccine in US Since December 2020 EUA

- Doses Distributed: 191,245,660
- Fully Vaccinated: 69,075,289
- Received Third Dose: 1,495,618

Adapted from CDC COVID Data Tracker (as of October 11, 2021)
Update on mRNA-1273 Efficacy through End of Blinded Phase

Phase 3 Study 301
Participants unblinded and placebo recipients offered vaccine shortly after EUA

Subjects followed for any signs of COVID-19 through
- Weekly e-diary contact
- Monthly phone calls

If subject had symptoms of COVID-19, examination and PCR testing conducted by site

Efficacy results updated through end of blinded phase (March 2021)

Primary data to support BLA (rolling submission completed August 25, 2021)
mRNA-1273 Vaccine Efficacy to Prevent COVID-19 Disease was 93.2% through 5.3 Months of Follow-up

Per Protocol Set

![Graph showing cumulative event rate over time from randomization](image)

Median 5.3 months of follow-up
mRNA-1273 Vaccine Efficacy to Prevent Severe COVID-19 Disease was 98.2% through 5.3 Months of Follow-up

Per Protocol Set

Cumulative Severe Event Rate, %

Time from Randomization (days)

Median 5.3 months of follow-up
Exploratory Analysis of Antibody Persistence and Boosting

Study 201B
Exploratory Analysis Against Variants of Concern
Study 201B 50 µg Booster after 100 µg Primary Series

23 to 44-Fold Increase After Booster

NAb Titer (ID$_{50}$)

<table>
<thead>
<tr>
<th>GMT</th>
<th>WT</th>
<th>Beta</th>
<th>Gamma</th>
<th>WT</th>
<th>Beta</th>
<th>Gamma</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1 Post-Dose 2</td>
<td>1,210</td>
<td>84</td>
<td>188</td>
<td>198</td>
<td>27</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Month 6-8 Post-Dose 2</td>
<td>4,588</td>
<td>864</td>
<td>1,308</td>
<td>1,268</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 14 Post-Booster</td>
<td>5,268</td>
<td>6,164</td>
<td>1,308</td>
<td>1,268</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WT: original strain (D614G)
Research VSV pseudoneutralization assay used
Adapted from Choi et al., Nature Medicine 2021
Breakthrough Disease in Vaccinated Individuals from July – August, 2021

Phase 3 Study 301
Breakthrough COVID-19 Cases by Month

Study 301

<table>
<thead>
<tr>
<th>Initial Randomization</th>
<th>mRNA-1273</th>
<th>Early Vaccination</th>
<th>EUA and Cross-over</th>
<th>Later Vaccination</th>
<th>Placebo</th>
<th>Per Protocol Cases of COVID-19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oct 2020</td>
<td>Mar 2021</td>
<td>Aug 2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov 2020</td>
<td>Apr 2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec 2020</td>
<td>May 2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increase in Breakthrough Cases

mITT Population
Incidence Rates of Breakthrough COVID-19 in Early and Later Vaccinated Groups, July – August 2021

Study 301

Incidence rates were higher in the group vaccinated earlier.

<table>
<thead>
<tr>
<th>Group</th>
<th>Person years</th>
<th>COVID-19 Cases / 1000 Person Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>2,102</td>
<td>77.1 (n=162)</td>
</tr>
<tr>
<td>18 - 64</td>
<td>1,558</td>
<td>87.3 (n=136)</td>
</tr>
<tr>
<td>≥ 65</td>
<td>544</td>
<td>47.8 (n=26)</td>
</tr>
</tbody>
</table>

Early (13-month median follow-up) vs Later (8-month median follow-up)

Baden et al., MedRxiv, 2021

Analysis of breakthrough cases observed from July 1 to August 27, 2021, mITT population
50 μg Booster of mRNA-1273 in Previously Vaccinated Individuals

Study 201B
Rationale for Booster Dose Selection

- Goal was to use optimal effective dose for boosting
- Lower booster doses than those used for primary series of other vaccines shown to reactivate immune memory
- Lower booster dose increases worldwide vaccine supply of mRNA-1273
Design of Booster Dose Study 201B

<table>
<thead>
<tr>
<th>N</th>
<th>Previous Dose of mRNA-1273</th>
<th>Booster Dose</th>
<th>Interval Between Dose 2 & Booster Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Doses 1 & 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>50 µg</td>
<td>50 µg</td>
<td>≥ 6 months</td>
</tr>
<tr>
<td>171</td>
<td>100 µg</td>
<td>50 µg</td>
<td></td>
</tr>
</tbody>
</table>

Study 201B (boost with mRNA-1273)
Demographic Characteristics
Study 201B Safety Set

<table>
<thead>
<tr>
<th></th>
<th>50 µg Booster After 100 µg Primary Series N = 171</th>
<th>50 µg Booster Pooled N = 344</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (years)</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>18-64</td>
<td>78%</td>
<td>76%</td>
</tr>
<tr>
<td>≥ 65</td>
<td>22%</td>
<td>24%</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>61%</td>
<td>66%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>96%</td>
<td>95%</td>
</tr>
<tr>
<td>Black or African American</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Asian</td>
<td>< 1%</td>
<td>< 1%</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>< 1%</td>
<td>< 1%</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>94%</td>
<td>94%</td>
</tr>
</tbody>
</table>
Safety Data for 50 µg Booster After 100 µg Primary Series

Study 201B
Follow-up Period for Safety Data Collection

Median 5.7 Months Safety Follow-up

Booster Dose

Active Surveillance

- Solicited Adverse Reactions: 7 Days
- Unsolicited AEs: 28 Days
- SAEs, MAAEs, Deaths, and AEs Leading to Discontinuations
Solicited Local Adverse Reactions within 7 Days

Study 201B 50 µg Booster Dose After 100 µg Primary Series vs Study 301

No Grade 4 solicited local adverse reactions were reported.

Solicited safety set:
- Pain: 84% (Study 201B), 88% (Study 301)
- Erythema:
 - Grade 1: 5% (Study 201B), 5% (Study 301)
 - Grade 2: 9% (Study 201B), 12% (Study 301)
- Swelling:
 - Grade 1: 5% (Study 201B), 5% (Study 301)
 - Grade 2: 12% (Study 301)
- Axillary Swelling or Tenderness:
 - Grade 1: 20% (Study 301), 14% (Study 301)

Local reactions were generally similar for booster dose and Dose 2 of primary series.
Solicited Systemic Adverse Reactions within 7 Days

Study 201B 50 µg Booster Dose After 100 µg Primary Series vs Study 301

Grade 4 fever & nausea/vomiting occurred in < 0.1% of subjects in Study 301. No Grade 4 solicited systemic adverse reactions reported in Study 201B.

Solicited safety set

Systemic reactions were generally similar after booster dose compared to Dose 2 of primary series
Solicited Local Adverse Reactions by Age

Study 201B 50 µg Booster Dose After 100 µg Primary Series

No Grade 4 solicited local adverse reactions were reported

Solicited safety set

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Pain</th>
<th>Erythema</th>
<th>Swelling</th>
<th>Axillary Swelling or Tenderness</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-64</td>
<td>86%</td>
<td>5%</td>
<td>6%</td>
<td>25%</td>
</tr>
<tr>
<td>≥ 65</td>
<td>76%</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Most solicited AEs were mild in severity regardless of age

N = 129 38 129 38 129 38 129 38
Solicited Systemic Adverse Reactions by Age

Study 201B 50 µg Booster Dose After 100 µg Primary Series

No Grade 4 solicited systemic adverse reactions were reported

Solicited safety set

Systemic reactions were generally less frequent after a booster dose among older adults
Unsolicited Adverse Events

Study 201B 50 µg Booster Dose vs Study 301

<table>
<thead>
<tr>
<th></th>
<th>Participants Reporting at Least One Event, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 µg Booster After 100 µg Primary Series</td>
</tr>
<tr>
<td></td>
<td>N = 171</td>
</tr>
<tr>
<td>Medically attended AEs (MAAE)</td>
<td>41 (24%)</td>
</tr>
<tr>
<td>Vaccine-related MAAE</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Serious adverse events</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Vaccine-related SAE</td>
<td>0</td>
</tr>
<tr>
<td>Deaths</td>
<td>0</td>
</tr>
<tr>
<td>Adverse event leading to study discontinuation</td>
<td>0</td>
</tr>
</tbody>
</table>

As of August 16, 2021 (median 5.7 months safety follow-up)

No vaccine-related SAEs or deaths in Study 201B to date
Immunogenicity of 50 μg Booster Dose vs Original Virus (D614G)

Study 201B
Co-primary Endpoints to Demonstrate Noninferiority of Immune Response

Study 201B vs Study 301

- Pre-specified immunogenicity endpoints based on pooled primary series groups
- Immunogenicity was compared 1-month post-booster (Study 201B) to 1-month post-dose 2 (Study 301) using neutralization assays against original virus (D614G) and Delta variant
- 2 co-primary endpoints
 - Geometric mean ratio (GMR)
 - Lower bound of the corresponding 95% CI ≥ 0.67 (non-inferiority margin of 1.5)
 - Point estimate ≥ 1
 - Difference of seroresponse rates (SRR)
 - Lower bound of the 95% CI ≥ -10%
 - Consistent with relevant FDA guidance

Vaccine Effectiveness of 50 μg Booster Dose Inferred by Immunobridging to Study 301

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Previous Dose of mRNA-1273</th>
<th>Booster Dose</th>
<th>Interval between Dose 2 & Booster Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>201B (boost with mRNA-1273)</td>
<td>146</td>
<td>50 μg</td>
<td>50 μg</td>
<td>≥ 6 months</td>
</tr>
<tr>
<td></td>
<td>149</td>
<td>100 μg</td>
<td>50 μg</td>
<td>-</td>
</tr>
<tr>
<td>301 Immunogenicity Subset</td>
<td>1,055</td>
<td>100 μg (primary series only)</td>
<td>None</td>
<td>-</td>
</tr>
</tbody>
</table>

Per protocol set
Geometric Mean Ratio (GMR) of Neutralization Titers

Study 201B (Pooled) vs Study 301

<table>
<thead>
<tr>
<th></th>
<th>Geometric Mean Titer (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28 days Post Booster</td>
</tr>
<tr>
<td>Study 201B Pooled</td>
<td>Study 301</td>
</tr>
<tr>
<td>N = 295</td>
<td>N = 1,053</td>
</tr>
<tr>
<td>1,768</td>
<td>1,033</td>
</tr>
<tr>
<td>(1,586, 1,970)</td>
<td>(974, 1,095)</td>
</tr>
</tbody>
</table>

First co-primary endpoint of GMR non-inferiority margin of 1.5 and point estimate of ≥ 1.0 met
Geometric Mean Ratio (GMR) of Neutralization Titers

Study 201B 50 µg Booster Dose After 100 µg Primary Series vs Study 301

Co-primary endpoint of GMR non-inferiority margin of 1.5 and point estimate of ≥ 1.0 also met for 100 µg Primary Series followed by 50 µg Booster

<table>
<thead>
<tr>
<th>Geometric Mean Titer (95% CI)</th>
<th>Post Booster / Post Dose 2 GMR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 201B 28 days Post 50 µg Booster after 100 µg Primary Series N = 149</td>
<td>Study 301 28 days Post Dose 2 N = 1,053</td>
</tr>
<tr>
<td>1,802 (1,548, 2,099)</td>
<td>1,027 (968, 1,089)</td>
</tr>
</tbody>
</table>

Per protocol set
Measured as pseudovirus neutralization ID$_{50}$
Seroresponse Rates based on 3.3-Fold Definition (Prespecified Hypothesis)

Study 201B (Pooled) vs Study 301

<table>
<thead>
<tr>
<th></th>
<th>Study 201B 50 µg Booster Pooled</th>
<th>Study 301 100 µg Primary Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Geometric Mean Titer (GMT)</td>
<td>126</td>
<td>10</td>
</tr>
<tr>
<td>GMT 28 days post dose</td>
<td>1,893</td>
<td>1,081</td>
</tr>
<tr>
<td>Participants achieving seroresponse, n (%)</td>
<td>275 (94%)</td>
<td>1,038 (99%)</td>
</tr>
<tr>
<td>95% CI</td>
<td>90.1, 96.1</td>
<td>98.0, 99.4</td>
</tr>
<tr>
<td>Difference in seroresponse rate (SRR)</td>
<td>-5.3</td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>-8.8, -2.9</td>
<td></td>
</tr>
</tbody>
</table>

Co-primary endpoint of SRR met (lower bound of 95% CI ≥ -10%)
Observed Seroresponse Rates Using Three Definitions

Study 201B (Pooled) vs Study 301/Study 201A (Pooled)

Regardless of definition, a ≥ 90% seroresponse rate was achieved after 50 µg booster dose in the pooled group.
Seroresponse Rates Based on 4-Fold Rise from Pre-Booster Titers

Study 201B 50 µg Booster after 100 µg Primary Series vs Study 301

<table>
<thead>
<tr>
<th></th>
<th>50 µg Booster After 100 µg Primary Series</th>
<th>Study 301 100 µg Primary Series</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 149</td>
<td>N = 1,050</td>
</tr>
<tr>
<td>Baseline Geometric Mean Titer (GMT)</td>
<td>150</td>
<td>10</td>
</tr>
<tr>
<td>GMT 28 days post dose</td>
<td>1,952</td>
<td>1,081</td>
</tr>
<tr>
<td>Participants achieving seroresponse, n (%)</td>
<td>131 (88%)</td>
<td>1,033 (98%)</td>
</tr>
<tr>
<td>95% CI</td>
<td>81.6, 92.7</td>
<td>97.4, 99.1</td>
</tr>
<tr>
<td>Difference in seroresponse rate (SRR)</td>
<td>-10.5</td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>-16.7, -6.1</td>
<td></td>
</tr>
</tbody>
</table>

SRR success criteria not met (lower bound of 95% CI ≥ -10%)
Titer Comparison for Subjects Who Had ≥ 4-Fold Rise vs < 4-Fold Rise after Booster Dose

Study 201B (Pooled)

Subjects who did not meet 4-fold rise had 4 times higher pre-booster titers compared to those who did meet 4-fold rise.
Older adults, who are at greater risk of complications of COVID-19, achieve high post-booster titers.
Seroresponse Rate Based on 4-Fold Rise from Pre-Booster by Age

Study 201B 50 µg Booster after 100 µg Primary Series vs Study 301

Consistently high seroresponse rate in participants 18-64 and those ≥ 65 years of age
Immune Response to Delta Variant

Study 201B
Geometric Mean Titers of Neutralization Titers Against Delta Variant

Study 201B 50 µg Booster after 100 µg Primary Series

Substantial increase in post-boost titers against Delta was achieved in both age groups

- **18-64**
 - N = 112
 - GMFR = 15.9
 - Pre-Booster: 55
 - 28 Days After Boost Dose: 872

- **≥ 65**
 - N = 37
 - GMFR = 22.2
 - Pre-Booster: 32
 - 28 Days After Boost Dose: 706

- **Overall**
 - N = 149
 - GMFR = 17.3
 - Pre-Booster: 48
 - 28 Days After Boost Dose: 828

GMFR = Geometric Mean Fold Rise
Seroresponse Rates to Delta Variant Based on 4-Fold Rise from Pre-Booster

Study 201B 50 µg Booster after 100 µg Primary Series

- 18 - 64 years: 88% (N = 112)
- ≥ 65 years: 95% (N = 37)
- Overall: 89% (N = 149)

4 weeks post booster
Summary
Safety Summary of 50 µg Booster Dose

- Rates of adverse reactions (ARs) with 50 µg booster dose comparable to those observed after Dose 2 of primary series
 - Pain at injection site most common solicited local AR in both groups
 - Headache, fatigue and myalgia most common systemic ARs in both groups
 - Majority of ARs were mild-to-moderate in severity
 - Axillary swelling or tenderness was the only AR more frequently reported after booster dose
- No vaccine-related SAEs or deaths in Study 201B
Immunogenicity Summary of 50 µg Booster Dose

- Pre-specified co-primary hypotheses (GMR & SRR difference) were met on pooled dataset
- 50 µg booster dose following 100 µg primary series results in
 - Higher antibody responses to original virus (D614G) than post-Dose 2 in Phase 3 Study 301 (GMR = 1.8)
 - 13-fold rise from pre-booster titers for original virus
 - 17-fold rise from pre-booster titers for Delta variant
- Consistently high antibody titers in both age groups (18-64 and ≥ 65)

GMR = geometric mean ratio
SRR = seroresponse rate
Proposed Use of Moderna Vaccine as a Booster

- Administration of a single 50 µg (0.25 ml) booster dose at least 6 months after completion of a primary series in:
 - Individuals 65 years of age and older;
 - Individuals 18 - 64 years of age at high risk of severe COVID-19; and
 - Individuals 18 - 64 years of age whose frequent institutional or occupational exposure to SARS-CoV-2 puts them at high risk of serious complications of COVID-19 including severe COVID-19
Thank you

NIH/COVPN
Investigators and study site personnel
BARDA
Montefiori laboratory at Duke University

Most importantly, the many individuals who participated in these trials
Safety and Immunogenicity of a 50 µg Booster Dose of mRNA-1273 (Moderna COVID-19 Vaccine)

ModernaTX, Inc.

Vaccines and Related Biological Products Advisory Committee
October 14, 2021