Cellular, Tissue, and Gene Therapies Advisory Committee September 2-3, 2021 Meeting Presentation

Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please send an e-mail to: ocod@fda.hhs.gov and include 508 Accommodation and the title of the document in the subject line of your e-mail.

rAAV Integration: In Vitro & Mice

Mark S. Sands, Ph.D.

Professor of Medicine and Genetics Washington University School of Medicine St. Louis, MO

Disclosures

Co-Founder – JAYA Biosciences

Consultant – BioMarin Pharmaceutical

Consultant – Pfizer

Consultant – Taysha Gene Therapies

Scientific Advisory Board – M6P Therapeutics

rAAV Integration: In Vitro & Mice

Chronological:
A) 1997-2001 – Prior to the observation of hepatocellular carcinoma (HCC)
B) 2001-2016 – rAAV integration and associated HCC in mice
C) Conditions affecting rAAV-associated HCC

JOURNAL OF VIROLOGY, Nov. 1997, p. 8429–8436 0022-538X/97/\$04.00+0 Copyright © 1997, American Society for Microbiology Vol. 71, No. 11

Adeno-Associated Virus Vector Integration Junctions ELIZABETH A. RUTLEDGE AND DAVID W. RUSSELL*

1) In vitro (HeLa cells) integration analysis

- 2) Random integration
- 3) None of the integrated vectors were fully intact

JOURNAL OF VIROLOGY, Dec. 1997, p. 9231–9247 0022-538X/97/\$04.00+0 Copyright © 1997, American Society for Microbiology

Cellular Recombination Pathways and Viral Terminal Repeat Hairpin Structures Are Sufficient for Adeno-Associated Virus Integration In Vivo and In Vitro

> C. C. YANG,¹ X. XIAO,¹ X. ZHU,¹[†] D. C. ANSARDI,¹[‡] N. D. EPSTEIN,² M. R. FREY,³ A. G. MATERA,³ and R. J. SAMULSKI^{1*}

Integration analysis in cell lines and a cell-free system
 No obvious site preference for integration.
 No intact ITRs were identified
 Favor actively transcribed regions

Vol. 71, No. 12

JOURNAL OF VIROLOGY, July 1999, p. 5438–5447 0022-538X/99/\$04.00+0 Copyright © 1999, American Society for Microbiology. All Rights Reserved. Vol. 73, No. 7

Isolation of Recombinant Adeno-Associated Virus Vector-Cellular DNA Junctions from Mouse Liver HIROYUKI NAKAI,^{1,2,3}* YUICHI IWAKI,² MARK A. KAY,³ AND LINDA B. COUTO¹

1) In vivo integration analysis (mouse liver)

2) Integrated vectors were rearranged (ITRs and vector sequences)

3) Two integrants were identified in genes (α 1 collagen, rRNA)

JOURNAL OF VIROLOGY, Aug. 2001, p. 6969–6976 0022-538X/01/\$04.00+0 DOI: 10.1128/JVI.75.15.6969–6976.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Vol. 75, No. 15

Extrachromosomal Recombinant Adeno-Associated Virus Vector Genomes Are Primarily Responsible for Stable Liver Transduction In Vivo

HIROYUKI NAKAI, STEPHEN R. YANT, THERESA A. STORM, SALLY FUESS, LEONARD MEUSE, AND MARK A. KAY*

1) Extrachromosomal rAAV is the primary source of expression
 2) Only 5-10% of rAAV vector are integrated into the host genome
 3) Low level integration, increased safety profile

- 1) Relatively low level of integration
- 2) Chromosome/vector junctions are within or near ITRs
- 3) ITRs are rearranged
- 4) No or minimal homology between cellular and vector sequences
- 5) No integration 'hot spots' were identified
- 6) Integration mechanism is unknown
- 7) No toxicity observed up to this point

Gene Therapy (2001) 8, 1343–1346 © 2001 Nature Publishing Group All rights reserved 0969-7128/01 \$15.00

www.nature.com/gt

BRIEF COMMUNICATION Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors

A Donsante¹, C Vogler², N Muzyczka³, JM Crawford⁴, J Barker⁵, T Flotte³, M Campbell-Thompson⁴, T Daly^{1,6} and MS Sands¹

1) Long-term (18mo) study in MPSVII mouse

2) IV administration at birth (~ $1x10^{14}$ vg/kg)

3) Persistent expression, dramatic clinical/behavioral improvements

4) 3/5 rAAV-treated animals had HCC at 18 months of age

5) Impossible to determine if rAAV caused HCC

Adeno-associated virus vectors integrate at chromosome breakage sites

Daniel G Miller¹, Lisa M Petek² & David W Russell^{2,3}

NATURE GENETICS VOLUME 36 | NUMBER 7 | JULY 2004

rAAV does <u>not</u> increase mutation rate
 rAAV integrates at spontaneous or induced double strand breaks.

JOURNAL OF VIROLOGY, Mar. 2005, p. 3606–3614 0022-538X/05/\$08.00+0 doi:10.1128/JVI.79.6.3606–3614.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Vol. 79, No. 6

Large-Scale Molecular Characterization of Adeno-Associated Virus Vector Integration in Mouse Liver

Hiroyuki Nakai,¹* Xiaolin Wu,² Sally Fuess,¹ Theresa A. Storm,^{1,3} David Munroe,² Eugenio Montini,⁴† Shawn M. Burgess,⁵ Markus Grompe,^{4,6} and Mark A. Kay^{1,3}

1) Analyzed 347 rAAV integration sites in mouse liver

2) Integration 'hot spot' was found in rRNA gene repeats

3)>50% of integrations occurred near transcription start sites or CpG islands

AAV Vector Integration Sites in Mouse Hepatocellular Carcinoma

Anthony Donsante,¹* Daniel G. Miller,²* Yi Li,^{3,4} Carole Vogler,⁵ Elizabeth M. Brunt,⁵ David W. Russell,^{3,4}† Mark S. Sands^{1,6}† SCIENCE VOL 317 27 JULY 2007

 1) 15/34 rAAV-treated mice developed HCC (6/18 MPSVII, 9/16 WT)
 2) Integrated rAAV sequences were isolated from HCC samples from 4 mice
 3) In each case, rAAV integrated in the mouse *Rian* locus
 4) Several downstream genes and μRNAs

were dysregulated

Long-Term Correction of Sandhoff Disease Following Intravenous Delivery of rAAV9 to Mouse Neonates

Jagdeep S Walia^{1,2,3,4}, Naderah Altaleb², Alexander Bello^{5,6}, Christa Kruck², Matthew C LaFave⁷, Gaurav K Varshney⁷, Shawn M Burgess⁷, Biswajit Chowdhury², David Hurlbut⁸, Richard Hemming², Gary P Kobinger^{5,6} and Barbara Triggs-Raine^{2,3,4}

1) 8/10 rAAV-treated Sandhoff mice developed HCC
 2) IV injection of rAAV in neonatal mice (2.5 x 10¹⁴ vg/kg)
 3) Several tumors had rAAV integrations in the *Rian* locus

Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy

Randy J. Chandler,¹ Matthew C. LaFave,² Gaurav K. Varshney,² Niraj S. Trivedi,³ Nuria Carrillo-Carrasco,⁴ Julien S. Senac,¹ Weiwei Wu,⁵ Victoria Hoffmann,⁶ Abdel G. Elkahloun,⁵ Shawn M. Burgess,² and Charles P. Venditti¹

J Clin Invest (2015) 125:870-880

1) 64/95 mice treated with rAAV ($1x10^{14}$ vg/kg) at birth developed HCC

2) Confirmed the *Rian* locus as a 'hot spot' for rAAV integration

3) HCC appears to be dose-dependent

4) Strong promoter/enhancer combinations increased incidence of HCC5) HCC independent of transgene6) HCC independent of genotype

Genotoxicity in Mice Following AAV Gene Delivery: A Safety Concern for Human Gene Therapy?

Randy J Chandler¹, Matthew C LaFave², Gaurav K Varshney², Shawn M Burgess² and Charles P Venditti¹

Molecular Therapy vol. 24 no. 2 february 2016

Compilation of rAAV integration sites across several studies
 Many *Rian* integrations occur in a region (~60bp) unique to rodents

1) Systemic delivery of a rAAV vector can cause HCC in mice 2) rAAV integration into the mouse *Rian* locus is associated with HCC 3) Many rAAV integrants are located in *Rian* sequences unique to rodents 4) Highest frequency of HCC if administered during the newborn period 5) Strong promoter/enhancer combinations increase frequency 6)rAAV-associated HCC appears to be dose-dependent 7) Low frequency if administered in adult animals 8) No HCC following CNS-directed rAAV-mediated gene therapy

rAAV Integration (recent findings)

Liver Injury Increases the Incidence of HCC following AAV Gene Therapy in Mice

Dhwanil A. Dalwadi,^{1,2} Laura Torrens,³ Jordi Abril-Fornaguera,³ Roser Pinyol,³ Catherine Willoughby,³ Jeffrey Posey,² Josep M. Llovet,^{3,4,5} Christian Lanciault,⁶ David W. Russell,^{7,8} Markus Grompe,² and Willscott E. Naugler¹ Molecular Therapy Vol. 29 No 2 February 2021

- 1) Increased incidence of HCC in <u>adult</u> mice with non-alcoholic fatty liver
- 2) *Rian*-targeted construct 100% penetrance
- 3) Non-targeted construct 50% penetrance

rAAV Integration (recent findings)

Enhanced Efficacy and Increased Long-Term Toxicity of CNS-Directed, AAV-Based Combination Therapy for Krabbe Disease

Yedda Li,¹ Christopher A. Miller,¹ Lauren K. Shea,¹ Xuntian Jiang,¹ Miguel A. Guzman,² Randy J. Chandler,³ Sai M. Ramakrishnan,¹ Stephanie N. Smith,³ Charles P. Venditti,³ Carole A. Vogler,² Daniel S. Ory,¹ Timothy J. Ley,^{1,4} and Mark S. Sands^{1,4} Molecular Therapy Vol. 29 No 2 February 2021 (

HCC development following <u>CNS-directed</u> rAAV-mediated gene therapy
 Combination therapy (HSCT transplantation + small molecule drug)
 ~95% penetrance in combination-treated Krabbe & WT mice

Targeted Sequence Capture

Animal ID	Age ^a (months)	Chr	Integration ^b Start Site (bp)	Read Counts	Gene	Gene Description	Reference
6657	13.4	12	109643597 ^c	857	Rian	microRNA cluster	33
6675	14.7	12	109618074 ^c	1,390	Rian	microRNA cluster	33
		6	99150006 ^c	4,883	Foxp1	Forkhead protein, tumor suppressor	28,29
		8	39104763°	199	Tusc3	endoplasmic reticulum (ER) protein, candidate tumor suppressor	0E
6722	17.6	12	109631801 ^c	3,060	Rian	microRNA cluster	33
		7	75627402 ^c	1,682	Akap13	A-kinase anchor protein, double oncogene homology, breast cancer	25,34
6815	14.7	12	109609803 ^c	1,684	Rian	microRNA cluster	33
6824	15.0	12	109631309 ^c	213	Rian	microRNA cluster	33
		1	192215900 ^c	55	Kcnh1	K ⁺ channel, increased expression confers growth advantage	26,35
		6	81973046 ^d	87	Evala	regulator of programmed cell death	27,36
6828	13.1	12	109625075°	3,737	Rian	microRNA cluster	33
6902	14.9	12	109613953 ^c	85	Rian	microRNA cluster	33
		12	109671965 ^e	825	Rian	microRNA cluster	33
		6	94142817°	65	Magil	membrane-associated guanylate kinase, candidate tumor suppressor	31,32
7025	15.5	12	109615046	1,430	Rian	microRNA cluster	33
7045	16.8	12	109606198 ^c	3,519	Rian	microRNA duster	33
7046	14.2	12	109611352 ^c	387	Rian	microRNA cluster	33

- 1) All tumors had rAAV integrations in the *Rian* locus
- 2) 4/10 tumors had rAAV integrations in candidate tumor suppressors, cancer-associated genes, or genes that regulate cell growth or death

Conclusions

- 1)rAAV vectors can stably integrate into the mouse genome ($\leq 10\%$)
- 2) The vast majority of integrated vectors appear to be grossly rearranged
- 3) The integration mechanism is unknown
- 4) Integration into the mouse *Rian* locus is associated with HCC
- 5) HCC formation appears to be dose dependent
- 6) Strong promoter/enhancer combinations increase HCC frequency
- 7) Low frequency of HCC in adult animals
- 8) Low frequency of HCC following CNS-directed gene therapy
- 9) Liver injury (eg. NAFL) can exacerbate HCC phenotype
- 10)Adjunct therapies with mild oncogenic potential exacerbate HCC phenotype

Acknowledgements

Washington University

Anthony Donsante Yedda Li Christopher Miller Timothy Ley

University of Washington

Daniel Miller David Russell

<u>NIH</u>

Randy Chandler Charles Venditti

Additional Information

Recent round table discussion on rAAV integration

Sponsored by the American Society of Gene and Cell Therapy (ASGCT)

August 18, 2021

https://www.youtube.com/watch?v=L_4luK3fNU0