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Abstract Tox-GAN enabling transcriptomic profile inference Tox-GAN facilitating understanding of toxicity mechanisms Tox-GAN aiding the read-across

Animal study is a critical component in biomedical research, pharmaceutical To investigate the performance of the optimized models, we applied the The 28-day repeated dose toxicity study is one of the standard toxicity The similarities between transcriptomic profiles (in the range of -0.22 ~ 0.45)
product development, and regulatory application. Toxicogenomics (TGx) which  models to infer transcriptomic profiles in the test set. The t-SNE plots depicted experimental designs to evaluate compounds' adverse effects and uncoverthe were much smaller than those of chemical structure, suggesting the better
incorporates emerging genomic technologies into the conventional animal the distribution of generated transcriptomic profiles and real ones were well underlying toxicity mechanisms when repeatedly administered to the discrimination power of transcriptomic profile-based read-across.
models, has offered an unprecedented opportunity in two areas: inferring matched within the Gaussian distribution for both TOX'GANintensity and experimental animals in TGx. The high Pearson correlation coefficients Furthermore, the similarity based on the generated transcriptomic profiles was
toxicity mechanisms based on individual gene activities and developing safety TOX'GANfoIdchange models. Furthermore, the average and standard suggested the potential utility of the proposed Tox-GAN to refine the 28- day very similar to the real transcriptomic profiles, demonstrating the utility of the
biomarkers based on gene expression profiles. Meanwhile, a worldwide effort deviation of Pearson correlation coefficients between the generated repeated dose toxicity study. Moreover, the concordance between the Gene  Tox-GAN model in the biological profile-based read-across.

has led to a paradigm shift in toxicology towards "reducing, refining and transcriptomic profile and their corresponding real ones were 0.997£0.002 and Ontology (GO) enrichment analysis results indicated that the generated
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