Oral and intravenous oxymorphone: Relative potency compared to other μ opioid agonists in humans

Shanna Babalonis, Ph.D.
Disclosures

Shanna Babalonis has no conflicts of interest related to the presented work.
Background

Oxymorphone is a semisynthetic opioid agonist, exhibits high degree of μ-opioid receptor selectivity and intrinsic activity

Oral, parenteral formulations of oxymorphone were approved by the FDA in 1959 (Numorphan®)

In 1979, the manufacturer voluntarily removed the oral products, citing commercial reasons¹; however, there were reports of high rates of misuse²

Oral oxymorphone returned to the market in 2006 (Opana®, Opana® ER)

Since this time, oxymorphone misuse has increased; the extended-release product was removed from the market due to risks associated with misuse¹

Little controlled data are available on the abuse potential of oxymorphone

¹. FDA (2017). Drug Safety & Risk Management Advisory Committee and the Anesthetic & Analgesic Drug Products Advisory Committee (AADPAC), Briefing Documents.
Relative Potency of Oxymorphone

Two within-subject, double-blind, placebo-controlled studies were conducted to examine:

1) Relative abuse potential and relative potency of *oral* oxymorphone

2) Relative abuse potential and relative potency of *intravenous* oxymorphone
Relative Potency of Oxymorphone

Two placebo-controlled studies conducted to examine:

1) Relative abuse potential and relative potency of *oral* oxymorphone

2) Relative abuse potential and relative potency of intravenous oxymorphone
Oral Oxymorphone

Published potency estimates are based on several clinical trials with pain patients.

Indicates that oral oxymorphone is more potent than all listed comparators: twice as potent as oral oxycodone, hydrocodone, methadone; three times as potent as oral morphine

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxymorphone</td>
<td>10 mg</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>20 mg</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>20 mg</td>
</tr>
<tr>
<td>Methadone</td>
<td>20 mg</td>
</tr>
<tr>
<td>Morphine</td>
<td>30 mg</td>
</tr>
</tbody>
</table>
Background

One previous controlled human laboratory study examined the pharmacodynamic effects of oral oxymorphone4,5

- Designed to evaluate the abuse liability of oxymorphone ER relative to oxycodone ER

- Doses were selected based on equianalgesic estimates
 - 2:1, oxycodone: oxymorphone

- The authors concluded that oxymorphone had less abuse liability than oxycodone

- However, inspection of the data suggested that comparable dose ranges were not evaluated

 \emph{Ex: pupil diameter measurements were not comparable across the matched dose conditions}

Oral Oxymorphone Study Aims

1) Examine the relative abuse liability and relative potency of oxymorphone compared to oxycodone employing a broad array of pharmacodynamic outcomes

2) Examine the analgesic response to both drugs using two experimental pain models
Participants and Methods

Participants were healthy adults who misused opioids
- 2 females, 7 males (8 Caucasian, 1 African American)
- mean age of 30.5 (±1.6) years
- reported 8 (± 0.8) days of prescription opioid misuse, past 30 days
- mean of 7 (± 1.7) years of opioid misuse

Randomized, within-subject crossover, and placebo-controlled design

Participants resided as inpatients for approximately 3 weeks and completed a total of 7 sessions

Each session was separated by at least 48 hours
Methods

Double-blind doses: oxymorphone (10, 20, 40 mg, PO)
oxycodone (10, 20, 40 mg, PO)
placebo

Outcome measures included:
physiological measures (pupil diameter, end tidal CO₂)
pain assessments (cold pressor, pressure algometer)
subjective measures (VAS)
observer-rated measures (Observer-Rated Agonist Scale)

Relative potency analyses were conducted using the Finney parallel lines bioassay, using a six-point model (3 active doses of each drug)

Pupil Diameter

Oxycodone

Diameter (mm)

Time (hours)

Dose (mg)

- 0
- 10
- 20
- 40

Oxymorphone

Diameter (mm)

Time (hours)
Pupil Diameter

Oxycodone

Oxymorphone

Dose (mg)
- ○ 0
- △ 10
- ◇ 20
- ■ 40

Diameter (mm)

Time (hours)

Diameter (mm)

Time (hours)
Pupil Diameter

Oxycodone

Oxymorphone

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>2.0</th>
<th>5.5</th>
<th>7.0</th>
<th>3.5</th>
<th>2.5</th>
<th>3.0</th>
<th>4.5</th>
<th>6.0</th>
<th>6.5</th>
<th>5.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (hours)</td>
<td>0.5</td>
<td>1.5</td>
<td>2.5</td>
<td>3.5</td>
<td>4.5</td>
<td>5.5</td>
<td>0.5</td>
<td>1.5</td>
<td>2.5</td>
<td>3.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Dose (mg)
- 0
- 10
- 20
- 40

Pupil Diameter

Oxycodone

Oxymorphone
End Tidal CO₂

- Oxycodone
- Oxymorphone

Expired CO₂ (mm Hg)

- 48
- 46
- 44
- 42
- 40
- 38

Dose (mg)

- 0
- 10
- 20
- 40

Note: The graph shows a significant increase in expired CO₂ with increasing dose for both Oxycodone and Oxymorphone. The asterisk () indicates a statistically significant difference.*
Pain Assessments

Cold Pressor
- immersed non-dominant into an ice-cold water bath (1.0° C ± 0.5° C)

Pressure Algometer
- pressure applied to palm of the dominant hand (40 kPa/sec)

Outcome Measures:
Threshold - point at which pain was detected (sec; kPa)
Tolerance - point at which pain was no longer tolerable (sec; kPa)
Cold Pressor

Threshold

Time (sec)

Dose (mg)

Oxycodone
Oxymorphone

*

Tolerance

Time (sec)

Dose (mg)
“Do you LIKE the drug effect?”

Oxycodone

Oxymorphone

Dose (mg)
- 0
- ▲ 10
- ◆ 20
- □ 40

Time (hours)
Score

Time (hours)
“Do you LIKE the drug effect?”

Oxycodone

Oxymorphone

Dose (mg)
- 0
- △ 10
- ◊ 20
- □ 40
“Do you LIKE the drug effect?”

Oxycodone

Oxymorphone

Dose (mg)
- 0
- △ 10
- ◇ 20
- □ 40

Score

Time (hours)

Time (hours)
“Do you LIKE the drug effect?”

Oxycodone

Oxymorphone

Dose (mg)
- 0
- △ 10
- ♦ 20
- □ 40

Score

Time (hours)
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

0 10 20 30 40 50 60 70 80 90 100

Dose (mg)
- 0
- △ 10
- ♦ 20
- □ 40

Score

Time (hours)
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

0 10 20 30 40 50 60 70 80 90 100
Street Value Observer Adjectives:

Opioid Agonist Scale

Dollar Value (US$)

<table>
<thead>
<tr>
<th>Dose (mg)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observer Adjectives: Opioid Agonist Scale

Mean Score

<table>
<thead>
<tr>
<th>Dose (mg)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Oxymorphone
Oxycodone

Dose (mg)
Relative potency analyses were conducted on several outcomes, but most were invalid due to substantially greater effects of oxycodone.

In general, oxycodone was:

- 2-fold more potent on pain outcomes (e.g., threshold, pressure algometer)
- 1.2-fold more potent on subjective outcomes (e.g., drug liking)

Data are in contrast to the MME tables which suggest that oxymorphone is 2-fold more potent than oxycodone.
Results

Oxycodone produced greater effects than oxymorphone on physiological measures (e.g., miosis and end tidal CO₂) at identical doses.

Oxycodone produced significant analgesia on measures of tolerance and threshold for both the cold pressor and pressure algometer tests. In contrast, oxymorphone only increased tolerance on the cold pressor.

On subject- and observer-rated measures predictive of abuse potential, oxycodone generally produced effects of greater magnitude than identical doses of oxymorphone; however, for some measures, the highest doses appeared equivalent.
Conclusions

The present study suggests that oral oxymorphone is actually less potent than oxycodone on a broad array of measures, including experimental pain outcomes.

These findings are in direct conflict with the published potency ratios for oxymorphone derived from clinical pain studies.

One contributing factor is the low bioavailability of oral oxymorphone (10%) compared to oxycodone (60-87%); however, at high doses, abuse potential was similar to oxycodone.

If one accepts the analgesic potency estimates from clinical trials as accurate, it may be that these are not predictive of relative potency for other pharmacodynamic actions.

However, if experimentally-induced pain is a valid assay for analgesia, then oxymorphone may have greater abuse liability than oxycodone at equianalgesic doses.

In order to fully characterize the relative abuse liability of oxymorphone, a broader range of doses/routes of administration need to be examined.
Relative Potency of Oxymorphone

Two placebo-controlled studies conducted to examine:

1) Relative abuse potential and relative potency of oral oxymorphone

2) Relative abuse potential and relative potency of *intravenous* oxymorphone
In the 1970s, prior to the initial removal of oral oxymorphone from the U.S. market, there were documented cases of opioid users injecting oxymorphone, with some preferring it over heroin2

Since the re-introduction of oxymorphone products onto the US market in 2006, oxymorphone has been misused via IV route, at a disproportionately high rate compared to other rx opioids

IV oxymorphone has been associated with significant public health harms:

- HIV outbreak in rural Indiana (88% of infected individuals)7
- acute kidney injury8
- blood vessel and blood clotting disorders9,10

7 Peters PJ et al. (2016) HIV infection linked to injection use of oxymorphone in Indiana, 2014–2015. NEJM 375(3):229-39
10 Kotbi et al (2015); Opana(®) ER Induced Thrombotic Thrombocytopenic Purpura Int Med Case Rep J. 2015 Apr 29;8:97-8
Due to these safety concerns, the FDA requested the removal of Opana® ER from the market in 2017

However, generic formulations of both immediate- and extended-release products remain on the market

No controlled data are available on the abuse potential of IV oxymorphone
Aims

Primary aims of this dose-finding, double-blind, placebo-controlled, two-site study:

1) Compare IV oxymorphone to IV morphine, oxycodone and hydromorphone on an array of abuse potential, physiological and observer-rated effects

2) Calculate the relative potency of IV oxymorphone on abuse potential and safety/physiological outcomes

This study also served as a pilot study to identify equieffective doses of oxymorphone, comparator opioids for a subsequent study on IV oxymorphone self-administration (currently in progress)
Methods

Two-site, within subject, double-blind, placebo-controlled, 5-week inpatient study

19 experimental sessions were conducted, one IV dose administered per session

Data collected before and for 6 hrs after IV dose administration

Sessions were conducted up to 5 days per week
Participants

Participants were otherwise healthy adults (ages 18-55) with moderate-to-severe opioid use disorder, physical dependence and current IV use.

6 participants were included in the data analysis:

- 1 woman, 5 men
- 1 African American, 5 Caucasian
- Age: 33 (± 3.4) years
- BMI: 22 (± 1.5) kg/m²
Participants

Tobacco: all were daily cigarette smokers

Intravenous heroin/fentanyl: 29 (± 0.5) days of use in past 30 days

Other past 30-day drug use:
 alcohol (n=2)
 rx opioid (n=3)
 cocaine (n=4)
 benzodiazepine (n=1)
 methamphetamine (n=1)
Participants were stabilized on oral morphine (30 mg, qid)

During each experimental session, one IV dose was administered (mg/70 kg): oxymorphone (1.8, 3.2, 5.6, 10, 18, 32) hydromorphone (1.8, 3.2, 5.6, 10, 18) oxycodone (18, 32, 56) morphine (18, 32) placebo

Dose selection: wide range of oxymorphone doses selected; previous studies included 18 mg hydromorphone, 50 mg oxycodone and morphine;9,10 MME tables indicated IV oxymorphone : IV morphine = 1:10

Oxymorphone (56 mg/70 kg) and morphine (56 mg/70kg) were withheld on several occasions due to safety concerns (e.g., sedation); data not presented here

Doses of each drug were administered in ascending order for safety but were otherwise randomized

10 Walsh SL et al (2017) Effect of buprenorphine weekly depot (CAM2038) and hydromorphone blockade in individuals with opioid use disorder: a randomized clinical trial. JAMA Psychiatry 74: 894-902.
Measures

Primary outcomes:
- safety/physiological outcomes (O_2 saturation, EtCO$_2$, respiration rate, pupil diameter)
- subjective measures of drug effect (VAS ratings of drug liking, street value)

Relative potency analyses were conducted using the Finney parallel lines bioassay,6 using a six-point model (3 active doses of each drug)

End Tidal CO$_2$

Dose (mg/70 kg, IV)

Peak EtCO$_2$ (mm/Hg)

- Placebo
- Morphine
End Tidal CO$_2$

- Placebo
- Morphine
- Oxycodone
- Hydromorphone
- Oxymorphone

<table>
<thead>
<tr>
<th>Dose (mg/70 kg, IV)</th>
<th>Peak EtCO$_2$ (mm/Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>1.8</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>43</td>
</tr>
<tr>
<td>5.6</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>49</td>
</tr>
<tr>
<td>18</td>
<td>52</td>
</tr>
<tr>
<td>32</td>
<td>55</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
</tr>
</tbody>
</table>
“Do you LIKE the DRUG EFFECT you are feeling right now?”

- Placebo
- Morphine
“Do you LIKE the DRUG EFFECT you are feeling right now?”
“Do you LIKE the DRUG EFFECT you are feeling right now?”
“Do you LIKE the DRUG EFFECT you are feeling right now?”

- Placebo
- Morphine
- Oxycodone
- Hydromorphone
- Oxymorphone

Peak Rating (mm) vs. Dose (mg/70 kg, IV)
“Do you feel High?”

- **Placebo**
- **Morphine**

Dose (mg/70 kg, IV)

Peak Rating (mm)
“Do you feel High?”

Peak Rating (mm) vs. Dose (mg/70 kg, IV)

- Placebo
- Morphine
- Oxycodone
“Do you feel High?”

Dose (mg/70 kg, IV)

- Placebo
- Morphine
- Oxycodone
- Hydromorphone
“Do you feel High?”

- Placebo
- Morphine
- Oxycodone
- Hydromorphone
- Oxymorphone

Peak Rating (mm)

Dose (mg/70 kg, IV)
Street Value

Dose (mg/70 kg, IV)

Peak Rating ($USD)

Placebo

Morphine

Oxycodone

Hydromorphone
Street Value

![Graph showing peak rating vs. dose for different opioids and Placebo.](image)
Relative Potency

Finney parallel lines bioassay was employed to assess oxymorphone relative potency

Two potency comparisons were conducted:

1) Oxymorphone and hydromorphone (3.2, 5.6, 10 mg)

2) Oxymorphone (1.8, 3.2, 5.6 mg) and oxycodone (18, 32, 56 mg)
Relative Potency

Oxymorphone vs. Hydromorphone

mg of IV oxymorphone ≈ 1 mg of IV hydromorphone

<table>
<thead>
<tr>
<th>VAS Drug Liking</th>
<th>VAS Drug Effect</th>
<th>VAS High</th>
<th>Street Value</th>
<th>Pupil Diameter</th>
<th>EtCO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.41</td>
<td>0.43</td>
<td>0.36</td>
<td>0.41</td>
<td>-</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Respiratory depression: oxymorphone 1.2-fold more potent (EtCO₂; \(p<0.05\))

Abuse liability: oxymorphone was 2.3 – 2.8-fold more potent (\(p<0.05\))
Relative Potency

Oxymorphone vs. Oxycodone

mg of IV oxymorphone ≈ 1 mg of IV oxycodone

<table>
<thead>
<tr>
<th>VAS Drug Liking</th>
<th>VAS Drug Effect</th>
<th>VAS High</th>
<th>Street Value</th>
<th>Pupil Diameter</th>
<th>EtCO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.08</td>
<td>- -</td>
<td>0.07</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>

Abuse liability: oxymorphone was 12.5 – 14-fold more potent than oxycodone (p<0.05)
Summary

All of the drugs tested produced prototypical, dose-related opioid effects (e.g., miosis, increased EtCO₂)

Abuse potential of IV oxymorphone far exceeded the comparator opioids; moderate dose (5.6 mg/70 kg) produced peak effects ≥ all other comparator doses

Significant abuse-related effects of oxymorphone at comparatively low doses (1.8-5.6 mg/70 kg)

These data align with surveillance reports indicating that, after adjusting for prescription rates/availability, oxymorphone was injected at the highest rates, relative to other prescription opioids (7x higher than other rx opioids)
Conclusions

These high rates of injection are likely due to:

1) low oral bioavailability of oxymorphone, increasing misuse by routes with greater bioavailability
2) easy manipulation of oral product to access high doses (40 mg)
3) pharmacological action of oxymorphone (high degree of binding affinity, intrinsic activity)
4) rapid transport across the blood-brain barrier
5) high relative potency, particularly on abuse potential outcomes

Overall, oxymorphone may pose a disproportionately high degree of risk and public health harm relative to other full agonist IV prescription opioids
Acknowledgements

UK Research Team
Sharon L. Walsh, PhD
Michelle R. Lofwall, MD
Kevin W. Hatton, MD
Paul A. Nuzzo, MA
Victoria Vessels
Russell Lewis
UK CCTS Inpatient Unit
UK Investigational Pharmacy

Columbia Research Team
Sandra D. Comer, PhD
Jermaine D. Jones, PhD
Jeanne Manubay, MD
Robert A. Whittington, MD
Vincent Woolfolk
NYSPI Clinical Unit

Research Participants

Funding
National Institute on Drug Abuse
 R01DA016718 (SLW)

U.S. Food and Drug Administration
 HHSF223201710120C (SLW)
 HHSF223201710119C (SDC)

National Center for Advancing of Translational Sciences
 UL1TR001998 (UK CTSA)