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• Early (6 hr) Ni release follows bi-phasic profile; diffusion is the rate
limiting mechanism.

• Apparent temperature dependence of α violates an assumption of the
model; additional considerations (e.g., chemical reactions) could be
added to the model.

Challenges and potential solutions
• High sample-sample variability in burst phase limits confidence

• Perform test using better controlled surface finish by mechanically
and/or electropolishing

• Develop apparatus to continuously monitor Ni release
automatically to reduce experimenter error.

Future Work
• Validate Arrhenius behavior by testing at additional temperatures
• Investigate temperature dependence of α
• Investigate different method and material parameters to better replicate

in vivo corrosion and predict varying Ni release due to different
manufacturing methods.

Ultimate objective: Develop a tool for predicting worst case daily Ni
exposure to reduce the burden of regulatory submission.

Preliminary Conclusions

Materials and Methods

Results – A first look at short-term Ni ReleaseIntroduction

Figure 2. (left top) Ni release rates for 37 °C and
(left bottom) 67 °C. Values represent means and
standard deviation of N=4 independent replicates.
Dashed lines represent the model fit.

• Nitinol is composed of ~50% Ni and Ti. Ni release is a toxicological concern.
• Ni release is conventionally evaluated with long term (> 2 months) soaking in

physiological conditions per ASTM F3306-19.
• Accelerated testing by soaking at higher temperatures has been proposed [1]; this

study aims to elucidate the mechanisms for extrapolating Ni release.
• A Ni release model including terms for burst and sustained release [2] is evaluated

and a method for rapid sampling is proposed to better investigate burst release.

The purpose of this work is the development of tools that shorten the duration of
benchtop testing while providing reliable results.

Research Question
Is the proposed model (Equation 1) appropriate for Ni
release during the burst (< 1 day) release phase?
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Model Fit Parameters
Temperature 

(K)
α 

(ng/cm2)
τ

(min)
β

(ng/min1/2/cm2)
310 19.87 ± 3.36 16.55 ± 3.62 0.92 ± 0.11
340 39.25 ± 5.49 31.59 ± 4.81 1.52 ± 0.13

Ea (kJ/mol) -18.90 29.32

Discussion
• This preliminary data shows increasing T increases 𝛼𝛼 contrary to

assumptions; more Ni is available during the burst phase. This
causes τ to increase which falsely results in a negative
activation energy.

• Sample-to-sample variability and handling difficulties due to short
time intervals should be addressed with a more sophisticated
apparatus (see below).

Figure 1. Representative EFTEM
image of a nitinol oxide layer
from reference [3]. Note the Ni-
rich phases near the surface,
which contribute to burst release.

Figure 4. Mock data of continuous Ni measurements with
regular injections of known Ni mass. Injections can be used
to correlate area under the curve to Ni mass. Calculations
can be verified with conventional ICP-MS of fractions
collected during the experiment.
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Figure 5. (left) Flow cell prototype containing Crystal Violet dye for
flow visualization. Dye is cleared from the flow cell in approximately
4 minutes at a 100 µL/min flow rate. (right) COMSOL flow simulation
for a 60 µL/min flow rate in a circular flow cell. Color gradient
represents fluid velocity. Red lines represent streamlines.

Proposed Apparatus
Goal: Decrease sample variability and increase time resolution

Figure 3. (top) Side-view diagram of adhesive-based microfluidic
flow cell. Nitinol surface finish is tightly controlled. (bottom)
Proposed fluidics setup to feed acidified samples to the ICP-MS
while simultaneously collecting fractions for conventional trace
metal analysis.

𝐸𝐸𝑎𝑎 =
𝑅𝑅 ln 𝑘𝑘67℃𝑘𝑘37℃

1
310.15𝐾𝐾 − 1

340.15𝐾𝐾

Inlet/outletFused Silica

Adhesive
(100 or 115 µm)Mechanically polished Nitinol 

(Ra ~ 10 nm)

𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = ⁄1 𝜏𝜏

𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ß2

T = 37⁰C

T = 67⁰C

Equation 1. Ni release rate (𝑀̇𝑀𝑑𝑑) per unit area
can be modeled as the sum of burst and
sustained (Higuchi) release [2].

• 𝛼𝛼 – Burst phase Ni mass per unit area
• τ – Characteristic release time of burst phase
• ß – Sustained release rate per unit area
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Prototype Flow Cell

• Meets ASTM F2063-12 specification
• Dimensions: 50.8 x 57.2 x 0.5 mm plate
• Superelastic (Af temperature = -5⁰C ± 5⁰C)
• Cold rolled (Ra = 0.24µm) 

• Per ASTM F3306-19
• Test solution: Phosphate-buffered saline
• Extraction Ratio: 6 cm2/mL
• Sampling: 15 min or 1 hr over 6 hr

• Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
• Samples diluted 5x to 2 vol% nitric acid
• Kinetic energy discrimination (KED mode) used for analysis

• Fit generated from N=4 independent replicates 
• Inverse weighting by standard deviations
• Activation energies of burst and sustained release calculated 

assuming Arrhenius kinetics.
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Table 1. Tabulated fit parameters to Equation 1 and activation energies 
of the two mechanisms calculated from Equation 2. 

Equation 2. Arrhenius equation solved for activation energy given 
reaction rates at two temperatures. 
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