

Multi-Laboratory Collaborative Validation: An LC-MS/MS Method for Antibiotics in Distillers Grains

Hemakanthi G. De Alwis, Philip J. Kijak, Cristina Nchetto

U.S. Food and Drug Administration (FDA), Center for Veterinary Medicine (CVM), Office of Research, 8401 Muirkirk Rd, Laurel, MD 20708

Collaborators: Christine Casey¹, Lara Murphy¹, Kristen Gilbert², Robert Sheridan², Ujwal S. Patil³, Unique Jacob³, Shristi Prakash⁴, Emily Foster⁴, Rick Winterhack⁵, Roy Radcliff⁵, Lin Ye⁶, Wendy Young⁷

¹FDA/Office of Regulatory Affairs, Denver Laboratory, 1 Denver Federal Ctr #20, Denver, CO; ²NYS Dept. of Agriculture and Markets, 1220 Washington Ave., Building 6, Albany, NY 12206; ³Eurofins Central Analytical Laboratories, 2219 Lakeshore Dr., New Orleans, LA 70122; ⁴OMIC USA Inc., 3344 NW Industrial Street, Portland, OR 97210; ⁵ALS Marshfield, 510 N St Joseph Ave., Marshfield, WI 54449; ⁶FDA/Office of Regulatory Affairs, Southeast Food and Feed Laboratory, 60 8th St. NE, Atlanta, GA 30309; ⁷FDA/Center for Food Safety and Applied Nutrition, 5100 Paint Branch Parkway, College Park, MD 20740

Abstract

Antibiotic based antimicrobials are sometimes used in biofuel production to discourage the growth of bacteria that would result in lower ethanol production. Residues of antibiotics used could remain in the distillers grain (DG) co-product, which is used as an animal food ingredient. Low levels of antibiotic residues in DG could lead to antimicrobial resistance development.

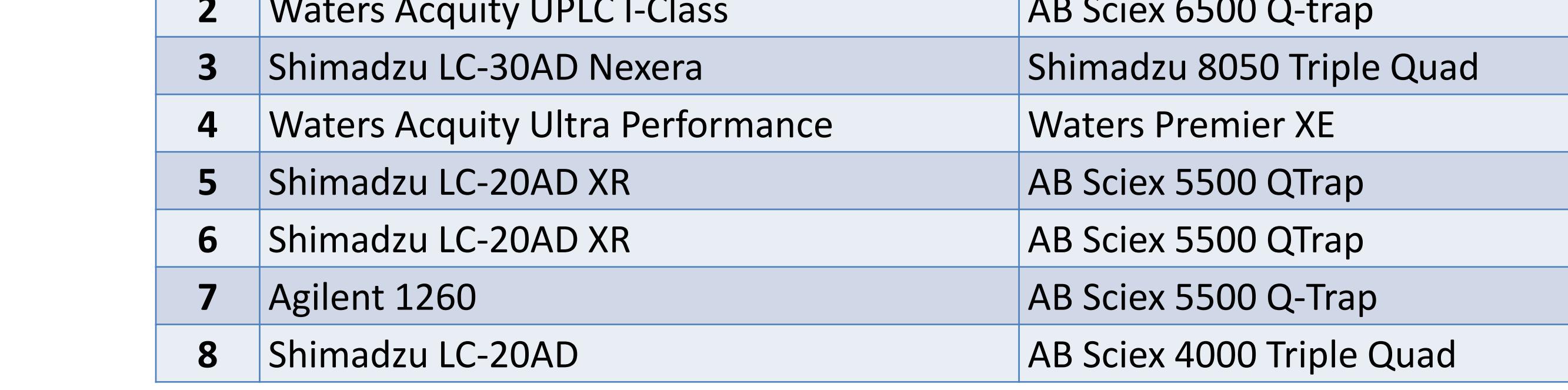
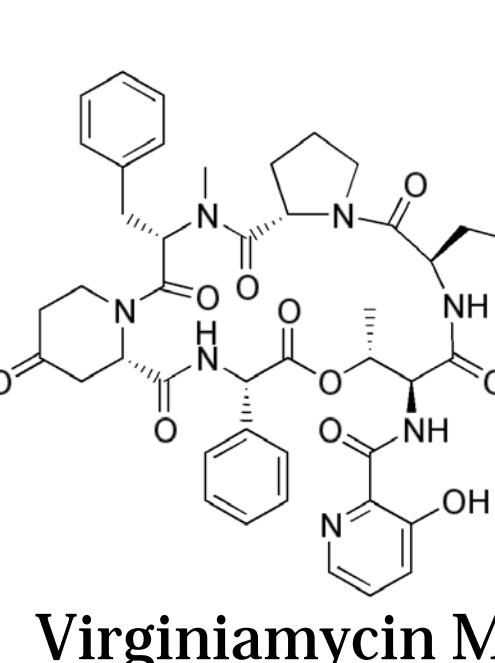
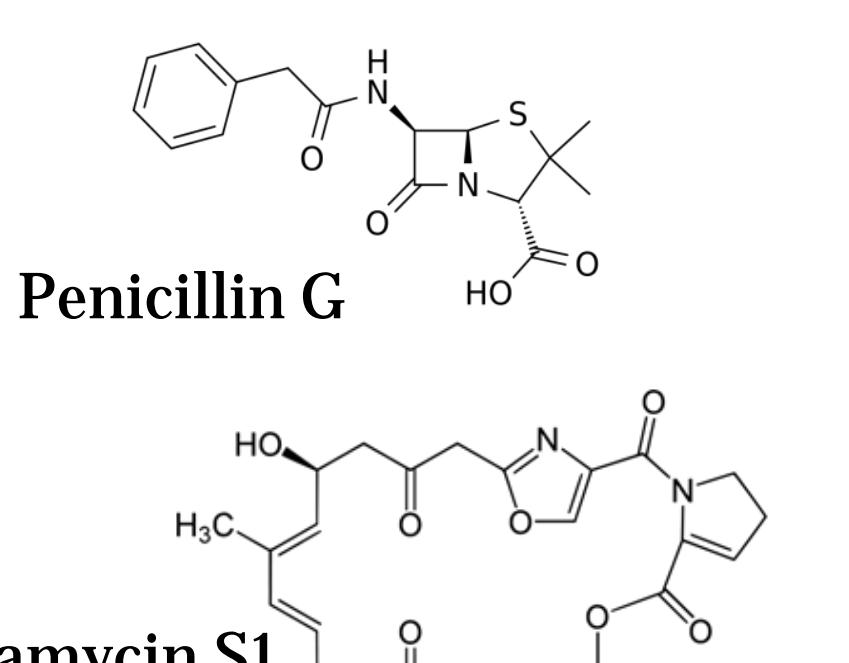
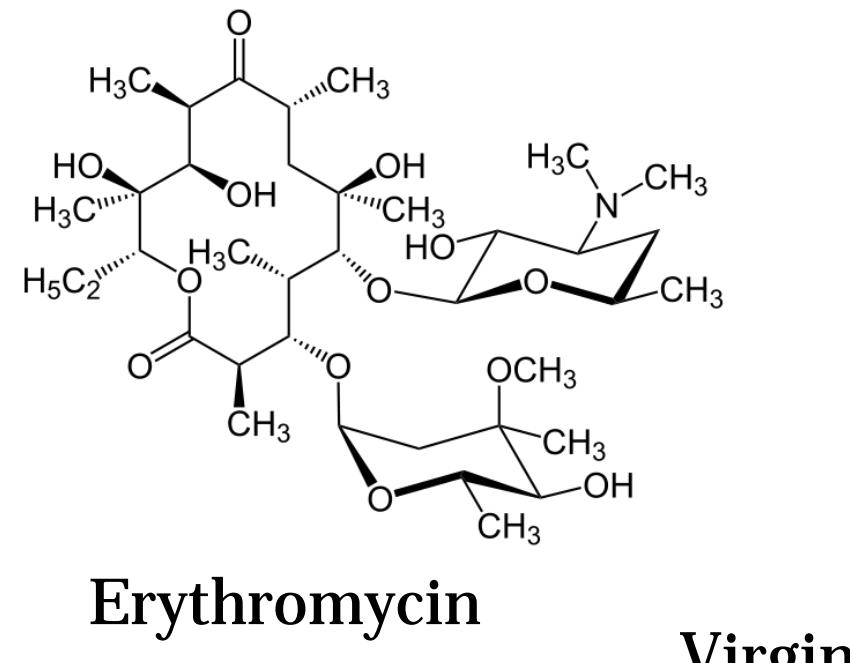
In this method, antibiotic residues were extracted from DG with a mixture of acetonitrile (ACN) and buffer. The extract was diluted with water and washed with hexane. An aliquot was cleaned on an Oasis HLB solid phase extraction cartridge. The eluent was concentrated and reconstituted with water and ACN. After centrifugation the supernatant was analyzed by reverse phase LC-MS/MS.

Eight laboratories participated in the study. They used their available LC-MS/MS platforms and analyzed duplicate samples from three DG matrices fortified with the antibiotics at concentrations 0, 10, 100 and 1000 ng/g.

Average accuracies for combined three DG matrices for all four compounds at all fortification levels ranged from 83 to 109% with repeatability RSD_r (within laboratory) $\leq 17\%$ and reproducibility RSD_R (between laboratory) $\leq 21\%$. The HorRat values ranged 0.4-1.0 indicating that method reproducibility is acceptable.

The results demonstrate that the method is fit-for-purpose to determine the antibiotics of interest in DG. The method could serve as a regulatory method capable of being used for compliance actions for DG containing these antibiotic contaminants.

*Kaleb J. Duelge, Upul Nishshanka, Hemakanthi G. De Alwis, "An LC-MS/MS method for the determination of antibiotic residues in distillers grains at levels of concern for antimicrobial resistance development", J. Chrom. B, vol 1053, 81-86, 2017





Introduction

Distillers grain is a major co-product of the corn ethanol industry. It is rich in proteins, fats, and minerals making it an excellent feed supplement for livestock, especially for beef and dairy cattle, swine, and poultry.

Antibiotics are used to control bacterial contamination during the ethanol fermentation. FDA surveys have revealed antibiotic residues in the DG. Low levels of antibiotic residues in DG could lead to antimicrobial resistance and, therefore, could be a public health concern.

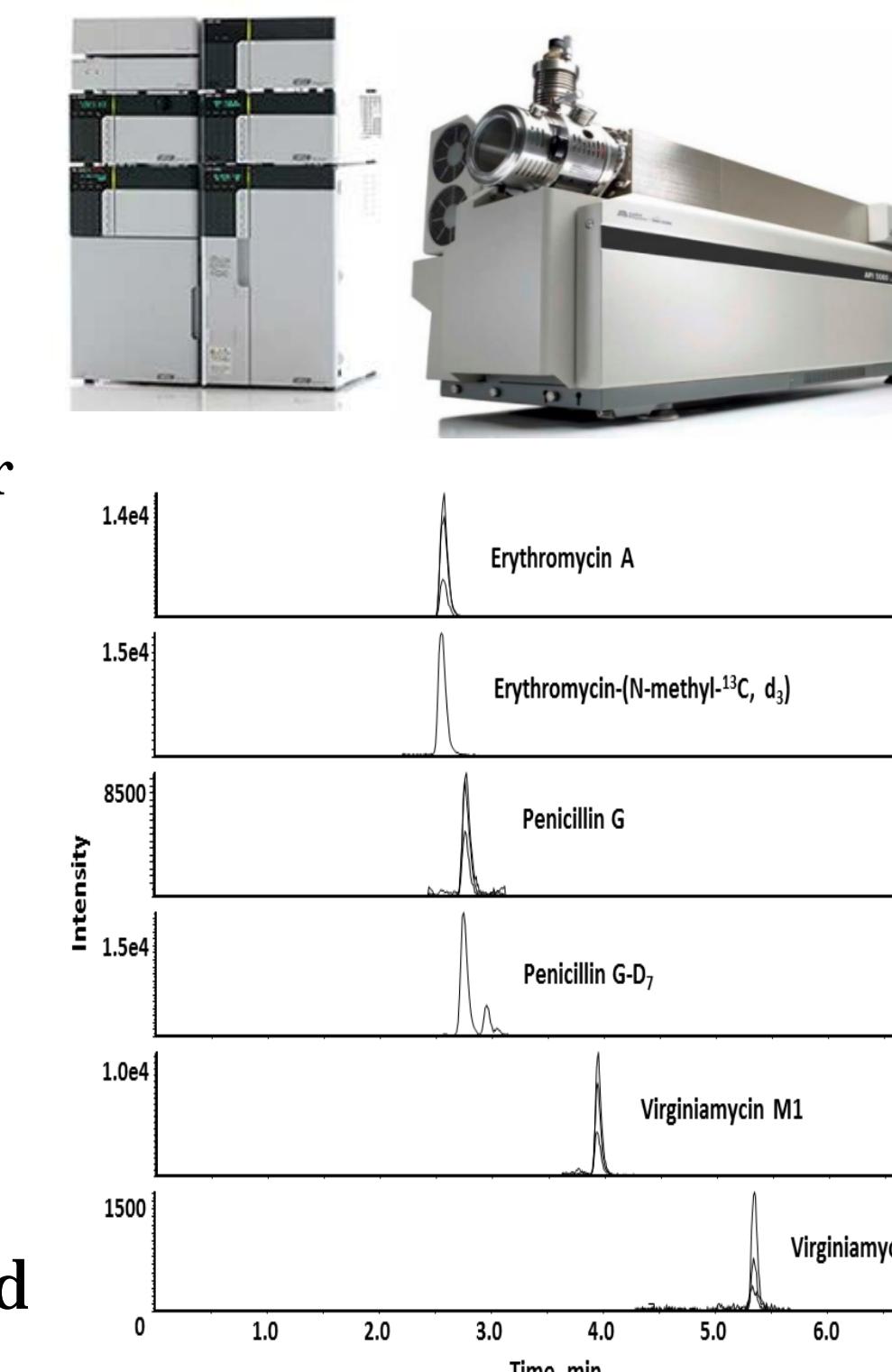
To enable quantitation of erythromycin, penicillin G, virginiamycin M1 and virginiamycin S1 at low ppb levels, we developed a sensitive LC-MS/MS method. A single laboratory validation was completed following FDA's Guidelines for the Validation of Chemical Methods for the FDA Foods Program. A variety of different matrices such as corn DG, corn & milo DG, and reduced-oil corn DG were used for the validation.

To ensure the method's robustness for use in regulatory settings, a multi-laboratory validation was also successfully completed.

Materials and Methods

Method

Distillers grain


↓
Extract with buffer & acetonitrile, centrifuge and transfer supernatant

Repeat extraction

Combine supernatants & dilute with water

↓
Clean-up of extract by hexane wash and solid phase extraction

↓
Analysis by LC-MS/MS: Shimadzu LC-20AD Prominence; AB Sciex 4000 MS; Agilent Poroshell LC column; Flow rate: 0.4 mL/min; Mobile phases: A - 0.1% aq. formic acid, B - 0.1% formic acid in acetonitrile; Gradient started at 22% B and ramped to 75% by 7 min, 100% by 7.1 min, and was held at 100% until 13 min.

Results and Discussion

Invalid Data

Inspected chromatograms for peak resolution, peak shape, and integration. Assessed System suitability, calibration parameters, retention time, signal/noise, ion ratios etc. against acceptance criteria in the Method SOP. Removed invalid data points from the data set.
Outliers - Grubbs' Outlier test, $\alpha = 0.05$

$$G = \frac{\bar{Y} - Y_{\min}}{s} \quad \text{or} \quad \frac{Y_{\max} - \bar{Y}}{s} \quad \bar{Y} = \text{Sample mean, } s = \text{standard deviation}$$

If $G > G_{\text{critical}}$ (Grubbs' Table of Critical Values), the corresponding data point is an outlier. Outliers were removed from the data set.

Erythromycin: No outliers
Penicillin G: No outliers
Virginiamycin M1: <1% (1/124 data points)
Virginiamycin S1: 4% (5/114 data points)

Method Parameters & Method Acceptability

FDA Guidance - Quantitative Method Acceptability criteria:	Level	10 ng/g	100 ng/g	1000 ng/g
RSD_r	22%	11%	8%	
RSD_R	$\leq 44\%$	$\leq 44\%$	$\leq 32\%$	
Recovery	60%-115%	80%-110%	80%-110%	
HorRat (acceptable method reproducibility)	≤ 2			
Average Accuracy%:	The closeness of agreement between a test result and an accepted reference value			
Repeatability Relative Standard Deviation (RSD_r , %):	Variation of the data within laboratories Accuracy (%) = $\frac{(\text{Experimental ng/g}) \times 100}{(\text{Theoretical ng/g})}$			
Reproducibility Relative Standard Deviation (RSD_R , %):	Total variation of the data including between- and within-laboratory variations			
HorRat (Horwitz Ratio):	Measure of acceptability of methods with respect to among-laboratory precision (reproducibility) $\text{HorRat} = \frac{\%RSD_R}{\%PRSD_R}$ (%PRSD _R = Predicted %RSD _R) $\%PRSDR = 2C^{-0.15}$ Horwitz Equation (C - concentration as a mass fraction)			

Statistical Summary of Validation Data

Fortified Conc., ng/g	Drug	No. of replicates	Average Accuracy%	%RSD _r	%RSD _R	HorRat
10	Ery	42	86	15	15	0.5
	Pen G	41	96	13	13	0.4
	Vir M1	41	103	14	17	0.5
	Vir S1	39	103	17	21	0.7
100	Ery	42	83	13	15	0.6
	Pen G	42	95	7.7	10	0.5
	Vir M1	42	109	15	18	0.8
	Vir S1	35	93	12	14	0.6
1000	Ery	42	91	9.4	9.4	0.6
	Pen G	42	97	7.3	7.3	0.5
	Vir M1	41	101	9.2	14	0.8
	Vir S1	40	97	14	16	1.0

Conclusion

Good method performance metrics point to an acceptable method.

Method is well-suited for regulatory use to determine low levels of penicillin G, erythromycin, virginiamycin M1 and virginiamycin S1 in distillers grain.

Disclaimer: The views expressed in this poster are those of the author(s) and may not reflect the official policy of the Department of Health and Human Services, the U.S. Food and Drug Administration, or the U.S. Government