# Gonorrhea Treatment Strategies: Needs & Emerging Data to Address Future Challenges

Jeanne Marrazzo, MD, MPH
University of Alabama at Birmingham
Division of Infectious Diseases
FDA/NIH/CDC Meeting on Gonorrhea
April 23, 2021

#### Update to CDC's Treatment Guidelines for Gonococcal Infection, 2020

Sancta St. Cyr, MD<sup>1</sup>; Lindley Barbee, MD<sup>1,2</sup>; Kimberly A. Workowski, MD<sup>1,3</sup>; Laura H. Bachmann, MD<sup>1</sup>; Cau Pham, PhD<sup>1</sup>; Karen Schlanger, PhD<sup>1</sup>; Elizabeth Torrone, PhD<sup>1</sup>; Hillard Weinstock, MD<sup>1</sup>; Ellen N. Kersh, PhD<sup>1</sup>; Phoebe Thorpe, MD<sup>1</sup>

### Ceftriaxone 500 mg IM in a single dose

BOX. CDC recommended regimens for uncomplicated gonococcal infections, 2020



Regimen for uncomplicated gonococcal infections of the cervix, urethra, or rectum:

Ceftriaxone 500 mg IM as a single dose for persons weighing <150 kg (300 lb)

- For persons weighing ≥150 kg (300 lb), 1 g of IM ceftriaxone should be administered.
- If chlamydial infection has not been excluded, providers should treat for chlamydia with doxycycline 100 mg
  orally twice daily for 7 days. During pregnancy, azithromycin 1 g as a single dose is recommended to treat
  chlamydia.

Alternative regimens for uncomplicated gonococcal infections of the cervix, urethra, or rectum if ceftriaxone is not available:

Gentamicin 240 mg IM as a single dose plus azithromycin 2 g orally as a single dose OR

Cefixime 800 mg orally as a single dose. If treating with cefixime, and chlamydial infection has not been excluded, providers should treat for chlamydia with doxycycline 100 mg orally twice daily for 7 days. During pregnancy, azithromycin 1 g as a single dose is recommended to treat chlamydia.

Recommended regimen for uncomplicated gonococcal infections of the pharynx:

Ceftriaxone 500 mg IM as a single dose for persons weighing <150 kg (300 lb)

- For persons weighing ≥150 kg (300 lb), 1 g of IM ceftriaxone should be administered.
- If chlamydia coinfection is identified when pharyngeal gonorrhea testing is performed, providers should treat
  for chlamydia with doxycycline 100 mg orally twice a day for 7 days. During pregnancy, azithromycin 1 g as a
  single dose is recommended to treat chlamydia.
- No reliable alternative treatments are available for pharyngeal gonorrhea. For persons with a history of a beta-lactam allergy, a thorough assessment of the reaction is recommended.\*
- For persons with an anaphylactic or other severe reaction (e.g., Stevens Johnson syndrome) to ceftriaxone, consult an infectious disease specialist for an alternative treatment recommendation.

Abbreviation: IM = intramuscular.



### Gaps & Challenges

- Clinical trials generally emphasize urogenital outcomes, but pharyngeal infection represents a major reservoir and AMR mechanism
- No universal option for oral therapy; parenteral therapy required
- No practical regimen for CTX alternative
- IDSA, other groups have focused on AMR; limited success
  - No new antibiotics FDA approved since 2019!
- PASTEUR act: a good first step

|  | Bacteria (WHO category)                                                |                                | WHO<br>(2017) | Indian*<br>(2021) | CDC (2019)                                  | CDC (2013)                            | ESKAPE<br>(2008-9) |  |
|--|------------------------------------------------------------------------|--------------------------------|---------------|-------------------|---------------------------------------------|---------------------------------------|--------------------|--|
|  | Acinetobacter baumannii, carbapenem-R                                  |                                | Critical      | Critical          | Urgent (carbapenem-R)                       | Serious (MDR)                         | Yes                |  |
|  | <i>Pseudomonas aeruginosa</i> , carbapenem-<br>R                       |                                | Critical      | Critical          | Serious (MDR)                               | Serious (MDR)                         | Yes                |  |
|  | Enterobacteriaceae, carbapenem-R, 3 <sup>rd</sup> -gen ceph-R (ESBL+)  |                                | Critical      |                   | Urgent (carbapenem-R)<br>Serious (ESBL+)    | Urgent (carbapenem-R) Serious (ESBL+) | Yes                |  |
|  | Enterococcus faecium, vancomycin-R                                     |                                | High          | High              | Serious (VRE)                               | Serious (VRE)                         | Yes                |  |
|  | Staphylococcus aureus, methicillin-R, vancomycin-I/R                   |                                | High          | High              | Serious (MRSA)                              | Serious (MRSA) Concerning (VRSA)      | Yes                |  |
|  | Helicobacter pylori, clarithromycin-R                                  |                                | High          |                   |                                             |                                       |                    |  |
|  | Campylobacter spp., fluoroquinolone-R                                  |                                | High          |                   | Serious (drug-R)                            | Serious (drug-R)                      |                    |  |
|  | Salmonellae spp., fluoroquinolone-R                                    |                                | High          | High<br>(drug-R)  | Serious (drug-R, Typhi & non-<br>typhoidal) | Serious (drug-R)                      |                    |  |
|  | Neisseria gonorrhoeae, 3 <sup>rd</sup> -gen ceph-R, fluoroquinolone-R  |                                | High          |                   | Urgent (drug-R)                             | Urgent (drug-R)                       |                    |  |
|  | Neisseria meningitidis, 3 <sup>rd</sup> -gen ceph-R, fluoroquinolone-R |                                |               | Medium            |                                             |                                       |                    |  |
|  | Streptococcus pneumoniae, penicillin-NS                                |                                | Medium        | Medium            | Serious (drug-R)                            | Serious (drug-R)                      |                    |  |
|  | Haemophilus influenzae, ampicillin-R                                   |                                | Medium        | Medium            |                                             |                                       |                    |  |
|  | Shigella spp., fluoroquinolone-R                                       |                                | Medium        | Medium            | Serious (drug-R)                            | Serious                               |                    |  |
|  | Staphylococcus, coagulase-neg, Van/Lzd-R                               |                                |               | Medium            |                                             |                                       |                    |  |
|  | Clostridium difficile                                                  |                                |               |                   | Urgent                                      | Urgent                                |                    |  |
|  | Candida spp. fluconazole-R                                             |                                |               |                   | Urgent (C. auris) Serious (Drug-resistant)  | Serious (Flu-R)                       |                    |  |
|  | M. tuberculosis                                                        |                                |               |                   | Serious (drug-R)                            | Serious (drug-R)                      |                    |  |
|  | Group A Streptococcus                                                  |                                |               |                   | Concerning (erythro-R)                      | Concerning (erythro-R)                |                    |  |
|  | Group B Streptococcus *Note that t                                     |                                | he Indian P   | PL                | Concerning (clinda-R)                       | Concerning (clinda-R)                 |                    |  |
|  |                                                                        | spergillus fumigatus sometimes |               | htly              | Watch (azole-R)                             |                                       |                    |  |
|  | 4.4 ( ) ( ) ( ) ( )                                                    | from WHO i<br>precise pat      |               |                   | Watch (drug-R)                              |                                       |                    |  |
|  | Bordetella pertussis qualifying F                                      |                                | ₹.            |                   | Watch (drug-R)                              |                                       |                    |  |

### What's new? Pew Development Pipeline December 2020

- 43 New antibiotics in development
  - > 95% small companies; > 70% pre-revenue
  - 15 phase 1 Not a good sign!
  - 13 phase 2
  - 13 phase 3
    - 60% likely to make it to FDA approval
- 19 + potential to treat G- ESKAPE pathogens
  - 15/19 + potential activity against carbapenem-R organisms
- 10 + potential to treat *N. gonorrhoeae* or *C. difficile*
- 1 in 4 = novel drug class or mechanism of action
- Initial indications: cUTI, cIAI, ABSSSI

Focus on systemically available antibiotics in phase 2 or beyond

#### **PASTEUR Act**

## Pioneering Antimicrobial Subscriptions to End Upsurging Resistance (PASTEUR) Act

- Goals:
  - Support the development of new antibiotics and promote appropriate use of existing ones
  - Limit increase and spread of resistant infections
    - Good stewardship

#### **PASTEUR Act**

- Subscription program to provide federal payments for critically needed new antibiotics
- Payments delinked from sales —provides predictable return on investment that aligns with appropriate use goals
- Establishes a new HHS committee to determine details of subscription contracts (including preferred characteristics of drugs that should receive subscription payments); input from advisory group of nongovernment experts
- Payments made after drug's approval over a period of up to 10 years
- Establishes new HHS grant program to support hospital implementation of antibiotic stewardship programs and hospital reporting of antibiotic use/resistance data to CDC National Healthcare Safety Network

#### **PASTEUR Act**

- Bipartisan leadership:
  - Senators Bennet (D-CO) and Young (R-IN)
  - Reps. Doyle (D-PA) and Ferguson (R-GA)
- Supported by 40+ organizations, including: IDSA, AdvaMedDx, ASM, BIO Cystic Fibrosis Foundation, Research!America, Society of Critical Care Medicine, Society of Hospital Medicine, Society of ID pharmacists, The Joint Commission, multiple academic centers
- Reflects consensus recommendations from multiple expert bodies and reports: PACCARB, UK AMR Review, Duke Margolis Center for Health Policy, PCAST, DRIVE-AB

### N. gonorrhoeae and N. meningitidis are genetically similar, with NHBA and OMV antigens present in both pathogens





Ng, N. gonorrhoeae; NHBA, Neisseria heparin binding antigen; Nm, N. meningitidis; OMV, outer membrane vesicle

Semchenko FA et al. Clin Infect Dis 2019;69:1101–1111; 2. Semchenko FA et al. J Infect Dis 2020;221:1612-1622

### In New Zealand studies, young adults vaccinated with MeNZB were less likely to have or be hospitalised with gonorrhoea



Mass MenB immunisation programme using **MeNZB** (2004–2006, 3+0 schedule)<sup>1</sup>



of population aged **≤20 years** received doses (~1 million individuals had 3 doses)¹



Population included residents born 1984–1999, residing in NZ from 2004 until at least 2015<sup>1</sup>

Two retrospective studies investigated MeNZB effectiveness against gonorrhoea and associated hospitalisation (2004–2015/16)

Confirmed **gonorrhoea diagnoses** were assessed in a case-control study, using data from sexual health clinics<sup>1</sup>



1241 cases (gonorrhoea only)



12487 controls (chlamydia only)

MeNZB showed **31% effectiveness** against gonorrhea in15-30yoa (95% CI: 21–39%)

**Gonorrhoea-associated hospitalisation** was assessed in a cohort study, using hospital diagnostic coding data<sup>2</sup>



935,496 cohort members were included

MeNZB showed **24% effectiveness** against gonorrhoea-associated hospitalization in15-30yoa (95% CI: 1–42%)

CI, confidence interval; NZ, New Zealand

### A Phase II proof of concept study aims to demonstrate the efficacy of Bexsero against gonococcal infection



#### "STI" Immunizations

- Hepatitis A/B
- Either 9vHPV or 4vHPV vaccination through age 26 years if vaccinated previously (catch-up); shared clinical decisionmaking for persons 27 through 45 years
- Meningococcal vaccine in HIV+
  - MenACWY-D (Menactra) or MenACWY-CRM (Menveo)

TABLE 1. Evidence of increased risk for meningococcal disease among HIV-infected persons compared with HIV-uninfected persons — seven study populations, 1996–2013

| Period    | Study site                       | Age group   | No. of cases* | Increase in meningococcal disease rate<br>among HIV-infected compared with<br>HIV-uninfected persons | Serogroups    |
|-----------|----------------------------------|-------------|---------------|------------------------------------------------------------------------------------------------------|---------------|
| 1996-1999 | Australia†                       | All ages    | 60            | 5-fold                                                                                               | B, C          |
| 1990-2000 | London <sup>§</sup>              | All ages    | 2,900         | 14-fold                                                                                              | B, C          |
| 1988-1993 | Atlanta, Georgia <sup>¶</sup>    | 18-45 years | 132           | 24-fold                                                                                              | B, C, Y       |
| 2003-2007 | South Africa**                   | All ages    | 504           | 11-fold                                                                                              | A, B, C, W, Y |
| 2000-2008 | United States ABCs <sup>††</sup> | 25-64 years | 491           | 13-fold                                                                                              | B, C, W, Y    |
| 2000-2011 | New York City <sup>§§</sup>      | 15-64 years | 265           | 10-fold                                                                                              | C, Y          |
| 2011-2013 | United Kingdom <sup>¶¶</sup>     | All ages    | 2,353         | 5-fold                                                                                               | A, B, C, W, Y |

Abbreviations: ABCs = Active Bacterial Core surveillance; HIV = human immunodeficiency virus.



### Challenges in GC Diagnosis

- Many GC infections are asymptomatic or have atypical symptoms; routine screening performance remains suboptimal, especially in HIV care settings & at sites not diagnosed by urine
  - Diagnosis often depends on presentation of clinical syndromes
- Limited availability of culture; practical barriers
- Slow uptake of point of care testing, encouraging developments in last year

binx health Receives FDA CLIA Waiver for Chlamydia and Gonorrhea Test, Expanding Critical Access to Single-Visit Diagnoses



USA - English +

First ever 30-minute, CLIA-waived, molecular PCR Test for CT/NG now available for OBGYN, physician offices and retail settings holding certificates of waiver



@DrJeanneM