BLOOD GROUPING REAGENT

Anti-K (Monoclonal)

ORTHO™ Sera

MEETS FDA POTENCY REQUIREMENTS

INSTRUCTIONS FOR USE

Intended Use

For in vitro diagnostic use only
For use with the ID-Micro Typing System™ Buffered Gel Card
For Direct Agglutination Test

The Anti-K reagent (KEL1) is for the qualitative in vitro detection of human K positive red blood cells by the direct agglutination test.

Summary and Explanation

Since the description of the antigen K (Anti-KEL1) in 1946 by Coombs et al and its allele k in 1949 by Levine et al,¹-⁴ the Kell blood group system has been shown to be increasingly complex and over 20 antigens are now known to be associated with the system.⁵ The antigens of the Kell blood group system are of further interest in that they tend to occur either very frequently (e.g. k 99.8%) or relatively infrequently (e.g. K 8%). The antigens require the presence of disulfide bonds for full expression and are destroyed by treatment with trypsin and α-chymotrypsin either separately or in combination.² Kell system antibodies are capable of causing hemolytic transfusion reactions and hemolytic disease of the fetus and newborn.

Principles of Procedure

When used by the recommended technique, this reagent will cause agglutination (clumping) of red blood cells carrying the K antigen. Lack of agglutination of the red blood cells demonstrates the absence of the K antigen.

Reagent

Anti-K (Monoclonal) is supplied as one reagent.

- 1 vial containing 5 mL of human monoclonal antibodies of type IgM (cell line MS-56) containing 0.1% (w/v) sodium azide and bovine material (i.e., bovine serum albumin, fetal bovine serum).

Any bovine material used in the manufacture of these products is sourced from USDA approved facilities.

No preparation of the reagent is required. Use directly from the vial. Do not dilute.

Storage Requirements

Store at 2–8 °C.
Do not freeze.
Do not use beyond expiration date. The format of the expiration date is expressed as YYYY-MM-DD (year-month-day).
May be at 18–25 °C while in use. Replace cap when not in use.

Specimen Collection

- No special preparation of the patient/donor is required prior to specimen collection.
- Specimens should be collected by aseptic technique with an anticoagulant.
- The specimen should be tested as soon as possible after collection. If testing is delayed, the specimen should be stored at 2–8 °C.
- Do not use collection tubes that contain plasma/cell separation media.
- Samples collected in EDTA should be tested within seven days from collection.
- Donor blood collected in ACD, CPD, CP2D, CPDA-1 and CP2D with AS-3 may be tested until the expiration date of the donation.
- Clotted, hemolyzed, grossly icteric or contaminated blood specimens should not be used.
- Grossly lipemic samples containing particulates that clog the gel, as indicated by diffuse blotches of red blood cells in the microtube, may be clarified by centrifugation or filtration and retested.
- Specimens should not be exposed to extreme heat.
Precautions

Do not use if turbid.
Do not dilute.
Do not freeze
Do not use beyond the expiration date.
This reagent contains 0.1% (w/v) sodium azide.
Handle and dispose of reagents as potentially infectious, in accordance with local, state, or national laws.
This reagent is for in vitro diagnostic use only.

CAUTION: Sodium azide may be toxic if ingested and may react with lead and copper plumbing to form explosive compounds. If discarded into sink, flush with a large volume of water to prevent azide buildup.

CAUTION: Source material from which this product is derived was found non-reactive for HBsAg, Anti-HIV 1/2 and Anti-HCV. No known test methods can offer complete assurance that products derived from human blood will not transmit infectious disease. Appropriate care should be taken in the use and disposal of this product. Source materials may include human components and antibody producing cells that are used in the manufacture of polyclonal and monoclonal products.

Procedure Material Provided
ORTHO™ Sera Anti-K

Materials Required but not Provided

- Isotonic saline
- Reagent red blood cells suitable for the control of Anti-K
- MTS™ Buffered Gel Card
 NOTE: Store cards upright at 2–25 °C.
 CAUTION: Inspect the condition of the card before use.
 Do not use gel cards that have not been shipped in an upright position.
 Do not use cards beyond expiration date.
 Do not freeze or expose cards to excessive heat.
 Use reagents as furnished.

- Micropipetters for delivery of 25 µL and 50 µL
- Pipet tips
- Marking pen
- MTS™ Centrifuge
 or ORTHO™ Workstation
 or ORTHO VISION® Analyzer
 or ORTHO VISION® Max Analyzer

Test Procedure

NOTE:
The reagents have been standardized for use by the technique described below. The direct agglutination test procedure listed below is for manual testing only. When using instruments (see Materials Required but not Provided), follow the procedures that are contained in the operator's manual provided by the device manufacturer.

Direct Agglutination Test
1. Prepare an approximate 0.8% red blood cell suspension from patient or donor cells, using isotonic saline.
2. Allow the card and reagent to come to 18–25 °C before use. A clear liquid layer should appear on top of the opaque gel in each microtube.
3. Visually inspect gel cards before use.
 CAUTION: Do not use gel cards if the gel matrix is absent or the liquid level in the microtube is at or below the top of the gel matrix.
 Do not use gel cards that show signs of drying, discoloration, bubbles, crystals, or other artifacts.
 Do not use cards if foil seals appear damaged or opened.

NOTE: Refer to the ID-Micro Typing System™ Interpretation Guide for additional information related to the visual inspection of gel cards before use.
4. Label the card appropriately with a sample identifier.

5. Remove the foil seal from the MTS™ Buffered Gel Card or from the individual microtubes to be used for testing.

 CAUTION: Do not remove card foil seal until ready to use. Foil should be removed immediately before testing or within 1 hour of testing. Once opened, the gel may begin to dry out which could affect test results (refer to Limitations of the Procedure). After removing the foil, visually inspect all gel cards to ensure that residual film does not block the opening of any microtube.

6. Add 25 µL of the reagent to the appropriate reaction chamber(s) of the opened card.

 CAUTION: Do not touch the pipet to the side of the reaction chamber. If this occurs, change the pipet tip before proceeding to the next chamber.

7. Add 50 µL of 0.8% red blood cell suspension to the appropriate reaction chamber(s) of the card.

 CAUTION: Do not touch the pipet to the side of the reaction chamber. If this occurs, change the pipet tip before proceeding to the next chamber.

8. Observe that the contents of the reaction chamber(s) are combined. If necessary tap gently.

 NOTE: Assure that the reagents remain in the reaction chamber. There should be no mixing of reactants with reagents in the column prior to centrifugation.

9. Centrifuge the card at the preset conditions, as installed by the instrument manufacturer.

10. Read the front and back of the individual columns for macroscopic agglutination or hemolysis upon test completion.

11. Record the reaction strength.

Interpretation of Results

Negative Result = No agglutination and no hemolysis of the red blood cells is a negative test result. A complete sedimentation of all red blood cells is present in the bottom of the microtube.

Positive Result = Agglutination of the red blood cells is a positive test result. Red blood cells may remain suspended on the top of the gel or are dispersed throughout the gel in varying degrees. A few red blood cells may form a button in the bottom of the microtube in some positive reactions.

<table>
<thead>
<tr>
<th>Reaction Grading Guide (Use in conjunction with Diagram 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Negative</td>
</tr>
<tr>
<td>1+ Reaction</td>
</tr>
<tr>
<td>2+ Reaction</td>
</tr>
<tr>
<td>3+ Reaction</td>
</tr>
<tr>
<td>4+ Reaction</td>
</tr>
<tr>
<td>Mixed Field</td>
</tr>
</tbody>
</table>

NOTE: Caution must be taken in interpreting a reaction as mixed field. Additional patient history and testing will be necessary for resolution. However, not all mixed cell situations have a sufficient minor population to be detected.

CAUTION: Clots, particulates or other artifacts may cause some red blood cells to be entrapped at the top of the gel that may cause an anomalous result in a negative test (refer to Limitations of the Procedure, item 5.)
Diagram 1: Examples of Reaction Grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No reaction</td>
</tr>
<tr>
<td>1+</td>
<td>Weak reaction</td>
</tr>
<tr>
<td>2+</td>
<td>Moderate reaction</td>
</tr>
<tr>
<td>3+</td>
<td>Strong reaction</td>
</tr>
<tr>
<td>4+</td>
<td>Intense reaction</td>
</tr>
<tr>
<td>MF</td>
<td>Maximum reaction</td>
</tr>
</tbody>
</table>

Range of Reactions

NOTE: Refer to ID-Micro Typing System™ Interpretation Guide® for additional information.

Stability of Reaction

For best results, it is recommended that reactions should be read immediately following centrifugation.

Quality Control

Quality Control (QC) of reagents is required. Quality Control should be performed on each lot of reagent on each day of use according to standard operating procedures.

Reagent red blood cells may be used directly from the vial as control cells in ORTHO Sera tests, including 0.8% Resolve® Panel A, 0.8% Resolve® Panel B, 0.8% Resolve® Panel C (Untreated Only), 0.8% Selectogen® and 0.8% Surgiscreen®.

Limitations of the Procedure

1. Strict adherence to the procedures and recommended equipment is essential.
2. Proper centrifuge calibration is particularly important to the performance of the MTS™ Buffered Gel Card. The MTS™ Centrifuge and ORTHO™ Workstation have been exclusively designed to provide the correct time, speed, and angle.
3. The expression of certain red blood cell antigens may diminish in strength during storage, particularly in EDTA samples. Better results will be obtained with fresh samples.
4. Suppressed or weak expression of blood group antigens may give rise to false-negative reactions.
5. Anomalous results may be caused by the following:
 - Fibrin or particulate matter
 - Red blood cells sticking to the sides of the reaction chamber
 - DAT positive red blood cells
 - Do not use cards that appear damaged (i.e., break in foil seal or break, crack or bubble in the column), exhibit drying (i.e., liquid level is at or below the top of the gel matrix) or exhibit discoloration (due to bacterial contamination, which can cause false reactions).
 - Loss of fluid in the card column may cause (weak) false positive results.
 - J reactions may occasionally be observed with high red blood cell concentrations. J reactions may also be observed if during centrifugation the card is not seated properly in the holder or not allowed to spin at a 90° angle. **NOTE:** A J reaction consists of cells forming a button at the bottom of the gel matrix or microtube when either end of the cell button goes up the side of the column. The cell button may be disrupted. A J reaction may represent a weakly positive reaction.
 - False positive or false negative test results can occur from bacterial or chemical contamination of test materials, inadequate incubation time or temperature, improper centrifugation, improper storage of materials, or omission of test samples.
6. Tests with these or other anomalous results should be repeated.
7. Erroneous results could occur if final reactions are not read upon completion of centrifugation.
8. Mixed cell populations may be encountered as a result of, for example, transfusion, fetal maternal hemorrhage, or transplantation. Consult patient history when results of this nature are encountered before assigning an antigen type.
9. Donor/Patient red blood cells must be diluted with isotonic saline, before adding the red blood cells to the microtube.
Performance Characteristics

Comparator Study Results
During comparator studies (data on file at Alba Bioscience Limited) blood samples were tested with ORTHO™ Sera Anti-K (Monoclonal) by ID-Micro Typing System™ Column Agglutination Technology (CAT) as follows:

Including all samples:

<table>
<thead>
<tr>
<th>Test</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>% Agreement*</td>
</tr>
<tr>
<td>Anti-K</td>
<td>146</td>
<td>94.5</td>
</tr>
</tbody>
</table>

Excluding DAT positive samples:

<table>
<thead>
<tr>
<th>Test</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>% Agreement*</td>
</tr>
<tr>
<td>Anti-K</td>
<td>138</td>
<td>100</td>
</tr>
</tbody>
</table>

LCL: lower confidence limit

*%Agreement between the ORTHO™ Sera Anti-K (Monoclonal) and comparator reagents only and does not indicate which reagents gave the correct results.

In performance evaluation studies, 1137 samples of ORTHO™ Sera Anti-K (Monoclonal) were tested with the MTS™ Centrifuge. The one-sided exact 95% LCL of positive percent agreement (PPA) was 90.3% for agglutination tests based on a comparison of interpreted results. The PPA did not meet the acceptance criteria due to nine discrepant results (see sample classification and comments in the summary table below). Eight of the discrepancies originated from samples with a positive DAT result and therefore resulted in a positive result due to reaction with the Anti-Human Globulin reagent in the comparator reagent test method irrespective of the antigen type of the red blood cell. One discrepant result that could not be discounted may be due to a possible initial test error. The one sided exact 95% LCL of the negative percent agreement was ≥99% for agglutination tests based on a comparison of interpreted results.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Number of Discrepancies</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAT Positive</td>
<td>8</td>
<td>Reagents which use an IAT method are not recommended for testing of samples with a positive DAT. Comparator reagent used during PE study utilized an IAT method.</td>
</tr>
<tr>
<td>Possible test error</td>
<td>1</td>
<td>ORTHO™ Sera Anti-K reagent and comparator reagent gave a concordant reaction on repeat testing.</td>
</tr>
</tbody>
</table>

Results were evaluated against comparable FDA approved products using the appropriate methods for the comparators.

Migration studies have been performed using the ORTHO™ Workstation and results were as follows:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Number of samples tested</th>
<th>Concordance*</th>
<th>Positive Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Frequency (%)</td>
<td></td>
</tr>
<tr>
<td>Anti-K</td>
<td>100</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

*Concordance indicates agreement between the ORTHO™ Workstation and the MTS™ Centrifuge only and does not indicate which systems gave the correct results.
Further migration studies have been performed for the ORTHO VISION® and ORTHO VISION® Max Analyzer. Comparator studies were performed using random samples and a screening test method was used to identify additional random samples of low antigen frequency. The performance of total samples is reported in the following paragraphs, as the unscreened and screened random sample totals show similar performance.

The results of the migration studies performed using the ORTHO VISION® Analyzer were as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>% Agreement</td>
</tr>
<tr>
<td>Anti-K</td>
<td>314</td>
<td>100.0</td>
</tr>
</tbody>
</table>

LCL: lower confidence limit

* Concordance indicates agreement between the ORTHO™ Workstation and the ORTHO VISION® Analyzer only and does not indicate which system gave the correct results.

In these migration studies, 938 samples were tested with ORTHO™ Sera Anti-K (Monoclonal) using the ORTHO™ Workstation and the ORTHO VISION® Analyzer. The one-sided exact 95% LCL of positive percent agreement was 99.1% for agglutination tests based on a comparison of interpreted results. The one-sided exact 95% LCL of negative percent agreement (NPA) was 99.5% for agglutination tests based on a comparison of interpreted results.

The results of the migration studies performed using the ORTHO VISION® Max Analyzer were as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>% Agreement</td>
</tr>
<tr>
<td>Anti-K</td>
<td>308</td>
<td>100.0</td>
</tr>
</tbody>
</table>

LCL: lower confidence limit

* Concordance indicates agreement between the ORTHO VISION® Analyzer and the ORTHO VISION® Max Analyzer only and does not indicate which system gave the correct results.

In these migration studies, 1003 samples were tested with ORTHO™ Sera Anti-K (Monoclonal) using the ORTHO VISION® Analyzer and the ORTHO VISION® Max Analyzer. The one-sided exact 95% LCL of positive percent agreement was 99.0% for agglutination tests based on a comparison of interpreted results. The one-sided exact 95% LCL of negative percent agreement (NPA) was 99.1% for agglutination tests based on a comparison of interpreted results.

Precision Study Results

As part of the performance evaluation, precision and lot to lot studies were performed using multiple operators, days and runs to confirm repeatability and reproducibility of test results in the same run, day and with the same operator and between runs, days and operators. The study took account of variables such as days of the week, times of day and supplementary reagents used in the testing. There were no discordant results; all expected positive test outcomes generated unequivocal positive reactions and all expected negative test outcomes generated unequivocal negative reactions.

Specific Performance Characteristics

Prior to release, each lot of ORTHO™ Sera Anti-K (Monoclonal) is tested in alignment with FDA recommendations against a panel of antigen-positive and antigen-negative red blood cells to ensure suitable reactivity.

ORTHO™ Sera Anti-K (Monoclonal) Blood Grouping Reagent has been tested using the ID-Micro Typing System™ and when stored and used according to the recommended instructions for use, found to specifically agglutinate human red blood cells with the corresponding antigen.

The ORTHO™ Sera Anti-K (Monoclonal) reagent reacts with cells expressing the K antigen and meets FDA potency requirements.

For additional information or technical support, contact Ortho Care™ Technical Solutions Center at 1-800-421-3311.
Bibliography

Glossary of Symbols

The following symbols may have been used in the labeling of this product.

- Do Not Reuse
- Use by or Expiration Date (Year-Month-Day)
- Batch Code or Lot Number
- Serial Number
- Catalog Number or Product Code
- Date of Manufacture
- Manufacturer
- Authorized Representative in the European Community
- Contains Sufficient for "n" Tests
- In vitro Diagnostic Medical Device
- Upper Limit of Temperature
- Lower Limit of Temperature
- Temperature Limitation
- Consult instructions for use
- Biological Risks
- Fragile, Handle with Care.
- Keep Dry
- This end up
- Do Not Use if Damaged
- Cassette/Cards
- Concentration
- Der Grüne Punkt (the Green Dot). Manufacturer follows certain packaging material waste disposal management regulations.
Summary of Revisions

<table>
<thead>
<tr>
<th>Date of Revision</th>
<th>Version</th>
<th>Section</th>
<th>Description of Technical Changes*</th>
</tr>
</thead>
</table>
| 2020-08-26 | 5.0 | Specimen Collection | • Addition of CP2D with AS-3 to list of anticoagulant/additive solutions that can be used for the collection of donor blood.
• Removal of "NOTE" that ORTHO™ Sera Anti-K (Monoclonal) has not been validated with CP2D with AS-3 and should not be used with this anticoagulant/additive solution. |
| 2019-07-26 | 4.0 | Materials Required but not Provided | Addition of ORTHO VISION® Max Analyzer. |
| | | Performance Characteristics | • Added statement for migration study performed on ORTHO VISION® and ORTHO VISION® Max Analyzer.
• Updated statement for migration study data for ORTHO VISION® Analyzer.
• Addition of migration study data for ORTHO VISION® Max Analyzer. |
| | | Comparator Study Results | |
| 2019-01-30 | 3.0 | Specimen Collection | Removal of CP2D with AS-3 from statement: Donor blood collected in ACD, CPD, CP2D and CPDA-1 may be tested until the expiration date of the donation. |
| | | Materials Required but not Provided | Addition of ORTHO VISION® Analyzer. |
| | | Test Procedure | Updated statement regarding using instruments. |
| | | Quality Control | Addition of statement regarding use of 0.8% red cells as a control when used directly from the vial. |
| | | Limitations of the Procedure | Changed limitation #9 to: Donor/Patient red blood cells must be diluted with isotonic saline, before adding the red blood cells to the microtube. |
| | | Performance Characteristics | • Changed ORTHO ID-Micro Typing System™ to ID-Micro Typing System™.
• Addition of migration study data for ORTHO VISION® Analyzer. |
| | | Comparator Study Results | |
| 2018-08-01 | 2.0 | Front page | Added intended for Use in the United States to the header and US to the footer of the document. |
| | | Specific Performance Characteristics | Changed OC2D Customer Technical Support to Ortho Care™ Technical Solutions Center. |
| | | Bibliography | Removed 'J' from Interpretation Guide publication number. |
| | | Glossary of Symbols | Serious Health Hazards and Caution symbols removed. |
| | | Back page | Manufacturer's address updated.
Changed from © Ortho-Clinical Diagnostics, Inc. to © Ortho Clinical Diagnostics. |
| 2015-07-20 | 1.0 | | Initial version of Instructions for Use. |

* The change bars indicate the position of a technical amendment to the text with respect to the previous version of the document.