JHeimbach LLC JUNO 3 2020

April 9, 2020

Susan J. Carlson, Ph.D., Director Division of Biotechnology and GRAS Notice Review (HFS-255) Office of Food Additive Safety Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Paint Branch Parkway College Park, MD 20740

Dear Dr. Carlson:

Pursuant to 21 CFR Part 170, Subpart E, Kaneka Americas Holding, Inc., and AB-Biotics, through me as their agent, hereby provide notice of a claim that the addition of a blend of *Lactobacillus plantarum* strain KABP-011, *Lactobacillus plantarum* strain KABP-012, and *Lactobacillus plantarum* strain KABP-013 to conventional foods is exempt from the premarket approval requirement of the Federal Food, Drug, and Cosmetic Act because Kaneka and AB-Biotics have determined that the intended use is generally recognized as safe (GRAS) based on scientific procedures.

As required, one copy of the GRAS monograph and one signed copy of the conclusion from each member of the Expert Panel are provided. Additionally, I have enclosed a virus-free CD-ROM with the GRAS monograph and the signed statements of the Expert Panel.

If you have any questions regarding this notification, please feel free to contact me at 804-742-5543 or jh@jheimbach.com.

Sincerely./

James T. Heimbach, Ph.D., F.A.C.N. President

Encl.

Generally Recognized as Safe (GRAS) Determination for the Use of *Lactobacillus plantarum* KABP-011, *Lactobacillus plantarum* KABP-012, and *Lactobacillus plantarum* KABP-013 in Conventional Foods

Prepared by Kaneka Americas Holding, Inc. Pasadena, Texas

and

AB-Biotics S.A. Barcelona, Spain

Edited by JHeimbach LLC Port Royal, Virginia

April, 2020

Table of Contents

PART 1. SIGNED STATEMENTS AND CERTIFICATIONS	5
1.1. GRAS Notice Submission	5
1.2 Name and Address of Notifier	5
1.3. Names of Notified Microorganisms	5
1.4. Intended Conditions of Use	5
1.5. Statutory Basis for GRAS Status	6
1.6. Premarket Exempt Status	6
1.7. Data Availability	6
1.8. Freedom of Information Act Statement	6
1.9. Certification	6
1.10. FSIS Statement	6
1.11. Name, Position, and Signature of Notifier	7
PART 2. IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS, AND PHYSICAL OR TECHNICAL EFFECT	8
2.1. Names of the GRAS Organisms	8
2.2. Sources of the GRAS Organisms	8
2.3. Descriptions of the GRAS Organisms	8
2.3.1. Phenotypic Identification	9
2.3.2. Genotypic Identification	10
2.3.3. Genome Summaries	12
2.4. Production Method	16
2.5. Specifications	19
2.6. Stability	20
PART 3. INTENDED USE AND DIETARY EXPOSURE	21
PART 4. SELF-LIMITING LEVELS OF USE	22
PART 5. EXPERIENCE BASED ON COMMON USE IN FOOD	23
PART 6. NARRATIVE	24
6.1. History of Safe Ingestion	24
6.2. Properties of the Strains	24
6.3. Safety-Related Issues	24
6.3.1. Antibiotic Resistance	24
6.3.2. Antibiotic Resistance Genes, Virulence Factors, Mobile Genetic Elements	25
6.3.3. Biogenic Amines	29
6.3.4. Lactic Acid	30
6.4. Research Studies of the Organisms	31
6.4.1. Studies of L. plantarum KABP-011, KABP-012, and KABP-013	31
6.4.1.1. Animal Toxicity Study of L. plantarum KABP-011, KABP-012, and KABP-013	31
6.4.1.2. Human Clinical Studies of L. plantarum KABP-011, KABP-012, and KABP-013	33
6.4.2. Studies of Other Strains of the Species	36

6.5. Evaluations by Authoritative Bodies	58
6.6. Safety Assessment and GRAS Determination	59
6.6.1. Introduction	59
6.6.2. Estimated Daily Intake	60
6.6.3. Safety of L. plantarum KABP-011, KABP-012, and KABP-013	61
6.7. Statement Regarding Information Inconsistent with GRAS	62
6.8. Conclusion of the Expert Panel	63
PART 7. LIST OF SUPPORTING DATA AND INFORMATION	64

List of Tables

Table 1. Specifications (Kaneka 2019).	19
Table 2. Analyses of Three Lots of Combination Product (Kaneka 2019).	19
Table 3. Analyses of Heavy Metals in Three Lots of Combination Products (Kaneka 2019)	20
Table 4. Animal Studies of L. Plantarum KABP-011, KABP-012, And KABP-013	34
Table 5. Human Clinical Studies of L. Plantarum KABP-011, KABP-012, AND KABP-013	35
Table 6. Human Clinical Studies of Other Strains of L. Plantarum.	37

LIST OF FIGURES

Figure 1: Api® Zym Profile of Strains (Ab-Biotics 2019).	9
Figure 2: PFGE, SMAI, (M) Markers and (1) <i>L. Plantarum</i> 299v (2) KABP-011 (3) KABP-012 (4) <i>L. Plantarum</i> VSL#3 and (5) KABP-013 (Ab-Biotics 2017)	.10
Figure 3: PFGE, SFII, (M) Markers and (1) <i>L. Plantarum</i> 299v (2) KABP-011 (3) KABP-012 (4) <i>L. Plantarum</i> VSL#3 and (5) KABP-013 (Ab-Biotics 2017)	.10
Figure 4: Primers Used for Amplifying and Sequencing of the 16S Gene	.11
Figure 5: Phylogenetic Tree (Ab-Biotics 2019)	.12
Figure 6: L. Plantarum KABP-011 MAUVE Alignment (Ab-Biotics 2019).	.14
Figure 7: L. Plantarum KABP-012 MAUVE Alignment (Ab-Biotics 2019).	.15
Figure 8: L. Plantarum KABP-013 MAUVE Alignment (Ab-Biotics 2019).	. 16
Figure 9: Manufacturing Flow Chart (Kaneka 2019).	.18
Figure 10: Microorganism Viability at -20°C (Kaneka 2019)	.20
Figure 11: Antibiograms (Kaneka 2019).	.25
Figure 12: L. Plantarum KABP-011 ACLAME Hits (Kaneka 2019).	.27
Figure 13: L. Plantarum KABP-012 ACLAME Hits (Kaneka 2019).	.28
Figure 14: L. Plantarum KABP-013 ACLAME Hits (Kaneka 2019).	. 29

Part 1. Signed Statements and Certifications

1.1. GRAS Notice Submission

Kaneka Americas Holding, Inc., of Pasadena, Texas ("Kaneka") submits this GRAS notification in accordance with subpart E of 21 CFR part 170.

1.2 Name and Address of Notifier

Kaneka Americas Holdings, Inc. 6161 Underwood Road Pasadena, Texas 77507

Joshua Garey, Sr. R&D Scientist Tel: 281-474-1826 Email: joshua.garey@kaneka.com

1.3. Names of Notified Microorganisms

Lactobacillus plantarum KABP-011 (CECT 7527), *Lactobacillus plantarum* KABP-012 (CECT 7528), and *Lactobacillus plantarum* KABP-013 (CECT 7529). The strains, when combined in a 1:1:1 ratio as lyophilized powder, are denoted "AB-Life" and "Floradapt Cardio" by the microorganism supplier.

1.4. Intended Conditions of Use

L. plantarum KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination, are intended to be used in conventional foods, such as yogurt and other dairy products, soy products, chewing gum, and confectionary snacks. The intended use does not include infant formula, other products intended for consumption by infants, or foods regulated by the U.S. Department of Agriculture. The purpose of the identified strains is to serve either individually or as a combination of microorganisms to be consumed by the general population, excluding infants.

When used individually, the intended level each strain of *L. plantarum* is intended to be at least $4x10^8$ cfu/serving over the shelf life of the product. The maximum level of addition is intended to be $4x10^9$ cfu/serving of the strain to allow for the loss of viability over the shelf life of the product.

When used as a combination, the intended combined level of the three *L. plantarum* strains is intended to be at least 1.2×10^9 cfu/serving over the shelf life of the product. This is equivalent to a level of 4×10^8 cfu/serving for each strain. The maximum level of addition of the combination is intended to be 1.2×10^{10} cfu/serving, equivalent to 4×10^9 cfu/serving of each individual strain, to allow for the loss of microorganism viability over the shelf life of the product.

The identified strains of microorganisms will be present only in foods to which they are intentionally added.

1.5. Statutory Basis for GRAS Status

Kaneka Americas Holdings, Inc., has determined that the intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination, is GRAS based on scientific procedures in accordance with 21 C.F.R. 170.30(a) and (b).

1.6. Premarket Exempt Status

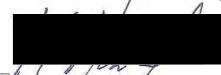
Since Kaneka Americas Holdings, Inc., has determined that the intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination, is GRAS, such use is not subject to premarket approval requirements under the Federal Food, Drug, and Cosmetic Act.

1.7. Data Availability

The data and information that serve as the basis for the conclusion that the intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination, is GRAS will be made available to the FDA upon request. At FDA's option, a complete copy of the information will be sent to FDA in either paper or electronic format, or the information will be available for review at the home office of JHeimbach LLC, located at 923 Water Street, Port Royal, VA 22535, during normal business hours.

1.8. Freedom of Information Act Statement

No data or information submitted with this GRAS notification is exempt from disclosure under the Freedom of Information Act, 5 U.S.C. 552.


1.9. Certification

To the best of my knowledge, this GRAS notice is a complete, representative, and balanced submission that includes unfavorable information, as well as favorable information, known to me and pertinent to the evaluation of the safety and GRAS status of the intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination.

1.10. FSIS Statement

Not applicable.

1.11. Name, Posițion, and Signature of Notifier

James T. Heimbach, Ph.D., F.A.C.N. President JHeimbach LLC Agent to Kaneka Americas Holding, Inc.

Part 2. Identity, Method of Manufacture, Specifications, and Physical or Technical Effect

2.1. Names of the GRAS Organisms

The subjects of this GRAS notification are strains of bacteria designated *Lactobacillus plantarum* KABP-011, *Lactobacillus plantarum* KABP-012, and *Lactobacillus plantarum* KABP-013. The strains in combination (1:1:1 ratio) are named AB-Life and Floradapt Cardio by the supplier.

2.2. Sources of the GRAS Organisms

L. plantarum KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 are from a bank of strains that were isolated from the feces of healthy South American infants. The strains were deposited in the Spanish Type Culture Collection (Colección Española de Cultivos Tipo/CECT) under accession numbers CECT 7527, CECT 7528, and CECT 7316, respectively.

2.3. Descriptions of the GRAS Organisms

"Lactic acid bacteria (LAB)" is a general term applied to species of bacteria belonging to any of 17 different genera, including *Lactobacillus* (Rovira and Molero, 2018). LAB are characterized by the phenotypic property of producing lactic acid as the major end product of sugar fermentation. LAB are Gram-positive, non-spore-forming, devoid of cytochromes, and catalase-negative (Holzapfel et al., 2001). LAB have a long history of use in food and food fermentation, and the human body is colonized by many species of LAB (Douillard and Vos, 2014). The presence of *L. plantarum* has been confirmed in ziang sang (or ziansang), a traditional dish of Nagaland and Manipur in northeast India, composed of fermented mustard leaves (Tamang et al., 2005).

L. plantarum is Gram-positive; rod shaped; single, paired, or short-chained; non-motile; and facultatively heterofermentative, producing lactic acid during fermentation. *L. plantarum* has been isolated from dairy products, silage, sauerkraut, pickled vegetables, sourdough, and the feces, mouth, and intestinal tract of humans (Vos et al., 2009). Use of *L. plantarum* was documented in 1968 for the preparation of a Filipino fermented fish dish, burong dalag (Bourdichon et al., 2012; Orilla and Pederson, 1968).

2.3.1. Phenotypic Identification

L. plantarum KABP-011 (CECT 7527), *L. plantarum* KABP-012 (CECT 7528), and *L. plantarum* KABP-013 (CECT 7529) were evaluated for enzymatic activity using the API® ZYM test kit made by bioMérieux (Figure 1).

	Enzyme of study	L. plantarum CECT 7527	L. plantarum CECT 7528	L. plantarum CECT 7529
1	Control	-	-	-
2	Alkaline phosphatase	-	-	+
3	Esterase (C4)	-	-	+
4	Esterase Lipase (C8)	-	+	+
5	Lipase (C14)	-	-	-
6	Leucine arylamidase	+	+	+
7	Valine arylamidase	+	+	+
8	Cystine arylamidase	-	-	+
9	Trypsin	-	-	-
10	α-Chymotrypsin	-	-	-
11	Acid phosphatase	-	+	+
12	Naphthol AS-BI-phosphydrolase	+	+	+
13	α-galactosidase	-	-	-
14	β-galactosidase	-	-	+
15	β-glucoronidase	-	-	-
16	α-glucosidase	-	-	+
17	β-glucosidase	-	+	+
18	N-acetyl-β-glucosaminidase	-	+	+
19	α-mannosidase	-	-	-
20	α-fucosidase	-	-	-

Figure 1: API® ZYM Profile of Strains (AB-Biotics 2019, unpublished).

The strains were analyzed by pulsed-field gel electrophoresis (PFGE) using two different restriction enzymes following the methodology described by Rodas et al. (2005), as shown in Figures 2 and 3.

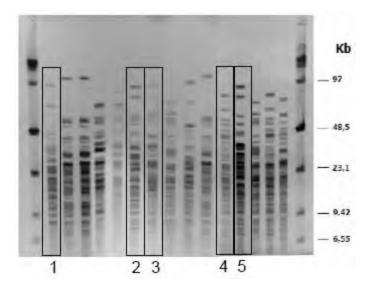


Figure 2: PFGE, SmaI, (M) Markers and (1) *L. plantarum* 299v (2) KABP-011 (3) KABP-012 (4) *L. plantarum* VSL#3 and (5) KABP-013 (AB-Biotics 2017, unpublished).

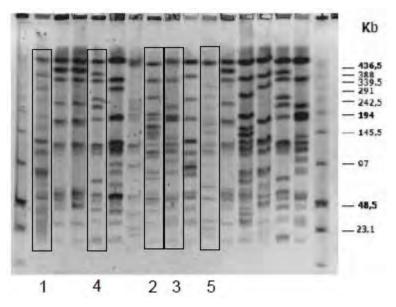
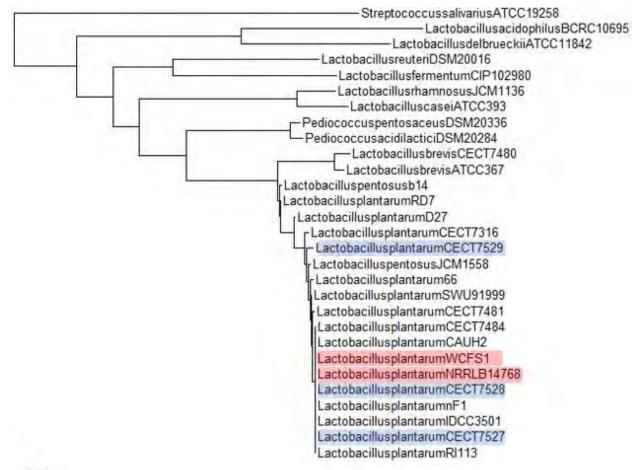


Figure 3: PFGE, SfiI, (M) Markers and (1) *L. plantarum* 299v (2) KABP-011 (3) KABP-012 (4) *L. plantarum* VSL#3 and (5) KABP-013 (AB-Biotics 2017, unpublished).

2.3.2. Genotypic Identification


The phylogenetic tree and species identification of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 were performed using the 16s ribosomal RNA gene near-full-length sequence. The lyophilized powder of each strain was suspended in PBS and grown on MRS agar plates. DNA was extracted from the grown colonies with commercial kit DNeasy Tissue and Blood (Qiagen) per manufacturer's protocol. The 16s rRNA

gene was amplified by PCR using universal primers (Eub27f and Eub1492R) following conventional methodology. The DNA obtained was washed using the commercial kit Quiaquick by Quiagene. The sequencing was performed on a Genetic Analyzer 3130 by Applied Biosystems using BigDye kit v. 3.1. Data collection and chromatograms were built using DNA Sequence Analysis v.5.2 software (Applied Biosystems) and checked by visual analysis with Chromas (Technelysium Pty Ltd.) and BioEdit (Ibis Biosciences).

Step	Primer	Orientation	5' \rightarrow 3' sequence
Amplification	Eub27f	forward	GAGTTTGATCCTGGCTCAG
Amplification	Eub1492r	reverse	TACGGYTACCTTGTTACGACTT
	27f	forward	AGAGTTTGATCCTGGCTCAG
	357f	forward	000000000000000000000000000000000000000
Sequencing			GCCCCCGCCCCCTACGGGAGGCAGCAG
	907r	reverse	CCGTCAATTCCTTTGAGTTT
	1492r	reverse	GGTTACCTTGTTACGACTT

Figure 4: Primers used for amplifying and sequencing of the 16s gene.

The obtained sequences were compared by BLAST to the NCBI database (<u>Blast</u>) and the phylogenetically closest type strains were determined using the RDP database (Cole et al., 2014). The summary phylogenetic tree is shown in Figure 5. The sequences of the analyzed strains were aligned to reference strains and *S. salivarius* ATCC 19258 was selected as an outgroup of the *Lactobacillae* family for the construction of the phylogenetic tree. The comparison confirms that the sequenced strains have been correctly assigned at the species level.

0.01

Figure 5: Phylogenetic Tree (AB-Biotics 2019, unpublished).

The strains are closely related to representative strains (highlighted in orange) for their species. *L. plantarum* KABP-011 (CECT 7527), KABP-012 (CECT 7528), and KABP-013 (CECT 7529) are closely related to other strains of *L. plantarum*.

2.3.3. Genome Summaries

The genomes of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 were obtained using Whole Genome Sequencing (WGS) with the sequencing platform PacBio [DNA Sequencing Reagent 4.0 v2, SMRT Cell 8 Pac v3 and SMRT Cell Oil (Pacific Bioscience)] and assembled with SMRT Analysis version 2.3.0 software and RS_HGAP_Assembly.3 program. The DNA was isolated with NucleoBond AXG20, NucleoBond Buffer Set III. SMRTBell Template Prep Kit 1.0 (Pacific Bioscience) was used for library preparation and sequencing templates larger than 15 kb were prepared by BluePippen size-selection system (P/N 100-286-000 Version 10, Sage Science). The sequences from each strain were compared to the reference database GenomesDB offered by JspeciesWS (Richter et al., 2015), for similarity scores (z-scores). The program returned a list of 100 strains ranked by

similarity, from which a reference strain was identified. A pairwise comparison of the reference strain and the sequenced strain was performed and the Alignment Nucleotide Identity (ANI) value was calculated using JSpeciesWS. ANI values greater than 95% indicate that the genomes are considered to be from the same species (Figueras et al., 2014; Goris et al., 2007; Richter and Rossello-Mora, 2009). Additionally, the sequenced strains and the reference strains were aligned using the MAUVE¹ program (Darling et al., 2010). The genomes were aligned using the default parameters.

For genome mining of antibiotic resistance genes, virulence factors, and mobile genetic elements, Quality-filtered subreads longer than 500 bp were joined to their corresponding paired reads and assembled with SMRT Analysis version 2.3.0 software and RS_HGAP_Assembly.3 program. The genomes were annotated with the help of the Prodigal algorithm (Hyatt et al., 2010) and Glimmer (Delcher et al., 2007). The results of the search for antibiotic resistance genes, virulence factors, and mobile genetic elements are discussed in Section 6.2.

For *L. plantarum* KABP-011, 145,869 subreads (adaptor-removed reads) were obtained with an average length of 10 kb per read. The reference genome of *Lactobacillus plantarum* is 3.27 Mb, giving an estimated sequencing coverage of 448x. This coverage implies that the information extracted for the genome sequencing of this strain is reliable due to the ultra-deep coverage (> 100x). The KABP-011 assembled genome was 3.19 Mb, consisting of three contigs. Within these contigs, 3,425 coding sequences were obtained. The assembled genome was compared to the database GenomesDB. When compared to the reference strain, *L. plantarum* WCFS1, the z-score was 0.99923 and the ANI value was 98.86%. This confirms the taxonomy of the strain, indicating that the strains belong to the same species and are closely related. KABP-011 was aligned with WCFS1 using the MAUVE program (Figure 6).

¹ MAUVE is free-of-charge open-source software for constructing multiple genome alignments in the presence of large-scale evolutionary events such as rearrangement and inversion.

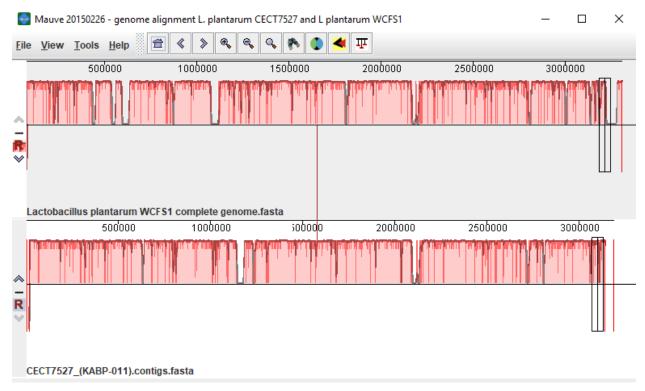


Figure 6: L. plantarum KABP-011 MAUVE Alignment (AB-Biotics 2019, unpublished).

The relative lack of white space in the color regions of the MAUVE diagram demonstrates the high degree of genomic conservation between KABP-011 and the reference strain. The strains show a high degree of homology, evidenced by the ANI value of 98.86%.

For *L. plantarum* KABP-012, 139,703 subreads (adaptor-removed reads) were obtained with an average length of 10.8 kb per read. The reference genome of *Lactobacillus plantarum* is 3.27 Mb, giving an estimated sequencing coverage of 460x. This coverage implies that the information extracted for the genome sequencing of this strain is reliable due to the ultra-deep coverage (> 100x). The KABP-012 assembled genome was 3.44 Mb, consisting of five contigs. Within these contigs, 3,761 coding sequences were obtained. The assembled genome was compared to the database GenomesDB. When compared to the reference strain, *L. plantarum* WCFS1, the z-score was 0.99877 and the ANI value was 98.58%. This confirms the taxonomy of the strain, indicating that the strains belong to the same species and are closely related. KABP-012 was aligned with WCFS1 using the MAUVE program (Figure 7).

Figure 7: L. plantarum KABP-012 MAUVE Alignment (AB-Biotics 2019, unpublished).

The relative lack of white space in the color regions of the MAUVE diagram demonstrates the high degree of genomic conservation between KABP-012 and the reference strain. The strains show a high degree of homology, evidenced by the ANI value of 98.58%.

For *L. plantarum* KABP-013, 132,259 subreads (adaptor-removed reads) were obtained with an average length of 10.1 kb per read. The reference genome of *Lactobacillus plantarum* is 3.27 Mb, giving an estimated sequencing coverage of 409x. This coverage implies that the information extracted for the genome sequencing of this strain is reliable due to the ultra-deep coverage (> 100x). The KABP-013 assembled genome was 3.38 Mb, consisting of five contigs. Within these contigs, 3,688 coding sequences were obtained. The assembled genome was compared to the database GenomesDB. When compared to the reference strain, *L. plantarum* WCFS1, the z-score was 0.99888 and the ANI value was 98.37%. This confirms the taxonomy of the strain, indicating that the strains belong to the same species and are closely related. KABP-013 was aligned with WCFS1 using the MAUVE program (Figure 8).

Figure 8: L. plantarum KABP-013 MAUVE Alignment (AB-Biotics 2019, unpublished).

The relative lack of white space in the color regions of the MAUVE diagram demonstrates the high degree of genomic conservation between KABP-013 and the reference strain. The strains show a high degree of homology, evidenced by the ANI value of 98.37%.

In summary, *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 all show high degrees of homology with their reference strain, as indicated by the ANI values. Strain alignment with the MAUVE program demonstrates that these strains are highly homologous with their reference strain, but still have unique regions that can be used to develop strain-specific primers for strain identification.

2.4. Production Method

L. plantarum KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 are manufactured in FDA registered facilities according to applicable current Good Manufacturing Practice (cGMP) by Kaneka or manufacturing companies under contract with Kaneka. All ingredients, processing aids, and excipients used in the manufacturing process are food grade, non-allergenic, and approved for use by the FDA.

Strains are stored in the strain collection as master seed. From the master seed, a working cell-bank is prepared as a glycerol stock and stored at -80°C. The identity of the seed is confirmed by 16s RNA sequencing. All strains are fermented independently and later combined at the appropriate ratio when they are to be used in combination. The working seed is transferred from a storage vial to a sterilized shake flask containing sterilized nutrient broth and allowed to

grow for 16 hours with shaking at the strain-specific temperature. This pre-culture is then transferred aseptically to the main fermentation tank containing broth that has been sterilized at 121°C for 20 minutes. Fermentation usually lasts for 3-18 hours, depending on the strain. The pH is controlled during fermentation by the addition of food-grade ammonium hydroxide to maintain a fixed pH, typically between 5.0 and 6.0. Fermentation is terminated by cooling the fermenter to 10°C. The endpoint of fermentation is determined by monitoring the flow rate of base addition and the pH to determine when the growth has entered the stationary phase. Every step in the fermentation process is checked for purity by microscopic control.

The fermentation broth is then separated and concentrated by removing excess water by centrifuge. The concentrated broth is fed into a clean sanitized stainless-steel tank. Food-grade cryoprotectants are added to the concentrated broth to protect the bacteria from death and damage caused by subsequent freeze drying. The bacteria undergo lyophilization by storage under freezing temperatures and vacuum to allow water sublimation for approximately 72 hours.

The lyophilized powder is then milled and passed through a 1-mm sieve to create a uniform particle size. The sieve also functions to remove any foreign material. The milled powder is blended with excipients (food grade maltodextrin, microcrystalline cellulose, or corn starch, for example) to achieve the necessary product concentration. For products using the strains in combination, the three separate strains are blended to create a uniform bulk powder. The blended powder is packaged in aluminum laminated bags approved for food contact, labelled for identity, lot tracking, and manufacturing date, and stored at -20°C.

The production process is illustrated in Figure 9.

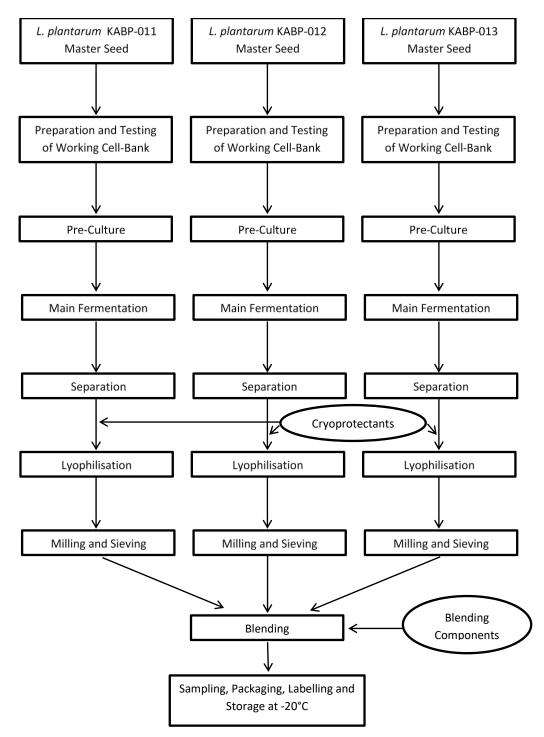


Figure 9: Manufacturing Flow Chart (Kaneka 2019, unpublished).

2.5. Specifications

Kaneka has established food-grade specifications for products containing the three strains *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination, as shown in Table 1. All testing is done using up-to-date analytical methods that have validated for their specific spplications.

Parameter	Specification
Bacterial Count	>1.2x10 ¹¹ cfu/g
Yeasts and Molds	<10 cfu/g
Enterobacteria	<10 cfu/g
E. coli	<1 cfu/g
Staphylococci (coag +)	<10 cfu/g
B. cereus	<100 cfu/g
Listeria monocytogenes	n.d. in 25 g
Salmonella spp.	n.d. in 25 g
cfu = colony-forming unit	n.d. = not detected

Table 1. Specifications (Kaneka 2019, unpublished).

Table 2 shows the results of analyses of three non-consecutive lots of the notified strains combined as bulk lyophilized powder.

Parameter	Specification	Lot					
Parameter	Specification	8820.01	8685.01	8685.07			
Bacterial Count	>1.2x10 ¹¹ cfu/g	1.75x10 ¹¹ cfu/g	1.48x10 ¹¹ cfu/g	1.44x10 ¹¹ cfu/g			
Yeasts and Molds	<10 cfu/g	<10 cfu/g	<10 cfu/g	<10 cfu/g			
Enterobacteria	<10 cfu/g	<10 cfu/g	<10 cfu/g	<10 cfu/g			
E. coli	<1 cfu/g	<1 cfu/g	<1 cfu/g	<1 cfu/g			
Staphylococci (coag +)	<10 cfu/g	<10 cfu/g	<10 cfu/g	<10 cfu/g			
B. cereus	<100 cfu/g	<100 cfu/g	<100 cfu/g	<100 cfu/g			
Listeria monocytogenes	n.d. in 25 g						
Salmonella spp.	n.d. in 25 g						
cfu = colony-forming unit	n.d. = not detected						

Table 2. Analyses of Three Lots of Combination Product (Kaneka 2019, unpublished).

Separate analyses were completed on the heavy metal content of 3 non-consecutive lots of the lyophilized powder blend, as shown in Table 3.

Heavy Metal	Unit	Lot				
	Unit	8685.04a	8685.06c	8685.05b		
Arsenic	mg/kg	<0.02	0.047	0.047		
Cadmium	mg/kg	<0.005	0.018	0.019		
Mercury	mg/kg	<0.005	<0.005	<0.005		
Lead	mg/kg	<0.005	0.006	<0.005		

Table 3. Analyses of Heavy Metals in Three Lots of Combination Products (Kaneka 2019, unpublished).

2.6. Stability

The stability (viability of cells) of the three individual strains and the 1:1:1 strain combination mixed with a carrier, stored in the original packaging, and stored under frozen conditions (-20°C) was measured over 18 months (Figure 10). The intended use of the microorganisms is limited to applications that can sufficiently support microorganism viability throughout the shelf-life of the product.

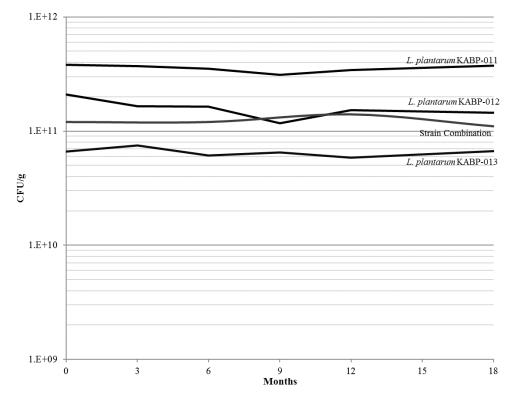


Figure 10: Microorganism Viability at -20°C (Kaneka 2019, unpublished).

Part 3. Intended Use and Dietary Exposure

L. plantarum KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination, are intended to be used in conventional foods, such as yogurt and other dairy products, soy products, chewing gum, and confectionary snacks. The intended use does not include infant formula, other products intended for consumption by infants, or foods regulated by the U.S. Department of Agriculture. The purpose of the identified strains is to serve either individually or as a combination of microorganisms to be consumed by the general population, excluding infants.

When used individually, the intended level of each strain of *L. plantarum* is intended to be at least $4x10^8$ cfu/serving over the shelf life of the product. The maximum level of addition is intended to be $4x10^9$ cfu/serving of the strain to allow for the loss of viability over the shelf life of the product.

When used as a combination, the intended combined level of the three *L. plantarum* strains is intended to be at least 1.2×10^9 cfu/serving over the shelf life of the product. This is equivalent to a level of 4×10^8 cfu/serving for each strain. The maximum level of addition of the combination is intended to be 1.2×10^{10} cfu/serving, equivalent to 4×10^9 cfu/serving of each individual strain, to allow for the loss of microorganism viability over the shelf life of the product.

The strains, individually or in combination, are expected to be present in a limited number of foods at between 10^9 and 10^{10} cfu/serving. The likely maximum ingestion is less than 10^{10} cfu/day, well within levels that have been shown to be safe. The identified strains of microorganisms will be present only in foods to which they are intentionally added, and this amount thus represents the total daily intake from all sources.

Part 4. Self-Limiting Levels of Use

L. plantarum KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 have no self-limiting levels of use. However, uses are restricted to foods that can maintain the survival of the strains.

Part 5. Experience Based on Common Use in Food

The GRAS conclusion is based on scientific procedures and not on common use in food before 1958.

Part 6. Narrative

6.1. History of Safe Ingestion

L. plantarum KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 in combination at a minimum concentration of 1.2×10^9 cfu/serving has been marketed in Mexico (2012), Europe (2013), Asia (2015), and Canada (2016) under the brand name AB-Life.

6.2. Properties of the Strains

Bosch et al. (2012a) investigated the properties of *L. plantarum* strains *L. plantarum* KABP-011 (CECT 7527), KABP-012 (CECT 7528), and KABP-013 (CECT 7529) *in vitro*. Survival and growth in simulated oral and gastrointestinal conditions was assessed in 10-30 μ g H₂O₂/ml, 100-300 μ g lysozyme/ml, and 0.3-1.0% bile salts, and acidity of pH 2-4. The strains were compared to *L. plantarum* 299v and VSL#3. Under oral conditions, the strains had a relative growth between 93.7% and 99.7% versus growth ranging from 81.2% to 92.9% by the comparison strains.

The adhesion capabilities of the strains to mucus and intestinal pig epithelium were compared with those of commercial strains *L. rhamnosus* GG and *L. plantarum* 299V and were found to be approximately four times as high for mucus adhesion at 6.8×10^5 cfu/cm² to 7.31×10^6 cfu/cm². Higher adhesion values were also observed for the strains on the epithelial cells, ranging from 5.19×10^5 cfu/cm² to 3.12×10^6 cfu/cm² versus 8.53×10^4 cfu/cm² and 2.5×10^5 cfu/cm² for the comparison strains.

The capability of the strains to generate bile salt hydrolase (BSH) was determined. BSH can hydrolyze bile salts used for fat and cholesterol absorption. BSH activity of the three strains were all higher than the reference strains *L. rhamnosus* GG, *L. plantarum* 299v, and *L. plantarum* VSL#3. The combination of the three strains had higher BSH activity than any individual strain. The combination of strains also reduced cholesterol *in vitro* by 13% and 50.9% when a 1% concentration of bile salts was added to solution. The ability of the strains to adhere cholesterol was also measured. Of the three strains, 2.26%, 2.36%, and 1.05% of the cells, respectively, adhered cholesterol to their surface. The production of two short-chain fatty acids (propionic acid and butyric acid) by the strains was evaluated. Propionic acid production for the strains was (in mg/L) 15.5, 12.2, and 44.9, compared to 12.9 for the reference 299v strain. Butyric acid production for the strains was (in mg/L) 14.2, 12.3, and 21.6, compared to 9.2 for the reference 299v strain.

6.3. Safety-Related Issues

6.3.1. Antibiotic Resistance

Mukerji et al. (2016) and Bosch et al. (2014) analyzed the phenotypic antibiotic resistance of *L. plantarum* KABP-011, KABP-012, and KABP-013 per ISO 10932:2010 (IDF, 2010) as recommended by the European Food Safety Authority (EFSA, 2012). The antibiotics tested and the minimum inhibitory concentration (MIC) cutoff values were selected based on the EFSA guidance.

The results of the MIC testing are shown in Figure 11. *L. plantarum* KABP-011 and *L. plantarum* KABP-012 exceeded the thresholds for clindamycin and kanamycin.

	Breakpoint	KABP-011		KABP-012		KABP-013	
		Mukerji	Bosch	Mukerji	Bosch	Mukerji	Bosch
Ampicillin	2	0.25	nr	1	2	0.5	nr
Gentamicin	16	4	nr	8	16	2	nr
Kanamycin	64	128	nr	128	64	64	nr
Erythromycin	1	0.5	nr	0.5	1	0.25	nr
Clindamycin	2	8	4	8	1	0.5	nr
Tetracycline	32	16	nr	16	32	16	nr
Chloramphenicol	8	4	8	8	8	4	16

 $nr = not reported \qquad \mu g / mL$

Figure 11: Antibiograms (Kaneka 2019, unpublished).

Mukerji et al. (2016) also investigated the antimicrobial resistance of these two strains using genomic analysis. A *cat* gene associated with resistance to chloramphenicol was observed in all three strains even though the breakpoint was not exceeded. The gene was not encoded on plasmids or near any insertion elements or prophages. In the two strains showing resistance to kanamycin and clindamycin, mutations as single nucleotide polymorphisms (SNPs) were observed in the 23S gene. These mutations were not present in the strain that did not show the resistance. The authors discussed the risk of horizontal gene transfer of the antibiotic resistance and concluded that these strains were not at risk for horizontal gene transfer.

6.3.2. Gene Mining for Antibiotic Resistance Genes, Virulence Factors, and Mobile Genetic Elements

As mentioned in the previous section, the genomes of L. plantarum KABP-011, KABP-012, and KABP-013 were analyzed by Mukerji (2016) for antibiotic resistance. The isolated DNA from the strains was analyzed using the MiSeq platform using 250 bp paired-end reads. Assembly was performed *de novo* with SeqMan NGen 2.0 and annotated with RAST. Comparative genomics was performed using progressive MAUVE 2.3.1. The genomes were searched using the BLAST contigs function in RAST. Specific gene sequences that had been associated with antibiotic resistance were downloaded from NCBI. A total of 92 individual genes were evaluated which had been reported to show resistance to the lincosamide and aminoglycoside families of antibiotics, of which clindamycin and kanamycin are members, respectively. Additionally, the three strain genomes were compared with BLAST against the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) database (Gupta et al., 2014) last modified on June 2, 2015. The authors noted that modifications of specific nucleotides in the 23S rRNA gene have been observed to confer antibiotic resistance (Vester and Douthwaite, 2001). Also, point mutations in the gene sequences of L4 and L22, which are ribosomal proteins, have been shown to generate antibiotic resistance (Zaman et al., 2007). Base substitutions in the 5 loci of the 23S rRNA gene were evaluated for the strains and the L4 and L22 gene sequences were evaluated for SNPs.

The KABP-011 draft genome consisted of 14 contigs and 3,225,239 bp for a coverage of 186x. The KABP-012 draft genome consisted of 30 contigs and 3,172,685 bp for a coverage of 162x. The KABP-013 draft genome consisted of 18 contigs and 3,098,101 bp for a coverage of 114x. No significant gene matches to the 92 genes from the NCBI database were found. When

blasted against the ARG-ANNOT database, one match to the chloramphenicol acetyltransferase gene, *cat*, was found in all three strains. The resistance to clindamycin and kanamycin in KABP-011 and KABP-012 could not be attributed to any known genes. In these two strains, the ribosomal mutations were evaluated. SNPs were observed in the 23S rRNA loci of the two strains but not in KABP-013. The three strains had identical L4 and L22 gene sequences, which were identical to the type strain. The strains were also evaluated for mobile genetic elements. The identified *cat* gene was not encoded on any plasmids and was not near any insertion elements or prophages. The authors concluded that the transfer of antibiotic resistance genes by the strains was not a risk.

An unpublished genome sequencing and mining was performed using a different NGS platform and compared to different updated databases. The genomes of *L. plantarum* KABP-011, KABP-012, and KABP-013 were sequenced as described previously in Section 2.3.3. The genomes were evaluated for the presence of antibiotic resistance genes, virulence factors, and mobile genetic elements.

In order to identify the presence of possible antibiotic resistance genes, the 3 annotated contigs from *L. plantarum* KABP-011 were compared against the last version of the Comprehensive Antibiotic Resistance Database (CARD), a bioinformatic database of resistance genes, their products, and associated phenotypes (Jia et al., 2017) updated April 25, 2019. This database contains 2,570 reference sequences, 1,233 SNPs of 82 pathogens, and more than 76,000 WGS assemblies. Contigs were compared by similarity using the program Resistance Gene Identifier (Jia et al., 2017), identifying potential hits after filtering them by having minimum sequence identity of 80% of sequence length and coverage of the reference gene greater than 50%. No antibiotic resistance genes were found in the sequenced strain of *L. plantarum* KABP-011.

The 5 annotated contigs from *L. plantarum* KABP-012 were also compared using the same criteria. No antibiotic resistance genes were found in the sequenced strain of *L. plantarum* KABP-012.

The 5 annotated contigs from *L. plantarum* KABP-013 were also compared using the same criteria. No antibiotic resistance genes were found in the sequenced strain of *L. plantarum* KABP-013.

The most up-to-date version of the Virulence Factors Database (VFDB) contains DNA sequences from 1,079 virulence factors from 951 bacterial strains having 32,436 virulence factor-related non-redundant genes information (Chen et al., 2016). All the sequences from each microorganism strain were compared to this database for the presence of virulence factors. Similarity was compared using the VF analyzer (Liu et al., 2019). Once basic housekeeping genes were discarded, *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 showed no hits in the database. Additionally, the genomes were compared to another database, VirulenceFinder (Joensen et al., 2014), using the ARIBA software. No virulence factors were identified. This indicates that the strains lack known genes for surface antigens, toxins, secretion systems, adhesion molecules, virulence-related nutrition mechanisms, hemolysis, or any other virulence factors.

Intrinsic antibiotic resistance in microorganisms consumed in food is not considered to be harmful. However, the transfer of genetic resistance via mobile genetic elements like prophages, phages, plasmids, and transposons to pathogenic bacteria sharing the gastrointestinal habitat is of concern (Zheng et al., 2017). The genome sequences of the notified strains were compared against the latest version of the A CLAssification of Mobile genetic Elements (ACLAME) database (Leplae et al., 2009). Similarity was compared using Blast+ to identify potential hits. The thresholds used were having a minimum sequence identity of 80% and coverage of the reference gene greater than 50%.

Results for *L. plantarum* KABP-011 against the assembled contigs are shown in Figure 12. Data indicate the origin of detected mobile elements, the bacterial species in the ACLAME database with maximum sequence similarity, mobile element ACLAME identifier code (Gene ID), and the contig (assembled part of the genome) where the gene is located. The right columns indicate the parameters of the BLAST-identified hits, including the starting and ending points of the gene inside the contig, the sequence alignment length (in bp), the DNA sequence identity percentage and a brief description of the pathway in which the identified gene participates.

CD	MGE Name	MGE Type	Host	Length (bp)	ldentity (%)	GbkAnnot
			Pediococcus pentosaceus ATCC			
contig01-CD1739	prophinder:42846	prophage	25745	87	85	hypothetical protein putative truncated membrane
contig01-CD2337	pGdh442	plasmid	Lactococcus lactis	106	94	protein
contig01-CD2338	pGdh442	plasmid	Lactococcus lactis	251	99	transport protein
contig01-CD2339	pGdh442	plasmid	Lactococcus lactis	216	97	ABC transporter

Results show 4 hits in all 3 annotated contigs obtained from the sequencing procedure followed in this analysis. All of them were described in the *Lactobacillus* genus except for the gene prophinder:42846 described in *P. pentosaceus* and 3 consecutive CDs with homology to pGdh442 plasmid described in *Lactococcus lactis*. Gene exchange events between species belonging to the same genus occur often in nature. Identified genes involve transporters, replication and repair proteins, secretion systems, transcriptional regulators and inner defense system proteins, none of them implying any risk of pathogenicity themselves.

These same sequences were compared against another database called PlasmidFinder 2.0.1 (Carattoli et al., 2014) which identifies genes and single nucleotide polymorphisms directly from NGS short reads; no mobile genetic elements were found.

No virulence or antibiotic resistance genes were found in a contiguous region to the detected mobile genetic elements. Thus, it is concluded that the sequenced strain from *L*. *plantarum* KABP-011 has no potential for transfer of pathogenicity or antibiotic resistance genes due to the presence of mobile genetic elements in its genome.

Results for similar analysis of L. plantarum KABP-012 are given in Figure 13.

CD	MGE Name	MGE Type	Host	Host Length Iden (bp) (%		GbkAnnot
contig01-CD0867	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	135	84	hypothetical protein
contig01-CD0868	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	126	84	hypothetical protein
contig01-CD0869	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	217	92	hypothetical protein
contig01-CD0870	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	124	95	hypothetical protein
contig01-CD0871	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	61	85	hypothetical protein
contig01-CD0878	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	119	91	hypothetical protein
contig01-CD1047	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	152	94	Phage terminase, small subunit
contig01-CD1048	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	632	95	Phage terminase-like protein, large subunit
contig01-CD1049	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	64	95	hypothetical protein
contig01-CD1050	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	387	93	hypothetical protein
contig01-CD1051	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	410	91	phage phi-C31 gp36 major capsid-like protein
contig01-CD1052	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	110	82	hypothetical protein
contig01-CD1067	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	87	85	hypothetical protein
contig01-GL1209	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	169	94	restriction endonuclease
contig01-GL1214	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	251	95	protease subunit of ATP- dependent Clp protease
contig01-PR1192	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	169	92	restriction endonuclease
contig01-PR1197	prophinder:42846	prophage	Pediococcus pentosaceus ATCC 25745	251	95	protease subunit of ATP- dependent Clp protease

Figure 13: L. plantarum KABP-012 ACLAME hits (Kaneka 2019, unpublished).

After discarding all the hits described in *Lactobacillus* genus, the 17 hits remaining presented in Figure 13 belong to prophages described in *P. pentosaceus* ATCC 25745. Identified genes involve transporters, replication and repair proteins, secretion systems, transcriptional regulators and inner defense system proteins, none of them implying any risk of pathogenicity themselves.

These same sequences were compared against PlasmidFinder 2.0.1 (Carattoli et al., 2014) and no mobile genetic elements were found.

No virulence or antibiotic resistance genes were found in a contiguous region to the detected mobile genetic elements. Thus, it is concluded that the sequenced strain from *L*. *plantarum* KABP-012 has no potential for transfer of pathogenicity or antibiotic resistance genes due to the presence of mobile genetic elements in its genome.

Results for similar analysis of L. plantarum KABP-013 are given in Figure 14.

CD	MGE Name	MGE Type	Host	Length (bp)	ldentity (%)	GbkAnnot
contig02-CD0019	pMRC01	plasmid	Lactococcus lactis	672	83	protein TrsE
contig02-CD0044	pMD136	plasmid	Pediococcus pentosaceus	186	80	DNA invertase-like protein
contig02-CD0078	pMRC01	plasmid	Lactococcus lactis	530	80	protein TrsK
contig02-CD0085	pMRC01	plasmid	Lactococcus lactis	672	81	protein TrsE
contig02-CD0086	pMRC01	plasmid	Lactococcus lactis	672	80	protein TrsE
contig02-CD0087	pMRC01	plasmid	Lactococcus lactis	672	92	protein TrsE
contig02-CD0089	pMRC01	plasmid	Lactococcus lactis	217	81	protein TrsD
contig02-GL0026	pMRC01	plasmid	Lactococcus lactis	217	81	protein TrsD
contig02-GL0106	pMRC01	plasmid	Lactococcus lactis	672	80	protein TrsE
contig02-GL0108	pMRC01	plasmid	Lactococcus lactis	672	92	protein TrsE
contig02-GL0112	pMRC01	plasmid	Lactococcus lactis	217	84	protein TrsD
contig02-PR0027	pMRC01	plasmid	Lactococcus lactis	217	81	protein TrsD
contig02-PR0106	pMRC01	plasmid	Lactococcus lactis	672	93	protein TrsE
contig02-PR0110	pMRC01	plasmid	Lactococcus lactis	217	84	protein TrsD
contig04-CD0015	pGdh442	plasmid	Lactococcus lactis	141	87	truncated transposase of ISLpl1
contig04-CD0016	pGdh442	plasmid	Lactococcus lactis	141	80	truncated transposase of ISLpl1
contig04-CD0029	pMD136	plasmid	Pediococcus pentosaceus	186	82	DNA invertase-like protein
contig05-CD0029	pMD136	plasmid	Pediococcus pentosaceus	186	83	DNA invertase-like protein
contig05-GL0045	pGdh442	plasmid	Lactococcus lactis	141	84	truncated transposase of ISLpI1
contig05-PR0045	pGdh442	plasmid	Lactococcus lactis	141	84	truncated transposase of ISLpl1

Figure 14: L. plantarum KABP-013 ACLAME hits (Kaneka 2019, unpublished).

After discarding all the hits described in *Lactobacillus* genus, 3 out of the 20 hits remaining presented in Table 1 belong to a pMRC01 plasmid of *Lactococcus lactis* and 17 hits of the pGdh442 plasmid described in *P. pentosaceus*. Identified genes involve transporters, replication and repair proteins, secretion systems, transcriptional regulators and inner defense system proteins, none of them implying any risk of pathogenicity themselves.

These same sequences were compared against PlasmidFinder 2.0.1 (Carattoli et al., 2014) and no mobile genetic elements were found.

No virulence or antibiotic resistance genes were found in a contiguous region to the detected mobile genetic elements. Thus, it is concluded that the sequenced strain from *L*. *plantarum* KABP-013 has no potential for transfer of pathogenicity or antibiotic resistance genes due to the presence of mobile genetic elements in its genome.

6.3.3. Biogenic Amines

L. plantarum KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 were individually plated on petri dishes and inoculated in synthetic liquid medium by the Enolab at the University of Valencia. The microorganisms were allowed to grow for 3 days at 28°C. Histidine, tyrosine, ornithine, and lysine were added as precursors for the biogenic amines histamine, tyramine, putrescine, and cadaverine. The production of biogenic amines was evaluated by

HPLC as described in Bover-Cid and Holzapfel (1999). None of the three strains was able to produce biogenic amines under the assayed conditions.

6.3.4. Lactic Acid

Most lactic-acid bacteria produce some amount of D-lactate (from 1% of all lactate produced up to 97%, depending on the strain; with 40% being a typical amount). The notified strains were evaluated for lactic acid production by Enolab at the University of Valencia. A Boehringer Mannheim kit was used to quantify the L-lactic and D-lactic acid content directly. *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 were determined to produce L-lactic acid at (all g/L) 5.38, 5.90, and 6.36 concentrations and D-lactic acid at 4.16, 3.93, and 3.82 concentrations respectively.

There has in the past been concern expressed about the potential of D-lactic acid producing bacteria to contribute to D-lactic acidosis, a rare metabolic occurrence that has been reported only in individuals suffering from short bowel syndrome (Vitetta et al., 2017). The only medical indication that D-lactate producing strains should not be used is derived from older studies in which infants were fed formulas that were acidified with known amounts of D- and Llactate (Stolley and Droese, 1971). Subsequent studies with acidified formulas have not supported these initial findings. The acidification was a direct result of the addition of chemical lactic acid and not naturally occurring acidification due to the fermentation of food matter.

Connolly et al. (2005) reviewed D-lactic acid and its metabolism and reported as follows:

1. There is no evidence to show that the normal gastrointestinal tract biota can induce Dlactic acidosis in the healthy human adult or infant.

2. D-lactic acid acidosis only occurs in subjects with a disturbed gastrointestinal function following bowel resection.

3. Well-controlled clinical trials (doses of 10^5 to 10^9 cfu/day for 28-30 days) in which the DL-lactic acid producing bacteria *Lactobacillus reuteri* was given to over 160 human newborn term and preterm infants clearly indicated that clinical signs of acidosis did not occur after *L. reuteri* administration at any dose tested.

4. Exposure of infants to the bacterium *L. reuteri* does not result in abnormal levels of D-lactic acid in the blood.

A more recent review of the literature (Lukasik et al., 2018) was performed to evaluate the ability of D-lactic acid producing bacteria, acidified infant formulas, and fermented infant formulas to cause pediatric D-lactic acidosis. The authors identified five randomized controlled trials from 2005 to 2017 which covered 544 healthy infants. No clinically relevant adverse events related to D-lactic acid were observed. Two case studies (5-year-old girl and 5-year-old boy) observed the development of acidosis from bacteria. Both children had short bowel syndrome secondary to intestinal resection. D-lactic acid producing bacteria do not pose a safety hazard to healthy children.

6.4. Research Studies of the Organisms

6.4.1. Studies of *L. plantarum* KABP-011, KABP-012, and KABP-0136.4.1.1. Animal Toxicity Study of *L. plantarum* KABP-011, KABP-012, and KABP-013

A seven day oral toxicity study in Wistar rats (Bosch et al., 2014) was performed for the L. plantarum KABP-011, L. plantarum KABP-012, and L. plantarum KABP-013 strains. Twelve 9-week-old Wistar rats (sex not reported) were equally divided into two groups (placebo and 1:1:1 strain combination) and dosed in the morning on two consecutive days at a level of 5×10^{10} cfu/kg bw/day with the bulk powder strain suspended in PBS solution or just PBS solution in the placebo group. Clinical observations were made for 5 additional days after dosing. Individual body weights were recorded on Day 0, 1, and then every two days. Water and feed consumption were monitored. At the end of the seven-day observation period, the animals were sacrificed with carbon dioxide. All animals were subjected to gross necropsy and mesenteric lymph node samples were taken to determine whether bacterial translocation had occurred. No signs of systemic toxicity were noted during the observation period and all animals showed expected gains in body weight; no differences in consumption of feed or water were observed. No abnormalities were noted at necropsy or histopathological examination. Bacterial translocation to the mesenteric lymph nodes and liver were similar between groups. The authors concluded that, "The results of the toxicity assay showed that L. plantarum CECT 7527, CECT 7528 and CECT 7529 were safe since they did not affect the animals' well-being and did not facilitate bacterial translocation even when administered at a high dose."

In an 8-week repeated-dose oral study in 5-week-old male Sprague Dawley rats, the effect of the combination of the strains on cholesterol metabolism was evaluated (Kim et al., 2014). Forty rats were divided into four equal groups. Hyperlipidemia in the rats was induced and maintained with a high-fat diet that was consumed throughout the study. Five rats were fed a control diet to confirm that the high fat diet induced the hyperlipidemia. The four groups were a control group, low-dose 0.6x10⁹ cfu/day, medium-dose 1.2x10⁹ cfu/day, and high-dose 2.4x10⁹ cfu/day administered daily by gavage in sterile saline solution. Dietary intake was measured every two days and body weight was measured weekly. Blood lipids, blood glucose, liver lipids, and organ weights were analyzed at the end of the experiment. The high-dose group had significantly less food intake and significantly less weight gain. All groups had significantly less gain in liver weight than the control group. The medium and high-dose groups had significantly lower blood serum levels of total cholesterol and LDL cholesterol. The high- dose group also had significantly lower liver levels of total lipids and total cholesterol and lower serum leptin. The authors concluded that, "The results of this study indicate that the L. plantarum mixture may exhibit anti-obesity and cholesterol-lowering effects, which suggest that the L. *plantarum* mixture has the potential to be [of use] in the management of obesity and hypercholesterolemia."

A 90-day repeated-dose oral toxicity study in 7-week-old male and female Crl:CD[®](SD) rats according to OECD and FDA Redbook 2000 guidelines was reported by Mukerji et al., (2016). Three groups of rats with 20 rats per group (10 of each sex) were individually housed, provided feed and water *ad libitum*, and dosed by gavage daily for 90 days with PBS solution, 5.5×10^{10} cfu/kg bw/day, and 1.85×10^{11} cfu/kg bw/day of the strains in a 1:1:1 ratio. Enumeration of the bacteria count was performed at the beginning, middle, and end of the study, confirming the cfu count. Mortality and morbidity were assessed at least twice daily, and an additional 31

clinical examination was conducted daily 1-3 hours after dosing. Body weights and food consumption were measured weekly and detailed clinical observations were conducted weekly. Ophthalmologic examinations were conducted prior to initiation of dosing and near the end of the study. Fecal samples for bacterial and chemical analysis were collected from each animal approximately monthly, starting prior to initiation of dosing. At the end of the dosing period, rats were fasted in metabolism cages overnight for at least 15 hours for urine collection. On the day of sacrifice, blood samples for hematology, clinical chemistry, and coagulation parameters were collected. Urinalysis results were tabulated for volume, specific gravity, pH, total protein, and urobilinogen. The following blood parameters were assessed:

Red blood cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red cell distribution width, absolute reticulocyte count, platelet count, white blood cell count and differential white blood cell count (absolute neutrophils, lymphocytes, monocytes, eosinophils, basophils, and large unstained cells, prothrombin time and activated partial thromboplastin time, aspartate aminotransferase, alanine aminotransferase, sorbitol dehydrogenase, alkaline phosphatase, total bilirubin, urea nitrogen, creatinine, total cholesterol, triacylglycerol, glucose, total protein, albumin, globulin, calcium, inorganic phosphorus, sodium, potassium, chloride, and total bile acids.

The external surface, all orifices, and the cranial, thoracic, abdominal, and pelvic cavities, including viscera were evaluated. Absolute and relative (to body and brain weight) organ weights were determined for the liver, kidneys, adrenal glands, thymus, brain, spleen, heart, and reproductive organs. Tissues from the following organ systems were preserved in fixative, processed to slides, and stained with hematoxylin and eosin:

Digestive system (liver, esophagus, stomach, duodenum, jejunum, ileum, cecum, colon, rectum, salivary glands, and pancreas), urinary system (kidneys and urinary bladder), respiratory system (lungs, trachea, nose, larynx, and pharynx), cardiovascular system (heart and aorta), hemato-poietic system (spleen, thymus, mandibular lymph node, mesenteric lymph node, bone marrow, and Peyer's patches), endocrine system (pituitary, thyroid, parathyroid, and adrenal glands), nervous system (brain, spinal cord and sciatic nerve), musculoskeletal system (skeletal muscle, femur/knee joint, sternum), reproductive system of males (testes, epididymides, prostate, and seminal vesicles) and females (ovaries, uterus, mammary glands, and vagina), Harderian glands, skin, and eyes (including retina and optic nerve).

Tissues collected from animals in the control and 1000 mg/kg BW/day groups were evaluated microscopically.

Samples of whole blood, liver, and mesenteric lymph nodes were collected at necropsy and incubated under both aerobic and anaerobic conditions; bacterial colonies on anaerobic plates were evaluated for identification of the test strains. Each colony was assessed morphologically for shape, margin, elevation, size, texture, appearance, pigmentation and optical property.

Wet fecal samples were collected and analyzed for bacterial identification and enumeration and for primary and secondary bile acids, neutral sterols, short-chain fatty acids, branched-chain fatty acids, and lactic acid.

One animal died due to an intubation error, but all other animals survived to sacrifice. Body weight, weight gain, feed consumption, and feed efficiency showed no effects from the test article. The authors stated that there were no effects or abnormalities in the hematology, clinical chemistry, coagulation parameters, and urinalysis parameters attributable to the intervention. Macroscopic observation at necropsy showed no treatment-related abnormalities. The test strains were not translocated to the blood of any animal. Translocation to the liver and mesenteric lymph nodes was observed at low to moderate numbers. The authors concluded that this was consistent with previous publications that showed low levels of lactobacilli translocation. This did not pose a safety concern at the low levels seen and the clinical, hematological, and microscopic findings were indicative of the safety. The no observed adverse effect level (NOAEL) in male and female rats was determined to be 1.85x10¹¹ cfu/kg bw/day, the highest dose level evaluated (Mukerji et al., 2016).

These animal studies are summarized in Table 4.

6.4.1.2. Human Clinical Studies of L. plantarum KABP-011, KABP-012, and KABP-013

The human clinical studies are summarized in Table 5.

Study Design	Subjects	Strain and Dosage	Duration	Results	Reference
Acute oral toxicity study in the Wistar rat.	12 9-week old Wistar rats	(a) 1.5 mL PBS solution (b) <i>L. plantarum</i> KABP-011, KABP-012, and KABP-013 (1:1:1) at 5x10 ¹⁰ cfu/kg in 1.5 mL PBS	2 consecutive daily doses and 7 total days	No signs of systemic toxicity were noted during the observation period. All animals showed expected gains in body weight over the observation period. No abnormalities were noted at necropsy. Bacterial translocation to the MLN and liver were similar between groups.	Bosch et al., 2014
8-week repeated-dose oral toxicity study in Sprague Dawley rats	40 5-week old male Sprague Dawley rats induced into hyperlipidemia	 (a) Sterile Saline solution (b) <i>L. plantarum</i> KABP-011, KABP-012, and KABP-013 (1:1:1) at 0.6x10⁹ cfu/day (c) <i>L. plantarum</i> KABP-011, KABP-012, and KABP-013 (1:1:1) at 1.2x10⁹ cfu/day (d) <i>L. plantarum</i> KABP-011, KABP-012, and KABP-013 (1:1:1) at 2.4x10⁹ cfu/day 	60 days	The highest-dose group had significantly less weight gain and feed intake than the control group. All groups had significantly less gain in liver weight than the control group. The medium and high-dose groups had significantly lower blood serum levels of total cholesterol and LDL cholesterol. The high- dose group also had significantly lower liver levels of total lipids and total cholesterol and lower serum leptin.	Kim et al. 2014
90-day subchronic oral toxicity study in CrI:CD(SD) rats	30 male and 30 female Crl:CD(SD) rats	 (a) PBS solution (b) <i>L. plantarum</i> KABP-011, KABP-012, and KABP-013 (1:1:1) at 5.5x10¹⁰ cfu/kg bw/day (c) <i>L. plantarum</i> KABP-011, KABP-012, and KABP-013 (1:1:1) at 1.85x10¹¹ cfu/kg bw/day 	90 days	A NOAEL was determined of 1.85x10 ¹¹ cfu/kg bw/day for both male and female rats. Body weight, weight gain, food consumption, and food efficiency showed no effects from the test vehicle. The authors stated that there were no effects or abnormalities in the hematology, clinical chemistry, coagulation parameters, and urinalysis parameters attributable to the intervention. Macroscopic observation at necropsy showed no treatment related abnormalities.	Mukerji et al., 2016

Table 4. Animal Studies of *L. plantarum* KABP-011, KABP-012, and KABP-013.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, double- blind, placebo-controlled trial to evaluate the microorganisms' effects on cholesterol and blood lipids in hypercholesterolemic subjects	Sixty subjects (34M and 26F, 51.8 ± 7.2 years) with 30 in the placebo and intervention arms. Spain	 (a) <i>L. plantarum</i> KABP-011, KABP-012, and KABP-013 in a 1:1:1 ratio were consumed as a capsule at 3.01x10⁹ cfu/day at the start of the study which had been reduced to 1.28x10⁹ cfu/day at the end of the study (b) Placebo capsule 	Daily for 12 weeks 4-week follow-up	All subjects completed the study. Body weight and BMI significantly decreased from baseline for both groups but not between groups. Assayed blood glucose, creatinine, GOT, GPT, GGT, and liver enzymes stayed within normal physiological limits and were not significantly different than baseline values. There were no treatment related adverse events observed.	Fuentes et al., 2013, 2016
An abstract for a presentation at the 10th Workshop of the Spanish Society of Probiotics and Prebiotics (SEPyP 2019) describes a prospective, observational study of subjects initiating consumption of KABP- 011, KABP-012, and KABP-013.	343 subjects (median age of 55 years, 63% female)	<i>L. plantarum</i> KABP-011, KABP-012, and KABP-013 in a 1:1:1 ratio were consumed as a capsule at 1.2x10 ⁹ cfu/day	Daily for 12 weeks	Seventeen percent of patients reported tolerability issues but none of them were considered severe. The tolerability issues correlated with antiplatelet use only. No adverse events were reported.	Espadaler et al., 2019

Table 5. Human Clinical Studies of *L. plantarum* KABP-011, KABP-012, and KABP-013.

6.4.2. Studies of Other Strains of the Species

Selected human intervention studies of *L. plantarum* strains other than the notified strains are summarized in Table 6.

-			-	
	-		—	
-				
			-	
			-	

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Case study of short-bowel patient with small-bowel bacterial overgrowth	16-year-old boy Received Lp299v	10 ¹⁰ cfu <i>L. plantarum</i> 299v/day	Not reported	Replacement of the antibiotic with <i>L. plantarum</i> 299v produced good therapeutic response with no reported adverse effects. No indication of D-lactic acidosis was reported in this short-bowel patient receiving <i>L. plantarum</i> .	Vanderhoof et al., 1998
Prospective, randomized, double- blind, placebo-controlled study to evaluate the effect of <i>L.</i> <i>plantarum</i> 299v on markers of CVD	30 apparently healthy males with a mean age of 42.6 years Lp299v: 15	1x10 ¹⁰ cfu <i>L. plantarum</i> 299v	6 weeks	No adverse effects were reported from the ingestion of 1x10 ¹⁰ cfu/day of <i>L. plantarum</i> 299v.	Bukowska et al., 1998
Prospective, randomized, double- blind, placebo-controlled study of the effects of <i>L. plantarum</i> 299v on metabolic endpoints and fecal bacteria	48 apparently healthy adults (11 males and 37 females) with a mean age of 37 years. Lp299v: 26	2x10 ¹⁰ cfu <i>L. plantarum</i> 299v	21 days	No participants dropped out and there were no differences in adverse events reported by the 2 groups. 5 individuals in each group reported transient nausea or abdominal discomfort. Those receiving live bacteria had an increase in stool volume, a decrease in flatulence, and increases in fecal levels of carboxylic acids, but no change in fecal pH. <i>L. plantarum</i> 299v was found in large numbers in the feces of the test group at weeks 1 and 3, but in only 5 of the 26 individuals 8 days later. No other changes were seen in the fecal microbiota.	Johansson et al., 1998

Table 6. Human Clinical Studies of Other Strains of L. plantarum.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, single- blind placebo-controlled trial of the ability of <i>L. plantarum</i> 299v to reduce the incidence of infective diarrhea among children	143 children aged 6 months to 3 years attending daycare in a region of Brazil with a high incidence of infectious diarrhea. Lp299v: 71	10 ¹⁰ cfu <i>L. plantarum</i> 299v/day	3 months	No adverse effects were reported from the ingestion of 10 ¹⁰ cfu/day of <i>L. plantarum</i> 299v by these young children.	Ribeiro and Vanderhoof, 1998
Prospective, randomized, double- blind, placebo-controlled study of the effects of fermented and unfermented cereal gruel with <i>L.</i> <i>plantarum</i> 299v on the presence of fecal enteric bacteria	151 apparently healthy children aged 6 months to 5 years. Lp299v: 50	The daily dose of <i>L. plantarum</i> 299v was not reported	13 days	The proportion of children in the experimental and control groups harboring enteric bacteria (campylobacter, salmonella, shigella, <i>E. coli</i> O157, and enterotoxigenic <i>E. coli</i>) did not differ. There were no reported adverse effects due to consumption of fermented cereals.	Kingamkono et al., 1999

Table 6. Human Clinical Studies of Other Strains of L. plantarum.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, double- blind, placebo-controlled study of the effect of <i>L. plantarum</i> 299v on the symptoms of AIDS	15 immunocom- promised children (5 males and 10 females) with HIV, aged 11.5 months to 14 years. All received Lp299v.	2x10 ¹⁰ cfu <i>L. plantarum</i> 299v	About 1 month	No patient experienced bloating or other symptoms of intolerance, and none had to be withdrawn. No bacteria were detected in rectal swabs by the end of the first month after cessation of administration. The authors concluded, "The data suggest that <i>L. plantarum</i> 299v may be given safely to the immune-compromised host and may indeed have a positive effect on immune response."	Cunningham- Rundles et al., 2000
Prospective, randomized, double- blind, placebo-controlled trial of the effect of attempted alteration of the gastrointestinal microecology of IBS patients with <i>L. plantarum</i> 299v	52 adult patients with IBS. Lp299v: 25	2x10 ¹⁰ cfu <i>L. plantarum</i> 299v/day	4 weeks	<i>L. plantarum</i> 299v was found in the fecal samples from 84% of the test group, but there were no changes or differences between test and control groups in other bacterial counts. The authors noted that the products were well tolerated and no treatment-related adverse effects were reported from ingestion of 2x10 ¹⁰ cfu/day of <i>L.</i> <i>plantarum</i> 299v for 4 weeks.	Nobaek et al., 2000

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
3 open label experiments on the ability of <i>L. plantarum</i> 299v to colonize tonsilar epithelia	1 st experiment: 6 adults aged 33-42 years (1 man and 5 women, mean age = 38 years); 2 nd experiment: 2 women aged 41 and 42 years; 3 rd experiment: same 2 women All received Lp299v.	1 st experiment: 1 dose of 2x10 ¹¹ cfu <i>L. plantarum</i> 299v; 2 nd experiment: 1 dose of 10 ¹¹ cfu <i>L. plantarum</i> 299v; 3 rd experiment: 1 dose of 10 ¹⁰ cfu <i>L. plantarum</i> 299v	Single doses	The authors concluded that, since the bacteria could be isolated from tonsillar epithelia up to 8 hours after ingestion despite the constant flow of saliva and beverages over the tonsils, "the bacteria under investigation may possess the capacity to adhere to tonsillar cells." No adverse effects were reported.	Stjernquist- Desatnik et al., 2000
Prospective, randomized, double- blind, placebo-controlled trial of the effect of <i>L. plantarum</i> 299v on IBS patients	40 IBS patients (8 males and 32 females aged 27-63 years, mean = 45 years). Lp299v: 20	2x10 ¹⁰ cfu <i>L. plantarum</i> 299v/day	4 weeks	The authors noted that "No treatment related side-effects were observed."	Niedzielin et al., 2001

Table 6. Human Clinical Studies of Other Strains of L. plantarum.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, unblinded study to test if <i>L.</i> <i>plantarum</i> 299v administered before and after abdominal surgery reduces the incidence of sepsis	129 patients (75 males and 54 females with median age = 68 years). Lp299v: 64	2.5x10 ¹⁰ cfu <i>L. plantarum</i> 299v/day	median = 2 weeks	No differences were seen between the experimental and control groups in bacterial translocation to the lymph nodes or ileal serosa, gastric colonization, C-reactive protein levels, septic complications, or mortality. There were no reported adverse effects.	McNaught et al., 2002
Prospective, randomized, double- blind, placebo-controlled trial of the ability of <i>L. plantarum</i> 299v to reduce symptoms of CVD risk factors in smokers	36 apparently healthy 25-45-year- old smokers (18 of each sex). Lp299v: 18	2x10 ¹⁰ cfu <i>L. plantarum</i> 299v/day	6 weeks	No adverse events were reported; <i>L. plantarum</i> 299v was found in fecal samples from 13 of the 18 members of the test group. All of the biochemical changes were beneficial; no adverse changes were seen.	Naruszewicz et al., 2002

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, double-blind, placebo-controlled crossover trial of the effect of <i>L. plantarum</i> 299v on colonic fermentation of IBS patients	12 (1 male and 11 female aged 23-61 years, mean age = 40.6 years) gastroenterologic IBS outpatients. All received Lp299v.	6.3x10 ⁹ cfu <i>L. plantarum</i> 299v/day	4 weeks	No difference was seen between the groups on any measure: exhalation of hydrogen and methane during calorimetry, breath hydrogen after lactulose ingestion, or daily symptom scores. The authors concluded that " <i>Lactobacillus</i> <i>plantarum</i> 299v in this study did not appear to alter colonic fermentation." There were no adverse effects.	Sen et al., 2002
Prospective, randomized, double- blind, placebo-controlled study of the ability of <i>L. plantarum</i> 299v to reduce the likelihood of further recurrent episodes of <i>Clostridium</i> <i>difficile</i> -associated diarrhea	21 patients (1 male and 20 females; mean age = 63.8 years) testing positive for <i>C. difficile</i> toxin and having a history of previous <i>C. difficile</i> -associated diarrhea. Lp299v: 12	5x10 ¹⁰ cfu of <i>L. plantarum</i> 299v/day	38 days	There was a statistically insignificant reduction in the risk of recurrence among the patients receiving <i>L. plantarum</i> 299v, and the authors noted that "Treatment with the lactobacilli had no apparent side-effects."	Wullt et al., 2007; Wullt et al., 2003
Prospective, randomized, double- blind, placebo-controlled study of the effect of a test beverage with <i>L. plantarum</i> 299v on plasma antioxidant capacity and fecal bacteria	98 volunteers with a high working pace (39 men and 59 women aged 21-61 years [mean age = 35 years] Lp299v: 50	2.2x10 ¹⁰ cfu <i>L. plantarum</i> 299v/day	4 weeks	There was no difference between the test and control groups in the incidence or nature of adverse effects and there were no adverse events that could reasonably be attributed to ingestion of <i>L.</i> <i>plantarum</i> 299v.	Onning et al., 2003

Table 6. Human	Clinical Studies	s of Other Strains	of L. plantarum.
----------------	-------------------------	--------------------	------------------

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, double- blind, placebo-controlled study to evaluate the effect of a fermented oat product containing <i>L.</i> <i>plantarum</i> 299v on children's intestinal function and microbiota	69 apparently healthy children aged 6 months to 3 years Lp299v: 33	1.4x10 ¹¹ cfu <i>L. plantarum</i> 299v	3 weeks	Product-related adverse events were reported for 5 children, 4 in the experimental group and 1 control: 3 children in the experimental group developed constipation and one child had regurgitations (which had begun before feeding commenced); one placebo-group child had softer than normal stools. No differences were seen between groups in stool frequency and consistency, flatulence, vomiting, or intestinal pain. The authors concluded that "the children tolerated the fermented oat product well."	Berggren et al., 2003

Table 6. Human Clinical Studies of Other Strains of L. plantarum.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, double- blind, placebo-controlled study of the effect of <i>L. plantarum</i> 299v on gut ecology and microbiota	20 apparently healthy adults (9 males and 11 females); mean age = 32.9 years). Lp299v: 10	2x10 ¹¹ cfu <i>L. plantarum</i> 299v	4 weeks	No side effects were reported attributable to individuals consuming <i>L. plantarum</i> 299v; all had the strain in their feces, but it could be recovered from only one person a week after the end of ingestion. No adverse effects were reported.	Goossens et al., 2003

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, unblinded study of the ability of <i>L.</i> <i>plantarum</i> 299v to adhere to the gut mucosa of critically ill patients	15 critically ill patients admitted to the ICU, 8 males and 9 females aged 33 to 84 years (mean = 64.6 years). Lp299v: 8	2x10 ¹¹ cfu <i>L. plantarum</i> 299v/day	Duration of stay in the ICU—4-37 days; median = 11 days	All patients tolerated total or partial enteral feeding; there were no differences in diarrhea, bloating, illness severity, length of ICU stay, 6-month mortality, levels of C-reactive protein, or leukocyte count.	Klarin et al., 2005
Prospective, randomized, double- blind, placebo-controlled study of the survival of <i>L. plantarum</i> 299v in the GI tract and its effects on fecal microbiota, with and without gastric acid inhibition.	29 apparently healthy volunteers (9 males and 20 females, mean age = 28.5 years). All received Lp299v.	2x10 ¹¹ cfu <i>L. plantarum</i> 299v	2 weeks	No side effects were reported and there were no differences between groups in defecation frequency, stool consistency, fecal pH, or concentrations of SCFA. The administered strain was detected in the feces of all participants at the end of administration, but only in one 4 weeks later	Goossens et al., 2005

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, unblinded study of the effect of <i>L.</i> <i>plantarum</i> 299v on gut barrier function and systemic inflammatory response in critically ill patients	103 patients (58 males and 45 females aged 28-90 years; median age = 71 years) within 24 hours of admission to the ICU. Lp299v: 52	10 ¹⁰ cfu <i>L. plantarum</i> 299v/day	Until discharge from the hospital—3- 17 days; median = 9 days	The mortality rate was 35% in both groups. 68 septic complications occurred; there were no differences in incidence, causes, or severity between test patients and controls. The authors concluded that "the results of this prospective randomised trial suggest that <i>Lactobacillus</i> <i>plantarum</i> 299v may attenuate the systemic inflammatory response in critically ill patients. This was not accompanied, however, by any significant changes in gastrointestinal microflora, endotoxin exposure, intestinal permeability, septic morbidity or mortality."	McNaught et al., 2005

Table 6. Human Clinical Studies of Other Strains of L	plantarum.
---	------------

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, double- blind crossover-design study to assess the effect of <i>L. plantarum</i> 299v on absorption of non-heme iron from a phytate-rich meal	24 apparently healthy women with a mean age of 25 years. All received Lp299v.	1.1x10 ¹¹ cfu <i>L. plantarum</i> 299v	2 days	There were no reported adverse events.	Bering et al., 2006
Prospective, randomized, double- blind, placebo-controlled study to assess the effect of ingestion of <i>L. plantarum</i> 299v on fecal bacterial ecology and mucosal adhesion of bacteria	29 apparently healthy patients (16 males and 13 females with a mean age of 56.9 years) undergoing colonoscopic examination for polyps. Lp299v: 15	2x10 ¹¹ cfu <i>L. plantarum</i> 299v	2 weeks	No side effects were reported, and no differences were seen between groups in defecation frequency or stool consistency.	Goossens et al., 2006

Table 6. Human Clinical Studies of Other Strains of L. plantarum.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, double- blind, placebo-controlled crossover study to test the effect of lyophilized <i>L. plantarum</i> 299v on absorption of non-heme iron	18 apparently healthy women with a mean age of 22 years. All received Lp299v.	10 ¹¹ cfu viable lyophilized <i>L. plantarum</i> 299v	2 days	Iron absorption was no higher with <i>L. plantarum</i> 299v than without. The authors suggested that the lack of effect of the intervention could be explained by the bacteria not being in an active state, but there were no adverse effects.	Bering et al., 2007
Prospective, randomized, double- blind, placebo-controlled study of the capacity of <i>L. plantarum</i> 299v to reduce <i>Clostridium</i> difficile- associated disease in critically ill patients	44 ICU patients (26 males and 18 females aged 18-89 years; mean age = 64.7 years) receiving antibiotic therapy. Lp299v: 22	1.6x10 ¹¹ cfu (later 8x10 ¹⁰ cfu) <i>L. plantarum</i> 299v/day	Duration of stay in the ICU—2.5-22 days; mean = 5.5 days	Two patients from each group died in the ICU; 1 patient from the experimental group died in the hospital, and 4 patients from the control group died within 6 months. There were no differences between groups in sequential organ failure, length of ICU stays, or days on ventilators. There were no differences in C-reactive protein, TNF- α , IL-1 β , or IL-6; IL-10 and white blood cell counts were higher in the control group than in patients receiving <i>L. plantarum</i> 299v. Gut permeability was higher in the control group than in the test group. The study product was well tolerated and the authors stated that "We found no adverse impact of the given preparation."	Klarin et al., 2008

Table 6. Human Clinical Studies of Other Strains of L. plantarum.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, double- blind, placebo-controlled study of the effect of <i>L. plantarum</i> 299v on GI symptoms during antibiotic therapy	239 patients (93 males and 146 females; median age = 45 years) receiving antibiotic therapy for infectious disease. Lp299v: 80	1x10 ¹⁰ cfu <i>L. plantarum</i> 299v/day	Until 7 days after the end of antibiotics	76 patients withdrew or were excluded from the study, 38 each from the test and placebo groups; reasons for withdrawal did not differ between the groups. Diarrhea was infrequent (only 5 and 6 patients in the placebo and test groups, respectively). The authors reported that "No side effects of the treatment were recorded."	Lönnermark et al., 2010
Prospective, randomized, double- blind, placebo-controlled, multi- center study of the capacity of <i>L.</i> <i>plantarum</i> 299v to reduce symptoms of IBS	200 IBS patients (141 males and 59 females; mean age = 37.8 years). Lp299v: 98	10 ¹⁰ cfu <i>L. plantarum</i> 299v/day	4 weeks	No changes were observed in pulse or respiratory rates, blood pressure, or body temperature, and no side effects were reported.	Sawant et al., 2010
Randomized, double-blind, placebo-controlled trial to evaluate microorganism effect on patients with IBS meeting the Rome III criteria.	214 subjects with IBS with 108 (70M, 38F; mean age 36.5± 12.1 years) in the intervention arm; 106 (81M, 25F, mean age 38.4±13.1 years) in the placebo arm.	<i>L. plantarum</i> 299v at 1x10 ¹⁰ cfu/day as a capsule	Daily for 4 weeks	No significant side effects were reported in the study. Transient vertigo was noted by one patient in the intervention arm and no change in blood parameters was detected throughout the study.	Ducrotte et al., 2012

Table 6. Human Clinical Studies of Other Strains of L. plantarum.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective open-label study of treatment of ulcerative colitis with <i>L. plantarum</i> 299v	39 ulcerative colitis patients (15 males and 24 females aged 19-50 years [median age – 35 years]) Lp299v: 39	2.5x10 ¹⁰ cfu for 2 days, then 5x10 ¹⁰ cfu thereafter	Up to 176 days	The authors reported: "No major AEs were reported and there were no dropouts due to AEs. An increased number of bowel movements were reported by 11 patients (28%), bloating by four (10%) and an increased number of bowel movements and bloating by three (8%). All AEs were self-limiting or managed by dose adjustments. For example, if a patient experienced a presumable AE during the introduction of Profermin®, the period with the low Profermin® dose was prolonged for up to 2 wk. None of the 8 dropouts or 4 excluded patients left the trial due to deterioration in UC symptoms."	Krag et al., 2012
Prospective, randomized, double- blind, placebo-controlled trial of the effect of prophylactic <i>L.</i> <i>plantarum</i> 299v on pathogenic bacteria, translocation, and cell proliferation in colon surgery	64 patients (36 males and 28 females aged 64 to 80 years; median age = 72 years) referred for colonic resection Lp299v: 32	10 ¹¹ cfu <i>L. plantarum</i> 299v	14 days	There were no differences between groups in the incidence of enteric pathogenic bacteria, bacterial translocation, or postoperative complications. The authors noted that, "No adverse effects were recorded after the administration of high doses of <i>L. plantarum</i> 299v."	Mangell et al., 2012

Table 6. Human Clinical Studies of Other Strains of L. plantarum.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, double- blind, placebo-controlled pilot study of effects of <i>L. plantarum</i> 299v on obstructive jaundice during biliary drainage	17 biliary-drainage patients (12 men, 5 women aged 48 to 75 years [median = 52 years]) Lp299v: 5	The daily dose of <i>L. plantarum</i> 299v was not reported	7 days	The findings of the hematological and biochemical analyses were not reported, suggesting that the findings were not remarkable. There were no reports of adverse effects from the treatment.	Jones et al., 2013
Prospective randomized single- blind two-arm study comparing Profermin® and Fresubin as treatments for ulcerative colitis	73 ulcerative-colitis patients (33 males and 40 females aged 20-78 years; mean age 41 years) Lp299v: 32	Median = 4.89x10 ¹⁰ cfu of <i>L.</i> <i>plantarum</i> 299v		The authors reported that, "No major adverse events (AEs) were reported, but 3 patients experienced AEs. In the Fresubin group, one experienced an 'obvious weight gain' and one felt it induced vomiting. In the Profermin group, one suffered from rumbling and bloating." They concluded that, "Supplemen- tation with Profermin is safe, well tolerated, palatable."	Krag et al., 2013
Prospective, randomized, double- blind, placebo-controlled trial to evaluate the microorganisms' effects on systemic immunity, blood chemistry, bowel movements, and influenza specific antibodies in the elderly	50 institutionalized subjects with 47 completing the study (26M and 21F >65 years), 19 in the high-dose arm, 13 in the low-dose arm, and 15 in the placebo arm. Spain	 (a) Lactobacillus plantarum KABP-031 and KABP-032 at 5x10⁸ cfu/day in 20g of powdered skim milk diluted into 200 mL water (b) Lactobacillus plantarum KABP-031 and KABP-032 at 5x10⁹ cfu/day in 20g of powdered skim milk diluted into 200 mL water (c) 20g of powdered skim milk diluted into 200 mL water 	Daily for 12 weeks 12 weeks follow-up	There were no significant changes in the BMI, Barthel Index, and routine laboratory tests between the groups during the treatment or follow-up periods. The laboratory tests measured albumin, glucose, total cholesterol, triglycerides, creatinine, AST, ALT, ALP, GGT, total bilirubin, hemoglobin, leukocytes, and platelets with no reported adverse effects.	Mane et al., 2011 Bosch et al., 2011 Bosch et al., 2012b

Table 6. Human Clinical Studies of Other Strains of L. plantarum.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Randomized, double-blind, placebo-controlled trial to evaluate microorganism effects on patients with IBS symptoms meeting the Rome II criteria.	81 adults (mean age 48 years) with 54 (2M, 52F; mean age 48.15±13.48 years) in the intervention arm; 27 (27F; mean age 47.27±12.15 years) in the placebo arm.	<i>L. plantarum</i> 299v at 0.5x10 ⁹ cfu/capsule (1x10 ¹⁰ cfu/day)	2x daily for 8 weeks	The treatment did not provide symptomatic relief versus the placebo. One patient suffered a severe rash as an adverse event, but the rash was attributed to an unrelated gynecologic condition.	Stevenson et al., 2014
Retrospective open-label study of the use of <i>L. plantarum</i> 299v to reduce the incidence of <i>Clostridium difficile</i> infection	356 organ trans- plant patients, 174 before <i>L. plantarum</i> 299v and 182 after Lp299v: 182	10 ⁹ cfu <i>L. plantarum</i> 299v	Not reported	Of these patients, 21 in the first year and 2 in the second year were diagnosed with <i>C. difficile</i> infection, infection rates of 12.1 and 1.1%, respectively. No adverse effects were reported due to the treatment.	Kujawa- Szewieczek et al., 2015
Prospective open-label multi- center pilot study of safety and efficacy of prophylactic use of <i>L.</i> <i>plantarum</i> 299v in children and adolescents undergoing hematopoietic cell transplantation	30 children and adolescents (16 males and 14 females aged 7.7±4.7 years; the age range was 2.2 to 17.3 years) Lp299v: 30	10 ⁸ cfu <i>L. plantarum</i> 299v/kg bw/day	21 days	No episodes of <i>L. plantarum</i> bacteremia were observed. The authors reported that, "We did not observe any serious adverse events or unexpected severe adverse events attributed to [<i>L. plantarum</i>] in any patient enrolled to the study." The authors concluded that "Our study provides preliminary evidence that administration of [<i>L. plantarum</i>] is safe and feasible in children and adolescents undergoing [hematopoietic cell transplantation]."	Ladas et al., 2016

Table 6. Human Clinical Studies of Other Strains of L. plantarum.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Prospective, randomized, double- blind, placebo-controlled, multi- center study of the ability of <i>L.</i> <i>plantarum</i> 299v to treat <i>Salmonella</i> infection	149 patients with Salmonella infections (40 males and 109 females aged 5 to 68 years; median age = 36 years) Lp299v: 77	5x10 ¹⁰ cfu <i>L. plantarum</i> 299v	Median of 26 days	The authors reported a non- statistically significant tendency for a greater number of gastrointestinal symptoms to be reported by patients consuming <i>L. plantarum</i> 299v. The conclusion of the authors was that, "Our results give little support for positive effects of <i>L.</i> <i>plantarum</i> 299v treatment in nontyphoid salmonellosis."	Lönnermark et al., 2015
2 prospective, randomized, single-blind, placebo-controlled, cross-over trials to assess the ability of <i>L. plantarum</i> 299v to improve iron absorption	22 apparently healthy Swedish women of reproductive age, 11 in each trial Lp299v: 11	10 ⁹ or 10 ¹⁰ cfu <i>L. plantarum</i> 299v in trials 1 and 2	4 days	No adverse effects were reported.	Hoppe et al., 2015
Prospective, randomized, double- blind, placebo-controlled trial of the effects of <i>L. plantarum</i> 299v and <i>Bifidobacterium infantis</i> Cure 21 on patients with poor ileal pouch function	32 patients with impaired pouch function, 24 men and 8 women, aged 27- 70 years (median age = 50 years) Lp299v: 16	10 ¹⁰ cfu each of <i>L. plantarum</i> 299v and <i>B. infantis</i> Cure 21	21 days	There were no differences on any measures between the experimental and placebo groups and the authors concluded that, "The current study failed to confirm the hypothesis that [the interventions] improve function in patients with poor pouch function." There was no discussion of adverse effects of the treatment.	Bengtsson et al., 2016

 Table 6. Human Clinical Studies of Other Strains of L. plantarum.

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Randomized, double-blind, placebo-controlled trial to evaluate microorganism effect on side effects of outpatient antibiotic treatment of children.	438 children (1-11 years) with 218 (113M, 105F; mean age 5.1±2.6 years) in the intervention arm and 220 (122M, 98F; 5.2±2.9 years) in the placebo arm.	<i>L. plantarum</i> 299v at 1x10 ¹⁰ cfu/day as a capsule	Daily for 15- 28 days	No beneficial effect was ob- served related to the incidence of loose/watery stools, mean number of loose/watery stools, or the incidence of abdominal symptoms. 155 adverse events were reported in 99 children by the parents. Children with adverse events were significantly more common in the placebo arm (27.3% vs. 17.9%, <i>P</i> =0.02). The most frequent events were pyrexia, headache, rash, anorexia, cough viral infection, and ear pain. There were no serious adverse events reported.	Olek et al., 2017
Randomized, prospective, placebo-controlled trial to evaluate the microorganisms' effect on blood lipid profiles.	46 adults with mild hypercholesterolemia with 23 (5M, 18F; 52.3 ± 10.7 years) in the intervention arm and 23 ((M,14F; 52.0 ± 8.4) in the placebo arm.	<i>L. plantarum</i> ECGC 13110402 at 2x10 ⁹ cfu/capsule (4x10 ⁹ cfu/day)	2x daily for 12 weeks	No findings of clinical significance were identified in pro-inflammatory biomarkers and no significant differences in bowel parameters were observed.	Costabile et al., 2017
Double-blind, randomized, placebo-controlled, parallel-group trial to evaluate microorganism's effects on gingival inflammation (GI), plaque index (PII), angulated bleeding core (AngBS), and microbial composition.	59 apparently healthy adults (31.7± 12.8 years) with 30 in the intervention arm.	<i>L. brevis</i> CECT 7480, <i>L. plantarum</i> CECT 7481, and <i>P. acidilactici</i> CECT 8633 (1:1:1 ratio) 2.0x10 ⁹ cfu/day (1.0x10 ⁹ cfu/dose) in chewable tablets.	2x daily for 6 weeks	One subject from the test group and 6 from the control group withdrew, none due to interven- tion-related adverse events. There was no significant differ- ence in compliance between groups, nor in gingival inflam- mation. 4 patients in the inter- vention arm and one patient in the placebo arm reported adverse events; no serious adverse events were reported.	Montero et al., 2017

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Randomized, double-blind, placebo-controlled trial to evaluate the microorganisms' and FOS effects on pregnant women with diabetes.	90 pregnant women with gestational diabetes with 45 receiving intervention (mean age 30.3±5.6 years).	<i>L.</i> acidophilus $(5 \times 10^{10} \text{ cfu/g})$, <i>L.</i> plantarum $(1.5 \times 10^{10} \text{ cfu/g})$, <i>L.</i> fermentum $(7 \times 10^9 \text{ cfu/g})$, <i>L.</i> Gasseri $(2 \times 10^{10} \text{ cfu/g})$ and 38.5 mg of FOS as a capsule	Daily for 6 weeks	The supplementation did not show any significant effects on glycemia and insulin resistance/sensitivity indices. The authors note that "none of the participants have reported specific side effects of synbiotic supplements."	Nabhani et al., 2018
Randomized, double-blind, placebo-controlled trial to evaluate the microorganism's ergogenic effect on endurance performance.	16 healthy males aged 20-40 years with no professional athletic training. Eight were in each arm.	1 × 10 ¹¹ cfu <i>L. plantarum</i> TWK10 as a capsule	Daily for 6 weeks	There was no discussion of adverse events.	Huang et al., 2018
Randomized, double-blind, placebo-controlled trial to evaluate the synbiotics effects on constipated adults.	85 constipated adults per Rome-III standards. 36F and 7M, aged 29.5±8.34 years in the n=43 intervention arm.	1x10 ¹⁰ cfu/day of <i>L.</i> <i>plantarum</i> LP01, <i>B. lactis</i> BB12, and inulin- oligofructose as a 2.5g sachet	Daily for 12 weeks	There was no statistically significant improvement in the intervention arm versus the placebo for all measures of functional constipation. There was no discussion of adverse events.	Lim et al., 2018

Study Design and Objective	Subjects	Strain and Dosage	Duration	Results	Reference
Double-blind, randomized, placebo-controlled pilot trial to evaluate microorganism's effects on swelling, pain, and eating difficulty after third molar extraction.	37 apparently healthy teenagers and young adults with 20 in the intervention arm.	<i>L. brevis</i> CECT 7480 and <i>L. plantarum</i> CECT 7481 (1:1 ratio) 1.0x10 ⁹ cfu/day (0.5x10 ⁹ cfu/dose) in chewable tablets.	2x daily for 1 week	There was no difference between groups in swelling at the extraction site. There were two infections at the site of tooth removal in each arm, but no other adverse events were reported.	Pons et al., 2018
Prospective, randomized, double- blind, placebo-controlled study of bacteria in <i>Helicobacter pylori</i> therapy	209 adult patients with <i>H. pylori</i> infection; 103 in the intervention arm	1x10 ⁹ cfu/day each of <i>P. acidilactici</i> and <i>L. plantarum</i>	Daily for 10 days	There were no differences in compliance or in eradication rates. Side effects at the end of the treatment were the primary outcome, but no differences between the intervention and placebo groups were reported.	McNicholl et al., 2018

6.5. Evaluations by Authoritative Bodies

Noting that a wide variety of microbial species are used in food, some with a long history of apparent safe use, and facing the need to set priorities for risk assessment, the European Food Safety Authority (EFSA) proposed a system referred to as "Qualified Presumption of Safety" (QPS; EFSA 2007a, 2007b). This system proposed basing the safety assessment of a defined taxonomic group (e.g., a genus or a species) on 4 pillars: established identity, body of knowledge, possible pathogenicity, and end use. If the taxonomic group did not raise safety concerns or, if safety concerns existed, but could be defined and excluded, the grouping could be granted QPS status. Thereafter, "any strain of microorganism the identity of which could be unambiguously established and assigned to a QPS group would be freed from the need for further safety assessment other than satisfying any qualifications specified" (EFSA 2007a, p1).

EFSA's Scientific Committee was asked to recommend organisms regarded as suitable for QPS status. The list of such organisms proposed by the Committee included *Lactobacillus plantarum*. In listing these species as suitable for QPS status, the Committee stated, "Where QPS status is proposed, the Scientific Committee is satisfied that the body of knowledge available is sufficient to provide adequate assurance that any potential to produce adverse effects in humans, livestock or the wider environment is understood and capable of exclusion" (EFSA 2007a, p8) and that the recommendations are "based on a thorough review of the available scientific literature and the knowledge and experience of the scientists involved" (EFSA 2007a, p8). EFSA (2007b) offered the following observations regarding lactobacilli:

- Many of the species are significant constituents of the normal gut flora of humans and livestock although their occurrence and numbers are host dependent. Several species of the genus are intentionally introduced in the food chains, being involved in a range of food and feed fermentations and applied as [microorganisms] for humans and animals.
- The characteristics and habitat of most of *Lactobacillus* species are well known. Some of the species of this genus have a long history of apparent safe use in industrial and agricultural applications. Lactobacilli are used as starter cultures in a variety of food fermentation, such as dairy products, fermented and cured meats, fermented vegetables, sourdough and silage. Moreover, they are among the dominant populations in microbial communities of traditional fermented foods.
- Members of the *Lactobacillus* genus are daily consumed in large quantities in a variety of fermented foods by people of all ages, ethnic groups and health status with apparently no ill effects. Apart from their possible involvement in the development of dental caries, lactobacilli have generally been considered to be non-pathogenic. However, there has been an increasing number of reports that these organisms might occasionally be involved in human disease. Clinical conditions from which these species were derived were chiefly subacute endocarditis and bacteremia or systemic septicemia, but also included abscesses, chorioamnionitis, and urosepsis. Many of the patients with apparent *Lactobacillus* infection were immunocompromised or had other severe underlying illnesses. In conclusion, most of the *Lactobacillus* species described to date can rightly be considered to be non-pathogenic to humans.
- There are apparently no specific safety concerns regarding a number of *Lactobacillus* species which have a long history of apparent safe use in the food chain. Due to the long history of safe use the following species are proposed for QPS status: [list of 33 species, including *L. plantarum*].

Updates to the QPS list have been issued at least annually since its inception. The review identifies any publicly available studies reporting safety concerns for humans, animals, or the environment caused by the listed QPS organisms since the previous review. As of the most recent review, *Lactobacillus plantarum* is still included on the QPS list as no safety concerns have been identified in the years since their inclusion on the list (EFSA, 2018).

The FDA has evaluated three NDI notifications for live *L. plantarum* strains. NDIN 171 for strain ATCC 202195 in combination with fructooligosaccharides from Kups International was reviewed in 2003 (CFSAN, 2003). NDIN 764 for strain L-137 from House Wellness Foods Corporation at a use level of 1.2×10^{10} cfu/day was reviewed in 2012 (CFSAN, 2012). NDIN 900 for strain CJLP133 from CJ Cheil Jedang at a use level of 1×10^{10} cfu/day was reviewed in 2016 (CFSAN, 2016). All three notices were accepted by the FDA.

In 2017, the FDA evaluated GRAS Notice No. GRN 000685 for *Lactobacillus plantarum* 299v from Probi. This strain was isolated from the healthy intestinal mucosa of a human. The intended use was as an ingredient added to conventional foods at a concentration of at least to 1×10^{10} cfu/serving and up to 1×10^{11} cfu/serving. The conventional foods included, but were not limited to, wet chilled and ambient products such as fruit drinks, yogurts, milk, and plant based products; dry chilled products; dry and shelf-stable products such as cereals, candy, bars, cookies, gums, and confectionary. On October 31, 2017, the FDA responded that it had no questions regarding the conclusion that the strain was GRAS for its intended use (CFSAN, 2017a).

In 2017, the FDA evaluated GRAS Notice No. GRN 000722 for *Lactobacillus plantarum* Lp-115 from DuPont Nutrition and Health. This strain was isolated from plant silage. The intended use was as an ingredient added to conventional foods at a concentration of at least to 1×10^{10} cfu/serving and up to 5×10^{11} cfu/serving. The conventional foods included yogurt and other dairy products, soy products, beverages, chewing gum, and confectionary snacks. On February 16, 2018, the FDA responded that it had no questions regarding the conclusion that the strain was GRAS for its intended use (CFSAN, 2017b).

6.6. Safety Assessment and GRAS Determination

6.6.1. Introduction

This section presents an assessment that demonstrates that the intended use of *Lactobacillus plantarum* KABP-011, *Lactobacillus plantarum* KABP-012, and *Lactobacillus plantarum* KABP-013, individually or in combination, is safe, and is GRAS.

This safety assessment and GRAS determination entail two steps. In the first step, the safety of the intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination, is demonstrated. Safety is established by demonstrating that the likely intake of the strains under their intended conditions of use is within allowable levels of intake. In the second step, the intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination, is determined to be GRAS by demonstrating that the safety of these strains is generally recognized among qualified scientific experts and is based on publicly available and accepted information.

The regulatory framework for establishing whether a substance or microorganism is GRAS, in accordance with Section 201(s) of the Federal Food Drug and Cosmetic Act, is set forth under 21 CFR §170.30. This regulation states that general recognition of safety may be based on the view of experts qualified by scientific training and experience to evaluate the safety of substances directly or indirectly added to food. A GRAS determination may be made either: 1) through scientific procedures under §170.30(b); or 2) through experience based on common use in food, in the case of a substance used in food prior to January 1, 1958, under §170.30(c). This GRAS determination employs scientific procedures established under §170.30(b).

A scientific procedures GRAS determination requires the same quantity and quality of scientific evidence as is needed to obtain approval of the substance as a food additive. In addition to requiring scientific evidence of safety, a GRAS determination also requires that this scientific evidence of safety be generally known and accepted among qualified scientific experts. This "common knowledge" element of a GRAS determination consists of two components:

1) data and information relied upon to establish the scientific element of safety must be generally available; and

2) there must be a basis to conclude that there is a consensus among qualified experts about the safety of the substance for its intended use.

The criteria outlined above for a scientific procedures GRAS determination are applied below in an analysis of whether the intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination, is safe, and is GRAS. Once the intended use of these strains is determined to be GRAS, they are permitted to be used as intended, because they are by definition not food additives and therefore do not require promulgation of food additive regulations under 21 CFR prior to being marketed and sold in the United States.

A scientific procedures GRAS determination requires that information about the substance establish that the intended uses of the substance are safe. The FDA has defined "safe" or "safety" for food additives under 21 CFR §170.3(i) as "a reasonable certainty in the minds of competent scientists that the substance is not harmful under its intended conditions of use." This same regulation specifies that three factors must be considered in determining safety. These three factors are:

1) the probable consumption of the substance and of any substance formed in or on food because of its use (i.e., the EDI);

2) the cumulative effect of the substance in the diet, taking into account any chemicallyor pharmacologically-related substance or substances in such diet; and

3) safety factors which, in the opinion of experts qualified by scientific training and experience to evaluate the safety of food and food ingredients, are generally recognized as appropriate.

6.6.2. Estimated Daily Intake

The three strains, individually or in combination, are intended to be added to foods that can support their viability through the shelf life at a maximum addition level of 1.2×10^{10} cfu/serving in order to assure the presence of at least 1.2×10^{9} viable cfu through the shelf life. 60 The estimated daily intake of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 is less than 1.2x10¹⁰ cfu.

6.6.3. Safety of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, Individually or in Combination

L. plantarum was assigned QPS status at the origin of the program in 2007 and has maintained that status through the 2018 annual re-evaluation. The species has been safely used in food preparation for many years and is accepted by FDA. It has been approved for use in dietary supplements in the U.S. through submission and acceptance of New Dietary Ingredient notices, and *L. plantarum* has been the subject of GRAS notices that have been accepted by FDA with no questions. The specific strains *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 have been investigated in animal and human trials with no evidence of pathogenicity or toxigenicity.

The decision tree published by Pariza et al. (2015) indicates that the notified strains, *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, "are deemed to be safe for use in the manufacture of food . . . for human consumption" (Pariza et al., 2015).

The responses to each of the questions asked in the decision tree are as follows for the two strains:

1. Has the strain been characterized for the purpose of assigning an unambiguous genus and species name using currently accepted methodology? **YES**

2. Has the strain genome been sequenced? YES

3. Is the strain genome free of genetic elements encoding virulence factors and/or toxins associated with pathogenicity? **YES**

4. Is the strain genome free of functional and transferable antibiotic resistance gene DNA? **YES**

5. Does the strain produce antimicrobial substances? NO

6. Has the strain been genetically modified using rDNA techniques? NO

7. Was the strain isolated from a food that has a history of safe consumption for which the species to which the strain belongs is a substantial and characterizing component (not simply an 'incidental isolate')? **NO**, *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 were isolated from the fresh feces of healthy South American children under 5 years old.

8. Does the strain induce undesirable physiological effects in appropriately designed safety evaluation studies? **NO**

6.7. Statement Regarding Information Inconsistent with GRAS

I have reviewed the available data and information and am not aware of any data or information that are, or may appear to be, inconsistent with our conclusion of GRAS status of the intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination.

James T. Heimbach, Ph.D., F.A.C.N.

The intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination, has been determined to be safe through scientific procedures set forth under 21 CFR §170.30(b). This safety was established by first establishing the identity and purity of the bacterial product, estimating potential human exposure to the strains from their intended use, and demonstrating that this level of exposure is without significant risk of harm. Because this safety assessment satisfies the common knowledge requirement of a GRAS determination, this intended use is considered GRAS.

Determination of the safety and GRAS status of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 under their intended conditions of use has been made through the deliberations of an Expert GRAS Panel consisting of Robert J. Nicolosi, Ph.D., Michael W. Pariza, Ph.D., and John A. Thomas, Ph.D. These individuals are qualified by scientific training and experience to evaluate the safety of food and food ingredients. They have critically reviewed and evaluated the publicly available information summarized in this document, including the potential human intake resulting from the intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, and have individually and collectively concluded:

Ingestion of *Lactobacillus plantarum* KABP-011, *Lactobacillus plantarum* KABP-012, and *Lactobacillus plantarum* KABP-013 from their intended use results in levels of intake that are within safe limits established by the history of consumption of these strains and by published animal studies and human clinical trials. Therefore, the use of *Lactobacillus plantarum* KABP-011, *Lactobacillus plantarum* KABP-012, and *Lactobacillus plantarum* KABP-013, individually or in combination, produced consistent with cGMP and complying with the specifications and use described in the GRAS monograph, at a maximum addition level of 1.2x10¹⁰ cfu/serving, is safe and GRAS based on scientific procedures.

It is the Expert Panel's opinion that other qualified and competent scientists reviewing the same publicly available data would reach the same conclusion.

Robert J. Nicolosi, Ph.D.	Date:	
Professor Emeritus		
University of Massachusetts—Lowell		
Lowell, Massachusetts		
Michael W. Pariza, Ph.D	Date:	
Professor Emeritus		
University of Wisconsin—Madison		
Madison, Wisconsin		
John A. Thomas, Ph.D.	Date:	
Adjunct Professor		
Indiana University School of Medicine		
Indianapolis, Indiana		
63		

The intended use of L plantarum KABP-011, L plantarum KABP-012, and L. plantarum KABP-013, individually or in combination, has been determined to be safe through scientific procedures set forth under 21 CFR §170.30(b). This safety was established by first establishing the identity and parity of the product, estimating potential human exposure to the strains from their intended use, and demonstrating that this level of exposure is without significant risk of hum. Because this safety assessment satisfies the common knowledge requirement of a GRAS determination, this intended use is considered GRAS.

Determination of the safety and GRAS status of L. planarum KABP-011, L. planarum KABP-012, and L. planarum KABP-013 under their intended conditions of use has been made through the deliberations of an Expert GRAS Panel consisting of Robert J. Nicolosi, Ph.D., Michael W. Puriza, Ph.D., and John A. Thomas, Ph.D. These individuals are qualified by scientific training and experience to evaluate the safety of food and food ingredients. They have critically reviewed and evaluated the publicly available information samuarized in this document, including the potential human intake resulting from the intended use of L. plantarum KABP-011, L. plantarum KABP-011, L. plantarum KABP-012, and L. plantarum KABP-013, and have individually and collectively concluded:

Ingertion of Lactobacillus planarum KABP-011, Lactobacilius planarum KABP-012, and Lactobacillus planarum KABP-013 from their intended use results in levels of intake that are within safe limits established by the blatory of consumption and by published animal studies and human clinical trials. Therefore, the use of Locadencillus planarum KABP-011, Lactobacillus planarum KABP-012, and Lactobacillus planarum KABP-013, individually or in combination, produced consistent with cGMP and complying with the specifications and use described in the GRAS monograph, at a maximum addition level of 1.2x10¹⁰ CFU/serving, in safe and GRAS based on scientific procedures.

It is the Expert Panel's opinion that other qualified and competent scientists reviewing the same publicly available data would ranch the same conclusion.

Robert J. Nicolosi, Ph.D. Professor Emeritus University of Massachusetts—Lowell Lowell, Massachusetts Date: CS/14/2019

Michael W. Pariza, Ph.D. Professor Emerilies University of Wisconsin Madison Madison, Wisconsin

John A. Thomas, Ph.D. Adjunct Professor Indiana University School of Medicine Indianapolis, Indiana 65 Date:

Dese:

The intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, individually or in combination, has been determined to be safe through scientific procedures set forth under 21 CFR §170.30(b). This safety was established by first establishing the identity and purity of the product, estimating potential human exposure to the strains from their intended use, and demonstrating that this level of exposure is without significant risk of harm. Because this safety assessment satisfies the common knowledge requirement of a GRAS determination, this intended use is considered GRAS.

Determination of the safety and GRAS status of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013 under their intended conditions of use has been made through the deliberations of an Expert GRAS Panel consisting of Robert J. Nicolosi, Ph.D., Michael W. Pariza, Ph.D., and John A. Thomas, Ph.D. These individuals are qualified by scientific training and experience to evaluate the safety of food and food ingredients. They have critically reviewed and evaluated the publicly available information summarized in this document, including the potential human intake resulting from the intended use of *L. plantarum* KABP-011, *L. plantarum* KABP-012, and *L. plantarum* KABP-013, and have individually and collectively concluded:

Ingestion of Lactobacillus plantarum KABP-011, Lactobacillus plantarum KABP-012, and Lactobacillus plantarum KABP-013 from their intended use results in levels of intake that are within safe limits established by the history of consumption and by published animal studies and human clinical trials. Therefore, the use of Lactobacillus plantarum KABP-011, Lactobacillus plantarum KABP-012, and Lactobacillus plantarum KABP-013, individually or in combination, produced consistent with cGMP and complying with the specifications and use described in the GRAS monograph, at a maximum addition level of 1.2x10¹⁰ CFU/serving, is safe and GRAS based on scientific procedures.

It is the Expert Panel's opinion that other qualified and competent scientists reviewing the same publicly available data would reach the same conclusion.

Robert J. Nicolosi, Ph.D Professor Emeritus University of Massachusetts—Lowell Lowell, Massachusetts	Date:
Michael W. Pariza, Ph.D. Professor Emeritus University of Wisconsin—Madison Madison, Wisconsin	Date: <u>August 16, 2019</u>
John A. Thomas, Ph.D Adjunct Professor Indiana University School of Medicine Indianapolis, Indiana 65	Date:

65

The intended use of L. plantarum KABP-011, L. plantarum KABP-012, and L. plantarum KABP-013, individually or in combination, has been determined to be safe through scientific procedures set forth under 21 CFR §170.30(b). This safety was established by first establishing the identity and purity of the product, estimating potential human exposure to the strains from their intended use, and demonstrating that this level of exposure is without significant risk of harm. Because this safety assessment satisfies the common knowledge requirement of a GRAS determination, this intended use is considered GRAS.

Determination of the safety and GRAS status of L. plantarum KABP-011, L. plantarum KABP-012, and L. plantarum KABP-013 under their intended conditions of use has been made through the deliberations of an Expert GRAS Panel consisting of Robert J. Nicolosi, Ph.D., Michael W. Pariza, Ph.D., and John A. Thomas, Ph.D. These individuals are qualified by scientific training and experience to evaluate the safety of food and food ingredients. They have critically reviewed and evaluated the publicly available information summarized in this document, including the potential human intake resulting from the intended use of L. plantarum KABP-011, L. plantarum KABP-012, and L. plantarum KABP-013, and have individually and collectively concluded:

Ingestion of Lactobacillus plantarum KABP-011, Lactobacillus plantarum KABP-012, and Lactobacillus plantarum KABP-013 from their intended use results in levels of intake that are within safe limits established by the history of consumption and by published animal studies and human clinical trials. Therefore, the use of Lactobacillus plantarum KABP-011, Lactobacillus plantarum KABP-012, and Lactobacillus plantarum KABP-013, individually or in combination, produced consistent with cGMP and complying with the specifications and use described in the GRAS monograph, at a maximum addition level of 1.2s.10¹⁰ CFU/serving, is safe and GRAS based on scientific procedures.

It is the Expert Panel's opinion that other qualified and competent scientists reviewing the same publicly available data would reach the same conclusion.

Robert J. Nicolasi, Ph.D.	Date:
Professor Emeritus	
University of Massachusetts-Lowell	
Lowell, Massachusetts	
Michael W. Pariza, Ph.D.	Date:
Professor Emeritus	
University of Wisconsin-Madison	
Madison, Wisconsin	
A	
John A. Thomas Dh D	Date: 8/16/19
John A. Thomas, Ph.D.	_ indic. of soft
Adjunct Professor	
Indiana University School of Medicine	
Indianapolis, Indiana	

Part 7. List of Supporting Data and Information

- Bengtsson J, I Adlerberth, A Östblom, P Saksena, T Öresland, L Börjesson. 2016. Effect of probiotics (*Lactobacillus plantarum* 299 plus *Bifidobacterium* Cure21) in patients with poor ileal pouch function: a randomised controlled trial. *Scand J Gastroenterol* 51:1087–1092.
- Berggren A, L Söderberg, G Önning, M-LJ Hagslätt, I Axelsson. 2003. Intestinal function, microflora and nutrient intake of children after administration of a fermented oat product containing *Lactobacillus plantarum* DSM 9843 (299v). *Microb Ecol Health Dis* 15:160– 168.
- Bering S, S Suchdev, L Sjoltov, A Berggren, I Tetens, K Bukhave. 2006. A lactic acid-fermented oat gruel increases non-haeme iron absorption from a phytate-rich meal in healthy women of childbearing age. *Br J Nutr* 96:1-6.
- Bering S, L Sjoltov, SS Wrisberg, A Berggren, J Alenfall, M Jensen, L Hojgaard, I Tetens, K Bukhave. 2007. Viable, lyophilized lactobacilli do not increase iron absorption from a lactic acid-fermented meal in healthy young women, and no iron absorption occurs in the distal intestine. *Br J Nutr* 98:991-997.
- Bosch M, JE Mazo, MM Sanchez, MP Carre, AF Codina, SA Brugue, MAB Sierra, JC Castellana. 2011. Consumption of the probiotic *Lactobacillus plantarum* CECT 7315/7316 improves general health in the elderly subjects. *Nutrición Hospitalaria* 26:642–645.
- Bosch M, M Rodriguez, F Garcia, E Fernández, MC Fuentes, J Cuñé. 2012a. Probiotic properties of *Lactobacillus plantarum* CECT 7315 and CECT 7316 isolated from faeces of healthy children. *Let Appl Microbiol* 54:240–246.
- Bosch M, M Méndez, M Pérez, A Farran, MC Fuentes, J Cuñé. 2012b. *Lactobacillus plantarum* CECT7315 and CECT7316 stimulate immunoglobulin production after influenza vaccination in elderly. *Nutrición Hospitalaria* 27:504–509.
- Bosch M, MC Fuentes, S Audivert, MA Bonachera, S Peiro, J Cune. 2014. *Lactobacillus plantarum* CECT 7527, 7528 and 7529: probiotic candidates to reduce cholesterol levels. *J Sci Food Agric* 94:803–809.
- Bourdichon F, P Boyaval, S Casaregola, J Dupont, C Farrokh, JC Frisvad, WP Hammes, G Huys, JL Jany, S Laulund, AOuwehand, Y Seto, A Zgoda, EB Hansen. 2012. The 2012 inventory of microbial species with technological beneficial role in fermented food products. *Int J Food Microbiol* 154:22–61.
- Bover-Cid S and WH Holzapfel. 1999. Improved screening procedure for biogenic amine production by lactic acid bacteria. *Int J food Microbiol* 53:33–41.
- Bukowska H, J Pieczul-Mróz, M Jastrzebska, K Chełstowski, M Naruszewicz. 1998. Decrease in fibrinogen and LDL-cholesterol levels upon supplementation of diet with *Lactobacillus plantarum* in subjects with moderately elevated cholesterol. *Atherosclerosis* 137:437–438.
- Carattoli A, E Zankari, A García-Fernández, MV Larsen, O Lund, L Villa, FM Aarestrup, H Hasman. 2014. *In silico* detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. *Antimicrob Agents Chemother* 58:3895–3903.
- CFSAN. 2003. NDIN 171, Lactobacillus plantarum and Fructooligosaccharides

64

(FOS)(Gastroplan and Gastroplan CF).

CFSAN. 2012. NDIN 764, Lactobacillus plantarum HK-LP_137, Immuno-LP20.

- CFSAN. 2016. NDIN 900, Lactobacillus plantarum CJLP133.
- CFSAN. 2017a. GRN 000685, Lactobacillus plantarum 299v.

CFSAN. 2017b. GRN 000722, Lactobacillus plantarum Lp-115.

- Chen L, D Zheng, B Liu, J Yang, Q Jin. 2016. VFDB 2016: hierarchical and refined dataset for big data analysis 10 years on. *Nucleic Acids Res* 44:D694–D697.
- Cole JR, Q Wang, JA Fish, B Chai, DM McGarrell, Y Sun, CT Brown, A Porras-Alfaro, CR Kuske, JM Tiedje. 2014. Ribosomal database project: data and tools for high throughput RRNA analysis. *Nucleic Acids Res* 42:D633–D642.
- Connolly E, T Abrahamsson, B Bjorksten. 2005. D(-)-lactic acid producing bacteria in the human infant. *J Pediatr Gastroenterol Nutr* 41:489–492.
- Costabile A, I Buttarazzi, S Kolida, S Quercia, J Baldini, JR Swann, P Brigidi, GR Gibson. 2017. An *in vivo* assessment of the cholesterol-lowering efficacy of *Lactobacillus plantarum* ECGC 13110402 in normal to mildly hypercholesterolaemic adults. *PloS ONE* 12:e0187964.
- Cunningham-Rundles S, S Ahrné, S Bengmark, R Johann-Liang, F Marshall, L Metakis, C Califano, AM Dunn, C Grassey, G Hinds, J Cervia. 2000. Probiotics and immune response. *Am J Gastroenterol* 95(Suppl):S22-S25.
- Darling AE, B Mau, NT Perna. 2010. Progressive MAUVE: multiple genome alignment with gene gain, loss and rearrangement. *PLoS ONE* 5:e11147.
- Delcher AL, KA Bratke, EC Powers, SL Salzberg. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. *Bioinformatics* 23:673-679.
- Douillard FP and WM de Vos. 2014. Functional genomics of lactic acid bacteria: from food to health. *Microb Cell Factories* 13(Suppl 1):S8.
- Ducrotte P, P Sawant, V Jayanthi. 2012. Clinical trial: *Lactobacillus plantarum* 299v (DSM 9843) improves symptoms of irritable bowel syndrome. *World J Gastroenterol* 18:4012–4018.
- EFSA. 2007a. Introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA: opinion of the scientific committee. *EFSA J* 587:8-16.
- EFSA. 2007b. Introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA: opinion of the scientific committee. Appendix A: Assessment of gram-positive non-sporulating bacteria. *EFSA J* 587.
- EFSA. 2012. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance." *EFSA J* 10:e2740.
- EFSA. 2018. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 7: suitability of taxonomic units notified to EFSA until

September 2017. EFSA J 16:e05131.

- Espadaler J, S Audivert, D Buj. 2019. Abstracts of the 10th workshop on probiotics and prebiotics." *Ann Nutr Metab* 74(Suppl 1):1–31.
- Figueras MJ, R Beaz-Hidalgo, MJ Hossain, MR Liles. 2014. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. *Genome Announce* 2:e00927-14.
- Fuentes MC, T Lajo, JM Carrion, J Cune. 2013. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br J Nutr 109:1866–1872.
- Fuentes MC, T Lajo, JM Carrión, J Cuñé. 2016. A randomized clinical trial evaluating a proprietary mixture of *Lactobacillus plantarum* strains for lowering cholesterol. *Medit J Nutr Metab* 9:125–135.
- Goossens D, D Jonkers, M Russel, E Stobberingh, A Van Den Bogaard, R StockbrUgger. 2003. The effect of *Lactobacillus plantarum* 299v on the bacterial composition and metabolic activity in faeces of healthy volunteers: a placebo-controlled study on the onset and duration of effects. *Aliment Pharmacol Therapeut* 18:495–505.
- Goossens D, D Jonkers, M Russel, A Thijs, A van den Bogaard, E Stobberingh, R Stockbrügger. 2005. Survival of the probiotic *L. plantarum* 299v and its effects on the faecal bacterial flora, with and without gastric acid inhibition. *Digest Liver Dis* 37:44–50.
- Goossens D, D Jonkers, M Russel, E Stobberingh, R Stockbrugger. 2006. The effect of a probiotic drink with *L. plantarum* 299v on the bacterial composition in faeces and mucosal biopsies of rectum and ascending colon. *Aliment Pharmacol Therapeut* 23:255-263.
- Goris J, KT Konstantinidis, JA Klappenbach, T Coenye, P Vandamme, JM Tiedje. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. *Int J Syst Evolu Microbiol* 57:81–91.
- Gupta SK, BR Padmanabhan, SM Diene, R Lopez-Rojas, M Kempf, L Landraud, J-M Rolain. 2014. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. *Antimicrob Agents Chemother* 58:212–220.
- Holzapfel WH, P Haberer, R Geisen, J Bjorkroth, U Schillinger. 2001. Taxonomy and important features of probiotic microorganisms in food and nutrition. *Am J Clin Nutr* 73(Suppl):365S–373S.
- Hoppe M, G Önning, A Berggren, L Hulthén. 2015. Probiotic strain *Lactobacillus plantarum* 299v increases iron absorption from an iron-supplemented fruit drink: a double-isotope cross-over single-blind study in women of reproductive age. *Br J Nutr* 114:1195–1202.
- Huang W-C, Y-J Hsu, HS Li, N-W Kan, Y-M Chen, J-S Lin, T-K Hsu, T-Y Tsai, Y-S Chiu, C-C Huang. 2018. Effect of *Lactobacillus plantarum* TWK10 on improving endurance performance in humans. *Chin J Physiol* 61:163–170.
- Hyatt D, GL Chen, PF LoCascio, ML Land, FW Larimer, LJ Hauser. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformat* 11:119.

Jia B, AR Raphenya, B Alcock, N Waglechner, P Guo, KK Tsang, BA Lago, BM Dave, S 66

Pereira, AN Sharma, S Doshi, M Courtot, R Lo, LE Williams, JG Frye, T Elsayegh, D Sardar, ELWestman, AC Pawlowski, TA Johnson, FSL Brinkman, GD Wright, AG McArthur. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. *Nucleic Acids Res* 45:D566–D573.

- Joensen KG, F Scheutz, O Lund, H Hasman, RS Kaas, EM Nielsen, FM Aarestrup. 2014. Realtime whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic *Escherichia coli*. J Clin Microbiol 52:1501–1510.
- Johansson ML, G Molin, B Jeppsson, S Nobaek, S Ahrne, S Bengmark. 1993. Administration of different *Lactobacillus* strains in fermented oatmeal soup: *in vivo* colonization of human intestinal mucosa and effect on the indigenous flora. *Appl Environ Microbiol* 59:15-20.
- Johansson ML, S Nobaek, A Berggren, M Nyman, I Björck, S Ahrné, B Jeppsson, G Molin. 1998. Survival of *Lactobacillus plantarum* DSM 9843 (299v), and effect on the short-chain fatty acid content of faeces after ingestion of a rose-hip drink with fermented oats. *Int J Food Microbiol* 42:29–38.
- Jones C, SA Badger, M Regan, BW Clements, T Diamond, RW Parks, MA Taylor. 2013. Modulation of gut barrier function in patients with obstructive jaundice using probiotic LP299v. Eur J Gastroenterol Hepatol 25:1424–1430.
- Kim DH, MR Choi, JE Hong, SI Lee, SI Lee, SH Jung, EJ Kim. 2014. Effect of mixture of *Lactobacillus plantarum* CECT 7527, 7528, and 7529 on obesity and lipid metabolism in rats fed a high-fat diet." *J Kor Soc Food Sci Nutr* 43:1484–1490.
- Kingamkono R, E Sjögren, U Svanberg. 1999. Enteropathogenic bacteria in faecal swabs of young children fed on lactic acid-fermented cereal gruels. *Epidemiol Infect* 122:23–32.
- Klarin B, M-L Johansson, G Molin, A Larsson, B Jeppsson. 2005. Adhesion of the probiotic bacterium *Lactobacillus plantarum* 299v onto the gut mucosa in critically ill patients: a randomised open trial. *Critical Care* 9:R285-R293.
- Klarin B, M Wullt, I Palmquist, G Molin, A Larsson, B Jeppsson. 2008. *Lactobacillus plantarum* 299v reduces colonisation of *Clostridium difficile* in critically ill patients treated with antibiotics. *Acta Anaesthesiol Scand* 52:1096-1102.
- Krag A, H Israelsen, B von Ryberg, KK Andersen, F Bendtsen. 2012. Safety and efficacy of Profermin® to induce remission in ulcerative colitis. *World J Gastroenterol* 18:1773–1780.
- Krag A, P Munkholm, H Israelsen, B von Ryberg, KK Andersen, F Bendtsen. 2013. Profermin is efficacious in patients with active ulcerative colitis--a randomized controlled trial. *Inflamm Bowel Dis* 19:2584–2592.
- Kujawa-Szewieczek A, M Adamczak, K Kwiecień, S Dudzicz, M Gazda, A Więcek. 2015. The effect of *Lactobacillus plantarum* 299v on the incidence of *Clostridium difficile* infection in high risk patients treated with antibiotics. *Nutrients* 7:10179–10188.
- Ladas EJ, M Bhatia, L Chen, E Sandler, A Petrovic, DM Berman, F Hamblin, M Gates, R Hawks, L Sung, M Nieder. 2016. The safety and feasibility of probiotics in children and adolescents undergoing hematopoietic cell transplantation. *Bone Marrow Transplant* 51:262–266.

- Leplae R, G Lima-Mendez, A Toussaint. 2009. ACLAME: a classification of mobile genetic elements, update 2010. *Nucleic Acids Res* 38(SUPPL.1):D57–61.
- Lim YJ, R Jamaluddin, AS Hazizi, JY Chieng. 2018. Effects of synbiotics among constipated adults in Serdang, Selangor, Malaysia-a randomised, double-blind, placebo-controlled trial. *Nutrients* 10:E824.
- Liu B, D Zheng, Q Jin, L Chen, J Yang. 2019. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. *Nucleic Acids Res* 47(D1): D687–92.
- Lönnermark E, V Friman, G Lappas, T Sandberg, A Berggren, I Adlerberth. 2010. Intake of *Lactobacillus plantarum* reduces certain gastrointestinal symptoms during treatment with antibiotics. J Clin Gastroenterol 44:106–112.
- Lönnermark, E, G Lappas, V Friman, AE Wold, E Backhaus, I Adlerberth. 2015. Effects of probiotic intake and gender on nontyphoid *Salmonella* infection. *J Clin Gastroenterol* 49:116–123.
- Łukasik J, S Salminen, H Szajewska. 2018. Rapid review shows that probiotics and fermented infant formulas do not cause D-lactic acidosis in healthy children. Acta Paediatr 107:1322– 1326.
- Mane J, E Pedrosa, V Loren, MA Gassull, J Espadaler, J Cune, S Audivert, MA Bonachera, E Cabre. 2011. A mixture of *Lactobacillus plantarum* CECT 7315 and CECT 7316 enhances systemic immunity in elderly subjects: a dose-response, double-blind, placebo-controlled, randomized pilot trial. *Nutricion Hospitalaria* 26:228–235.
- Mangell P, H Thorlacius, I Syk, S Ahrné, G Molin, C Olsson, B Jeppsson. 2012. *Lactobacillus plantarum* 299v does not reduce enteric bacteria or bacterial translocation in patients undergoing colon resection. *Digest Dis Sci* 57:1915–1924.
- McNaught CE, NP Woodcock, J MacFie, CJ Mitchell. 2002. A prospective randomised study of the probiotic *Lactobacillus plantarum* 299v on indices of gut barrier function in elective surgical patients. *Gut* 51:827–831.
- McNaught CE, NP Woodcock, ADG Anderson, J MacFie. 2005. A prospective randomised trial of probiotics in critically ill patients. *Clin Nutr* 24:211-219.
- McNicholl AG, J Molina-Infante, AJ Lucendo, JL Calleja, Á Pérez-Aisa, I Modolell, X
 Aldeguer, M Calafat, L Comino, M Ramas, Á Callejo, C Badiola, J Serra, JP Gisbert. 2018.
 Probiotic supplementation with *Lactobacillus plantarum* and *Pediococcus acidilactici* for *Helicobacter pylori* therapy: a randomized, double-blind, placebo-controlled trial.
 Helicobacter 23:e12529.
- Montero E, M Iniesta, M Rodrigo, MJ Marin, E Figuero, D Herrera, M Sanz. 2017. Clinical and microbiological effects of the adjunctive use of probiotics in the treatment of gingivitis: a randomized controlled clinical trial. *J Clin Periodontol* 44:708–716.
- Mukerji P, JM Roper, B Stahl, AB Smith, F Burns, JC Rae, N Yeung, A Lyra, L Svärd, MT Saarinen, E Alhoniemi, A Ibarra, AC Ouwehand. 2016. Safety evaluation of AB-LIFE® (*Lactobacillus plantarum* CECT 7527, 7528 and 7529): antibiotic resistance and 90-day repeated-dose study in rats." *Food Chem Toxicol* 92:117–128.

- Nabhani Z, SJG Hezaveh, E Razmpoosh, M Asghari-Jafarabadi, BP Gargari. 2018. The effects of synbiotic supplementation on insulin resistance/sensitivity, lipid profile and total antioxidant capacity in women with gestational diabetes mellitus: a randomized double blind placebo controlled clinical trial. *Diabetes Res Clin Pract* 138:149–157.
- Naruszewicz M, M-L Johansson, D Zapolska-Downar, H Bukowska. 2002. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 76:1249–1255.
- Niedzielin K, H Kordecki, B Birkenfeld. 2001. A controlled, double-blind, randomized study on the efficacy of *Lactobacillus plantarum* 299v in patients with irritable bowel syndrome. *Eur J Gastroenterol Hepatol* 13:1143–1147.
- Nobaek S, M-L Johansson, G Molin, S Ahrne, B Jeppsson. 2000. Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. *Am J Gastroenterol* 95:1231–1238.
- Olek A, M Woynarowski, IL Ahren, J Kierkus, P Socha, N Larsson, G Onning. 2017. Efficacy and safety of *Lactobacillus plantarum* DSM 9843 (LP299v) in the prevention of antibioticassociated gastrointestinal symptoms in children-randomized, double-blind, placebocontrolled study. *J Pediatr* 186:82–86.
- Onning G, A Berggren, M Drevelius, B Jeppsson, A-M Lindberg, M-L Johansson Hagslätt. 2003. Influence of a drink containing different antioxidants and *Lactobacillus plantarum* 299v on plasma total antioxidant capacity, selenium status and faecal microbial flora. *Int J Food Sci Nutr* 54:281–289.
- Orillo CA and CS Pederson. 1968. Lactic acid bacterial fermentation of Burong Dalag. *Appl Microbiol* 16:1669–1671.
- Pariza MW, KO Gillies, SF Kraak-Ripple, G Leyer, AB Smith. 2015. Determining the safety of microbial cultures for consumption by humans and animals. *Regul Toxicol Pharmacol* 73:164–171.
- Pons R, E Ferres-Amat, J Marque-Bueno, E Navarro, E Astó, J Espadaler, E Ferres. 2018. Oral probiotic reduces pain after third molar extraction procedure. In *Annals of Nutr Metab*, Karger Allschwilerstrasse 10, CH-4009 Basel, Switzerland, 56.
- Ribeiro H and JA Vanderhoof. 1998. Reduction of diarrheal illness following administration of *Lactobacillus plantarum* 299v in a daycare facility. *J Pediatr Gastroenterol Nutr* 26:561.
- Richter M and R Rossello-Mora. 2009. Shifting the genomic gold standard for the prokaryotic species definition. *Proc Nation Acad Sci* 106:19126–19131.
- Richter M, R Rosselló-Móra, FO Glöckner, J Peplies. 2015. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. *Bioinformatics* 32:929–931.
- Rodas AM, S Ferrer, I Pardo. 2005. Polyphasic study of wine *Lactobacillus* strains:taxonomic implications. *Int J Syst Evolu Microbiol* 55:197–207.
- Rovira J and B Melero. 2018. Protective cultures for the safety of animal-derived foods bt probiotics and prebiotics in animal health and food safety. In eds. Diana Di Gioia and Bruno

Biavati. Cham:Springer Int Publishing, 63–107.

- Sawant PD, J Venkatraman, PR Ducrotté. 2010. T2030 Evaluation of *Lactobacillus plantarum* 299v efficacy in IBS: results of a randomized placebo-controlled trial in 200 patients. *Gastroenterology* 138:S617.
- Sen S, MM Mullan, TJ Parker, JT Woolner, SA Tarry, JO Hunter. 2002. Effect of *Lactobacillus plantarum* 299v on colonic fermentation and symptoms of irritable bowel syndrome. *Digest Dis Sci* 47:2615–2620.
- Stevenson C, R Blaauw, E Fredericks, J Visser, S Roux. 2014. Randomized clinical trial: effect of *Lactobacillus plantarum* 299 v on symptoms of irritable bowel syndrome. *Nutrition* (*Burbank, Los Angeles County, Calif.*) 30:1151–1157.
- Stjernquist-Desatnik A, H Warfving, ML Johansson. 2000. Persistence of *Lactobacillus plantarum* DSM 9843 on human tonsillar surface after oral administration in fermented oatmeal gruel. A pilot study. *Acta Otolaryngol Suppl* 543:215–219.
- Stolley H and W Droese. 1971. Lactic acid in milk formula, the influence on absorption of nutrients and the influence on the metabolism in young babies. *Acta Paediatr Scand* 60:367–368.
- Tamang JP, B Tamang, U Schillinger, CMAP Franz, M Gores, WH Holzapfel. 2005. Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the eastern Himalayas. *Int J Food Microbiol* 105:347–356.
- Vanderhoof JA, RJ Young, N Murray, SS Kaufman. 1998. Treatment strategies for small bowel bacterial overgrowth in short bowel syndrome. *J Pediatr Gastroenterol Nutr* 27:155–160.
- Vester B and S Douthwaite. 2001. Macrolide resistance conferred by base substitutions in 23S rRNA." *Antimicrob Agents Chemother* 45: 1–12.
- Vitetta L, S Coulson, M Thomsen, T Nguyen, S Hall. 2017. Probiotics, D-lactic acidosis, oxidative stress and strain specificity. *Gut Microbes* 8:311–322.
- Vos PD, GM Garrity, D Jones, NR Krieg, W Ludwig, FA Rainey, K-H Schleifer, WB Whitman. 2009. *Systematic Bacteriology*. Springer eBooks CN QH301-705.
- Wullt M, M-LJ Hagslätt, I Odenholt. 2003. *Lactobacillus plantarum* 299v for the treatment of recurrent *Clostridium difficile*-associated diarrhoea: a double-blind, placebo-controlled trial. *Scand J infect Dis* 35:365–367.
- Wullt M, M-LJ Hagslätt, I Odenholt, A Berggren. 2007. *Lactobacillus plantarum* 299v enhances the concentrations of fecal short-chain fatty acids in patients with recurrent *Clostridium difficile*-associated diarrhea. *Digest Dis Sci* 52:2082–2086.
- Zaman S, M Fitzpatrick, L Lindahl, J Zengel. 2007. Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in *Escherichia coli*."*Molec Microbiol* 66: 1039–1050.
- Zheng M, R Zhang, X Tian, X Zhou, X Pan, A Wong. 2017. Assessing the risk of probiotic dietary supplements in the context of antibiotic resistance. *Frontiers in Microbiol* 8:908.

From:	jheimbach@va.metrocast.net
To:	Hice, Stephanie; jh@jheimbach.com
Cc:	<u>"Garey, Joshua"</u>
Subject:	RE: GRN 000953 - Questions for Notifier
Date:	Wednesday, December 16, 2020 7:41:05 PM
Attachments:	image001.png
	Hice Stephanie 20201216.pdf

Dear Stephanie-

Here are our responses to your reviewers' questions. Best wishes to you and your colleagues for a Merry (and healthy!) Christmas.

Regards, Jim

James T. Heimbach, Ph.D., F.A.C.N. JHeimbach LLC 923 Water Street #66 Port Royal VA 22535 USA Tel: (+1) 804-742-5543 Cell: (+1) 202-320-3063 Email: jh@jheimbach.com

From: Hice, Stephanie <Stephanie.Hice@fda.hhs.gov>
Sent: Thursday, December 3, 2020 4:20 PM
To: 'jh@jheimbach.com' <jh@jheimbach.com>
Cc: 'jheimbach@va.metrocast.net' <jheimbach@va.metrocast.net>
Subject: GRN 000953 - Questions for Notifier

Dear Dr. Heimbach,

During our review of GRAS Notice No. 000953, we noted further questions that need to be addressed and are attached to this email.

We respectfully request a response within **10 business days**. If you are unable to complete the response within that time frame, please contact me to discuss further options. Please do not include any confidential information in your response.

If you have questions or need further clarification, please feel free to contact me. Thank you in advance for your attention to our comments.

Sincerely,

Stephanie Hice

Stephanie Hice, PhD

Staff Fellow (Biologist) Division of Food Ingredients Center for Food Safety and Applied Nutrition Office of Food Additive Safety U.S. Food and Drug Administration stephanie.hice@fda.hhs.gov

December 3, 2020

Questions/Comments Regarding GRN 000953:

Comment:

As the *Lactobacillus* genus recently underwent reorganization¹, we note that we will use the new nomenclature for the three notified strains (i.e., *Lactiplantibacillus plantarum* strains CECT 7527, CECT 7528 and CECT 7529) in our correspondence, but will provide the strains' previous names in a footnote, linking the old nomenclature with the new nomenclature. In a future GRAS notice, we recommend that the notifier use the new nomenclature for strains affected by the taxonomic reorganization, but should also provide the strains' previous names, clearly linking the old nomenclature with the new nomenclature to the publication.

Questions:

- 1. For the administrative record, please describe whether *L. plantarum* strains CECT 7527, CECT 7528 and CECT 7529 produce antibiotics.
- 2. Please state whether *L. plantarum* strains CECT 7527, CECT 7528 and CECT 7529 are genetically engineered.
- 3. In Part 1.3 (page 5), the notifier identifies the subjects of the notice as "*Lactobacillus plantarum* KABP-011 (CECT 7527), *Lactobacillus plantarum* KABP-012 (CECT 7528), and *Lactobacillus plantarum* KABP-013 (CECT 7529)". However, on page 8, the notifier states that the "... strains were deposited in the Spanish Type Culture Collection (Colección Española de Cultivos Tipo/CECT) under accession numbers CECT 7527, CECT 7528, and CECT 7316, respectively". For the administrative record, please clarify this discrepancy.
- 4. Please provide a physical description of the final product(s) (e.g., a white powder).
- 5. Please provide complete and appropriate citations for the analytical methods used to analyze for the microbiological specifications and heavy metals
- 6. In Table 3, the notifier provides batch analyses for heavy metals (page 20) but does not provide a specification limit for these heavy metals. Please provide a specification limit for the heavy metals in order to demonstrate that the final product can be manufactured in conformance with the stated specifications.

¹Zheng, J., Wittouch, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O'Toole, P. W. ... Leeber, S. (2020). A taxonomic note of the genus *Lactobacillus*: Description of 23 novel genera, emended description of the genus *Lactobacillus* Beijerinck 1901, and union of *Lactobacillaceae* and *Leuconostocaceae*. *International Journal of Systematic and Evolutionary Microbiology*, 70(4), 1-77. doi: 10.1099/ijsem.0.004107

- 7. Please clarify if "Enterobacteria" in Table 1 and 2 (page 19) refers to the *Enterobacteriaceae*.
- 8. On page 59 the notifier lists the intended use level for GRN 000685 as "... a concentration of at least to 1 x 10¹⁰ CFU/serving and up to 1 x 10¹¹ CFU/serving" and for GRN 000722 as "... at a concentration of at least to 1 x 10¹⁰ CFU/serving and up to 5 x 10¹¹ CFU/serving". We note that the intended use level listed in our response letters for GRNs 000685 and 000722 are "... up to 1 x 10¹⁰ CFU/serving" and "... at 1 x 10¹⁰ colony forming units (CFU)/serving", respectively. For the administrative record, please make a statement that corrects this reference.
- 9. Please state whether the fermentation process is conducted in a contained, sterile environment.
- 10. The notifier provides stability data under frozen conditions (-20 °C) over 18 months and indicates that the intended use is limited to applications that can sufficiently support microorganism viability throughout the shelf-life of the product. Please confirm if the shelf-life for the individual strains and the 1:1:1 combination of the strains is 18 months.
- 11. The notifier states that the intended use is in conventional foods, such as yogurt and other dairy products, soy products, chewing gum, and confectionary snacks. Please clarify if the intended use is in all conventional foods or just the specific categories indicated in the notice.
- 12. The notifier indicates that the likely maximum ingestion is less than 10¹⁰ CFU/d but does not provide an explanation as to how that value was derived. Please provide an exposure estimate that is based on the intended uses and describe how this value is derived.
- 13. Please include an updated literature search, with the specified source, search terms and date covered, for any new or additional relevant safety data and state if any such data contradicts the notifier's GRAS conclusion.

JHeimbach LLC

December 16, 2020

Stephanie Hice, Ph.D. Staff Fellow (Biologist) Division of Food Ingredients Center for Food Safety & Applied Nutrition Office of Food Additive Safety U.S. Food & Drug Administration

Dear Dr. Hice:

In your e-mail to me of December 3, you reported that the FDA review team had a number of questions concerning GRN 953 and asked us to respond to them. Following are our responses to the questions.

1. For the administrative record, please describe whether *L. plantarum* strains CECT 7527, CECT 7528 and CECT 7529 produce antibiotics.

L. plantarum strains CECT 7527, CECT 7528, and CECT 7529 do not produce antibiotics.

2. Please state whether *L. plantarum* strains CECT 7527, CECT 7528 and CECT 7529 are genetically engineered.

L. plantarum strains CECT 7527, CECT 7528, and CECT 7529 are not genetically engineered.

 In Part 1.3 (page 5), the notifier identifies the subjects of the notice as "Lactobacillus plantarum KABP-011 (CECT 7527), Lactobacillus plantarum KABP-012 (CECT 7528), and Lactobacillus plantarum KABP-013 (CECT 7529)". However, on page 8, the notifier states that the "... strains were deposited in the Spanish Type Culture Collection (Colección Española de Cultivos Tipo/CECT) under accession numbers CECT 7527, CECT 7528, and CECT 7316, respectively". For the administrative record, please clarify this discrepancy.

Page 8 should read: "... strains were deposited in the Spanish Type Culture Collection (Colección Española de Cultivos Tipo/CECT) under accession numbers CECT 7527, CECT 7528, and CECT 7529, respectively." This was a typographical error.

4. Please provide a physical description of the final product(s) (e.g., a white powder).

L. plantarum strains CECT 7527, CECT 7528 and CECT 7529 appear as an ivory-white powder.

5. Please provide complete and appropriate citations for the analytical methods used to analyze for the microbiological specifications and heavy metals.

Parameter	Specification	Method
Bacterial Count ^{I, II}	>1.2x10 ¹¹ cfu/g	ISO 15787:2009-09 ISO 29981:2010-02
Yeasts and Molds ^{III}	<10 cfu/g	ISO 6611:2004
Enterobacteriaceae ^{IV}	<10 cfu/g	ISO 21528-2:2017
$E. \ coli^{\rm V}$	<1 cfu/g	Pharm EU 2.6.13
Staphylococci (coag +) ^{VI}	<10 cfu/g	ISO 6888- 1:1999+A1:2003; Agar per Pharm EU 2.6.13
B. cereus ^{VII}	<100 cfu/g	DIN 10198:2010-07
Listeria monocytogenes ^{VIII}	n.d. in 25 g	ISO 11290-1:2005-01
Salmonella spp. ^{IX}	n.d. in 25 g	ISO 6579:2002
cfu = colony-forming unit n.	d. = not detected	

- ¹Standards Centre. 2009. British Standards Institute, Animal Feeding Stuffs Isolation and Enumerations of *Lactobacillus* spp. EN 15787. London, British Standards Institute. 2009.
- ^{II} International Standard ISO 29981 (2010): Milk products Enumeration of presumptive bifidobacteria Colony count technique at 37°C. FIL-IDF, Brussels.
- ^{III} ISO (2004) Milk and milk products—enumeration of colony-forming units of yeasts and/or moulds—colony-count technique at 25 degrees C (ISO 6611:2004 (IDF 94:2004)). International Organization for Standardization, Geneva.
- ^{IV} International Organization for Standardization. (2017) ISO 21528-2. Microbiology of the food chain. Horizontal method for the detection and enumeration of Enterobacteriaceae. Part 2: Colony-count technique, ISO, Geneva.
- ^V EP-European Pharmacopoeia, (2020), Microbiological examination of non-sterile products test for specified micro-organisms, 2.6.13.
- ^{VI} International Organization for Standardization (2003) ISO 6888-3:2003. Microbiology of food and animal feeding stuffs horizontal method for the enumeration of coagulase-positive staphylococci (*Staphylococcus aureus* and other species): part 3: detection and MPN technique for low numbers. Geneva.

- ^{VII} German Institute for Standardization (2010) DIN 10198:2010-07. Microbiological Analysis Of Milk - Determination Of Presumptive Bacillus Cereus - Colony Count Technique At 37 Degree C. Berlin.
- VIII German Institute for Standardization (2010) DIN EN ISO 11290-1:2005. Microbiology of the Food Chain – Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp. – Part 1: Detection Method. Berlin.
- ^{IX} International Organization for Standardization (2002) ISO 6579:2002. Microbiology of food and animal feeding stuffs – horizontal method for the detection of Salmonella spp. Geneva.
- 6. In Table 3, the notifier provides batch analyses for heavy metals (page 20) but does not provide a specification limit for these heavy metals. Please provide a specification limit for the heavy metals in order to demonstrate that the final product can be manufactured in conformance with the stated specifications.

Heavy	Unit	Specification	Method		Lot	
Metal		Specification	wiethod	8685.04a	8685.06c	8685.05b
Arsenic	mg/kg	≤0.5	PNTA0193 ^I	< 0.02	0.047	0.047
Cadmium	mg/kg	≤0.2	PNTA0193 ^I	< 0.005	0.018	0.019
Mercury	mg/kg	≤0.1	PNTA0193 ^I	< 0.005	< 0.005	< 0.005
Lead	mg/kg	≤0.2	PNTA0193 ^I	< 0.005	0.006	< 0.005

¹Heavy metals testing by ICP-MS by Mérieux NutriSciences lab with ISO 17025:2005 accreditation. International Organization for Standardization (2005) ISO 17025:2005. General Requirements for the Competence of Testing and Calibration Laboratories. Geneva.

7. Please clarify if "Enterobacteria" in Tables 1 and 2 (page 19) refers to the *Enterobacteriaceae*.

"Enterobacteria" in Table 1 and 2 refers to Enterobacteriaceae.

8. On page 59 the notifier lists the intended use level for GRN 000685 as "... a concentration of at least to 1×10^{10} CFU/serving and up to 1×10^{11} CFU/serving" and for GRN 000722 as "... at a concentration of at least to 1×10^{10} CFU/serving and up to 5×10^{11} CFU/serving". We note that the intended use level listed in our response letters for GRNs 000685 and 000722 are "... up to 1×10^{10} CFU/serving" and "... at 1×10^{10} colony forming units (CFU)/serving", respectively. For the administrative record, please make a

statement that corrects this reference.

The intended use level listed in FDA response letters for GRNs 000685 and 000722 are "... up to 1×10^{10} CFU/serving" and "... at 1×10^{10} colony forming units (CFU)/serving", respectively.

9. Please state whether the fermentation process is conducted in a contained, sterile environment.

The fermentation process for *L. plantarum* CECT 7527, CECT 7528, and CECT 7529 is conducted in a contained, sterile environment.

10. The notifier provides stability data under frozen conditions (-20 °C) over 18 months and indicates that the intended use is limited to applications that can sufficiently support microorganism viability throughout the shelf-life of the product. Please confirm if the shelf-life for the individual strains and the 1:1:1 combination of the strains is 18 months.

The stability data under frozen conditions is included for the individual strains and the 1:1:1 combination of strains. Stability of the live microorganisms in conventional foods is dependent on the storage temperature, water activity, and desired shelf life of the conventional foods within which the live microorganisms are included. Applications are limited to conventional foods that include up to 1×10^{10} colony forming units (CFU)/serving at time of manufacture and 1×10^{9} colony forming units (CFU)/serving at the end of shelf life.

11. The notifier states that the intended use is in conventional foods, such as yogurt and other dairy products, soy products, chewing gum, and confectionary snacks. Please clarify if the intended use is in all conventional foods or just the specific categories indicated in the notice.

The intended use is in all conventional foods that can support viability. The specified categories are indicative of the types of conventional foods that are currently conducive to the inclusion of live microorganisms.

12. The notifier indicates that the likely maximum ingestion is less than 10¹⁰ CFU/d but does not provide an explanation as to how that value was derived. Please provide an exposure estimate that is based on the intended uses and describe how this value is derived.

As described in the notice, "When used individually, the intended level of each strain of *L. plantarum* is intended to be at least $4x10^8$ cfu/serving over the shelf life of the product. The maximum level of addition is intended to be $4x10^9$ cfu/serving of the strain to allow for the loss of viability over the shelf life of the product." When used as a blend, the total intended content of the 3 strains combined is $1.2x10^9$ cfu/serving, i.e., $4x10^8$ cfu of each strain. Target foods are limited to those that support viability. Since mean food consumption is about 20 food servings/day*, and this estimate allows for ten or more servings of foods or drinks containing the bacteria, it is felt that this is an <u>extremely</u> conservative estimate.

(*Millen AE, D Midthune, FE Thompson, V Kipnis, AF Subar. 2006. The National Cancer Institute diet history questionnaire: validation of pyramid food servings. *Am J Epidemiol* 163:279-288.)

13. Please include an updated literature search, with the specified source, search terms and date covered, for any new or additional relevant safety data and state if any such data contradicts the notifier's GRAS conclusion.

A PubMed search was performed for "plantarum" with the results limited to clinical trials. Publications not included in the original GRAS submission are summarized below. Espadaler et al. (2019) was not from the PubMed search but is a new publication of research using the notified strains. None of the data conflicts with the notifier's GRAS conclusion.

Citation	Description	Subjects	Intervention	Duration	Safety-Related Findings
Espadaler et al., 2019	Prospective observational study of subjects initiating consumption of KABP-011, KABP- 012, and KABP- 013. [Abstract of a presentation at the 10th Workshop of the Spanish Society of Probiotics and Prebiotics (SEPyP 2019)].	343 subjects (median age = 55 years, 63% female)	<i>L. plantarum</i> KABP- 011, KABP-012, and KABP-013 in a 1:1:1 ratio were consumed in a capsule at 1.2x10 ⁹ cfu/day	Daily for 12 weeks	17% of patients reported tolerability issues but none of them were considered severe. The tolerability issues correlated with antiplatelet use only. No AEs were reported.
Madempudi et al., 2019	Randomized, double-blind, placebo-controlled trial to evaluate the micro-organisms' effects in patients with Type 2 diabetes.	79 subjects with Type 2 diabetes with 40 receiving intervention (62M, 17F, mean age = 52.4 years).	a) <i>L. salivarius</i> UBLS22, <i>L. casei</i> UBLC42, <i>L. Plantarum</i> UBLP40, <i>L.</i> <i>acidophilus</i> UBLA34, <i>B. breve</i> UBBr01, and <i>B. coagulans</i> Unique IS2, 30 billion cfu and fructo-oligosaccharide, 100 mg) b) placebo capsules of maltodextrin	12 weeks	2 participants experienced mild flatulence or moderate constipation assessed as likely unrelated to the intervention. No other SAEs or deaths occurred during the study.

Citation	Description	Subjects	Intervention	Duration	Safety-Related Findings
Håkansson et al., 2019	Randomized, double-blind, placebo-controlled trial to evaluate the microorganisms' ability to suppress ongoing celiac disease in at-risk children.	78 children with celiac disease with 40 receiving intervention (3- 7 years of age).	a) 1g sachet of maltodextrin and <i>L.</i> <i>plantarum</i> HEAL9 / <i>L.</i> <i>paracasei</i> 8700:2 at 10 ¹⁰ cfu/sachet b) 1g sachet of maltodextrin	6 months	3 children in the intervention group and 4 children in the placebo group reported AEs of pain, flatulence, or diarrhea. 1 in each group reported GI symptoms.
Huang et al., 2019	Randomized, double-blind, placebo-controlled trial to evaluate the microorganisms' effects on exercise physiological adaptation, performance, and body composition in healthy humans.	54 healthy subjects (20- 30 years, non- professional athletes, 27M and 27F)	a) Placebo b) 3 x 10 ¹⁰ cfu/day <i>L.</i> <i>plantarum</i> TWK10 c) 9 x 10 ¹⁰ cfu/day <i>L.</i> <i>plantarum</i> TWK10	6 weeks	No significant differences were observed in AST, ALT, BUN, CREA, UA, FFA, and glycerol among groups.
Park et al., 2020	Randomized, double-blind, placebo-controlled trial to evaluate the microorganisms' effects postprandial lipid levels and intestinal environment.	70 subjects with 62 completing the study (24M/46F, mean age of 48 years)	a) <i>L. plantarum</i> Q180 4 x 10 ⁹ cfu twice a day b) Placebo	12 weeks	Four intervention and four placebo subjects dropped out of the trial. No safety data is presented.
Toshimitsu et al., 2020	Randomized, double-blind, placebo-controlled trial to evaluate the microorganisms' effects on glucose metabolism and chronic inflammation in prediabetic adults.	130 subjects aged 20-64 years with 65 in the intervention arm and 65 in the placebo arm.	 a) Heat treated <i>L.</i> <i>plantarum</i> OLL2712 at 5 x 10⁹ cfu in yogurt b) Placebo (yogurt) 	12 weeks	No SAEs occurred in the study, although a total of 21 nonserious AEs were accounted for through participants' diaries, medical interviews, and blood tests. There were no significant differences in the incidence of AEs between the groups, and none of these were judged by the physician in charge to be related to the consumption of the test yogurt.

Citation	Description	Subjects	Intervention	Duration	Safety-Related Findings
Ford et al., 2020	Randomized, double-blind, placebo-controlled, crossover study to evaluate the effects of a high protein diet (HPD) with and without live microorganisms on gut microbiota and wellness in older women.	older women k aged 73.7 ±5.6 years.) HPD) HPD + multistrain probiotic formulation (1.54×10⁹ <i>Bifidobact</i> <i>erium bifidum</i> HA- 132, 4.62×10⁹ <i>Bifidobacte</i> <i>rium breve</i> HA-129, 4.62×10⁹ <i>Bifidobacte</i> <i>rium longum</i> HA- 135, 4.62×10⁹ <i>Lactobacill</i> <i>us acidophilus</i> HA- 122, and 4.62×10⁹ <i>Lactobacill</i> <i>us plantarum</i> HA- 119)) HPD + prebiotic (5.6g inulin)) HPD + multistrain probiotic blend + 5.6g inulin 	2 weeks per arm in the crossover study with 2 weeks washout between arms	No study-related AEs were reported during the study.
Nam et al., 2020	Open label, single arm study evaluating the effects of the live microorganism on skin hydration.	13 female volunteers aged 44.3 ±16.5 years.	a) 1 x 10 ¹⁰ cfu of <i>L.</i> <i>plantarum</i> HY7714 as a capsule	8 weeks	2 of 15 recruited subjects failed to complete the study due to personal non-medical reasons.
Shin et al., 2020	Evaluation of the effectiveness of the microorganism in children with rotaviral enteritis.	23 children with acute gastroenteritis with 15 in the intervention arm and 8 in the control group. 27 children were evaluated retrospectively.	 a) unknown cfu of <i>L.</i> plantarum LRCC5310 b) no intervention c) Saccharomyces of unknown amount 	7 days	No information on safety was published.

Espadaler, J., Audivert, S., Buj, D. (2019). Abstracts of the 10th workshop on probiotics and prebiotics. *Ann Nutr Metab* 74(suppl 1), 1–31. https://doi.org/10.1159/000496759

Ford, A. L., Nagulesapillai, V., Piano, A., Auger, J., Girard, S. A., Christman, M., Tompkins, T. A., Dahl, W. J. (2020). Microbiota stability and gastrointestinal tolerance in response to a high-protein diet with and without a prebiotic, probiotic, and synbiotic: A randomized, double-blind, placebo-controlled trial in older women. *J Acad Nutr Dietet* 120(4), 500-516.e10. https://doi.org/10.1016/j.jand.2019.12.009

- Håkansson, Å., Aronsson, C. A., Brundin, C., Oscarsson, E., Molin, G., Agardh, D. (2019). Effects of *Lactobacillus plantarum* and *Lactobacillus paracasei* on the peripheral immune response in children with celiac disease autoimmunity: A randomized, double-blind, placebo-controlled clinical trial. *Nutrients* 11(8). https://doi.org/10.3390/nu11081925
- Huang, W. C., Lee, M. C., Lee, C. C., Ng, K. S., Hsu, Y. J., Tsai, T. Y., Young, S. L., Lin, J. S., Huang, C. C. (2019). Effect of *Lactobacillus plantarum* TWK10 on exercise physiological adaptation, performance, and body composition in healthy humans. *Nutrients* 11(11). https://doi.org/10.3390/nu11112836
- Madempudi, R. S., Ahire, J. J., Neelamraju, J., Tripathi, A., Nanal, S. (2019). Efficacy of UB0316, a multi-strain probiotic formulation in patients with type 2 diabetes mellitus: A double blind, randomized, placebo controlled study. *PloS One* 14(11), e0225168. https://doi.org/10.1371/journal.pone.0225168
- Nam, B., Kim, S. A., Park, S. D., Kim, H. J., Kim, J. S., Bae, C. H., Kim, J. Y., Nam, W., Lee, J. L., Sim, J. H. (2020). Regulatory effects of *Lactobacillus plantarum* HY7714 on skin health by improving intestinal condition. *PLoS ONE* 15(4), e0231268. https://doi.org/10.1371/journal.pone.0231268
- Park, Y. E., Kim, M. S., Shim, K. W., Kim, Y. Il, Chu, J., Kim, B. K., Choi, I. S., Kim, J. Y. (2020). Effects of *Lactobacillus plantarum* Q180 on postprandial lipid levels and intestinal environment: A double-blind, randomized, placebo-controlled, parallel trial. *Nutrients 12*(1). https://doi.org/10.3390/nu12010255
- Shin, D. Y., Yi, D. Y., Jo, S., Lee, Y. M., Kim, J. H., Kim, W., Park, M. R., Yoon, S. M., Kim, Y., Yang, S., Lim, I. S. (2020). Effect of a new *Lactobacillus plantarum* product, LRCC5310, on clinical symptoms and virus reduction in children with rotaviral enteritis. *Medicine* 99(38), e22192. https://doi.org/10.1097/MD.00000000022192
- Toshimitsu, T., Gotou, A., Sashihara, T., Hachimura, S., Shioya, N., Suzuki, S., Asami, Y. (2020). Effects of 12-week ingestion of yogurt containing *Lactobacillus plantarum* OLL2712 on glucose metabolism and chronic inflammation in prediabetic adults: A randomized placebo-controlled trial. *Nutrients* 12(2). https://doi.org/10.3390/nu12020374

I hope these responses provide satisfactory answers to your questions. Please let me know if you have further questions.

Sincerely_/

James T. Heimbach, Ph.D., F.A.C.N. President

From:	jheimbach@va.metrocast.net
To:	Hice, Stephanie; jh@jheimbach.com
Cc:	<u>"Garey, Joshua"</u>
Subject:	RE: GRN 000953 - Questions for Notifier
Date:	Wednesday, December 23, 2020 10:58:30 AM
Attachments:	image001.png
	Hice Stephanie 20201223.pdf
	alcance iso17025 enac.pdf
	Contfirmation testing methods Lactosan.pdf

Dear Stephanie-

As a Christmas present O, I am sending you our response to your email of December 18. The response includes a letter and two pdf documents.

Regards, Jim

James T. Heimbach, Ph.D., F.A.C.N. JHeimbach LLC 923 Water Street #66 Port Royal VA 22535 USA Tel: (+1) 804-742-5543 Cell: (+1) 202-320-3063 Email: jh@jheimbach.com

From: Hice, Stephanie <Stephanie.Hice@fda.hhs.gov>
Sent: Friday, December 18, 2020 3:20 PM
To: jh@jheimbach.com; 'jheimbach@va.metrocast.net' <jheimbach@va.metrocast.net>
Subject: RE: GRN 000953 - Questions for Notifier

Dear Dr. Heimbach,

During our review of GRAS Notice No. 000953, we noted further questions that need to be addressed and are attached to this email.

We respectfully request a response within **10 business days**. If you are unable to complete the response within that time frame, please contact me to discuss further options. Please do not include any confidential information in your response.

If you have questions or need further clarification, please feel free to contact me. Thank you in advance for your attention to our comments.

Sincerely,

Stephanie Hice

Stephanie Hice, PhD

Staff Fellow (Biologist) Division of Food Ingredients Center for Food Safety and Applied Nutrition Office of Food Additive Safety U.S. Food and Drug Administration stephanie.hice@fda.hhs.gov

JHeimbach LLC

December 23, 2020

Stephanie Hice, Ph.D. Staff Fellow (Biologist) Division of Food Ingredients Center for Food Safety & Applied Nutrition Office of Food Additive Safety U.S. Food & Drug Administration

Dear Dr. Hice:

In your e-mail to me of December 18, you reported that the FDA review team had four additional questions concerning GRN 953 and asked us to respond to them. Following are our responses to the questions.

1. In their December 16, 2020 amendment, the notifier states that the method used to determine bacterial count is International Standards Organization (ISO) 15787:2009-09; however, in the provided references, the method is cited as a method from the British Standards Institute, and not ISO. We note that ISO 15787 corresponds to Technical Product Documentation – Heat-Treated Ferrous Parts – Presentation and Indications. For the administrative record, please clarify this discrepancy.

This error on the specifications was corrected in March of 2020. Included with the correspondence is a letter of confirmation showing the update to "ÖNORM EN 15787:2009" as the method. The December 16, 2020, response incorrectly gave the method citation as from the British Standards Institute instead of the Austrian Standards Institute.

Austrian Standards Institute, Animal Feeding Stuffs - Isolation and Enumerations of *Lactobacillus* spp. EN 15787. Vienna. 2009.

2. On page 19 of the notice, the notifier states "All testing is done using up-to-date analytical methods that have [been] validated for their specific [a]pplications".

a. In their December 16, 2020 amendment, the notifier states that the method used to detect *Listeria monocytogenes* is ISO 11290-1:2005-01. We note that this method has been revised and replaced by ISO 11290-1:2017, which corresponds to Microbiology of the Food Chain – Horizontal Method for the Detection and Enumeration of *Listeria monocytogenes* and *Listeria* spp. – Part 1: Detection Method. Please make a statement that corrects this reference.

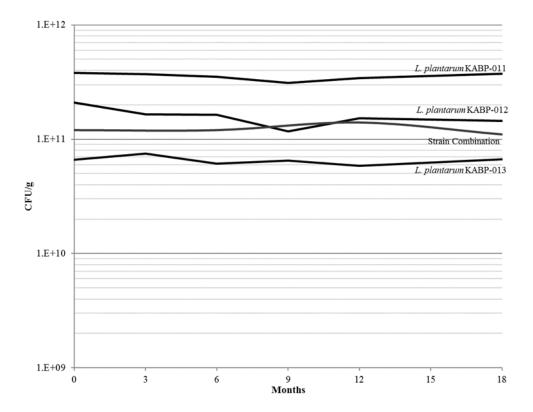
This specification was updated in March of 2020. Included with this correspondence is a letter of confirmation showing the update to "ISO 11290-1:2017" as the method.

Stephanie Hice December 23, 2020

b. In their December 16, 2020 amendment, the notifier states that the method used to detect *Salmonella* serovars is ISO 6579:2002. We note that this method has been revised and replaced by 6579-1:2017, which corresponds to Microbiology of the Food Chain – Horizontal Method for the Detection, Enumeration and Serotyping of *Salmonella* – Part 1: Detection of *Salmonella* spp. Please make a statement that corrects this reference.

This specification was updated in March of 2020. Included with this correspondence is a letter of confirmation showing the update to "ISO 6579-1:2017" as the method.

c. In their December 16, 2020 amendment, the notifier states that method PNTA0193 is used to analyze for heavy metals. Please clarify whether this analytical method has been validated for its intended purpose. In addition, the notifier states that testing for heavy metals is performed by Mérieux NutriSciences lab using ICP-MS with ISO 17025:2005.We note that this standard has been revised by ISO/IEC 17025:2017. Please indicate that the current standard is being met.


Included with this correspondence is the current certification meeting UNE-EN ISO/IEC 17025:2017. PNTA0193 is also listed in the certification as validated for its intended purpose.

3. We understand that the stability of the live microorganisms in conventional foods is dependent on the food matrix and the conditions in which the food is stored. For the administrative record, please clarify if the shelf life of the individual strains or a 1:1:1 combination of the strains is 18 months when stored at -20° C.

As shown in the figure on the next page, the shelf life both of the individual strains and of a 1:1:1 combination of the strains is 18 months when stored at -20° C.

4. In the December 16, 2020 amendment, the notifier provides an updated literature search that is limited to human clinical trials. For the administrative record, please confirm that all relevant publicly-available information was reviewed, and no additional safety concerns were noted, and provide the date (month and year) the literature search was performed.

The literature search was performed on December 15, 2020. All relevant publicly-available information was reviewed and no additional safety concerns were noted.

I hope these responses provide satisfactory answers to your questions. Please let me know if you have further questions.

Sincerely_f/

James I. Heimbach, Ph.D., F.A.C.N. President

GmbH & Co. KG, Industriestrasse West 5, 8605 Kapfenberg

AB-BIOTICS, S.A. Edifici Esade Creapolis Av. Torre Blanca, 57-3B06 08172 Sant Cugat Barcelona

testing methods

Hereby Lactosan GmbH & CO.KG confirms that all testing on AB-Biotics products is performed as followed:

Meth. LAC AA 3.11.1.42 based on

Meth. LAC AA 3.11.1.42 according to

Meth. LAC AA 3.11.1.42 according to

Meth. LAC AA 3.31.1.1 according to

ÖNORM EN 15787:2009

ISO 6611:2004

ISO 21528-2:2017

ISO 6579-1:2017

ISO 29981:2010, ÖNORM EN 15786:2009 and

active substance:

yeasts and molds:

enterobacteria:

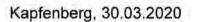
salmonella:

listeria monocytogenes:

e.coli:

coag. positive staphylococci:

bacillus cereus:


Meth. LAC AA 3.31.1.2 according to ISO 11290-1:2017

Meth. LAC AA 3.31.1.3 according to Pharm Eu 2.6.13

Meth. LAC AA 3.31.1.4 according to ISO 6888-1:1999/ Amd 2:2018, Agar according to Pharm Eu 2.6.13

Meth. LAC AA 3.11.1.42 according to DIN 10198:2010-07

Lactosan GmbH & Co. KG Industriestrasse West 5 A-8605 Kapfenberg Tel. 0043-3862-32602-0 Fax. 0043-3862-32602-4 A-8605 Kapfenberg Tel. +43 (0)3862 - 32602 - 0 Fax +43 (0)3862 - 32602 - 4

Firmenbuch-Nr.: FN 226787 k

Landesgericht: Leoben

Firmensitz: Kapfenberg

e-mail: info@lactosan.at

DVR: 0597520

Di Violoto Cakia, OM

DI Violeta Cakic, QM

Bankverbindungen: PSK 7614-712 Bank-Austria 632 126 207 IBAN AT 58 12000 006 3212 6207 UID-Nr.: ATU 56 16 56 15

SILLIKER IBÉRICA, S.A. (Unipersonal)

Dirección/Address: C/ Longitudinal 8, nº26, Mercabarna; 08040 Barcelona Norma de referencia/Reference Standard: UNE-EN ISO/IEC 17025:2017 Actividad/Activity: Ensayo/Test Acreditación/Accreditation nº: 257/LE413 Fecha de entrada en vigor/Coming into effect: 02/03/2001

ALCANCE DE LA ACREDITACIÓN/SCHEDULE OF ACCREDITATION

(Rev./Ed. 38 fecha/date 08/07/2020)

Instalaciones donde se llevan a cabo las actividades cubiertas por esta acreditación: Locations where the activities covered by accreditation are performed:

C/ Longitudinal 8, nº26, Mercabarna; 08040 Barcelona (Laboratorio Central)

C/ Dos de mayo, nº 273-275; 08025 Barcelona (Centro de Análisis Sensorial)

ENAC is signatory of the Multilateral Recognition Agreements established by the European and International organizations of Accreditation Bodies EA, ILAC and IAF. For more information <u>www.enac.es</u>.

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, tempore withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

ENAC es firmante de los Acuerdos de Reconocimiento Mutuo establecidos en el seno de la European co-operation for Accu internacionales de organismos de acreditación, ILAC e IAF (www.enac.es) Código Validación Electrónica: 3A4h681310NW28WT04

PROGRAMA DE ACREDITACIÓN: "ENSAYOS PARA INFORMACIÓN NUTRICIONAL" (NT-70.01)*:

ACCREDITATION PROGRAMME: "TEST FOR NUTRITION INFORMATION" (NT-70.01)*

- Ensayos para información nutricional obligatoria y completa conforme al Reglamento CE nº 1169/2011, en alimentos: Test for mandatory and full nutrition declaration in accordance with Regulation EC No. 1169/2011, in foods
 - o Valor energético / Energy value
 - o Grasas / Fat
 - o Ácidos grasos saturados / Saturated fatty acids
 - Hidratos de carbono / Carbohydrates
 - Azúcares / Sugars
 - o Proteínas / Protein
 - Sal (determinación de sodio) / Salt (Deteminatiosn of Sodium)
 - o Ácidos grasos monoinsaturados y poliinsaturados / Mono-unsaturates and polyunsaturates fatty acids
 - o Almidón / Starch
 - o Fibra alimentaria / Fibre
 - Vitaminas (Vitamina A, Vitamina D, Vitamina E, Vitamina K, Vitamina C, Tiamina, Riboflavina, Niacina, Vitamina B6, Ácido fólico, Vitamina B12, Biotina y Ácido pantoténico) / Vitamins (Vitamin A, Vitamin D, Vitamin E, Vitamin K, Vitamin C, Thiamin, Riboflavin, Niacin, Vitamin B6, Folic acid, Vitamin B12, Biotin y Pantothenic acid)
 - Minerales (Cloruro, Calcio, Magnesio, Zinc, Cobre, Hierro, Fósforo, Potasio) / Minerals (Chloride, Calcium, Magnesium, Zinc, Copper, Iron, Phosphorus, Potassium)

PROGRAMA DE ACREDITACIÓN: "ENSAYOS MICROBIOLÓGICOS DE ALIMENTOS" (NT-70.02)*:

ACCREDITATION PROGRAMME: "MICROBIOLOGICAL FOOD TESTING" (NT-70.02)*:

Ensayos para el cumplimiento de los criterios microbiológicos de los alimentos:

Tests for compliance with microbiological criteria for food:

- Listeria monocytogenes / Listeria monocytogenes
- o Salmonella / Salmonella
- Escherichia coli / Escherichia coli
- Recuento de colonias aerobias / Aerobic colony count
- Enterobacteriáceas / Enterobacteriaceae
- o Estafilococos coagulasa positivos / Coagulase-positive Staphylococci
- o Presunto Bacillus cereus / Presumptive Bacillus cereus
- o Enterotoxinas estafilocócicas / Staphylococcal enterotoxins

PROGRAMA DE ACREDITACIÓN: "ENSAYOS DE GLUTEN Y ALÉRGENOS EN ALIMENTOS" (NT-70.03)*: ACCREDITATION PROGRAMME: "TEST OF GLUTEN AND ALLERGEN IN FOOD" (NT-70.03)*:

- Ensayos para la información sobre sustancias o productos que causan alergias o intolerancias: Tests for information on substances or products causing allergies or intolerances:
 - Gluten / Gluten
 - o Huevo / Egg
 - Cacahuetes / Peanuts
 - Soja / Soybean
 - Leche (proteínas) / Milk (proteins)
 - Dióxido de azufre y sulfitos / Sulphur dioxide and sulphites
 - o Almendra / Almond
 - o Avellana / Hazelnut
 - Nuez / Walnut

*Disponibles en la página web de ENAC

* Available on the ENAC website

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

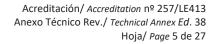
Categoría 0 (Ensayos en el laboratorio permanente) Category 0 (Test in the permanent laboratory)

LABORATORIO CENTRAL

AREA DE FÍSICO-QUÍMICA/ PHYSICAL-CHEMICAL AREA

Análisis mediante métodos basados en técnicas gravimétricas y volumétricas *Analysis by gravimetric and titrimetric methods*

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/TEST PROCEDURE
Alimentos Food	Valor energético (por cálculo) Energy value (by calculation)	PNTA0136 Método interno conforme a In-house method according to Reglamento (CE) nº 1169/2011 Regulation (EC) nº 1169/2011
Alimentos sólidos (excepto leche y productos lácteos) Solid foodstuffs (except milk and milk products)	Grasa por gravimetría Fat by gravimetry	PNTA0133 Rev. 11 Método interno In-house method
Alimentos líquidos (excepto leche), bebidas, salsas líquidas Liquid food (except milk), beverages, liquid sauces		PNTA0172 Rev. 2 Método interno In-house method
Yogures, postres lácteos, quesos frescos Yogurt, milk desserts, fresh cheeses	Grasa por gravimetría (método Weibull-Berntrop) Fat by gravimetry (Weibull-Berntrop method)	PNTA0132 Método interno basado en In-house method based on ISO 8262
Queso Cheese	Grasa por gravimetría (método Schmid-Bondzynski-Ratzlaff) Fat by gravimetry (Schmid-Bondzynski-Ratzlaff method)	ISO 1735/IDF5
Leche líquida Leche concentrada Leche condensada Leche en polvo y productos lácteos en polvo Nata	Grasa por gravimetría (método Röse-Gottlieb) Fat by gravimetry (Röse-Gottlieb method)	ISO 1211 / IDF1 ISO 1737 / IDF13 ISO 1736 / IDF9 ISO 2450 / IDF16
Liquid milk Concentrated milk Condensed milk Milk powder and powdered milk products Cream		


Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/TEST PROCEDURE
Alimentos	Proteína/nitrógeno mediante volumetría (método Kjeldahl)	PNTA0100 Rev. 14
Food	Protein / Nitrogen by titration (Kjeldahl method)	Método interno In-house method
Leche y productos lácteos Milk and milk products		
Alimentos	Fibra alimentaria (fracciones de alto peso molecular) por	PNTA0066
Food	método enzimático-gravimétrico Dietary fiber (high molecular weight fractions) by enzymatic- gravimetric method)	Método interno basado en In- house method based on AOAC 991.43
	Hidratos de carbono (por cálculo)	PNTA0136
	Carbohydrates (by calculation)	Método interno basado en In-house method based on Food energy-methods of analysis and conversion factors, FAO Food and Nutrition Paper
	Humedad por gravimetría	PNTA0081 Rev. 16
	Moisture by gravimetry	Método interno In-house method
Cacao y productos a base de cacao		IOCCC 3-E
Cocoa and cocoa based products		
Aceites y grasas Oils and fats	Humedad y materias volátiles por gravimetría Moisture and volatile material by gravimetry	BOE-A-1977-16116 Anexo I Num. 9 (a)
Leche Leche concentrada Nata Milk Concentrated milk	Materia seca por gravimetría Dry matter by gravimetry	ISO 6731/IDF 21
Cream		
Leche condensada Condensed milk		ISO 6734/IDF 15
Leche en polvo		PNTA0024
Milk powder		Método interno basado en In-house method based on FIL 26A:1993

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/TEST PROCEDURE
Queso	Sólidos totales por gravimetría	ISO5534/IDF4
Cheese	Total solids by gravimetry	
Alimentos Food	Cloruros por volumetría (valoración potenciométrica) Chlorides by potentiometric titration	PNTA0078 Método interno basado en In- house method based on AOAC 986.26
	Cenizas por gravimetría Ashes by gravimetry	PNTA0083 Rev. 9 Método interno In-house method
Leche Leche en polvo Nata Queso		PNTA0027 Método interno basado en In-house method based on AOAC 945.46
Milk Dried milk Cream Cheese		AOAC 930.30 AOAC 935.42 AOAC 920.108
Cerveza Beer		PNTA0073 Método interno basado en In-house method based on BOE-A-1985-21911 Anexo I Num. 8
Alimentos Food	Dióxido de azufre y sulfitos por volumetría Sulphur dioxide and sulfites by titration (≥ 5 mg/kg)	PNTA0067 Método interno basado en In-house method based on AOAC962.16
Alimentos envasados Packed food	Peso neto γ escurrido por gravimetría Net weight and drained weight by gravimetry	PNTA0098 Método interno conforme a In-house method according to BOE-A-1984-26465
Aceites y grasas Oils and fats	Índice de peróxidos por volumetría Peroxide index by titration	ISO 3960

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/TEST PROCEDURE
Leche <i>Milk</i>	Acidez por volumetría Acidity by titration	PNTA0020 Método interno basado en In-house method based on AOAC 947.05
Mantequilla Butter		ISO 1740 / IDF6
Cerveza Beer	Acidez por volumetría (valoración potenciométrica) Acidity by potentiometric titration	PNTA0073 Método interno basado en In-house method based on BOE- A-1985-21911 Anexo I Num. 5

Análisis mediante métodos basados en técnicas electroanalíticas Analysis by electroanalytic methods

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/TEST PROCEDURE
Alimentos Food	Nitrógeno / Proteína por conductividad térmica (método Dumas) Protein / Nitrogen by thermal conductivity (Dumas method)	PNTA0135 Método interno basado en In-house method based on ISO 16634
Cacao y productos a base de cacao Cocoa and cocoa based products	pH por potenciometría pH by potentiometry (3,00 – 8,00 pH units)	IOCCC 9-E
Alimentos Food		PNTA0062 Rev. 10 Método interno In-house method
	Actividad de agua por resistividad Water activity by resistivity	ISO 18787

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

Análisis físico-químicos Physico-chemical analysis

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/TEST PROCEDURE
Cerveza Beer	Grado alcohólico por densimetría Alcoholic degree by densimetry	PNTA0073 Método interno basado en In-house method based on EBC 9.2.1
	Extracto real, extracto seco primitivo y extracto aparente por densimetría <i>Real extract by densimetry</i>	PNTA0073 Método interno basado en In-house method based on EBC 9.4
	Densidad por densimetría Density by densimetry	PNTA0073 Método interno basado en In-house method based on EBC 9.43.2
	Grado de fermentación (por cálculo) Degree of fermentation (by calculation)	PNTA0073 Método interno basado en In-house method based on BOE-A-1985-21911 Anexo I Num. 3
Alimentos líquidos (excepto vinos y cervezas) Liquid food (except wine and beer)	Densidad por densimetría electrónica Density by densimetry (0,900 – 1,500 g/ml)	PNTA0194 Método interno basado en método fabricante Mettler Toledo equipo DE40 Density Meter In-house method based on manufacturer Mettler Toledo equipment DE40 Density Meter
Envases Packaging	Oxígeno y dióxido de carbono en el envase por célula electroquímica e IR <i>O</i> ₂ and CO ₂ in packaging by electrochemical cell and IR (0-60%)	PNTA0195 Método interno basado en método fabricante WITT equipo Analizador OXYBABY® M+i In-house method based on manufacturer WITT equipment Analizador OXYBABY® M+i

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

Análisis mediante métodos basados en técnicas de espectroscopía molecular *Analysis by molecular spectroscopy methods*

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/TEST PROCEDURE
Alimentos	Almidón por espectrofotometría UV-VIS	PNTA0190
Food	Starch by UV-VIS spectrophotometry	Método interno basado en In-house method based on AOAC920.83
Mantequillas	Índice de peróxidos por espectrofotometría UV-VIS	FIL 74A:1991
Butter	Peroxide index by UV-VIS spectrophotometry	
Cerveza	Dióxido de azufre y sulfitos por espectrofotometría UV-VIS	PNTA0073
Beer	Sulphur dioxide and sulfites by UV-VIS spectrophotometry ($\geq 0,5 \text{ mg/l}$)	Método interno basado en In- house method based on BOE-A-1985-21911 Anexo I Num. 10
	Color por espectrofotometría UV-VIS	PNTA0073
	Colour by UV-VIS spectrophotometry	Método interno basado en
	(4 – 200 EBC)	In-house method based on EBC 9.6
	Amargor por espectrofotometría UV-VIS	PNTA0073
	Bitter by UV-VIS spectrophotometry	Método interno basado en
	(1 – 40 IBU)	In-house method based on EBC 9.8

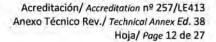
Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Análisis mediante métodos basados en técnicas cromatográficas Analysis by chromatographical methods

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSA TYPE OF		NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Grasa extraída de alimentos Aceites y grasas Fat extracted from foodstuffs Oils and fats	Composición relativa de ácidos gr con detector de ionización de llama <i>Relative composition of fatty acids li</i> <i>ionization detector (GC-FID)</i> Ácido Butírico Ácido Caproico Ácido Heptanoico Ácido Caprílico Ácido Cáprico Ácido Undecanoico Ácido Undecanoico Ácido Mirístico Ácido Mirístoleico Ácido Pentadecanoico	a (CG-FID)	TEST PROCEDURE PNTA0129 Rev. 13 Método interno In-house method
	Ácido Pentadecenoico Ácidos grasos C15 ramificados (iso y ante-iso) Ácido Palmítico Ácido Palmitoleico Ácidos grasos C16 ramificados (iso) Ácido Heptadecanoico Ácido Heptadecenoico Ácidos grasos C17 ramificados (iso y ante-iso) Ácido Esteárico Ácidos Trans-oleicos Ácido Cis-oleico Ácidos Trans-linoleicos Ácido Cis,cis-linoleico Ácido Gamma-linolénico Ácidos Trans-linolénicos	Pentadecenoic acid C15 branched-chain fatty acids (iso & ante-iso) Palmitic acid Palmitoleic acid C16 branched-chain fatty acids (iso) Heptadecanoic acid Heptadecenoic acid C17 branched-chain fatty acids (iso & ante-iso) Stearic acid Trans-oleic acids Cis-oleic acids Cis-cis-linoleics acids Cis-cis-linoleic acid Trans-linolenic acids Cis-cis-linolenic acids	
	Ácido Cis,cis-linolénico Ácidos grasos C18 ramificados (iso y ante-iso) Ácido Aráquico Ácido Gadoleico Ácido Heneicosanoico Ácido Eicosadienoico Ácido Behénico Ácido Dihommo-gammalinolénico Ácido Dihommo-gammalinolénico Ácido Eicosatrienoico Ácido Araquidónico Ácido Erúcico Ácido Docosadienoico Ácido Docosadienoico Ácido Lignocérico Ácido Nervónico Ácido Docosapentanoico Ácido Docosapentanoico	Cis,cis-linolenic acid C18 branched-chain fatty acids (iso & ante-iso) Arachic acid Gadoleic acid Heneicosanoic acid Eicosadienoic acid Behenic acid Dihomo-gamma-linolenic acid Eicosatrienoic acid Arachidonic acid Erucic acid Tricosanoic acid Docosadienoic acid Eicosapentanoic Acid Lignoceric acid Nervonic acid Docosapentaenoic acid	

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04


PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Leche y productos lácteos sin lactosa Bebidas de soja, bebidas de cereales, bebidas de frutos secos Milk and milk products without lactose Soya drinks, cereal drinks, dry fruits drink	Lactosa por cromatografía líquida con detector de pulso amperométrico (LC-PAD) Lactose by liquid chromatography with amperometric pulse detector (LC-PAD) (≥ 0,01 %)	PNTA0149 Método interno basado en In-house method based on DIONEX 87238-AN218-IC Lactose Free PAD_LPN2507
Alimentos Cerveza Food Beer	Azúcares por cromatografía líquida con detector de pulso amperométrico (LC-PAD) Sugars by liquid chromatography with pulsed amperometric detector (LC-PAD) Fructosa/Fructose Maltosa/Maltose Glucosa/Glucose Lactosa monohidratada/ Monohydrated lactose Sacarosa/Saccharose Galactosa/Galactose (≥ 0,05 %) Alimentos/Food (≥ 0,01 %) Cerveza/Beer	PNTA0179 Método interno basado en In-house method based on 115482-Man-065495-01- CarboPac-PA10
Alimentos Food	Lactosa por cromatografía líquida con detector de espectrometría de masas (LC-MS/MS) Lactose by liquid chromatography with mass spectrometry detector (LC- MS/MS) (≥ 20 mg/kg)	PNTA0189 Rev.5 Método interno In-house method
	Fibra alimentaria (fracciones de alto y bajo peso molecular) por método enzimático-gravimétrico y cromatografía líquida con detector de índice de refracción (LC-RID) Dietary fiber (high and low molecular weight fractions) by enzymatic- gravimetric method and liquid chromatography with refraction index detector (LC-RID)	PNTA0151 Método interno basado en In-house method based on AOAC 2009.01
	Polialcoholes por cromatografía líquida con detector de índice de refracción (LC-RID) Polyols by liquid chromatography with refractive index detector (LC-RID) Maltitol/Maltitol Sorbitol/Sorbitol Lactitol/Lactitol Isomaltitol/Isomaltitol Mannitol/Mannitol Eritritol/Eritritol Xilitol/Xilitol (≥ 0,5%)	PNTA0177 Método interno basado en In-house method based on Supelco bulletin 887B

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos Food	Azúcares por cromatografía líquida con detector de índice de refracción (LC-RID) Sugars by líquid chromatography with refraction index detector (LC-RID) Fructosa/Fructose Maltosa/Maltose Glucosa/Glucose Lactosa monohidratada/ Monohydrated Sacarosa/Saccharase (≥ 0,5%)	PNTA0101 Método interno basado en In-house method based on IOCCC 117
	Glicerina por cromatografía líquida con detector de índice de refracción (LC-RID) Glycerol by liquid chromatography with refraction index detector (LC-RID) (≥ 0,5%) Productos líquidos/Líquid products (≥ 0,2 g/l) Productos sólidos/Solid products	PNTA0205 Método interno basado en In-house method based on Amer. Journal of Enology and Viticulture, Vol.2, 2007, 279-282
	Vitamina B1 (tiamina) y vitamina B2 (riboflavina) por cromatografía líquida con detector de fluorescencia (LC-FLD) Vitamin B1 (Thiamine) and vitamin B2 (riboflavin) by liquid chromatography with fluorescence detector (LC-FLD) $(\geq 0, 1 \text{ mg/kg})$ Productos líquidos/Liquid products $(\geq 0, 2 \text{ mg/kg})$ Productos sólidos/Solid products	PNTA0128 Método interno basado en In-house method based on EN 14122 EN 14152
	 Vitamina B6 (Piridoxina) por cromatografía líquida con detector de fluorescencia (LC-FLD) Vitamin B6 (Pyridoxine) by liquid chromatography with fluorescence detector (LC-FLD) (≥ 0,2 mg/kg) Productos líquidos/Liquid products (≥ 0,4 mg/kg) Productos sólidos/Solid products 	PNTA0056 Método interno basado en In-house method based on EN 14164
	Biotina por cromatografía líquida con detector de espectrometría de masas (LC-MS/MS) Biotin by líquid chromatography with mass spectrometer detector (LC-MS/MS) (≥ 20 µg/kg)	PNTA0164 Método interno basado en In-house method based on EN 15607
	Vitamina C (ácido ascórbico + dehidroascórbico) por cromatografía líquida con detector ultravioleta (LC-UV) Vitamin C (ascorbic acid + dehydroascorbic acid) by liquid chromatography with UV detector (LC-UV) (≥ 5 mg/kg) Productos líquidos/Liquid products (≥ 20 mg/kg) Productos sólidos/Solid products	PNTA0127 Método interno basado en In-house method based on NF V03-135

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos Food	Vitamina B12 (cianocobalamina) por cromatografia líquida con detector de diodos en serie (CL-DAD) Vitamin B12 (cyanocobalamin) by liquid chromatography with diode array detector (CL-DAD) (≥ 1 μg/kg)	PNTA0137 Método interno basado en In-house method based on AOAC 2011.08
	Ácido fólico por cromatografía líquida con detector de diodos en serie (CL-DAD) Folic acid by liquid chromatography with diode array detector (LC-DAD) (≥ 10 μg/kg)	PNTA0138 Método interno basado en In-house method based on r-Biopharm EASI-EXTRACT FOLIC ACID P81
	Vitamina A (retinol) por cromatografía líquida con detector ultravioleta (LC-UV) Vitamin A (retinol) by liquid chromatography with UV detector (LC-UV) (≥ 0,1 mg/kg) Productos líquidos/Líquid products (≥ 0,5 mg/kg) Productos sólidos/Solid products	PNTA0145 Método interno basado en In-house method based on EN 12823-1
	Vítamina E (alfa-tocoferol) por cromatografía líquida con detector de fluorescencia (LC-FLD) Vitamin E (alpha-tocopherol) by liquid chromatography with fluorescence detector (LC-FLD) (≥ 0,3 mg/kg) Productos líquidos/Liquid products (≥ 1,5 mg/kg) Productos sólidos/Solid products	PNTA0145 Método interno basado en In-house method based on EN 12822
	Vitamina D3 (colecalciferol) por cromatografía líquida con detector ultravioleta (LC-UV)Vitamin D3 (cholecalciferol) by líquid chromatography with UV detector (LC-UV) $(\geq 1 \ \mu g/kg)$ Productos líquidos /Líquid products $(\geq 5 \ \mu g/kg)$ Productos sólidos/Solid products	PNTA0146 Método interno basado en In-house method based on EN 12821
	Vitamina B3 (niacina) por cromatografía líquida con detector de fluorescencia (LC-FLD) Vitamin B3 (niacin) by liquid chromatography with fluorescence detector (LC-FLD) (≥ 2 mg/kg)	PNTA0147 Método interno basado en In-house method based on EN 15652
	Vitamina B5 (Ácido pantoténico) por cromatografía líquida con detector de espectrometría de masas (LC-MS/MS) Vitamin B5 (pantothenic acid) by liquid chromatography with mass spectrometer detector (LC-MS/MS) (≥ 0,5 mg/kg)	PNTA0148 Método interno basado en In-house method based on J AOAC Int. 2012 Jan- Feb;95(1):143-8

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos Food	Vitamina K1 (filoquinona) por cromatografía líquida con detector de fluorescencia (LC-FLD)Vitamin K1 (Phylloquinone) by liquid chromatography with fluorescence detector (LC-FLD) $(\geq 1 \ \mu g/kg)$ Productos líquidos /Liquid products ($\geq 10 \ \mu g/kg)$ Productos sólidos/Solid products	PNTA0178 Método interno basado en In-house method based on EN 14148
	Vitamina B9 (ácido fólico y folatos) por cromatografía líquida con detector de espectrometría de masas (LC-MS/MS) Vitamin B9 (folic acid and folates) by liquid chromatography with mass spectrometer detector (LC-MS/MS) (≥ 10 µg/kg)	PNTA0192 Métada interno basado en In-house method based on AOAC 2011.06
	Vitamina D2 y Vitamina D3 por cromatografía líquida con detector de espectrometría de masas (LC-MS/MS)Vitamin D2 and vitamin D3 by líquid chromatography with mass spectrometer detector (LC-MS/MS) $(\geq 1 \ \mu g/kg)$ Productos líquidos /Liquid products $(\geq 5 \ \mu g/kg)$ Productos sólidos/Solid products	PNTA0202 Método interno basado en In-house method based on ISO 20636
	Colesterol por cromatografía de gases con detector de ionización de llama (CG-FID) Cholesterol by gas chramatography with flame ionization detector (GC-FID) (≥ 10 mg/kg)	PNTA0093 Método interno basado en In-house method based on AOAC 994.10
Café verde, café tostado Cacao Cereales y productos elaborados a base de cereal Alimentos infantiles Green coffee, roasted coffee Cocoa Cereals and cereal based products Baby food	Ocratoxina A por cromatografía líquida con detector de fluorescencia (LC-FLD) Ochratoxin A by líquid chromatography with fluorescence detector (LC-FLD) ($\geq 0,5 \ \mu g/kg$) (excepto alimentos infantiles $\geq 0,25 \ \mu g/kg$) ($\geq 0,5 \ \mu g/kg$) (except baby food $\geq 0,25 \ \mu g/kg$)	PNTA0077 Método interno conforme a In-house method according to Reglamento (CE) nº 401/2006 y sus posteriores modificaciones Regulation (EC) nº 401/2006 and its subsequent amendments
Frutos secos Especias Cereales y productos elaborados a base de cereal Nuts Spices Cereals and cereal based products	Aflatoxinas por cromatografía líquida con detector de fluorescencia (LC-FLD) Aflatoxins by liquid chromatography with fluorescence detector (LC-FLD) Aflatoxinas B1 y G1/ Aflatoxins B1 and G1: ($\geq 0,5 \ \mu g/kg$) Aflatoxinas B2 y G2/ Aflatoxins B2 and G2: ($\geq 0,2 \ \mu g/kg$)	PNTA0053 Método interno conforme a In-house method according to Reglamento (CE) nº 401/2006 y sus posteriores modificaciones Regulation (EC) nº 401/2006 and its subsequent amendments

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos infantiles Baby food	Aflatoxina B1 por cromatografía líquida con detector de fluorescencia (LC-FLD) Aflatoxin B1 by liquid chromatography with fluorescence detector (LC-FLD) $(\geq 0,05 \ \mu g/kg)$	PNTA0053 Método interno conforme a In-house method according to Reglamento (CE) nº 401/2006 y sus posteriores modificaciones Regulation (EC) nº 401/2006 and its subsequent amendments
Cereales y productos elaborados a base de cereal Alimentos infantiles Cereals and cereal based products Baby food	Zearalenona por cromatografía líquida con detector de fluorescencia (LC-FLD) Zearalenone by liquid chromatography with fluorescence detector (LC-FLD) $(\geq 20 \ \mu g/kg)$	PNTA0122 Método interno conforme a In-house method according to Reglamento (CE) nº 401/2006 y sus posteriores modificaciones Regulation (EC) nº 401/2006 and its subsequent amendments
Cereales y productos elaborados a base de cereal Alimentos infantiles Cereals and cereal based products Baby food	Deoxynivalenol por cromatografía líquida con detector de diodos en serie (LC-DAD) Deoxynivalenol by liquid chromatography with diode array detector (LC-DAD) ($\geq 100 \ \mu g/kg$)	PNTA0121 Método interno conforme a In-house method according to Reglamento (CE) nº 401/2006 y sus posteriores modificaciones Regulation (EC) nº 401/2006 and its subsequent amendments
	Fumonisinas B1 y B2 por cromatografía líquida con detector de fluorescencia (LC-FLD) Fumonisins B1 and B2 by liquid chromatography with fluorescence detector (LC-FLD) ($\geq 100 \ \mu g/kg$)	PNTA0123 Método interno conforme a In-house method according to Reglamento (CE) nº 401/2006 y sus posteriores modificaciones Regulation (EC) nº 401/2006 and its subsequent amendments
Leche y productos lácteos Alimentos infantiles Milk and dairy products Milk – based baby food	Aflatoxina M1 por cromatografía líquida con detector de fluorescencia (LC-FLD) Aflatoxin M1 by liquid chromatography with fluorescence detector (LC-FLD) ($\geq 0,010 \ \mu g/kg$) Leche líquida y alimentos infantiles/Milk and milk – based baby food ($\geq 0,050 \ \mu g/kg$) Leche condensada/Condensed milk ($\geq 0,10 \ \mu g/kg$) Productos lácteos/Dairy products	PNTA0170 Método interno conforme a In-house method according to Reglamento (CE) nº 401/2006 y sus posteriores modificaciones Regulation (EC) nº 401/2006 and its subsequent amendments

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Panes y productos de bollería/pastelería, bebidas Bread and bakery products, beverages	 Ácido benzoico y sórbico por cromatografía líquida con detector de diodos en serie (LC-DAD) Sorbic acid and benzoic acid by liquid chromatography with diode array detector (LC-DAD) (≥ 2,5mg/kg) Productos líquidos/Liquid products (≥ 5 mg/kg) Productos sólidos/Solid products 	PNTA0063 Método interno basado en In-house method based on ISO 9231
Bebidas no alcohólicas Batidos de cacao o chocolate Chocolate blanco o con leche y productos que contienen cacao, chocolate o café Chocolate negro Café descafeinado Cacao Café Té Non-alcoholic beverages Cocoa or chocolate drinks White or milk chocolate, other products containing cocoa, chocolate or coffee Black chocolate Decaffeinated coffee Cocoa Coffee Tea	Cafeína y teobromina por cromatografía líquida con detector de array de diodos (LC-DAD) Caffein and theobromin by liquid chromatography with diode array detector (LC-DAD) (≥ 1 mg/l) Bebidas no alcohólicas/Non-alcoholic beverages (≥ 5 mg/kg) Batidos de cacao o chocolate/Cocoa or chocolate drinks (≥ 50 mg/kg) Chocolate blanco o con leche y productos que contienen cacao, chocolate o café/White or milk chocolate and other products containing cocoa, chocolate or coffee (≥ 100 mg/kg) Chocolate negro, Café descafeinado/Black chocolate, Decaffeinated coffee (≥ 150 mg/kg) Cacao/Cocoa (≥ 200 mg/kg) Café/Coffee (≥ 500 mg/kg) Té/Tea	PNTA0169 Método interno basado en In-house method based on AOAC 980.14
Patatas y productos a base de patatas Cereales y productos a base de cereales, incluyendo galleteria, bolleria, panes; Alimentos infantiles a base de cereales Potato and potato based products; Cereals and cereal based products, including cookies; bakery products and Bread Cereal based baby food	Acrilamida por cromatografía líquida con detector de espectrometría de masas (LC-MS/MS) Acrylamide by liquid chromatography with mass spectrometer detector (LC-MS/MS) (≥ 20 µg/kg)	PNTA0171 Método interno conforme a In-house method according to Reglamento (UE) nº 2017/2158 Regulation (EU) nº 2017/2158

Código Validación Electrónica: 3A4h681310NW28WT04

Análisis mediante métodos basados en técnicas de espectrometría atómica Analysis by atomic absorption spectrometry methods

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Aceites y grasas Alimentos estimulantes (cacao y productos a base de cacao, café, té) Alimentos infantiles Bebidas alcohólicas/no alcohólicas Carne y productos cárnicos Cereales y productos elaborados a base de cereal Comidas preparadas Frutas y vegetales Frutos Secos Leche y productos lácteos Ovoproductos Pastelería y repostería Productos de la bollería Productos de la pesca <i>Oils and fats</i> <i>Stimulating food (Cocoa and cocoa based products, coffee, tea)</i> <i>Baby food</i> <i>Alcoholic/Non-Alcoholic</i> <i>beverages</i> <i>Meat and meat products</i> <i>Cereals and cereal based</i> <i>products</i> <i>Ready- to-eat food</i> <i>Fruits and vegetables</i> <i>Nuts</i> <i>Milk and milk products</i> <i>Egg products</i> <i>Confectionery</i> <i>Bakery products</i> <i>Fish products</i>	Calcio, Magnesio y Zinc por espectrometría de absorción atómica (atomización por llama) Calcium, Magnesium and Zinc by Flame Atomic Absorption Spectroscopy (FAAS) Cerveza/Beer Calcio/Calcium (≥ 10 mg/kg) Zinc/Zinc (≥ 0,1 mg/kg) Magnesio/Magnesium (≥ 5 mg/kg) Productos sólidos y aceites y grasas/Solid products and oils and fats Calcio/Calcium (≥ 50 mg/kg) Zinc/Zinc (≥ 5 mg/kg) Magnesio/ Magnesium (≥ 25 mg/kg) Productos líquidos (excepto cerveza)/Liquid products (except beer) Calcio/Calcium (≥ 10 mg/kg) Zinc/Zinc (≥ 1 mg/kg) Magnesio/Magnesium (≥ 5 mg/kg) Sodio por fotometría de llama Sodium by flame photometry (≥ 5 mg/kg) Productos sólidos y aceites y grasas/Solid products and oils and fats (≥ 1 mg/kg) Productos líquidos/Liquid products	PNTA0016 Método interno conforme a In-house method according to EN 13804

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/TEST PROCEDURE
Aceites y grasas Alimentos estimulantes (cacao y productos a base de cacao, café, té) Alimentos infantiles Azúcar y derivados Bebidas alcohólicas/no alcohólicas Carne y productos cárnicos Cereales y productos elaborados a base de cereal Comidas preparadas Frutas y vegetales Frutos Secos Leche y productos lácteos Ovoproductos Pastelería y repostería Productos de la bollería Productos de la pesca <i>Oils and fats</i> <i>Stimulating food (Cocoa and cocoa based products, coffee, tea)</i> <i>Baby food</i> <i>Sugar and derivatives</i> <i>Alcoholic/Non-Alcoholic</i> <i>beverages</i> <i>Meat and meat products</i> <i>Cereals and cereal based</i> <i>products</i> <i>Ready- to-eat food</i> <i>Fruits and vegetables</i> <i>Nuts</i> <i>Milk and milk products</i> <i>Egg products</i> <i>Fish products</i>	Arsénico, Cadmio, Cobre, Hierro y Plomo por espectrometría de absorción atómica (atomización electrotérmica) Arsenic, Cadmium, Copper, Iron and Lead by Electrothermal Atomic Absorption Spectroscopy (ETAAS) Aceites y grasaS/Olis and fats Arsénico/Arsenic ($\geq 0,050 mg/kg$) Hierro/Iron ($\geq 0,20 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Plomo/Lead ($\geq 0,020 mg/kg$) Cobre/Copper ($\geq 0,20 mg/kg$) Plomo/Lead ($\geq 0,020 mg/kg$) Carne y productos cárnicos, vegetales /Meat and meat products, vegetables Arsénico/Arsenic ($\geq 0,010 mg/kg$) Hierro/Iron ($\geq 0,50 mg/kg$) Cadmio/Cadmium ($\geq 0,010 mg/kg$) Plomo/Lead ($\geq 0,020 mg/kg$) Cadmio/Cadmium ($\geq 0,010 mg/kg$) Plomo/Lead ($\geq 0,020 mg/kg$) Cobre/Copper ($\geq 0,50 mg/kg$) Plomo/Lead ($\geq 0,020 mg/kg$) Cobre/Copper ($\geq 0,010 mg/kg$) Plomo/Lead ($\geq 0,020 mg/kg$) Cobre/Copper ($\geq 0,010 mg/kg$) Plomo/Lead ($\geq 0,020 mg/kg$) Cadmio/Cadmium ($\geq 0,010 mg/kg$) Plomo/Lead ($\geq 0,020 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Plomo/Lead ($\geq 0,020 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Plomo/Lead ($\geq 0,040 mg/kg$) Cobre/Copper ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,10 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,10 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,10 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,10 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,008 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,008 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,50 mg/kg$) Cadmio/Cadmium ($\geq 0,000 mg/kg$) Hierro/Iron ($\geq 0,50 mg/kg$) Cadmio/Cadmium ($\geq 0,000 mg/kg$) Hierro/Iron ($\geq 0,50 mg/kg$) Cadmio/Cadmium ($\geq 0,000 mg/kg$) Hierro/Iron ($\geq 0,50 mg/kg$) Cadmio/Cadmium ($\geq 0,000 mg/kg$) Hierro/Iron ($\geq 0,50 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,50 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,50 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,50 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,50 mg/kg$) Cadmio/Cadmium ($\geq 0,020 mg/kg$) Hierro/Iron ($\geq 0,50 mg/kg$) Cadm	PNTA0017 Método interno conforme a In-house method according to EN 13804

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED			ENSAYO PE OF TEST		NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Aceite Alimentos dietéticos Alimentos infantiles Azúcar Bebidas no alcohólicas Cacao y productos a base de cacao Cereales y productos	espectroscopia de (ICP-AES) <i>Calcium, Copper, Ph</i>	emisión atómic osphorus, Iron, I Plasma Atomic Er (≥ 0,50 mg/kg)	Magnesio, Potasio, S a con plasma de acopla Magnesium, Potassium, S mission Spectroscopy (ICF Hierro/Iron Sodio/Sodium	amiento inductivo Sodium and Zinc by	PNTA0141 Método interno conforme a In-house method according to EN 13804
Cereales y productos elaborados a base de cereal Cervezas Golosinas, caramelos y otros derivados de azúcar Leche y productos lácteos Productos cárnicos cocidos Productos cárnicos curados <i>Oil</i> <i>Dietary products</i>	Cerveza/Beer Calcio /Calcium Cobre/Copper Fósforo/Phosphorus Hierro/Iron	(≥ 5 mg/kg) (≥ 0,10 mg/kg) (≥ 5 mg/kg) (≥ 0,10 mg/kg) los y otros deri	Magnesio/Magnesium Potasio/Potassium Sodio/Sodium	(≥ 5 mg/kg) (≥ 5 mg/kg) (≥ 1 mg/kg) (≥ 0,1 mg/kg)	
	Cobre/ <i>Copper</i> Leche y productos Calcio / <i>Calcium</i>	(≥ 0,50 mg/kg)	nd milk products	(≥ 5 mg/kg) ;/	
Baby food Sugar Non-alcoholic beverages Cocoa and cocoa based products	Cobre/Copper Fósforo/Phosphorus Hierro/Iron Magnesio /Magnesium	(≥ 0,50 mg/kg) (≥ 0,50 mg/kg) (≥ 25 mg/kg) (≥ 25 mg/kg)	(≥ 0,10 mg/kg) (≥ 5 mg/kg)		
Cereals and cereal based products Beer Candies, sweeties and other sugar derivatives Milk and milk products Cooked meat products Cured meat products	Potasio/Potassium Sodio/Sodium Zinc /Zinc Resto productos so	(≥ 25 mg/kg) (≥ 5 mg/kg) (≥ 5 mg/kg) ólidos/Other sol	(≥ 5 mg/kg) (≥ 1 mg/kg) (≥ 1 mg/kg) id products		
	Calcio /Calcium Cobre/Copper Fósforo/Phosphorus Hierro/Iron	(≥ 25 mg/kg) (≥ 0,50 mg/kg)	Magnesio /Magnesium Potasio/Potassium Sodio/Sodium	(≥ 25 mg/kg) (≥ 25 mg/kg) (≥ 5 mg/kg) (≥ 5 mg/kg)	
	Resto productos lín Calcio /Calcium Cobre/Copper Fósforo/Phosphorus Hierro/Iron	(≥ 5 mg/kg) (≥ 0,10 mg/kg)	Magnesio /Magnesium Potasio/Potassium Sodio/Sodium	(≥ 5 mg/kg) (≥ 5 mg/kg) (≥ 1 mg/kg) (≥ 1 mg/kg)	

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos Cerveza Food Beer	Elementos por espectrometría de masas con plasma de acoplamiento inductivo (ICP-MS)Elements by mass-spectrometry with Inductively Coupled Plasma (ICP-MS)Alimentos (excepto aceites y grasas)/Food (except Oils and fats)Aluminio/Aluminium(\geq 5,0 mg/kg)Magnesio/Magnesium (\geq 10 mg/kg)Arsénico/Arsenic (\geq 0,020 mg/kg)Magnesio/Manganese (\geq 0,050 mg/kg)Cadmio/Cadmium (\geq 0,005 mg/kg)Mercurio/Mercury (\geq 0,005 mg/kg)(excepto alimentación infantil/except(excepto alimentación infantil/exceptbaby food: \geq 0,002 mg/kg)baby food: \geq 0,004 mg/kg)Calcio/Calcium (\geq 10mg/kg)Molibdeno/Molybdenum(\geq 0,050 mg/kg)Cobalto/Cobalt (\geq 0,50 mg/kg)Níquel/Nickel (\geq 0,50 mg/kg)Cobre/Copper (\geq 0,50 mg/kg)Plomo/Lead (\geq 0,005 mg/kg)	PNTA0193 Método interno conforme a In-house method according to EN 13804
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	Cerveza/BeerAluminio/Aluminiun $(\geq 0, 10 mg/l)$ Magnesio/Magnesium $(\geq 10 mg/l)$ Arsénico/Arsenic $(\geq 0, 005 mg/l)$ Manganeso/Manganese $(\geq 0, 050 mg/l)$ Cadmio/Cadmium $(\geq 0, 001 mg/l)$ Mercurio/Mercury $(\geq 0, 001 mg/l)$ Calcio/Calcium $(\geq 10 mg/l)$ Molibdeno/Molybdenum $(\geq 0, 050 mg/l)$ Cobalto/Cobalt $(\geq 0, 010 mg/l)$ Níquel/Nickel $(\geq 0, 010 mg/l)$ Cobre/Copper $(\geq 0, 10 mg/l)$ Plomo/Lead $(\geq 0, 001 mg/l)$ Cromo/Chromium $(\geq 0, 050 mg/l)$ Potasio/Potasium $(\geq 20 mg/l)$ Estaño/Tin $(\geq 0, 010 mg/l)$ Selenio/Selenium $(\geq 0, 050 mg/l)$ Fósforo/Phosphorus $(\geq 20 mg/l)$ Sodio/Sodium $(\geq 10 mg/l)$ Hierro/Iron $(\geq 0, 10 mg/l)$ Zinc/Zinc $(\geq 0, 10 mg/l)$	

Código Validación Electrónica: 3A4h681310NW28WT04

Análisis mediante métodos basados en técnicas de enzimoinmunoensayo Analysis by enzyme immunoassay methods

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos hidrolizados y/o fermentados Hydrolyzed and/or fermented foods	Determinación del gluten por ELISA Competitivo Gluten by Competitive ELISA (≥ 10 mg/kg)	AOAC2015.05
Alimentos (excepto productos hidrolizados y/o fermentados) Aguas de proceso Food (except hydrolyzed and/or fermented products) Process water	Gluten mediante ELISA sándwich (anticuerpo R5) Gluten by ELISA sandwich (R5 antibody) (≥ 5 mg/kg) (≥ 2,5 mg/kg)	AOAC 2012.01 PNTA0207 Método interno basado en kit comercial(*) In-house method based on commercial kit(*)
	Leche por ELISA Milk by ELISA (≥ 2,5 mg/kg) expresado en leche desnatada en polvo/expressed skimmed milk powdered	PNTA0144 Método interno basado en kit comercial(*) In-house method based on commercial kit(*)
Alimentos Aguas de proceso Food Process water	Huevo por ELISA Egg by ELISA (≥ 0,1 mg/kg) expresado en proteína de clara de huevo/expressed in egg white protein	PNTA0143 Método interno basado en kit comercial(*) In-house method based on commercial kit(*)
	Soja por ELISA Soya by ELISA (≥ 2,5 mg/kg) expresado en proteína de soja/expressed in soya protein	PNTA0161 Método interno basado en kit comercial(*) In-house method based on commercial kit(*)
	Almendra por ELISA Almond by ELISA (≥ 2,5 mg/kg) expresado en almendra/expressed in almond (≥ 0,5 mg/kg) expresado en proteína de almendra/ expressed in almond protein	PNTA0162 PNTA0203 Métodos internos basados en kit comercial(*) In-house methods based on commercial kit(*)

(*) La información sobre el kit concreto usado está disponible en el laboratorio

(*) Information about the specific kit used is available in the laboratory

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos Aguas de proceso Food Process water	Avellana por ELISA Hazelnut by ELISA (≥ 2,5 mg/kg) expresado en avellana/expressed in hazelnut	PNTA0163 Método interno basado en kit comercial(*) In-house method based on commercial kit(*)
	Cacahuete por ELISA Peanut by ELISA (≥ 2,5 mg/kg) expresado en cacahuete/expressed in peanut	PNTA0166 Método interno basado en kit comercial(*) In-house method based on commercial kit(*)
	Nuez de macadamia por ELISA Macadamia nut by ELISA (≥ 2,0 mg/kg) expresado en nuez de macadamia/expressed in macadamia nut	PNTA0204 Método interno basado en kit comercial(*) In-house method based on commercial kit(*)
Alimentos Food	Nuez por ELISA Walnut by ELISA (≥ 2,0 mg/kg) expresado en nuez/expressed in walnut	PNTA0181 Método interno basado en kit comercial(*) In-house method based on commercial kit(*)
	Lisozima por ELISA Lysozym by ELISA ($\geq 0,05 \text{ mg/kg}$) para vino/for wine ($\geq 0,25 \text{ mg/kg}$) resto de alimentos/for other foods	PNTA0167 Método interno basado en kit comercial(*) In-house method based on commercial kit(*)
Bebidas de soja Soy beverages	Caseína por ELISA Casein by ELISA (≥ 0,3 mg/kg)	PNTA0165 Método interno basado en kit comercial(*) In-house method based on commercial kit(*)
Bebidas de soja Soy beverages	Beta lactoglobulina por ELISA Beta-lactoglobulin by ELISA (≥ 0,1 mg/kg)	PNTA0174 Método interno basado en kit comercial(*) In-house method based on commercial kit(*)

(*) La información sobre el kit concreto usado está disponible en el laboratorio

(*) Information about the specific kit used is available in the laboratory

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Leche y productos lácteos Milk and dairy products	Nuez de Brasil por ELISA (método cualitativo) Brasil nut by ELISA (Qualitative method) (≥ 2,0 mg/kg) expresado en nuez de Brasil/expressed in Brasil nut	PNTA0197 Método interno basado en kit comercial(*) In-house method based on
	Nuez pecana por ELISA (método cualitativo) Pecan nut by ELISA (Qualitative method)	PNTA0199 <i>Método interno basado en</i>
	(≥ 2,0 mg/kg) expresado en nuez pecana/expressed in pecan nut	kit comercial(*) In-house method based on commercial kit(*)
	Pistacho por ELISA (método cualitativo)	PNTA0200
	Pistaccio by ELISA (Qualitative method) (≥ 2,0 mg/kg) expresado en pistacho/expressed in pistaccio	Método interno basado en kit comercial(*) In-house method based on commercial kit(*)
	Anacardo por ELISA (método cualitativo)	PNTA0201
	Cashew by ELISA (Qualitative method)	Método interno basado en
	(≥ 2,0 mg/kg) expresado en anacardo/ <i>expressed in cashew</i>	kit comercial(*) In-house method based on commercial kit(*)
Alimentos	Huevo por ELISA	PNTA0196
Food	Egg by ELISA (≥ 1,0 mg/kg) expresado en proteína de huevo/ <i>expressed in egg protein</i>	Método interno basado en kit comercial(*) In-house method based on commercial kit(*)

(*) La información sobre el kit concreto usado está disponible en el laboratorio

(*) Information about the specific kit used is available in the laboratory

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

ÁREA DE MICROBIOLOGÍA

Análisis de alimentos mediante métodos basados técnicas de aislamiento en medios de cultivo Food analysis by isolation in culture media methods

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos Piensos Esponjas y escobillones de muestreo de superficies Food Feed Sampling sponges and swaps of surfaces	Recuento en placa de microorganismos aeróbicos a 30 °C Plate count of aerobic microorganisms (30°C)	ISO 4833-1
Alimentos Piensos Esponjas y escobillones de	Recuento en placa de mohos y levaduras a 25 °C Plate count of moulds and yeasts (25°C)	NF V08-059
muestreo de superficies Faod Feed	Recuento en placa de enterobacterias Plate count of Enterobacteriaceae	ISO 21528-2
Sampling sponges and swaps of surfaces	Recuento en placa de enterobacterias presuntivas Plate count of presumptive Enterobacteriaceae	NF V08-054
Alimentos Food	Recuento en placa de Bacillus cereus presuntivos Plate count of presumptive Bacillus cereus	ISO 7932
	Recuento en placa de bacterias lácticas Plate count of lactic acid bacteria	ISO 15214
	Recuento en placa de Clostridium perfringens Plate count of Clostridium perfringens	ISO 7937
	Recuento en placa de coliformes a 30 °C. Plate count of coliforms (30 °C)	ISO 4832
	Recuento en placa de Escherichia coli β -glucuronidasa positivo Plate count of Escherichia coli β -glucuronidase positive	ISO 16649-2
	Recuento en placa de Listeria monocytogenes Plate caunt of Listeria monocytogenes	ISO 11290-2
	Recuento en placa de <i>Listeria</i> spp. Plate count of Listeria spp.	ISO 11290-2
	Recuento en placa de estafilococos coagulasa positivos Plate count of coagulase-positive staphylococci	ISO 6888-1

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos Food	Recuento en placa de mohos y levaduras a 25 °C Plate count of moulds and yeasts (25°C)	ISO 21527-1 ISO 21527-2
	Recuento en placa de bacterias anaerobias sulfitorreductoras Plate count of sulfite-reducing anaerobic bacteria	ISO 15213
	Detección de <i>Bacillus cereus</i> presuntivos Detection of Presumptive Bacillus cereus	ISO 21871
	Detección de enterobacterias Detection of Enterobacteriaceae	ISO 21528-1
	Detección de Escherichia coli Detection of Escherichia coli	ISO 7251
	Detección de Salmonella spp. Detection of Salmonella spp.	ISO 6579-1
	Detección de <i>Salmonella</i> (móviles) <i>Detection of Salmonella (mobile)</i>	PNTA0140 Método interno basado en In-house method based on ISO6579-1
Alimentos Esponjas, gasas y escobillones de muestreo de superficies Food Sampling sponges, chiffon and swaps of surfaces	Detección de <i>Listeria</i> spp. <i>Detection of Listeria spp.</i> Detección de <i>Listeria monocytogenes</i> <i>Detection of Listeria monocytogenes</i>	ISO11290-1
Alimentos Esponjas, gasas y escobillones de muestreo de superficies Food Sampling sponges, chiffon and swaps of surfaces	Detección de Listeria monocytogenes Detection of Listeria monocytogenes	PNTA0153 Método interno basado en In-house method based on ALOA® COUNT
Alimentos Food	Recuento en placa de estafilococos coagulasa positivo Plate count of coagulase-positive staphylococci	ISO 6888-2

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Productos cárnicos Productos lácteos <i>Meat products</i> <i>Milk products</i>	Recuento en placa de <i>Pseudomonas</i> spp. Plate count of Pseudomonas spp.	PNTA0009 Método interno basado en In-house method based on ISO 13720
Preparados lácteos en polvo Milk preparations powdered	Detección de <i>Cronobacter</i> spp. Detection of Cronobacter spp.	ISO 22964

Análisis mediante métodos de ensayo basados en inmunofluorescencia (ELFA) Analysis by inmunofluorescence methods

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos Esponjas y escobillones de muestreo de superficies Food Sampling sponges and swaps of surfaces	Detección de Listeria monocytogenes por inmunofluorescencia (ELFA) Detection of Listeria monocytogenes by inmunofluorescence (ELFA)	PNTA0118 Método interno basado en In-house method based on VIDAS® Listeria monocytogenes II (LM02)
	Detección de <i>Listeria</i> spp. y <i>Listeria monocytogenes</i> por inmunofluorescencia (ELFA) <i>Detection of Listeria spp. and Listeria monocytogenes by inmunofluorescence</i> (<i>ELFA</i>)	PNTA0168 Método interno basado en In-house method based on VIDAS® Listeria Duo (LDUO)
	Investigación de <i>Listeria</i> spp. por inmunofluorescencia (ELFA) Detection of Listeria spp. by inmunofluorescence (ELFA)	PNTA0175 Método interno basado en In-house method based on VIDAS® Listeria (LIS)
Alimentos Food	Detección de enterotoxina estafilocócica por inmunofluorescencia (ELFA) Detection of staphylococcal enterotoxins by inmunofluorescence (ELFA)	European screening method of the European Union Reference Laboratory for Coagulase Positive Staphylcocci (ANSES)

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos Piensos Esponjas y escobillones de muestreo de superficies Food Feed Sampling sponges and swaps of surfaces	Detección de Salmonella spp. por inmunofluorescencia (ELFA) Detection of Salmonella spp. by inmunofluorescence (ELFA)	PNTA0160 Método interno basado en In-house method based on VIDAS® Easy Salmonella

Análisis mediante métodos basados en técnicas PCR Analysis by PCR methods

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos Piensos Esponjas y escobillones de muestreo de superficies Food Feed Sampling sponges and swaps of surfaces	Detección de <i>Salmonella</i> spp. por PCR a tiempo real Detection of Salmonella spp. by real-time PCR	PNTA0139 Método interno basado en In-house method based on BAX® System Real Time PCR Assay

Análisis de Legionella Legionella analysis

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Aguas de consumo Aguas continentales tratadas Drinking waters Continental treated waters	Recuento de <i>Legionella</i> spp. Enumeration of Legionella spp. Identificación de Legionella pneumophila (Aglutinación de látex) Identification of Legionella pneumophila (Aglutination latex test)	ISO 11731 PNTA0206 Método interno basado en kit comercial (*) In-house method based on commercial kit (*)

(*) La información sobre el kit concreto usado está disponible en el laboratorio

(*) Information on the concrete kit used is available in the laboratory

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

FOOD SCIENCE CENTER

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos elaborados listos para consumo <i>Ready- to-eat food</i>	Estudio del potencial de crecimiento (δ) y de la tasa máxima de crecimiento (μ max) de Listeria monocytogenes mediante la técnica del CHALLENGE TEST Challenge test (growth potential and maximum growth rate) of Listeria monocytogenes	Document For Conducting shelf-life studies on Listeria

CENTRO DE ANÁLISIS SENSORIAL

DEPARTAMENTO DE ANÁLISIS SENSORIAL

Análisis sensorial: pruebas de diferenciación

Sensory analysis: tests for difference

PRODUCTO/MATERIAL A ENSAYAR PRODUCTS/MATERIALS TESTED	ENSAYO TYPE OF TEST	NORMA/PROCEDIMIENTO DE ENSAYO STANDARD SPECIFICATIONS/ TEST PROCEDURE
Alimentos Food	Prueba triangular Triangle test	UNE-EN ISO 4120

Un método interno se considera que está basado en métodos normalizados cuando su validez y su adecuación al uso se han demostrado por referencia a dicho método normalizado y en ningún caso implica que ENAC considere que ambos métodos sean equivalentes. Para más información recomendamos consultar el Anexo I al CGA-ENAC-LEC.

An in-house method is considered based on standardized methods when its validity and suitability have been demonstrated against standard reference methods. This will never imply that ENAC considers both methods equivalent. For more information, please consult Annex I to the CGA-ENAC-LEC.

Accreditation will remain valid until notification to the contrary. This accreditation is subject to modifications, temporary suspensions and withdrawal. Its validity can be confirmed at <u>www.enac.es</u>

Código Validación Electrónica: 3A4h681310NW28WT04

 From:
 jheimbach@va.metrocast.net

 To:
 Hice, Stephanie; jh@jheimbach.com

 Subject:
 RE: GRN 000953 - Questions for Notifier

 Date:
 Monday, January 11, 2021 5:21:57 PM

 Attachments:
 image001.png

 Hice Stephanie 20210111.pdf

Dear Stephanie-

Here is our response to your question.

HAPPY NEW YEAR! Jim

James T. Heimbach, Ph.D., F.A.C.N. JHeimbach LLC 923 Water Street #66 Port Royal VA 22535 USA Tel: (+1) 804-742-5543 Cell: (+1) 202-320-3063 Email: jh@jheimbach.com

From: Hice, Stephanie <Stephanie.Hice@fda.hhs.gov>
Sent: Monday, January 11, 2021 4:27 PM
To: jh@jheimbach.com; 'jheimbach@va.metrocast.net' <jheimbach@va.metrocast.net>
Subject: RE: GRN 000953 - Questions for Notifier

Dear Dr. Heimbach,

During our review of GRAS Notice No. 000953, we noted a further question that needs to be addressed and is attached to this email.

We respectfully request a response within **10 business days**. If you are unable to complete the response within that time frame, please contact me to discuss further options. Please do not include any confidential information in your response.

If you have questions or need further clarification, please feel free to contact me. Thank you in advance for your attention to our comments.

Sincerely,

Stephanie Hice

Stephanie Hice, PhD Staff Fellow (Biologist) Division of Food Ingredients Center for Food Safety and Applied Nutrition Office of Food Additive Safety U.S. Food and Drug Administration stephanie.hice@fda.hhs.gov

JHeimbach LLC

January 11, 2021

Stephanie Hice, Ph.D. Staff Fellow (Biologist) Division of Food Ingredients Center for Food Safety & Applied Nutrition Office of Food Additive Safety U.S. Food & Drug Administration

Dear Dr. Hice:

In the email I received from you earlier today, you stated that FDA reviewers of GRN 000953 had the following question:

The notifier indicates that the likely maximum ingestion of *Lactiplantibacillus plantarum* strain CECT 7527, *L. plantarum* strain CECT 7528 and *L. plantarum* strain CECT 7529 is less than 1010 CFU/d. In their December 16, 2020 amendment, the notifier indicates that the use level for the combined strains is 1.2 x 109 CFU/serving. However, in the GRAS notice, the notifier indicates a maximum use level for the combined strains of 1.2 x 1010 CFU/serving. Presuming a maximum use level of 1.2 x 1010 CFU/serving and a mean consumption of 20 servings of food/d, the maximum exposure would be less than 1011 CFU/d, not 1010 CFU/d if half the servings of food contained the combined strains. For the administrative record, please confirm that the maximum exposure would be less than 1011 CFU/d.

We agree that the proper statement of the potential exposure is that the maximum exposure would be less than 10^{11} cfu/day. We also note that this is an extremely conservative estimate, as it would require an individual to consume ten servings of foods containing the subject bacterial strains at the maximum addition level with no loss of viability during shipping or storage. We thank FDA for correcting our statement.

1 - 11.11

 James T. Heimbach, Ph.D., F.A.C.N. President