antibodies to the SARS-CoV-2 virus. There is currently an outbreak of respiratory disease caused by a novel coronavirus that was first detected in Wuhan City, Hubei Province, China, which has now been designated a pandemic by the World Health Organization (WHO) and which has been detected internationally, including cases in the United States. The virus has been named “SARS-CoV-2” and the disease it causes has been named “Coronavirus Disease 2019” (COVID-19). SARS-CoV-2 has demonstrated the capability to spread rapidly, leading to significant impacts on healthcare systems and causing societal disruption. The potential public health threat posed by COVID-19 is high, both globally and to the United States and its territories are required to report all results to the appropriate public health authorities.

The sensitivity of ZEUS ELISA SARS-CoV-2 IgG Test System early after infection is unknown. Negative results do not preclude acute SARS-CoV-2 infection. If acute infection is suspected, direct testing for SARS-CoV-2 is necessary. False positive results for ZEUS ELISA SARS-CoV-2 IgG Test System may occur due to cross-reactivity from pre-existing antibodies or other possible causes. Due to the risk of false positive results, confirmation of positive results should be considered using a second, different IgG assay.

The ZEUS ELISA SARS-CoV-2 IgG Test System is only for use under the Food and Drug Administration’s Emergency Use Authorization. The ZEUS ELISA SARS-CoV-2 IgG Test System is an indirect, antibody capture enzyme-linked immunosorbent assay designed to detect IgG class antibodies to SARS-CoV-2 (novel 2019 Coronavirus) in human serum or plasma collected in CLIA certified laboratories. The wells of the plastic microwell strips are coated with a mixture of recombinant S1 receptor binding domain (RBD) viral protein and recombinant nucleoprotein as the antibody capture antigens. The test procedure involves three incubation steps:

1. Test sera (properly diluted) are incubated in the antigen coated microwells. Any antigen specific antibody in the sample will bind to the immobilized antigen on the surface of the wells. The plate is washed to remove unbound antibody and other serum components.
2. Peroxidase Conjugated goat anti-human IgG is added to the wells and the plate is incubated. The Conjugate will react with IgG antibody immobilized on the solid phase in step 1. The wells are washed to remove unreacted Conjugate.
3. The microwells containing immobilized peroxidase Conjugate are incubated with peroxidase Substrate Solution. Hydrolysis of the Substrate by peroxidase produces a color change. After a period of time the reaction is stopped and the color intensity of the solution is measured photometrically. The color intensity of the solution indicates that IgG antibody is present in the original test sample.

The assay steps outlined above can be performed manually using existing laboratory equipment or it can be automated on the Dynex Agility®.

Materials Provided:
Each Test System contains the following components in sufficient quantities to perform the number of tests indicated on the packaging label. NOTE: The following components contain Sodium Azide as a preservative at a concentration of <0.1% (w/v): Controls, Calibrator and SAVe Diluent®.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATE</td>
<td>Plate: 96 wells configured in twelve, 1×8-well, strips coated with a mixture of recombinant S1 RBD viral proteins and recombinant COVID-19 Coronavirus nucleoprotein as antigen. The strips are packaged in a strip holder and sealed in an envelope with desiccant.</td>
</tr>
<tr>
<td>CONJ</td>
<td>Conjugate: Conjugated (horseradish peroxidase) anti-human IgG (Fc chain specific) in 15mL, white-capped bottle(s). Ready to use.</td>
</tr>
<tr>
<td>CONTROL +</td>
<td>Positive Control (SARS-CoV-2 IgG in Human Serum): 0.5mL, red-capped vial(s).</td>
</tr>
<tr>
<td>CAL</td>
<td>Calibrator (SARS-CoV-2 IgG in Human Serum): 0.5mL, blue-capped vial(s).</td>
</tr>
<tr>
<td>CONTROL -</td>
<td>Negative Control (Human Serum): 0.5mL, green-capped vial(s).</td>
</tr>
<tr>
<td>DIL SPE</td>
<td>SAVe Diluent®: 30mL, green-capped, bottle(s) containing Tween-20, bovine serum albumin and phosphate-buffered-saline. Ready to use. NOTE: The SAVe Diluent® will change color when combined with serum.</td>
</tr>
<tr>
<td>SOLN TMB</td>
<td>TMB: 15mL, amber-capped, amber bottle(s) containing 3, 3’, 5’, 5’- tetramethylbenzidine (TMB). Ready to use.</td>
</tr>
<tr>
<td>SOLN STOP</td>
<td>Stop Solution: 15mL, red-capped, bottle(s) containing 1M H₂SO₄, 0.7M HCl. Ready to use.</td>
</tr>
<tr>
<td>WASHBUF 10X</td>
<td>Wash Buffer Concentrate (10X): Dilute 1-part concentrate + 9 parts deionized or distilled water. 100mL, clear-capped, bottle(s) containing a 10X concentrated phosphate-buffered-saline and Tween-20 solution (blue solution). NOTE: 1X solution will have a pH of 7.2 ± 0.2.</td>
</tr>
</tbody>
</table>
NOTES:
1. The following components are not Test System Lot Number dependent and may be used interchangeably within the ZEUS ELISA Test Systems: TMB, Stop Solution, and Wash Buffer. SAVe Diluent® may be used interchangeably with any ZEUS ELISA Test System utilizing Product No. 005CC.
2. Test System also contains a Component Label containing lot specific information inside the Test System box.

PRECAUTIONS

1. For in vitro diagnostic use only.
2. This test has not been FDA cleared or approved; this test has been authorized by FDA under an EUA for use by laboratories certified under CLIA, that meet requirements to perform moderate (automated method) or high (moderate and automated method) complexity tests.
3. This test has been authorized only for the presence of IgG antibodies against SARS-CoV-2, not for any other viruses or pathogens.
4. This test is only authorized for the duration of the declaration that circumstances exist justifying the authorization of emergency use of in vitro diagnostic tests for detection and/or diagnosis of COVID-19 under Section 564(b)(1) of the Federal Food Drug and Cosmetic Act, 21 U.S.C. § 360bbb3(b)(1), unless the authorization is terminated or revoked sooner.
5. Follow normal precautions exercised in handling laboratory reagents. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. Wear suitable protective clothing, gloves, and eye/face protection. Do not breathe vapor. Dispose of waste observing all local, state, and federal laws.
6. The TMB Solution is HARMFUL. It is irritating to eyes, respiratory system and skin.
7. The Stop Solution is TOXIC if inhaled, has contact with skin or if swallowed. It can cause burns. In case of accident or ill feelings, seek medical advice immediately.
8. Adherence to the specified time and temperature of incubations is essential for accurate results. All reagents must be allowed to reach room temperature (20 - 25°C) before starting the assay. Return unused reagents to refrigerated temperature immediately after use.
9. Improper washing could cause false positive or false negative results. Be sure to minimize the amount of any residual wash solution; (e.g., by blotting or aspiration) before adding Conjugate or Substrate. Do not allow the wells to dry out between incubations.
10. The SAVe Diluent®, Controls, and Calibrator contain Sodium Azide at a concentration of <0.1% (w/v). Sodium Azide has been reported to form lead or copper azides in laboratory plumbing which may cause explosions on hammering. To prevent, rinse sink thoroughly with water after disposing of solution containing Sodium Azide.
11. The Stop Solution is TOXIC if inhaled, has contact with skin or if swallowed. It can cause burns. In case of accident or ill feelings, seek medical advice immediately.
12. The TMB Solution is HARMFUL. It is irritating to eyes, respiratory system and skin.
13. The Wash Buffer is an IRRIANTANT. It is irritating to eyes, respiratory system and skin.
14. Wipe the bottom of the plate free of residual liquid and/or fingerprints that can alter optical density (OD) readings.
15. Dilution or adulteration of these reagents may generate erroneous results.
16. Do not use reagents from other sources or manufacturers.
17. Do not use any reagents beyond their expiration date.
18. TMB Solution should be colorless, very pale yellow, very pale green, or very pale blue when used. Contamination of the TMB with Conjugate or other oxidants will cause the solution to change color prematurely. Do not use the TMB if it is noticeably blue in color.
19. Never pipette by mouth. Avoid contact of reagents and patient specimens with skin and mucous membranes.
20. Avoid microbial contamination of reagents. Incorrect results may occur.
21. Cross contamination of reagents and/or samples could cause erroneous results.
22. Reusable glassware must be washed and thoroughly rinsed free of all detergents.
23. Avoid splashing or generation of aerosols.
24. Do not expose reagents to strong light during storage or incubation.
25. Allowing the microwell strips and holder to equilibrate to room temperature prior to opening the protective envelope will protect the wells from condensation.
26. Collect the wash solution in a disposal basin. Treat the waste solution with disinfectant (i.e.: 10% household bleach - 0.5% Sodium Hypochlorite). Avoid exposure of reagents to bleach fumes.
27. Caution: Neutralize any liquid waste at an acidic pH before adding to a bleach solution.
28. Do not use ELISA plate if the indicator strip on the desiccant pouch has turned from blue to pink.
29. Do not allow the Conjugate to come in contact with containers or instruments that may have previously contained a solution utilizing Sodium Azide as a preservative. Residual amounts of Sodium Azide may destroy the Conjugate’s enzymatic activity.
30. Do not expose any of the reactive reagents to bleach-containing solutions or to any strong odors from bleach-containing solutions. Trace amounts of bleach (sodium hypochlorite) may destroy the biological activity of many of the reactive reagents within this Test System.

MATERIALS REQUIRED BUT NOT PROVIDED

1. ELISA microwell reader capable of reading at a wavelength of 450nm.
2. Pipettes capable of accurately delivering 10 - 200µL.
3. Multichannel pipette capable of accurately delivering 50 - 200µL.
4. Reagent reservoirs for multichannel pipettes.
5. Wash bottle or microwell washing system.
6. Distilled or deionized water.
7. One liter graduated cylinder.
8. Serological pipettes.
9. Disposable pipette tips.
11. Laboratory timer to monitor incubation steps.
12. Disposal basin and disinfectant (i.e.: 10% household bleach - 0.5% Sodium Hypochlorite).

STORAGE CONDITIONS

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2°C – 8°C</td>
<td>Coated Microwell Strips: Immediately reseal extra strips with desiccant and return to proper storage. After opening - strips are stable for 60 days, as long as the indicator strips on the desiccant pouch remains blue.</td>
</tr>
<tr>
<td></td>
<td>Conjugate – DO NOT FREEZE.</td>
</tr>
<tr>
<td></td>
<td>Unopened Test System, Calibrator, Positive Control, Negative Control, TMB, SAVe Diluent®. Unopened test systems are stable up to the expiration date when properly stored.</td>
</tr>
</tbody>
</table>
ASSAY PROCEDURE (MANUAL TEST METHOD)

1. Remove the individual components from storage and allow them to warm to room temperature (20 - 25°C).
2. Determine the number of microwells needed. Allow for six Control/Calibrator determinations (one Reagent Blank, one Negative Control, three Calibrators and one Positive Control) per run. Run a Reagent Blank on each assay. Check software and reader requirements for the correct Controls/Calibrator configurations.
3. Wash the microwell strips 5 times.
4. For human serum or plasma samples, prepare a 1:21 dilution (e.g.: 10µL of serum + 200µL of SAVe Diluent®) of the Negative Control, Calibrator, Positive Control, and each patient sample. **NOTE:** The SAVe Diluent® will undergo a color change confirming that the specimen has been combined with the diluent.
5. To individual wells, add 100µL of each diluted Control, Calibrator and patient specimen. Ensure that the samples are properly mixed. Use a different pipette tip for each sample.
6. Incubate the plate at room temperature (20 - 25°C) for 25 ± 5 minutes.
7. Wash the microwell strips 5 times.
 a. **Manual Wash Procedure:**
 1. Vigorously shake out the liquid from the wells.
 2. Fill each microwell with Wash Buffer. Make sure no air bubbles are trapped in the wells.
 3. Repeat steps 1. and 2. for a total of 5 washes.
 4. Shake out the wash solution from all the wells. Invert the plate over a paper towel and tap firmly to remove any residual wash solution from the wells. Visually inspect the plate to ensure that no residual wash solution remains. Collect wash solution in a disposable basin and treat with disinfectant at the end of the day’s run.
 b. **Automated Wash Procedure:**
 If using an automated microwell wash system, set the dispensing volume to 300 - 350µL/well. Set the wash cycle for 5 washes with no delay between washes. If necessary, the microwell plate may be removed from the washer, inverted over a paper towel and tapped firmly to remove any residual wash solution from the microwells.
8. Add 100µL of the Conjugate to each well, including the Reagent Blank well, at the same rate and in the same order as the specimens.
9. Wash the microwell strips 5 times.
10. Incubate the plate at room temperature (20 - 25°C) for 25 ± 5 minutes.
11. Wash the microwells by following the procedure as described in step 7.
12. Add 100µL of TMB to each well, including the Reagent Blank well, at the same rate and in the same order as the specimens.
13. Incubate the plate at room temperature (20 - 25°C) for 10 - 15 minutes.
14. Stop the reaction by adding 50µL of Stop Solution to each well, including the Reagent Blank well, at the same rate and in the same order as the TMB. Positive samples will turn from blue to yellow. After adding the Stop Solution, tap the plate several times to ensure that the samples are thoroughly mixed.
15. Set the microwell reader to read at a wavelength of 450nm and measure the optical density (OD) of each well against the Reagent Blank. Read the plate within 30 minutes of the addition of the Stop Solution.

ABBREVIATED TEST PROCEDURE

1. Dilute Serum 1:21.
2. Add diluted sample to microwell - 100µL/well.
3. **Incubate 25 ± 5 minutes.**
4. Wash.
5. Add Conjugate - 100µL/well.
6. **Incubate 25 ± 5 minutes.**
7. Wash.
8. Add TMB - 100µL/well.
9. **Incubate 10 - 15 minutes.**
10. Add Stop Solution - 50µL/well - Mix.
11. READ within 30 minutes.

QUALITY CONTROL

1. Each time the assay is performed, the Calibrator must be run in triplicate. A Reagent Blank, Negative Control, and Positive Control must also be included.

ZEUS ELISA SARS-CoV-2 IgG Test System (R2369EN) 3
(Rev. Date 10/06/2020)
2. Calculate the mean of the three Calibrator wells. If any of the three values differ by more than 15% from the mean, discard that value and calculate the mean using the remaining two wells.

3. The mean OD value for the Calibrator, and Negative Control OD should fall within the following ranges. Index Values of the Negative Control and Positive Control should fall within a lot specific range that is found on the Component Label located in the Test System box:

<table>
<thead>
<tr>
<th>OD Range</th>
<th>Negative Control</th>
<th>Calibrator</th>
<th>Positive Control</th>
<th>Negative Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤0.250</td>
<td>≥0.300</td>
<td>The Index Value should meet the lot specific requirements found on the Component Label.</td>
<td>The Index Value should meet the lot specific requirements found on the Component Label.</td>
</tr>
</tbody>
</table>

4. If the above conditions are not met the test should be considered invalid and should be repeated.

5. The Positive Control and Negative Control are intended to monitor for substantial reagent failure, but will not ensure precision at the assay Cutoff.

6. Additional Controls may be tested according to guidelines or requirements of local, state, and/or federal regulations or accrediting organizations.

8. NOTE: When using the Dynex Agility assay files provided by ZEUS Scientific, these QC criteria are automatically assessed by the Dynex software. If any of the above QC criteria are not met, the software will identify the outlier on the report and automatically suppress patient results.

INTERPRETATION OF RESULTS

1. **Calculations:**
 a. **Correction Factor:** The manufacturer determined a Cutoff OD Value for positive samples and correlated it to the Calibrator. The Correction Factor (CF) allows for the determination of the Cutoff Value for positive samples. It will also correct for slight day-to-day variations in test results. The Correction Factor is determined for each lot of components and is printed on the Component Label located in the Test System box.
 b. Calculate the mean of the three Calibrator wells. If any of the three values differ by more than 15% from the mean, discard that value and calculate the mean using the remaining two wells.
 c. **Cutoff OD Value:** To obtain the Cutoff OD Value, multiply the CF by the mean OD of the Calibrator determined above.
 \((CF \times \text{Mean OD of Calibrator} = \text{Cutoff OD Value}) \)
 d. **Index Values/OD Ratios:** Calculate the Index Value/OD Ratio for each specimen by dividing its OD Value by the Cutoff OD from step c.

 Example:
 - Mean OD of Calibrator = 0.793
 - Correction Factor (CF) = 0.25
 - Cutoff OD = 0.793 \times 0.25 = 0.198
 - Unknown Specimen OD = 0.432
 - Specimen Index Value/OD Ratio = 0.432/0.198 = 2.18

2. **Interpretations:** Index Values/OD Ratios are interpreted as follows.

<table>
<thead>
<tr>
<th>Index Value/OD Ratio</th>
<th>Initial Result</th>
<th>Interpretation</th>
<th>Retested Result</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Specimens</td>
<td>≤0.90</td>
<td>Negative</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IgG antibodies to SARS-CoV-2 are NOT detected. No additional testing is needed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivocal Specimens</td>
<td>0.91 – 1.09</td>
<td>Equivocal/Indeterminate</td>
<td>2 out of 3 results: ≤0.90</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detection of IgG antibodies to SARS-CoV-2 is indeterminate/equivocal. Sample should be retested in duplicate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Specimens</td>
<td>≥1.10</td>
<td>Positive</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IgG antibodies to SARS-CoV-2 ARE detected. No additional testing is needed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIMITATIONS OF THE ASSAY

1. Samples collected early in the course of an infection may not have detectable levels of IgG. SARS-CoV-2 IgG antibodies may be below detectable levels in patients who have been exhibiting symptoms for less than 8 days.

2. The results of this test are qualitative and are reported as either positive or negative for the presence of anti-SARS-CoV-2 IgG antibody. The intensity of the index value has no bearing on the concentration of antibody present.

3. Performance has only been established with the specimens listed in the Intended Use. Other specimen types have not been evaluated and should not be used with this assay.

4. The ZEUS ELISA SARS-CoV-2 IgG Test System is authorized for use with a manual assay procedure and with the Dynex Agility automated ELISA system. Assay performance has not been established for use on other automated instrument platforms.

5. Reactive results must be confirmed with another available method and interpreted in conjunction with the patient’s clinical information.

6. Results from antibody testing should not be used diagnose or exclude acute SARS-CoV-2 infection or to inform infection status. A molecular assay should be used to evaluate symptomatic patients for acute COVID-19.

7. It is not known at this time if the presence of antibodies to SARS-CoV-2 confers immunity to reinfection.
8. A positive result may not indicate previous SARS-CoV-2 infection. Consider other information, including clinical history, local disease prevalence, and results of a second but different serology test to confirm an adaptive immune response. Positive results may be due to past or present infection with non-SARS-CoV-2 coronavirus strains such as coronavirus HKU1, NL63, OC43, or 229E.

9. Negative results do not preclude SARS-CoV-2 infection and should not be used as the sole basis for patient management decisions. False positive may occur due to cross-reactivity from pre-existing antibodies or other possible causes. Samples with positive results should be confirmed with alternative testing methods(s) and clinical findings before a diagnostic determination is made. A negative result can occur if the quantity of the anti-SARS-CoV-2 antibodies present in the specimen is below the detection limits of the assay, or the antibodies that are detected are not present during the stage of disease in which a sample is collected.

10. Samples with excessive hemolysis, lipids, or bacterial contamination should be avoided. False results may occur.

11. This test is only used for the detection of antibodies to SARS-CoV-2 in human serum and plasma.

12. This test should not be used for screening of donated blood.

13. This assay cannot be utilized to test pooled (mixed) serum or plasma. The kit has been evaluated only with individual serum or plasma specimens.

CONDITIONS OF AUTHORIZATION FOR LABORATORIES

Authorized laboratories using the ZEUS ELISA SARS-CoV-2 IgG Test System ("your product" in the conditions below), must adhere to the Conditions of Authorization indicated in the Letter of Authorization as listed below:

1. Authorized laboratories* using your product will include with test result reports, all authorized Fact Sheets. Under exigent circumstances, other appropriate methods for disseminating these Fact Sheets may be used, which may include mass media.

2. Authorized laboratories using your product will use your product as outlined in the Instructions for Use. Deviations from the authorized procedures, including the authorized clinical specimen types, authorized control materials, authorized other ancillary reagents and authorized materials required to use your product are not permitted.

3. Authorized laboratories that receive your product will notify the relevant public health authorities of their intent to run your product prior to initiating testing.

4. Authorized laboratories using your product will have a process in place for reporting test results to healthcare providers and relevant public health authorities, as appropriate.

5. Authorized laboratories will collect information on the performance of your product and report to Division of Microbiology Devices (DMD)/Office of Health Technology 7 (OHT7) - Office of In Vitro Diagnostics and Radiological Health (OIR)/Office of Product Evaluation and Quality (OPEQ)/Center for Devices and Radiological Health (CDRH) (via email: CDRH-EUA-Reporting@fda.hhs.gov) and to Zeus Scientific, Inc. (support@zeusscientific.com) any suspected occurrence of false positive or false negative results and significant deviations from the established performance characteristics of your product of which they become aware.

6. All laboratory personnel using your product must be appropriately trained in immunoassay techniques and use appropriate laboratory and personal protective equipment when handling this kit and use this product in accordance with the authorized labeling. All laboratory personnel using the assay must also be trained in and be familiar with the interpretation of results of the product.

7. ZEUS ELISA SARS-CoV-2 IgG Test System, authorized distributors, and authorized laboratories using your product will ensure that any records associated with this EUA are maintained until otherwise notified by FDA. Such records will be made available to FDA for inspection upon request.

*The letter of authorization refers to, “Laboratories certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA), 42 U.S.C. §263a, that meet requirements to perform moderate (automated method) or high (manual and automated method) complexity tests” as "authorized laboratories."

EXPECTED RESULTS

The normal expected result is negative unless the individual has been previously exposed to the SARS-CoV-2 virus. The frequency of antibody prevalence in the population is highly dependent upon geographical location, social distancing practices and population density.

PERFORMANCE CHARACTERISTICS

1. Non-Clinical Performance Studies:
 a. Cross-Reactivity:
 i. Cross-Reactivity Study 1: Ninety normal healthy blood donors collected in the North Eastern US prior to November of 2019 were tested on the ZEUS ELISA SARS-CoV-2 IgG Test System. One specimen was equivocal and the remaining 89 specimens were negative. The specificity was determined to be 89/90 = 98.9%.
 ii. Cross-Reactivity Study 2: Ninety specimens were collected from patients with a variety of respiratory illnesses and tested on the ZEUS ELISA SARS-CoV-2 IgG Test System. These specimens had been evaluated for the following infectious agents; MERS, RSV, FluA, FluB, Parainfluenza, Adenovirus, Enterovirus, Mycoplasma pneumoniae, Legionella, B. pertussis, and C. pneumoniae. Many specimens were positive for antibody to multiple agents. One of the 90 specimens was positive and the remaining 89 specimens were negative. The specificity in this cohort was determined to be 89/90 = 98.9%.
 iii. HIV+ cross-reactivity: To evaluate potential cross-reactivity with HIV+ samples, sixty HIV panel specimens were tested on the ZEUS ELISA SARS-CoV-2 IgG Test System. One of 60 tested positive using the ZEUS ELISA SARS-CoV-2 IgG Test System. This is a false positive rate (FPR) of 1.7%, which is consistent with the FPR of 1.1% among subjects without HIV in the specificity studies conducted above. There is no statistically significant difference between 1.7% and 1.1% (difference is 0.6% with 95%CI: -2.6% to 7.8%).
 b. Antibody Class Specificity:
 i. Class Specificity Study 1: A study was conducted to demonstrate the specificity of the anti-human IgG Conjugate used in the ZEUS ELISA SARS-CoV-2 IgG Test System. Five specimens that were found to be positive for both IgG and IgM antibody to SARS-CoV-2 were identified. These specimens were tested in SAVe Diluent® provided with the kit and in SAVe Diluent® containing 1% Beta-Mercaptoethanol (BME) which is known to destroy IgM antibody. The study showed that both before and after treatment with BME, all five specimens remained positive confirming that the conjugate is specific to human IgG antibody and is not influenced by the presence of human IgM antibody. A summary of the outcome is shown below:

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Replicate</th>
<th>Result: No BME Treatment</th>
<th>Result: Treated with 1% BME</th>
<th>Expected Result with 1% BME Treatment</th>
<th>Result Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>625146</td>
<td>A</td>
<td>POPOPOPOPOPOS</td>
<td>POS</td>
<td>POS</td>
<td>Yes</td>
</tr>
<tr>
<td>625147</td>
<td>A</td>
<td>POPOPOPOPOPOS</td>
<td>POS</td>
<td>POS</td>
<td>Yes</td>
</tr>
<tr>
<td>625148</td>
<td>A</td>
<td>POPOPOPOPOPOS</td>
<td>POS</td>
<td>POS</td>
<td>Yes</td>
</tr>
<tr>
<td>625149</td>
<td>A</td>
<td>POPOPOPOPOPOS</td>
<td>POS</td>
<td>POS</td>
<td>Yes</td>
</tr>
<tr>
<td>625150</td>
<td>B</td>
<td>POPOPOPOPOPOS</td>
<td>POS</td>
<td>POS</td>
<td>Yes</td>
</tr>
<tr>
<td>625151</td>
<td>A</td>
<td>POPOPOPOPOPOS</td>
<td>POS</td>
<td>POS</td>
<td>Yes</td>
</tr>
<tr>
<td>625152</td>
<td>B</td>
<td>POPOPOPOPOPOS</td>
<td>POS</td>
<td>POS</td>
<td>Yes</td>
</tr>
</tbody>
</table>
ii. **Clinical Performance Studies:**

 a. **Specimen Matrix Study:** Five donors were identified who had no antibody to SARS-CoV-2. These five individuals donated a tube of serum, K2-EDTA plasma, Lithium Heparin plasma and Sodium Citrate plasma. The four different sample matrices were tested with the ZEUS SARS-CoV-2 IgG ELISA Test System unspiked and spiked with two different levels of anti-SARS-CoV-2 IgG antibody (low positive and moderate positive). For all five donors, the unspiked specimens were clearly negative. The low positive spike produced low positive results in all four matrices for all five donors and the moderate positive spike produced a moderate positive result in all four matrices of all five donors. The study showed that samples collected as serum, K2-EDTA plasma, Lithium Heparin plasma and Sodium Citrate plasma are compatible with the ZEUS SARS-CoV-2 IgG ELISA Test System. The presence of IgM and IgG antibodies specifically was confirmed by one or more comparator methods. Antibody-positive samples were confirmed with a nucleic acid amplification test (NAAT) and both IgM and IgG antibodies were confirmed to be present in all 30 samples. The presence of antibodies in the samples was confirmed by several orthogonal methods prior to testing with the ZEUS ELISA SARS-CoV-2 Test System. The test was validated against a panel of previously frozen specimens obtained from febrile donors suspected of respiratory or other illnesses were collected prior to November of 2019.

 b. **Class Specificity Study 2:** In a second study, we identified five specimens that were positive for both IgM and IgG antibody to the SARS-CoV-2 virus. These specimens were tested on the ZEUS ELISA SARS-CoV-2 IgG Test System in SAVe Diluent® provided with the kit and in SAVe Diluent® containing 10% goat anti-human IgG (GAHG). Experimentally, we verified that after treatment with anti-IgG, the five specimens were still positive for IgM antibody to the SARS-CoV-2 virus, but IgG negative. The results of these five specimens on the ZEUS ELISA SARS-CoV-2 Test System were as shown in the table below. This demonstrates that the test detects human IgG and does not cross react with human IgM antibody.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Replicate</th>
<th>No GAHG Treatment IgG/IgM Test Result</th>
<th>Treated with 10% GAHG IgG Test Result</th>
<th>Expected Result with 10% GAHG Treatment</th>
<th>Result Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>625146</td>
<td>A</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>Yes</td>
</tr>
<tr>
<td>625147</td>
<td>A</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>Yes</td>
</tr>
<tr>
<td>625148</td>
<td>A</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>Yes</td>
</tr>
<tr>
<td>625149</td>
<td>A</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>Yes</td>
</tr>
<tr>
<td>625150</td>
<td>A</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>Yes</td>
</tr>
</tbody>
</table>

 c. **Percent Positive Agreement:** For the PCR positive specimens, the following table shows those results after stratifying patients into “days between PCR test result and serology sample draw”.

<table>
<thead>
<tr>
<th>Days Between PCR Test and Specimen Draw</th>
<th>Number PCR Positive</th>
<th>Number Positive on ZEUS ELISA SARS-CoV-2 IgG Test System</th>
<th>Positive Percent Agreement</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 7</td>
<td>2</td>
<td>2</td>
<td>100%</td>
<td>34.2% - 100%</td>
</tr>
<tr>
<td>8 to 14</td>
<td>15</td>
<td>15</td>
<td>100%</td>
<td>79.6% - 100%</td>
</tr>
<tr>
<td>≥ 15</td>
<td>18</td>
<td>18</td>
<td>100%</td>
<td>82.4% - 100%</td>
</tr>
</tbody>
</table>

 For the PCR positive specimens, the following table shows those results after stratifying patients into “days between onset of symptoms and serology sample draw”.

<table>
<thead>
<tr>
<th>Days Between Onset of Symptoms and Specimen Draw</th>
<th>Number PCR Positive</th>
<th>Number Positive on ZEUS ELISA SARS-CoV-2 IgG Test System</th>
<th>Positive Percent Agreement</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 7</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8 to 14</td>
<td>7</td>
<td>7</td>
<td>100%</td>
<td>64.6% - 100%</td>
</tr>
<tr>
<td>≥ 15</td>
<td>28</td>
<td>28</td>
<td>100%</td>
<td>87.9% - 100%</td>
</tr>
</tbody>
</table>

 d. **Negative Percent Agreement:** The following table shows the results for negative specimens either PCR-confirmed negative or collected prior to the COVID-19 pandemic (collected prior to November of 2019).

<table>
<thead>
<tr>
<th>Number of Negative Samples Tested</th>
<th>Number Negative on ZEUS ELISA SARS-CoV-2 IgG Test System</th>
<th>Negative Percent Agreement</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>212</td>
<td>99.1%</td>
<td>96.6%-99.7%</td>
</tr>
</tbody>
</table>

 e. **Independent Clinical Agreement Validation Study:** The ZEUS ELISA SARS-CoV-2 IgG Test System was tested on July 2, 2020 at the Frederick National Laboratory for Cancer Research (FNLCR) sponsored by the National Cancer Institute (NCI). The test was validated against a panel of previously frozen samples consisting of 30 SARS-CoV-2 antibody-positive serum samples and 80 antibody-negative serum and plasma samples. Each of the 30 antibody-positive samples were confirmed with a nucleic acid amplification test (NAAT) and both IgM and IgG antibodies were confirmed to be present in all 30 samples. The presence of antibodies in the samples was confirmed by several orthogonal methods prior to testing with the ZEUS ELISA SARS-CoV-2 IgG Test System. The presence of IgM and IgG antibodies specifically was confirmed by one or more comparator methods. Antibody-positive samples were selected at different antibody titers. All antibody-negative samples were collected prior to 2020 and include: i) Seventy (70) samples selected without regard to clinical status, “Negatives” and ii) Ten (10) samples selected from banked serum from HIV+ patients, “HIV+”. Testing was performed by one operator using one lot of the ZEUS ELISA SARS-CoV-2 IgG Test System. Confidence intervals for sensitivity and specificity were calculated per a score method described in CLSI EP12-A2 (2008). Study results and summary statistics are presented in the following table:

<table>
<thead>
<tr>
<th>Measure</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>93.3% [28/30]</td>
<td>(78.7% - 98.2%)</td>
</tr>
<tr>
<td>Specificity</td>
<td>100% [70/70]</td>
<td>(94.8% - 100%)</td>
</tr>
<tr>
<td>Combined PPV for prevalence = 5.0%</td>
<td>100%</td>
<td>(44.3% - 100%)</td>
</tr>
<tr>
<td>Combined NPV for prevalence = 5.0%</td>
<td>99.7%</td>
<td>(98.8% - 99.9%)</td>
</tr>
<tr>
<td>Cross-reactivity with HIV+</td>
<td>20.0% (2/10), Detected</td>
<td></td>
</tr>
</tbody>
</table>
Important limitations:
1. Samples were not randomly selected, and sensitivity and specificity estimates may not be indicative of the real-world performance of the device.
2. These results are based on serum and ACD plasma samples only and may not be indicative of performance with other sample types, such as whole blood, including finger stick blood.
3. The number of samples in the panel is a minimally viable sample size that still provides reasonable estimates and confidence intervals for test performance, and the samples used may not be representative of the antibody profile observed in patient populations.

REFERENCES