Overview of the Role of Inhaled Antifungals in Invasive Fungal Infections

Kieren A. Marr MD, MBA
Professor of Medicine, Director Transplant and Oncology ID
Vice Chair of Medicine for Innovation
Johns Hopkins University
Outline

• Focus on pulmonary mold infections
• Infections: heterogeneity
• Risks and manifestations in specific patient populations
 – Hematologic malignancies
 – ICU (post-viral lung disease)
• Roles of inhaled antifungals
 – Prophylaxis, early prevention
 – Adjunctive therapy
Overview

- Disease is dependent on immunity with common early pathogenesis – poor clearance of inhaled conidia
- Goal of airway drug delivery dependent on host and stage: prevention and therapy
- Caveats
 - Use of different formulations, devices and treatment algorithms impairs conclusions from data presented to date
 - Overview of disease and clinical use: not drug specific
Mixed, multiple manifestations

Airways
Aspergillus overgrowth causes pathological airway inflammation and excess mucus production

Alveoli
Hyphal growth causes invasive pneumonia

Aspergillus

INVASIVE ASPERGILLOSIS TRACHEOBRONCHITIS POST-OBSTRUCTIVE BACTERIAL PNEUMONIA
Hematology / Oncology

- High risks for IMI with unique needs
 - Inhaled conidia ‘escape’ 1st and 2nd line defenses to invade into lung, +/- angioinvasion
 - Poor outcomes in treating advanced disease and difficult to diagnose
 - Azole-based prevention is a mainstay during periods of prolonged risks
 - Fluconazole, posaconazole
 - New therapies have presented unique unmet needs

Samanta and Nguyen. Fungal Gen & Patho 2017
Prevention POC shown for AmB in immunosuppressed animals

Trends in favor of prevention using inhaled AmB and L-AmB in different animal models

Xia et al. Ing J Infect Dis 2015
Inhaled AmB: 1990’s

Table 1. Inhaled Amphotericin B for Prophylaxis of Invasive Aspergillosis in Hematology Patients

<table>
<thead>
<tr>
<th>Reference</th>
<th>Design</th>
<th>Organism/Population</th>
<th>Prophylaxis</th>
<th>Antifungal</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwartz (1999)⁷</td>
<td>P, R, MC</td>
<td>Aspergillus neutropenic leukemia, BMT, solid tumor MDS treatment (n = 227), control (n = 155)</td>
<td>IH AmBd started before onset of neutropenia and continued until 1 of 4 endpoints achieved</td>
<td>IH AmBd 10 mg bid</td>
<td>4% of treatment group vs 7% of control group developed IA (p = 0.37); 5% overall incidence</td>
</tr>
<tr>
<td>Conneally (1990)⁸</td>
<td>cohort</td>
<td>Aspergillus neutropenic oncology, BMT, hematology treatment (n = 34), control (n = 123)</td>
<td>IH AmBd until ANC >1/mL</td>
<td>IH AmBd 5 mg bid</td>
<td>0 of treatment group vs 14 of control group developed IA</td>
</tr>
<tr>
<td>Beyer (1993)⁹</td>
<td>P, case based</td>
<td>Aspergillus germ cell tumors, BMT treatment (n = 40)</td>
<td>oral AmBd plus IH AmBd, mean length of inhaled therapy 17 days</td>
<td>oral AmBd 2400 mg qd plus IH AmBd 10 mg bid</td>
<td>incidence of IPA decreased with IH AmBd; 1 pt. had positive Aspergillus antigen on day 47, 1 pt. with documented IPA died from CNS toxicity and multi-organ failure, 1 pt. with pneumonia died 10 days post-BMT</td>
</tr>
<tr>
<td>Hertenstein (1994)¹⁰</td>
<td>observational</td>
<td>Aspergillus neutropenia, BMT treatment (n = 303)</td>
<td>oral AmBd or fluconazole plus IH AmBd initiated 1–6 days before graft and continued until ANC >1/mL</td>
<td>oral AmBd 500 mg qid (n = 283) or fluconazole 100 mg qd (n = 10) plus IH AmBd 10 mg bid</td>
<td>overall incidence of fungal infections 3.6% (n = 11), 8 infections due to Aspergillus, 8 pts. died despite IH AmBd and iv therapy, 4 infections occurred during neutropenia and IH AmBd</td>
</tr>
</tbody>
</table>
Inhaled AmB prophylaxis

Table 1. Clinical Trials for Prophylactic Nebulized Amphotericin B.

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>PATIENTS</th>
<th>DEMOGRAPHICS</th>
<th>STUDY POPULATION</th>
<th>DOSAGE</th>
<th>DISCONTINUATION CRITERIA/DURATION</th>
<th>OUTCOME</th>
<th>SIDE EFFECTS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connelly et al[1]</td>
<td>InAmB D n = 34, historical control n = 123</td>
<td>NR</td>
<td>BMT recipients and acute leukemia</td>
<td>20 mg/4 mL over 10 min bid vs no inhalation</td>
<td>Granulocytes > 1.0 \times 10^9/μL</td>
<td>IPA in 0/24 in AmB D vs 14/123 control</td>
<td>Mild nausea 0 discontinued</td>
<td>No systemic antifungal prophylaxis</td>
</tr>
<tr>
<td>Schwartz et al[2]</td>
<td>InAmB D n = 227, control n = 155</td>
<td>mean age (y): 46 InAmB D 48 control 6x NR</td>
<td>ALL, NHL, and solid tumors undergoing BMT</td>
<td>10 mg/5 mL over 15 min bid vs no inhalation</td>
<td>Neutrophils > 1.0 \times 10^9/μL or stable neutrophils > 0.5 \times 10^9/μL or >day 50 Median 27 days</td>
<td>IA in 10/277 in AmB D vs 11/155 control</td>
<td>Cough, bad taste, and nausea 39 discontinued for ADRs</td>
<td>Oral AmB or fluconazole prophylaxis allowed</td>
</tr>
<tr>
<td>Nihlen et al[3]</td>
<td>InAmB D n = 354, historical control n = 257</td>
<td>median age (y): 47 InAmB D 44 control 53.8% men</td>
<td>Allogeneic SCT with GvHD receiving high-dose MP</td>
<td>25 mg/5 mL over 10-15 min daily vs no inhalation</td>
<td>2-3 months Mean 84 days</td>
<td>IPA in 9/354 in AmB D vs 17/257 control</td>
<td>Specific ADRs experienced NR but well tolerated 0 discontinued</td>
<td>No systemic antifungal prophylaxis Only 111 patients received in AmB D prophylaxis Albuterol pretreatment</td>
</tr>
<tr>
<td>Rijnders et al[4]</td>
<td>InLipAmB n = 139, control n = 132</td>
<td>mean age (y): 48 InLipAmB 50 control 58.3% men</td>
<td>Hematologic cancers undergoing chemo, allogeneic or auto logo us SCT</td>
<td>12.5 mg/2.5 mL over 30 min twice per wk</td>
<td>Neutrophils > 0.3 \times 10^9/μL</td>
<td>IPA in 11/139 inLipAmB vs 23/132 placebo (P = .005)</td>
<td>Cough Discontinued for ≥ 1 wk 45% InLipAmB Vs 30% placebo</td>
<td>Oral fluconazole prophylaxis given 56 patients discontinued for delivery system limits (technical issues or being too weak)</td>
</tr>
<tr>
<td>Hullard-Pulstinger et al[5]</td>
<td>InLipAmB n = 93, historical control n = 105</td>
<td>mean age (y): 49 InLipAmB 49 control 65.2% men</td>
<td>AML and other acute leukemias and/or allogeneic SCT</td>
<td>12.5 mg over 10-20 min daily × 4 days then twice per wk vs no inhalation</td>
<td>Neutrophils > 1.0 \times 10^9/μL</td>
<td>IA in 2.98 InLipAmB vs 4/118 control</td>
<td>Bad taste, cough, and nausea 41 discontinued</td>
<td>Majority received fluconazole prophylaxis 69% of patients received additional systemic antifungals</td>
</tr>
<tr>
<td>Chong et al[6]</td>
<td>InLipAmR n = 128, historical control n = 107</td>
<td>mean age (y): 55.6 InLipAmR 52.2 control 54.9% men</td>
<td>AML, MDS, and CML</td>
<td>12.5 mg/3 mL twice per wk vs no inhalation</td>
<td>Neutrophils > 0.2 \times 10^9/μL \times 2 or >0.5 \times 10^9/μL once</td>
<td>IPA in 12/126 inLipAmR vs 25/107 control (P = .0064)</td>
<td>ADRs and discontinuation rates NR Reported as well tolerated</td>
<td>Oral fluconazole prophylaxis given All analysis done on day 28</td>
</tr>
</tbody>
</table>

Abbreviations: ADR, adverse drug reaction; ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; ARR, absolute risk reduction; BMT, bone marrow transplant; CML, chronic myeloid leukemia; IA, invasive aspergillosis; IPA, invasive pulmonary aspergillosis (proven or probable); MDS, myelodysplastic syndrome; MP, methylprednisolone; NC, not conducted; NHL, non-Hodgkin lymphoma; NR, not reported; NS, not significant; RCT, randomized controlled trial; RRR, relative risk reduction; SCT, stem cell transplant; wk, week; y, years.
Inhaled AmB

- 40 allo BMT, non-comparative ABLC 1x/day x 5 days then 1x/week x 13 week (458), + fluconazole
 - 25 withdrawal (empirical therapy), 1 IFI
 - AE’s common -cough and 16/40 (40%) pts developed >20% decrease FEV1 at least once after administration of drug

- 271 neutropenic heme malignancy patients (407 episodes) randomized
 - 2x/week L-AmB vs. placebo
 - Decreased incidence of IFI
 - Cough more common L-AmB

Alexander et al. Transpl Infect Dis 2006
“Real life” outcomes

- 127 AML patients L-AmB during 1st, 2nd cycle (2008) vs. 108 historic controls (2005-'08)
 - L-AmB prophylaxis associated with decreased IPA, systemic antifungal therapies (53 vs 30%), cost savings
 - Timing of administration important (trial design)

Incidence of proven/probable invasive pulmonary aspergillosis (IPA) according to treatment.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control group (n = 108)</th>
<th>L-AmB inhalation group (n = 127)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>28/108</td>
<td>15/127</td>
<td>0.0066</td>
</tr>
<tr>
<td>First chemotherapy</td>
<td>16/108</td>
<td>10/127</td>
<td>0.0994</td>
</tr>
<tr>
<td>Second chemotherapy</td>
<td>11/92</td>
<td>3/99</td>
<td>0.0246</td>
</tr>
<tr>
<td>Third chemotherapy</td>
<td>0/34</td>
<td>0/38</td>
<td>N/A</td>
</tr>
<tr>
<td>Allogeneic HSCT</td>
<td>1/28</td>
<td>2/46</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

L-AmB, liposomal amphotericin B; HSCT, haematopoietic stem cell transplantation; N/A, not applicable.

* All 235 patients were used for this analysis, including patients who underwent HSCT.
* Patients who had their first or second chemotherapy cycle combined with another chemotherapy cycle or HSCT and developed proven/probable IPA were counted in the initial chemotherapy group.
Retrospective: alloBMT + GVHD

- Retrospective 611 alloBMT (‘96-'05) – inh AmB + fluconazole
 - Drugs started with steroids
 - Lower incidence IFI
 - Many clinical changes during this period
 - Conditioning, diagnosis (GM EIA)

Nihtinen et al. Transpl Infect Dis (2011)
Unmet Needs: Expanding list of agents that azoles complicate

- People with acute lymphocytic leukemia (ALL) receiving:
 - Vincristine-based remission-induction chemotherapy
- People with acute myelogenous leukemia (AML) receiving:
 - FLT-3 inhibitors (midostaurin)
 - BCL-2 inhibitors (venetoclax)
 - IDH1 or IDH2 inhibitors (ivosidenib or enasidenib)
- People with chronic lymphocytic leukemia (CLL), receiving targeted B cell therapies: ibrutinib, idelalisib, venetoclax
- People receiving any of these drugs for multiple types of disorders:
 - Ibrutinib (with other drugs) for CLL, Waldenstroms macroglobulinemia, lymphoma, or severe chronic graft vs. host disease, or relapsed/refractory lymphoma
Adjunctive Therapy

- Reports of successful therapy in concurrent tracheobronchial disease, structural lung disease.
- Multiple therapies (nAmB, voriconazole)
- Example case of fistula, empyema after tumor resection
- Complicated courses of concurrent therapies with severe influenza

Hanada et al. AJRCCM (2014)
Boots et al. Thorax 1999
Influenza – Associated Aspergillosis

- Increased recognition
- IAPA case definition distinct from tracheobronchitis
- Geographic and seasonal variation (strain)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Venue</th>
<th>Patients (n)</th>
<th>Aspergillosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin-Löeches et al</td>
<td>148 Spanish ICU 2009 - 2015</td>
<td>2901</td>
<td>IAA in 35 (1.2% of cohort and 7.2% of co-infections)</td>
</tr>
<tr>
<td>Rodriguez-Goncer et al</td>
<td>Single UK tertiary center 2012 - 2016</td>
<td>134</td>
<td>IPA in 10 (7%), IAA in 5 (3.5%)</td>
</tr>
<tr>
<td>Cavayas et al</td>
<td>ECMO international registry (>300 centers), 2006 - 2016</td>
<td>19,697</td>
<td>Aspergillus colonization and/or infection in 272 (1.4%)</td>
</tr>
<tr>
<td>Contou et al</td>
<td>Single center Chinese ICU with H1N1 influenza, 2017 - 2018</td>
<td>19</td>
<td>IFI in 11 (57.9%); IPA in 5 (26.3%)</td>
</tr>
<tr>
<td>Rogge et al</td>
<td>Influenza patients in ICUs in 8 centers in Netherlands, 2015-2016</td>
<td>144</td>
<td>IAA in 23 (16%)</td>
</tr>
<tr>
<td>Beumer et al</td>
<td>Influenza patients admitted to 2 hospitals in Netherlands, 2015-2016</td>
<td>200</td>
<td>IFI in 15/199 (7.5%)</td>
</tr>
<tr>
<td>Ku et al</td>
<td>Influenza patients admitted to one hospital in Taiwan, 2015 – 2016</td>
<td>124</td>
<td>IAA in 38/124 (31%)</td>
</tr>
<tr>
<td>Schauwvliegh et al</td>
<td>Influenza patients admitted to ICUs from 7 centers in Belgium and Netherlands, 2009 - 2016</td>
<td>432</td>
<td>IAA in 83 (19%)</td>
</tr>
<tr>
<td>Huang et al</td>
<td>Influenza patients admitted to ICU in one center in China, 2017 - 2018</td>
<td>64</td>
<td>IAA in 18 (28%)</td>
</tr>
<tr>
<td>Schwartz et al</td>
<td>Influenza patients in one Canadian center, 2014 – 2019</td>
<td>650</td>
<td>IAA in 8 / 111 (7.2%) ICU patients</td>
</tr>
<tr>
<td>Zou et al</td>
<td>Influenza (H7N9) patients admitted to 17 hospitals in China, 2013 – 2018</td>
<td>335</td>
<td>IAA in 18 (5.4%)</td>
</tr>
</tbody>
</table>
Influenza – Associated Aspergillosis

- French retrospective study 2010-19
 - 45/213 (21%) with IPA
 - 10 (29%) with tracheobronchitis (ITBA)
 - Sporulating in airway, invasive disease
 - Higher fungal markers
 - Worse survival

Nyga et al. AJRCCM 2020
COVID-Associated Pulmonary Aspergillosis

China | Anecdotal autopsy reports with early concerns for *Aspergillus* infection

France | CAPA in 9/27 (33%) patients in different ICUs

Belgium | Case series of 7/20 (34%) ventilated patients at two hospitals, some pathology-proven

Italy | Prospective, study reports CAPA in 30/108 (27.7%) ventilated patients

Netherlands | Pathology review in 6 CAPA patients

China | CAPA in 7%, of 104 COVID-19 patients in one hospital

Pakistan | CAPA in 5/23 (21.7%) ventilated patients in 1 hospital

Spain | Series of 10 putative or probable CAPA cases

Denmark | 2/8 ECMO patients with CAPA

U.K. | 19/135 (14%) CAPA in multiple ICUs

U.S & Spain | 20 cases from 2 centers

Jan - Feb | Mar - Apr | May - June | July - Sep
Conclusions

• Inhaled antifungals compelling for prevention of IFI
 – Proof shown in heme – neutropenia
 – Potential utility in severe viral infections

• Therapeutic efficacy suggested, particularly with airway complications
Thank you

kmarr4@jhmi.edu