

Lucile Packard
Children's Hospital
Stanford

What Place for Antifungals In Pulmonary Medicine?

**Food and Drug Administration
Virtual Public Workshop
September 25, 2020**

Richard B. Moss MD
Center for Excellence in Pulmonary Biology
Stanford University

The clinical spectrum of conditions resulting from inhalation of *Aspergillus* spores: The Host Determines Risk

Invasive Aspergillosis in Transplant Recipients

Type of Transplant	Incidence Range, % (Mean)	Mortality (%)
Lung	3-14% (6%)	68%
Liver	1-8 (2)	87
Heart	1-15 (5)	78
Kidney	0-4 (1)	77
Small bowel	0-10 (2)	66
Allogeneic stem cell	5-26 (10)	78-92
Autologous stem cell	2-6 (5)	78-92
Nonmyeloblative stem cell	8-23 (11)	63-67

Nebulized Voriconazole IV Solution Attenuates Murine Invasive Aspergillosis

FIG. 1. Survival curves of immunosuppressed mice that received aerosolized voriconazole (VRC; 6.25 mg/ml twice daily), amphotericin B deoxycholate (AMB), or a control (aerosolized sulfobutyl ether- β -cyclodextrin sodium, 100 mg/ml twice daily) and were challenged by pulmonary inoculation with *A. fumigatus*. (A) Survival on therapy (day 7; $n = 24$ per study group). (B) Survival after therapy was discontinued ($n = 12$ per study group).

Preclinical *in vivo* Efficacy of Novel Inhalational Antifungals vs *A. fumigatus*

Kirkpatrick WR et al, *J Antimicrob Chemother* 2012;67:970

Curran AK et al, AAAAI 2018

Colley T et al, *Sci Rep* 2019;9:9482

Inhaled Antifungals in Nonallergic (Immunocompromised) Lung Disease

- 1. Anti-fungal prophylaxis in lung transplantation. Off-label use of IV formulations. Mainly nebulized amphotericin B; case reports with voriconazole. Often for *Aspergillus*, combined with oral fluconazole for *Candida*.
 - Liposomal amphotericin B better tolerated vs deoxycholate
 - Similar or reduced incidence of invasive disease (5-14% vs 3-35%), unclear effect on anastomotic disease.
 - No direct comparative trials vs oral azoles.

Drew RH et al, *Transplantation* 2004;77:232
Hilberg GR & Lewis JS. *Eur Respir J* 2012;40:271
Holle J et al, *J Cyst Fibros* 2014;13:400
Peghin M et al, *Transpl Intl* 2016;29:51
Qiao W et al, *J Thorac Dis* 2019;11:1554

- 2. Add-on treatment to systemic anti-fungals for resistant or recalcitrant lung transplant infections. Mainly for emergent fungi eg *Scedosporium*, *Zygomycetes*, *Fusarium*.

Sole A et al, *Am J Transplant* 2018;18:504

Inhaled Antifungals in Nonallergic Immunocompromised) Lung Disease 2

- 3. *Aspergillus* prophylaxis with inhaled amphotericin B in hematologic disease. Usually targeted to extended neutropenia in high-risk patients where oral azole prophylaxis is problematic.
 - Relative risk reduction of 40-60% vs no prophylaxis in RCTs
 - No direct comparison trials to oral azoles
 - Liposomal amphi B preferred
 - Discontinuation due to adverse effects ~10% (cough, taste, nausea)
 - Current recommendations (IDSA 2016) focus on patients with hematologic malignancy and stem cell transplants in areas of high azole resistance or with contraindications to oral azole prophylaxis.

Schwartz S et al, *Blood* 1999;93:3654
Rijnders B et al, *Clin Infect Dis* 2008;46:1401
Patterson T et al, *Clin Infect Dis* 2016;63:e1
Duckwall MJ et al, *Microbiol Insights* 2019;12:1

The clinical spectrum of conditions resulting from inhalation of *Aspergillus* spores: The Host Determines Risk

Aspergillus Grows in Mucus Plugs

Branching filaments (hyphae) of *A. fumigatus* in sputum

Key elements: Muco-obstructive disease (asthma, CF, COPD), luminal fungal growth, endobronchial inflammation

Allergic Fungal Airway Disease Phenotypes

AAFS—asthma associated with fungal sensitization

SAFS—severe asthma with fungal sensitization

ABPA-S—seropositive allergic bronchopulmonary aspergillosis

ABPA-CB—allergic bronchopulmonary aspergillosis with central bronchiectasis

Agarwal R, *Curr Allergy Asthma Rep* 2011;11:403
Woolnough K et al, *Curr Opin Pulm Med* 2015;21:39

Allergic Sensitization in Severe vs Non-Severe Asthma

Swedish current asthma population cohort n=830

Severe asthma 3.6% by SARP, 4.8% by ERS/ATS, 6.1% by GINA

	Severe asthma according to different criteria								Difference (P-value ^a) compared to other asthma		
	Other asthma (n = 753)		GINA (n = 50)		ERS/ATS (n = 39)		SARP (n = 29)				
	n	%	n	%	n	%	n	%	GINA	ERS/ATS	SARP
Any allergen	269	35.7	16	32.0	10	25.6	8	27.6	0.594	0.199	0.369
Any dust mite	44	5.8	3	6.0	3	7.7	2	6.9	0.964	0.634	0.813
Any furred animal	187	24.8	13	26.0	8	20.5	7	24.1	0.854	0.541	0.932
Any pollen	189	25.1	9	18.0	6	15.4	4	13.8	0.259	0.170	0.166
Any mould	20	2.7	5	10.0	5	12.8	5	17.2	0.004	<0.001	<0.001
Specific moulds											
<i>Cladosporium herbarum</i>	10	1.3	2	4.0	2	5.1	2	6.9	0.132	0.058	0.017
<i>Aspergillus fumigatus</i>	16	2.1	5	10.0	5	12.8	5	17.2	0.001	<0.001	<0.001
<i>Alternaria alternata</i>	6	0.8	2	4.0	2	5.1	2	6.9	0.027	0.008	0.001

Severe Asthma in Pediatrics

Role of Fungal Sensitization

	Fungal sensitization (n = 25)	No fungal sensitization (n = 39)	P-value	Sensitization to non-fungal allergens (n = 25 ¹)	P-value
Male:female	2.6	2.0	0.65 (NS)	1.8	0.55 (NS)
Age (years)	11 (IQR 9.5–14.5)	9 (IQR 6–12)	0.02	9 (IQR 7–15)	0.2 (NS)
IgE (IU/ml)	1,049 (IQR 566–2319)	78 (IQR 21–308)	<0.0001	257 (IQR 80–480)	<0.0001

	Fungal sensitization (n = 22)	No fungal sensitization (n = 26)	P-value	Sensitization to non-fungal allergens (n = 19 ¹)	P-value
FEV1 (% predicted)	81.5 (IQR 65–88)	95.5 (IQR 81–101)	0.016	96 (IQR 81–101)	0.034
FEV1/FVC	71.5 (IQR 64–78)	83 (IQR 78–88)	0.0004	82 (IQR 75–89)	0.008
FEF25–75% (% predicted)	55 (IQR 36–61)	78.5 (IQR 60–86)	0.002	74 (IQR 59–85)	0.011

Fungal sensitivities:
Aspergillus 84%, Alternaria 72%,
Candida 52%, Cladosporium 36%,
Mucor 32%, Penicillium 16%

Similar results in UK study

Oral Azoles for Severe Asthma with Fungal Sensitization (SAFS)

Severe asthma, mold allergic, but not meeting diagnostic criteria for ABPA

•Fungal Asthma Sensitization Study – UK adults

Sensitivities: ***Aspergillus*** 72%, ***Candida*** 59%, ***Cladosporium*** 40%,
Penicillium 41%, ***Alternaria*** 40%, ***Trichophyton*** 22%, ***Botrytis*** 29%
32 week RCT with itraconazole – improved asthma quality of life

Denning DW et al, AJRCCM 2009;179:11

Role of azoles in SAFS unresolved

EVITA3 Study

UK adults active SAFS sensitized to ***A. fumigatus***
12 week RCT with voriconazole

Agbetile J et al, JACI 2014;134:33

ABPA in Asthma – Scope of Problem

ASTHMA	US	Europe	US + Europe
Prevalent asthma population	25,700,000	30,000,000	55,700,000
% with severe asthma	5 – 10%	5 – 10%	5 – 10%
Diagnosed and treated severe asthma population	1,285,000 – 2,570,000	1,500,000 – 3,000,000	2,785,000 – 5,570,000
% of diagnosed severe asthma with ABPA	5%	5%	5%
Diagnosed severe asthma patients with ABPA	64,250 – 128,500	75,000 – 150,000	139,250 – 278,500

Therapeutic Approaches for ABPA

- First line: Oral glucocorticosteroids
 - Requires months-long burst/taper: toxicity issues often unwanted or limiting
 - Alternative: Monthly pulse intravenous glucocorticosteroids
 - Potential for reduced steroid toxicity
- Second line: Oral *Aspergillus*-active triazoles
 - Validated by placebo-controlled trials
 - Frequent toxicities from months-long courses
 - Absorption, metabolism, drug-drug interactions mandate therapeutic drug level monitoring
 - Azole resistance increasing
 - Alternative: Nebulized amphotericin B
 - Multiple formulations, doses, delivery systems
- Omalizumab (monoclonal anti-IgE)
 - Validated by placebo-controlled trial, open-label trials
 - Expensive
 - Requires q 2-4 week office/clinic visit, observation
 - Alternative: Other T2-high response biologics also in use (mepolizumab, benralizumab, dupilumab)

Amphotericin B Aerosol Therapy

First clinical neb use 1959; most experience in lung transplant & hematologic malignancy.

Four IV formulations (inhalational use off-label):

AMB-d deoxycholate micelle

L-AMB liposome

ABLC lipid ribbon complex

ABCD lipid disc

AMB-d may foam; lipids may nebulize better

Effective drug-delivery systems tested include

AMB-d Respigard II; Pari Turbo; Aeroneb

ABLC AeroEclipse

L-AMB Halolite

Dosing: 5-50 mg nominal neb dose → lung dose $1.5 \geq 3$ mg

Serum concentration: usu $<0.5 - 2$ $\mu\text{g}/\text{mL}$ (steady-state iv rx level)

Dosing regimes: bid (AMB-d) – 1-2 x/wk (liposomal forms)

Nebulized Amphotericin Reduced Exacerbations at One Year in ABPA

	Experimental arm (n = 12)	Control arm (n = 9)	p value
Primary outcomes			
Time-to-first exacerbation, in days	351 (351–351)	170.3 (85.9–254.8)	0.126
Secondary outcomes			
No. of patients with exacerbations at 12 months	1 (8.3%)	6 (66.7%)	0.019
ACQ7			
Baseline	2.5 (1.27–3.73)	3.78 (1.42–6.14)	0.862
Twelve months	3.4 (1.26–5.54)	4 (0.38–7.62)	
FEV1 values			
Baseline	80.1 (68.9–91.3)	70.7 (52.3–89.1)	0.291
Twelve months	76.3 (58.8–93.9)	63.9 (26.9–100.9)	
Adverse effects			
Immediate bronchospasm	3 (25%)	–	0.114
Bad after taste	4 (33.3%)	–	0.052
Nausea	4 (33.3%)	2 (22.2%)	0.419

All outcomes are based on an intention-to-treat analysis. All values are presented as n % (95% confidence intervals) or mean (95% confidence intervals), unless otherwise stated.

FEV1, forced expiratory volume in the first second; FVC, forced vital capacity

Experimental Arm: Amphi B deoxycholate 10 mg bid tiw + Budesonide 1 mg bid tiw

Control Arm: Budesonide 1 mg bid tiw

Ram B et al, *J Asthma* 2016;53:517

French multicenter single-blind L-AMB neb RCT in non-CF ABPA ongoing – enrollment complete

Godet C, NCT02273661

Nebulized amphotericin B for Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis

Table 1 Different formulation of amphotericin B (AMB)

Formulation	Carrier	Colloidal type	Size (μm)
AMBd	Deoxycholate	Micelle	0.035
L-AMB	Phosphatidylcholine, distearoylphosphatidylglycerol, cholesterol	Liposome	0.08
ABLC	Phospholipids	Lipid ribbon	1.6–11
ABCD	Cholesteryl sulphate	Lipid disc	0.11–0.12

AMBd: amphotericin B deoxycholate; L-AMB: liposomal amphotericin B; ABLC: amphotericin B-lipid complex; ABCD: amphotericin B cholesterol discs.

Table 2 Reported experiences about nebulized amphotericin B (AMB) treatment in cystic fibrosis (CF)

Author	Year of publication	AMB formulation	AMB dosage	Concomitant systemic antifungals	Number of patients	Type of patients
Tiddens ²⁸	2003	L-AMB	50 mg once a week	None	5	CF
Laoudi ²⁹	2008	Nbud + AMBd	5 mg twice a day	None	3	CF children
Hayes ³⁰	2010	AMBd	10 mg twice a day	Itraconazole	1	CF child
Proesmans ¹⁴	2010	AMBd or ABLC	AMBd: 20 mg, thrice a week ABLC: 50 mg, twice a week	Itraconazole, voriconazole, or posaconazole	7	CF (3 adults, 4 children)

L-AMB: liposomal amphotericin B; Nbud: nebulized budesonide; AMBd: amphotericin B deoxycholate; ABLC: amphotericin B-lipid complex; CF: cystic fibrosis.

Case reports: positive clinical ± biomarker responses

Itraconazole DPI for ABPA: Single Dose PK in Asthmatics

PUR1900 capsule-based dry powder inhaler

PUR1900 particles for inhalation

Plasma exposure 100-400x lower,
sputum 70x higher, vs po itraconazole

Dotted line at 500 ng/mL = Af MIC₉₀

Potential for Treatment of ABPA with Inhalational Antifungal PC945

Patient 2-001 - ABPA

History

ABPA > 12 years
Multiple courses of antifungals
No response & significant side effects
Hospitalised for a week every 8 weeks
for IV hydrocortisone
Symptomatic ++
A. fumigatus culture +

Pre-PC945 25 June 19

On PC945

- CT - significant improvement
- *A. Fumigatus* cleared
- Symptomatic improvement ++
- Improved exercise tolerance
- Serological response
- Reduced eosinophil count
- Off IV steroids

On PC945 for 4 weeks - 29 July 19

Courtesy Alison Murray, Pulmocide

Treatment of *Aspergillus* Lung Transplant Anastomotic Infection Tracheobronchitis with PC945

- 29 year old female. Developed invasive *A. fumigatus* 1 month post-bilateral lung transplant for cystic fibrosis
- After 2.5m on antifungal treatment (isavuconazole → posaconazole, neb amp B, caspofungin, terbinafine)
 - Anastomotic infection progressing
 - Fungus infiltrating bronchial cartilage
 - Risk of dehiscence
- PC945 added, posaconazole and terbinafine continued
- After 2 weeks of inhaled PC945 (5mg QD) the fungal mass was reduced in size
- By week 8 there was a complete clinical, mycological and radiological response and the airway had healed
- Nebs well tolerated. No adverse reactions or drug interactions
- PC945 treatment was stopped after 3 months (response)
- Patient remains *Aspergillus*-free off all antifungals for > 6 months

Refractory to available systemic & inhaled antifungals

8wks

Nebulised PC945, 5mg daily added to oral antifungals

Combination Inhaled-Systemic Azole Therapy: *in vitro* Alveolus Model

Hope WW et al, *J Infect Dis* 2007;195:455

Colley T et al, *Sci Rep* 2019;9:9482

Conclusions

- Because of favorable pharmacokinetics, pharmacodynamics and toxicology, specific respiratory drug-device antifungals *may* find validated roles in
 - Prophylaxis of pulmonary aspergillosis in lung transplant recipients
 - Prophylaxis of pulmonary aspergillosis in hematological malignancies
 - Treatment of resistant/recalcitrant fungal lung infections
 - Treatment of allergic bronchopulmonary aspergillosis
 - Treatment of severe asthma with fungal sensitization