Orally Inhaled Antifungal Drug Development: Clinical Pharmacology Perspective

Timothy J. Bensman, Pharm.D., Ph.D.
OCP Division of Infectious Disease Pharmacology
Presenter

Bhawana Saluja, Ph.D.
OCP Division of Inflammation and Immune Pharmacology
Contributor

FDA Public Workshop
Addressing Challenges in Inhaled Antifungal Drug Development
September 25, 2020
Disclaimer

• This presentation reflects the views of the presenter and are not intended to represent official policy of the Food and Drug Administration
Aim & Objectives

• To discuss clinical pharmacology considerations relevant for developing an acceptable orally inhaled antifungal drug product (OIAD)
 – Device Considerations
 – Clinical Pharmacokinetics
 – Dose Finding
Rationale for Inhaled Drugs

- The lung is the target (assumption for this talk)
- Efficacy ➔ local delivery
- Systemic safety ➔ systemic drug exposure
 - Lung absorption
 - GI absorption
Interface of Drug, Device, and Patient Characteristics

<table>
<thead>
<tr>
<th>DRUG</th>
<th>DEVICE</th>
<th>PATIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Solubility</td>
<td>• Particle size</td>
<td>• Disease & disease severity</td>
</tr>
<tr>
<td>• Dissolution</td>
<td>• Velocity</td>
<td>• Mucus / aqueous layer</td>
</tr>
<tr>
<td>• Lipophilicity</td>
<td>• Efficiency</td>
<td>• Mucociliary clearance</td>
</tr>
</tbody>
</table>

Impact

- Site of deposition, absorption, and clearance
- Non-uniform lung exposure

PMID 25642831 | 1750017
Effect of Patient Factors on Lung Deposition

Technique Challenges

- Untrained Press-and-Breath MDI
- Trained Breath-actuated MDI
- Untrained Breath-actuated MDI

Physiological Challenges

- Lung distribution of OIAD dependent on coordination between device actuation and patient breathing
- Lung distribution of OIAD dependent on pathology and severity of disease

PMID 25642831 | 1750017
Effect of Inhalation Device on Efficacy

<table>
<thead>
<tr>
<th>Dose (mcg)</th>
<th>Device 1</th>
<th>Device 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>0.10</td>
<td>0.18</td>
</tr>
<tr>
<td>2.5</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>5</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>10</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>20</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

Device 1 represents the test; Device 2 the comparator of the same drug.

- Efficacy was deemed to be acceptable with 3-fold lower dose with Device 1
- Efficacy and safety depend on both drug formulation and device
- The **to-be-marketed** inhaled formulation & device are needed in clinical trials
OIAD Clinical PK Considerations

• Single and multiple dose PK in healthy subjects and/or targeted patient population
• Systemic PK, along with in vitro metabolism data, can be used to evaluate potential clinical drug-drug interactions
• Dose adjustment in renal or hepatic impairment are not possible because of local drug effect in lungs
• For antifungals with approved systemic formulations, systemic OIAD PK can be used to bridge systemic safety for the OIAD
• Efficacy for OIAD cannot be bridged using systemic PK to the approved systemically administered antifungals
Initial Dose Regimen Selection

• Nonclinical / animal models of fungal lung disease
 – Estimation of clinical starting dose / dose regimen
 – Lung PK-PD targets for initial dose regimen selection
 • Evaluation of ELF and alveolar macrophage drug concentrations provide information on drug penetration into the lungs & potential for clinical efficacy
 • Gap regarding nonclinical lung PK-PD targets to clinical efficacy

• In patients with invasive fungal lung infections
 • Interpretation of sputum, ELF, and/or alveolar macrophage antifungal drug concentrations are challenging due to:
 – High degree of variability, especially sputum
 – Not always reflective of lung target-site of action
Clinical Dose Regimen Selection

• Dose-Response and/or Dose-Finding should be an integral part of the Phase 2 drug development program
 – Phase 3 dose regimen should be informed by Phase 2 trials
 – Multiple ascending dose Phase 2 trial(s) need to include the anticipated Phase 3 inhaled clinical dose regimen and evaluate a range of dose regimens (low and high) & associated efficacy / safety
 – Important to enroll patients that will be reflective of Phase 3 target patient population
Conclusion

- Many influential factors - drug formulation, device, fungal lung disease severity, patient use - affect pulmonary PK of OIAD
- Nonclinical / animal models of fungal lung disease may be informative
- Phase 2 trial(s) needed to support the Phase 3 dose regimen
- To-be-marketed inhaled drug formulation & device need to be used in the Phase 2 / 3 development program
Acknowledgements

• Philip M. Colangelo, Pharm.D., Ph.D.
 Clinical Pharmacology Team Leader
 OCP Division of Infectious Disease Pharmacology

• Bhawana Saluja, Ph.D.
 Clinical Pharmacology Team Leader
 OCP Division of Inflammation and Immune Pharmacology

• Kellie S. Reynolds, Pharm.D.
 Division Director
 OCP Division of Infectious Disease Pharmacology