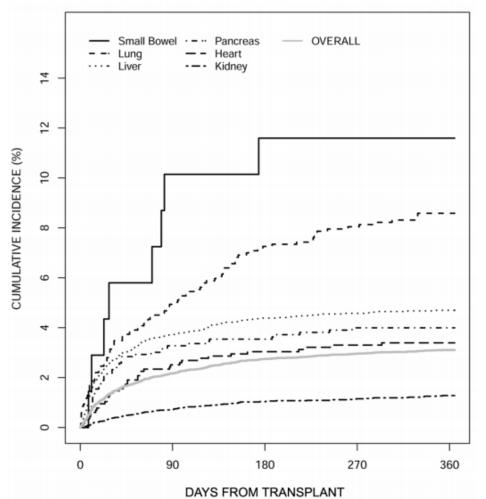
THE TORONTO TRANSPLANT D PROGRAM for infection-free transplantation

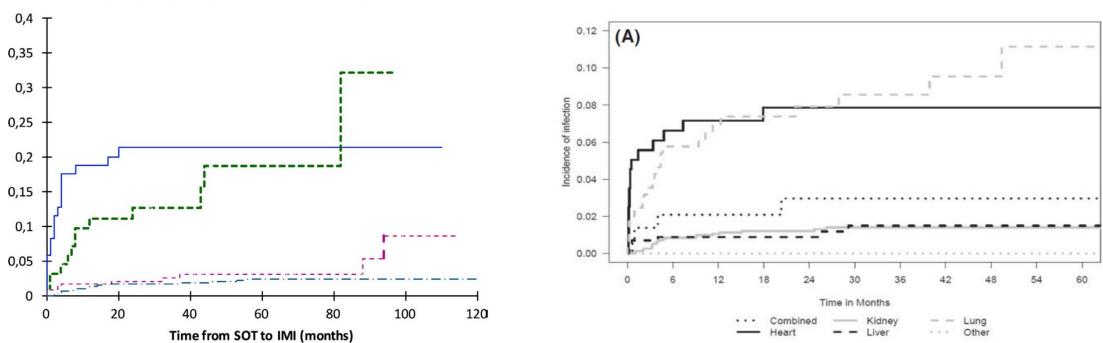
FDA - Inhaled Antifungal Virtual Workshop


Antifungal Prophylaxis and Treatment in Solid Organ Transplant: Potential End Points of Inhaled Antifungal Administration

Shahid Husain, MD, MS, FRCP(Edin), FECMM Professor of Medicine Director, Transplant Infectious Diseases University of Toronto, University Health Network

25 – September - 2020

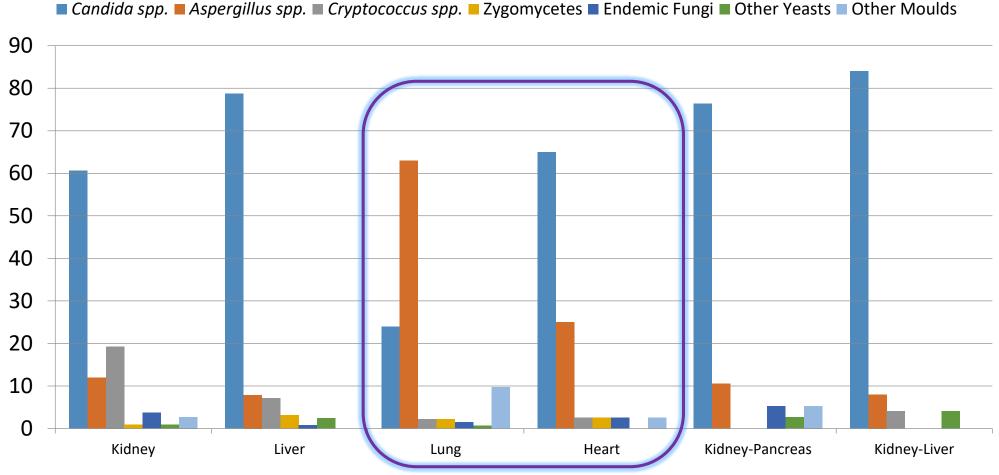
Cumulative Incidence of Invasive Fungal Infection in Solid Organ Transplantation



Pappas P et al. Clin Infect Dis 2010;50(8):1101-11

Current Epidemiology

Cumulative incidence of invasive mold infection

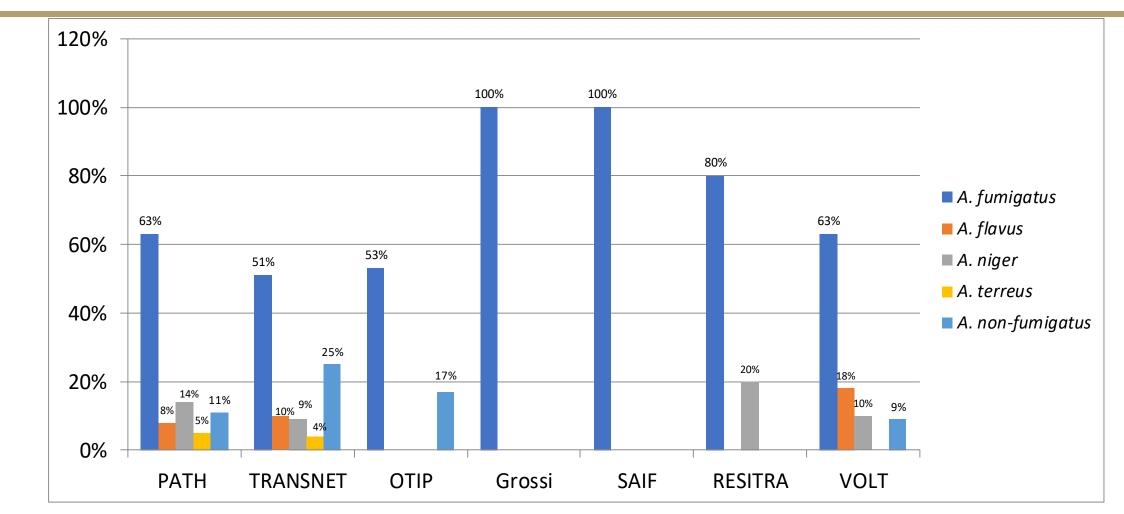


1. Farges C, Cointault O et al, Transpl Infect Dis. 2020;22:e13200.

CUHN Ajmera Transplant Centre

2. Neofytos D, Chatzis O, et al Transpl Infect Dis. 2018 Aug;20(4):e12898.

Data on Distribution of Invasive Fungal Infection in SOT


THE TORONTO **PROGRAM** for infection-free transplantation

IFIs: Invasive Fungal Infections; **SOT:** Solid Organ Transplant

Neofytos D et al. Transplant Infect Dis 2010;12(3):220-9

Aspergillus in Lung Transplants

1. Neofytos D. Transplant Infect Dis 2010;12:220-9; Pappas PG. Clin Infect Dis 2010;50(8):1101-11;

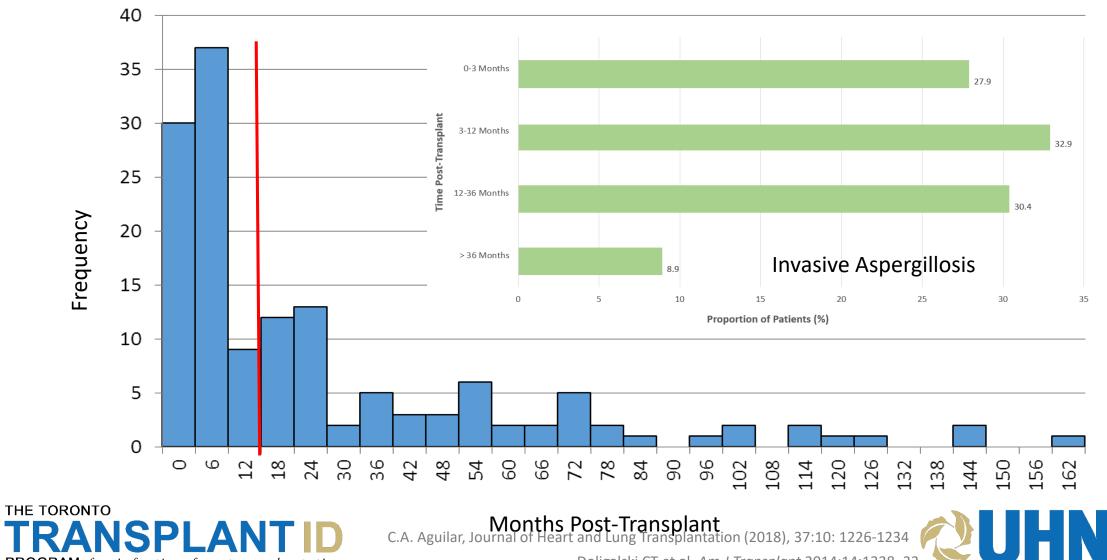
Silveira F. Poster #K861 ICAAC 2011; Grossi P.

2. Transplantation 2000;70(1):112-6; Lortholary O. Clin Microbiol Infect 2011;17(12):1882-9;

Aguilar-Guisado M. Am J Transplant 2007;7(8):1989-96.

3. C.A. Aguilar, Journal of Heart and Lung Transplantation (2018), doi:

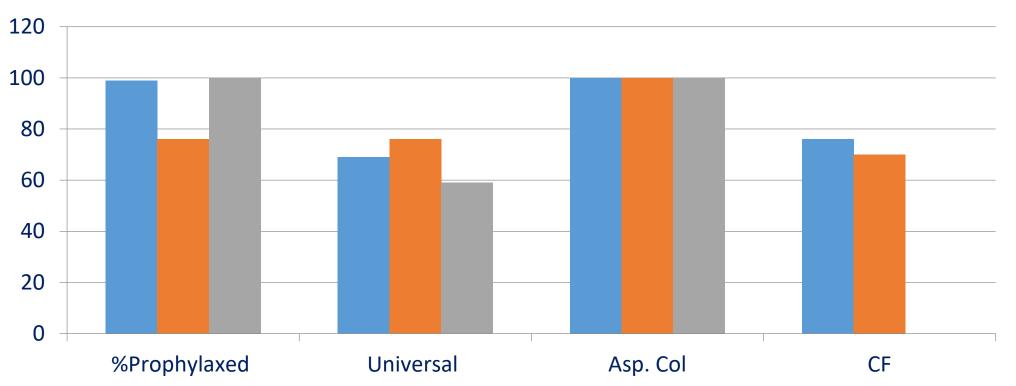
10.1016/j.healun.2018.06.008


THE TORONTO

ΡΙΔ

PROGRAM for infection-free transplantation

Time to Onset of Mold Infections in Lung Transplant


PROGRAM for infection-free transplantation

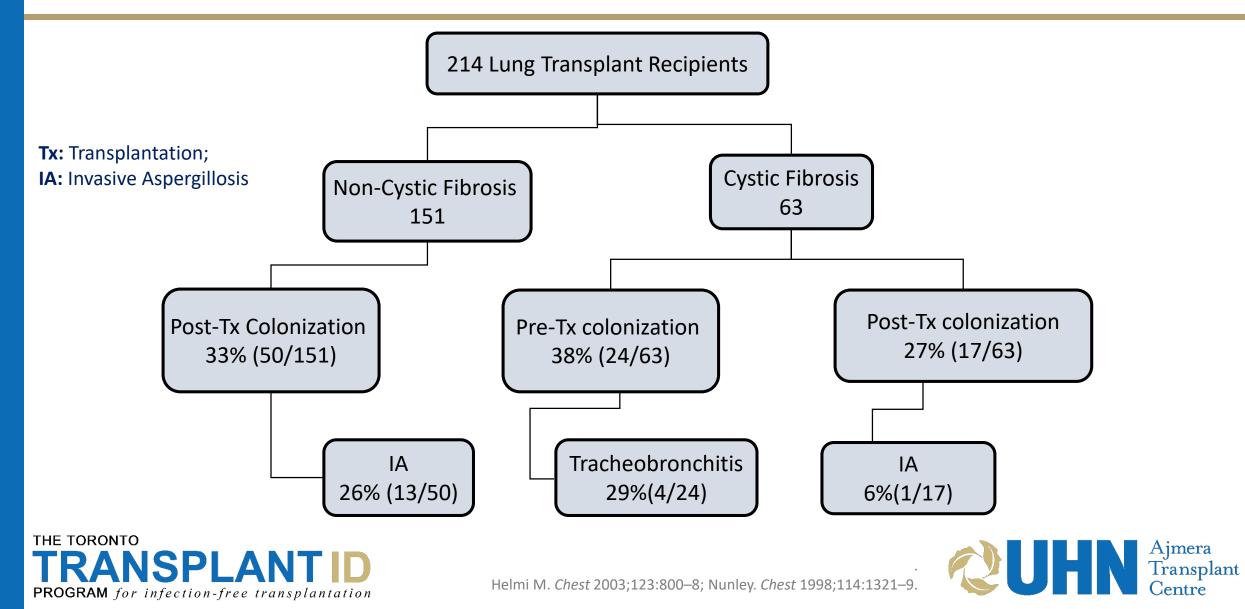
Doligalski CT et al. Am J Transplant 2014;14:1328-33

Ajmera Transplant

lentre

Lay of the Land : Antifungal Prophylaxis in Lung Transplant

Husain et al
Dummer et al
Noeh etal


1. Neoh CF. Am J Transplant. 2011 Feb;11(2):361-6

2. Husain S .Transpl Infect Dis. 2006 Dec;8(4):213-8

3. Dummer JS .J Heart Lung Transplant. 2004 Dec;23(12):1376-81

Colonization of Aspergillus

Results: Risk Factors in Multivariate Analysis of 855 Lung Transplant Recipients

	HR (95% CI)	P-value
Single Lung Transplant	1.84 (1.09-3.10)	0.022
Acute Rejection, number of episodes		
1-2	0.95 (0.57-1.57)	0.83
3 – 4	0.90 (0.42-1.93)	0.792
> 4	1.94 (0.90-4.20)	0.092
CMV Infection	1.65 (0.99-2.76)	0.055
Aspergillus sp. colonization at 1 year	2.11 (1.28-3.49)	0.003
Antifungal Prophylaxis	0.86 (0.54-1.39)	0.544

Cystic Fibrosis was not associated with higher risk of IA

C.A. Aguilar, Journal of Heart and Lung Transplantation (2018), 37:10: 1226-1234

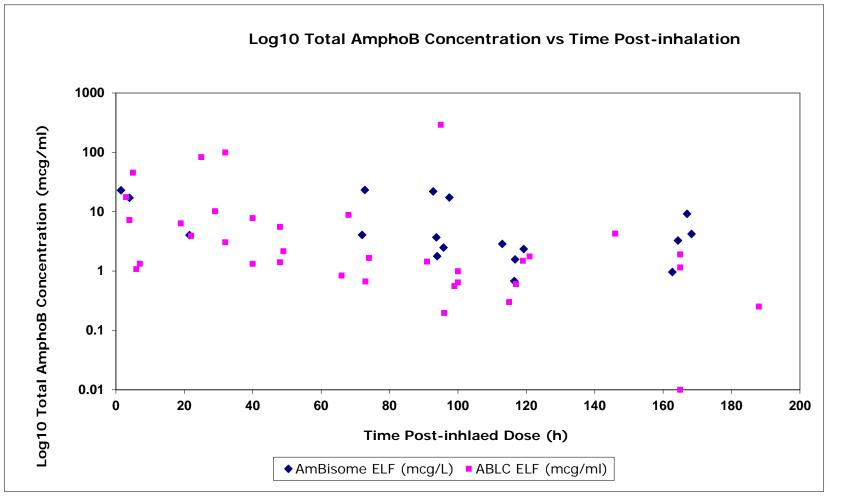
Uni- and Multivariate Models for Associations Between Risk Factors and Development of IA

	Univariate Cox model		Multivariate Cox model	
Risk factor	HR (95% CI)	<i>p</i> -value	HR (95% CI)	<i>p</i> -value
Aspergillus culture positive only (yes vs no)	5.22 (2.94 to 9.29)	< 0.001	11.46 (5.86 to 22.43)	< 0.001
GM positive only (yes vs no)	8.92 (4.16 to 19.12)	< 0.001	21.86 (9.32 to 51.27)	< 0.001
Underlying disease: cystic fibrosis vs COPD	1.41 (0.56 to 3.55)	0.47	0.93 (0.35 to 2.47)	0.88
Pre-emptive therapy (received vs not received)	1.04 (0.46 to 2.32)	0.93	0.23 (0.09 to 0.58)	0.002
Pre-transplant Aspergillus culture positive (yes vs no)	1.95 (0.97 to 3.92)	0.06	2.21 (1.01 to 4.83)	0.05
CMV mismatch $(D^+/R^- vs non-D^+/R^-)$	1.69 (0.91 to 3.12)	0.10	1.29 (0.68 to 2.46)	0.44
Biopsy-proven rejection (yes vs no)	2.00 (1.04 to 3.83)	0.04	1.80 (0.94 to 3.47)	0.08

Total number of patients = 519; total number of invasive aspergillosis (IA) cases = 47. CI, confidence interval; COPD, chronic obstructive pulmonary disease; D, donor; GM, galactomannan; HR, hazard ratio; IA, invasive aspergillosis; R, recipient.

Ref. Husain S, The Journal of Heart and Lung Transplantation, Vol 37, No 7, July 2018 | pg. 886-893

Other Consequences of Colonization


- Pre-BOS colonization with small conidia Aspergillus species, but not large, was a risk factor for BOS (p = 0.002, HR 1.44, 95% CI 1.14–1.82)
- Colonization with small conidia species also associated with risk of death (p = 0.03, HR 1.30, 95% CI 1.03–1.64)
- Not associated with CLAD²
 - No differentiation between small and large conidia

Weigt SS American Journal of Transplantation 2013; 13: 919–927
 Peghin M Transplant IntlVolume 29, issue 1, January 2016 :51-62

Epithelial Lining Fluid Concentrations of Liposomal and Lipid Complex Amphotericin B

Capitano B, FOCUS 2007.Poster#82 Husain S, Transplantation 2010 Dec 15;90(11):1215-9

Reports of Prophylaxis with Inhaled Amphotericin in Lung Transplants

Author	Year	No. of Pts	Type of AMB	Duration	Efficacy
Calvo V	1999	65	AMB d	120 days	100%
Reichenspurner H	1999	127 AMBd 101 placebo	AMB d	During hospital stay	92% 80%
Monforte V	2001	72	AMB d	42 days	75%
Drew RH	2004	49 AMBd 51 ABLC	AMB d ABLC	7 weeks	86% 88%
Peghin M	2016	412	Liposomal AMB	Life long	94.7%
Baker AW * +/- Systemic antifungals	2020	815	ABLC	During Hospital stay	80.9% 11.4% candida

1. Monforte V et al. J Heart Lung Transplant 2001;20:1274-1281

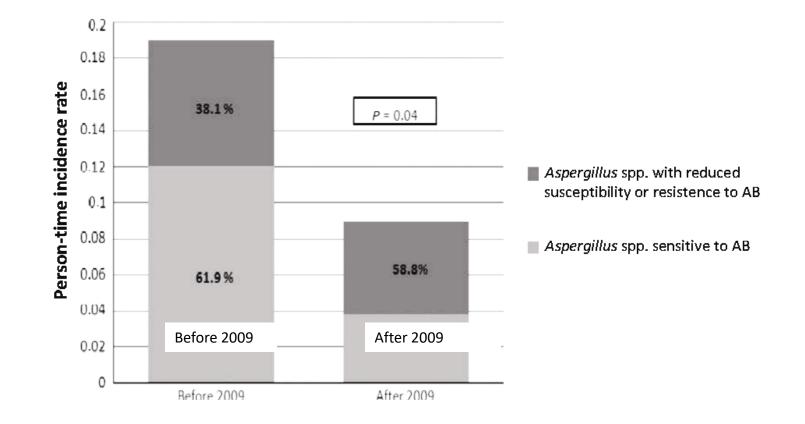
2. Calvo V Chest. 1999 May;115(5):1301-4.doi:10.1378/chest.115.5.1301.

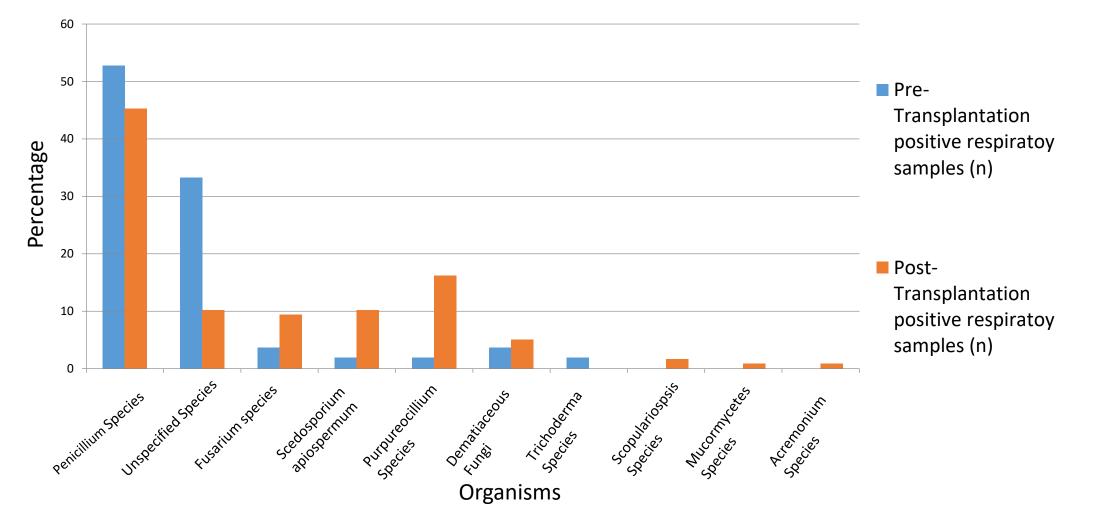
3. Reichenspurner H et el. Transplant Proc 1997;29:627-628

4. S M Palmer, R H Drew et al. Transplantation.2001 Aug 15;72(3):545-8.

5. Baker AW Clinical Infectious Diseases[®] 2020;70(1):30–9

Comparative Side Effect Profile of Inhaled Amphotericin Preparations


Adverse Event	Liposomal AMB (n=118)	Lipid Complex AMB (n=51)	Amphotericin B (n=49)
Wheezing	5/118 (4%)	2/48 (4.2%)	3/47(6.4%)
Cough	12 (10%)	1/47 (2.1%)	5/47 (10.6%)
Shortness of Breath	NR	1/47 (2.1%)	9/47 (19.9)
Nausea	8/118(7%)	1/47 (2.1%)	4/47 (8.5%)
Decline in FEV1	None	5/45 (11.1%)	5/47 (10.6%)
Decline in FVC	None	5/45 (11.1%)	5/47 (10.6%)
More than one adverse event	NR	14/51 (27.5%)	21/49(42.9%)
Discontinuation due to intolerance	3/118(2.5%)	3/51(5.9%)	6/49 (12.2%)



Roman A 2005, Drew RH Transpl 2004

Evolution of Aspergillus spp. Infection and Colonization

Emergence of Resistance: non-Aspergillus Molds

- Pre-transplantation non-aspergillus molds isolated in 55 different respiratory samples from 49 lung transplant recipients
- Post-transplantation non-aspergillus species molds isolated in 117 different respiratory samples from 70 lung transplant recipients

Some Definitions Regarding Colonization

• Eradication of fungal colonization

• Was defined by negative fungal culture of respiratory specimens (e.g. a single negative culture from BAL or 2 negative sputum cultures) at the end-points.

Recurrent colonization

 Was defined as the isolation of the same fungal species repeatedly during the follow-up period, with the recurrent isolation occurring at least 1 month after completion of the first course of prophylaxis.

New colonization

 Was defined as colonization by a different fungal species from the baseline colonization during the follow-up period, occurring at least 1 month after completion of the first course of prophylaxis.

Persistent colonization

 Was defined as ongoing isolation of the same fungal species as that identified at baseline despite prophylaxis.

What is Different for Mold Infection in SOT

• Risk period is longer

- o Until a year in lung transplantation
- 3 months in heart transplantation
- Unique clinical presentation
 - Mold colonization, tracheobronchitis, bronchial anastomotic infections (BAI)
- Clinical risk factors for mold are not well defined
 - $_{\rm O}~$ Lack of robust data in Heart Transplant
- Differential characteristics of biomarkers
 - o Lack of sensitivity of serum Galactomannan, higher false positivity with BAL
- Long term safety of inhaled drugs are not known. Concerns related to graft
 - o Lung transplantation

Universal Prophylaxis in Lung Transplantation

• Recommended duration first 4-6 months post transplantation

• Primary End Points

- Proportion of patients with probable or proven fungal infection (Tracheobronchitis , bronchial anastomosis infection , Pulmonary or systemic fungal infection) at 6 months post transplant
- Proportion of patients with mold colonization at 6 months post transplant

• Secondary End Points (Safety)

• Rate of prevalence of side effects during therapy or within 30 days of cessation:

Elevation of serum creatinine>50% of baseline elevation of

• Neutropenia (absolute neutrophil count \leq 1000) during the

- HeadacheDizziness and fatigue
- Decline in FEV1

treatment

- Decline in FVC
- FeverNausea
- Vomiting
- Wheezing
- Cough
- Shortness of Breath
- Taste preservation
- Pulmonary Function Test at baseline (2 weeks), 3, 6, 9, 12 months

liver enzymes (\geq 3 times)

Tolerance – need to discontinue for side-effects

UHN Ajmera Transplant Centre

Universal Prophylaxis in Lung Transplantation

(Cont'd)

• Secondary End Points (Efficacy)

- Proportion of patients with probable or proven fungal infection (Tracheobronchitis, bronchial anastomosis infection, Pulmonary or systemic fungal infection) at 1 year post transplant
- Proportion of patients with mold colonization at 1 year post transplant.
- Rate of breakthrough fungal infection during prophylaxis (at least one week into treatment or in a week post cessation of therapy)
- Quality of Life at the baseline 3, 6, 9, 12 months post transplant
- Time to development of mold colonization, tracheobronchitis/bronchial anastomotic infection, or invasive pulmonary infection at 1 year post transplant.
- Mortality all-cause and fungal infection-related mortality (all types) at 1 year post transplant
- o Use of empiric antifungals at 1 year post transplant
- \odot Time to diagnosis of CLAD
- Aspergillus resistance rates and rates of resistant organisms e.g. L. prolificans

Pre-emptive Therapy in Lung Transplantation

- Directed by positive BAL GM (>1.0) or *Aspergillus* culture/PCR in BAL without radiological or bronchoscopic evidence of disease during first year of transplantation
- Recommended duration 3-4 months

• Primary End Points

• Negative BAL for GM or Aspergillus culture/PCR at the end of therapy

enzymes (\geq 3 times)

 Proportion of patients with mold colonization, probable or proven fungal infection (Tracheobronchitis, bronchial anastomosis infection, pulmonary or systemic fungal infection) at 6 months post cessation of therapy

• Secondary End Points (Safety)

- Rate of prevalence of side effects during therapy or within 30 days of cessation
 - Headache
 - Dizziness and fatigue
 Decline in FEV1
 - Fever

- Decline in FVC
- Nausea
- Vomiting
- Wheezing Cough
- Neutropenia (absolute neutrophil count ≤ 1000) during the treatment.

Elevation of serum creatinine>50% of baseline elevation of liver

- Shortness of Breath
- Taste preservation
- Pulmonary function Test at baseline, 3, 6, 9, 12 months
- Tolerance need to discontinue for side-effects

Pre-emptive Therapy in Lung Transplantation (Cont'd)

Secondary End Points (Efficacy)

- Proportion of patients with fungal infection (mold colonization, probable or proven Tracheobronchitis, bronchial anastomosis infection, pulmonary or systemic fungal infection at 1 year post transplant *
- Rate of breakthrough fungal infection during treatment (at least one week into treatment or in a week post cessation of therapy)
- QOL at the baseline, 3, 6, 9, 12 months post transplant
- Time to development of colonization(non candida), probable or proven tracheobronchitis/bronchial anastomotic infection, or invasive pulmonary infection at
- Mortality all-cause and fungal infection-related mortality (all types) at 1 year post transplant
- $\,\circ\,$ Use of empiric antifungals at 1 year post transplant
- $\,\circ\,$ Time to diagnosis of CLAD
- Aspergillus resistance rates and rates of resistant organisms e.g. L. prolificans

*In cases of comparison between two preemptive arms outcome should be 1 year post initiation of therapy

Heart Transplantation

- No need for routine prophylaxis
- May Consider prophylaxis
 - $_{\odot}$ Episode of IA in the heart transplant program
 - $_{\odot}$ Isolation of Aspergillus in the BAL of heart transplant

Heart Transplant Prophylaxis

- Prophylaxis in the setting of outbreak in the program
- Recommended duration 6 weeks 3 months
- **Primary End Points**
 - Negative BAL GM or *Aspergillus* culture/ PCR four weeks post cessation of therapy
 - Proportion of patients with probable or proven fungal infection (Pulmonary or systemic fungal infection) at 3 months post 0 cessation of therapy

Secondary End Points (Safety)

Rate of prevalence of side effects during therapy or within 30 days of cessation 0

elevation of serum creatinine>50%

- Headache dizziness and fatigue
 - Decline in FEV1 Decline in FVC
 - Fever
- Wheezing
- Cough
- of baseline elevation of liver Shortness of Breath enzymes (\geq 3 times)
- Taste preservation
- Nausea
- Vomiting

- neutropenia (absolute neutrophil count \leq 1000) during the treatment
- Pulmonary Function Test at baseline weeks 2, 4, 6 and 12 wks. 0
- Tolerance need to discontinue for side-effects 0

Heart Transplant Prophylaxis (Cont'd)

Secondary End Points (Efficacy)

- Proportion of patients with probable or proven fungal infection (Pulmonary or systemic fungal infection) at 6 months post cessation
- Rate of breakthrough fungal infection during treatment (at least one week into treatment or within 7 days post cessation)
- o QOL at the baseline, 3, 12 months
- Time to development of probable or proven invasive pulmonary infection at 1 year post transplant
- Mortality all-cause and fungal infection-related mortality (all types) at 1 year post transplant
- Use of empiric anti mold antifungals at 1 year post transplant

Treatment of IFI with Inhaled Antifungal

- Not recommended with nebulized drugs ALONE due to the lack of existing data and possible systemic fungal disease
- Potential clinical syndromes it can be used in include
 - Tracheobronchitis
 - Bronchial anastomotic infection

• Endpoints

- Microbiological cure at the end of therapy {Aspergillus culture/PCR or GM negative}
- Normal looking airways or a bronchial anastomosis during bronchoscopy at the end of therapy
- $_{\odot}$ Used inhaled antifungals in conjunction with systemic antifungals

