

Holly Stephens¹, Elaine Johanson², Emily Boja², Elaine Thompson^{3*}, Yuriy Gusev⁴, Krithika Bhuvaneshwar⁴, Subha Madhavan⁴, Jonathon Keeney⁵, Hadley King⁵, Janisha Patel⁵, Raja Mazumder⁵, Sean Watford¹, Ezekiel Maier¹ ¹ Booz Allen, ² FDA Office of Health Informatics (OHI), ³ FDA Center for Biologics Evaluation and Research (CBER), * Current: Henry M. Jackson Foundation, ⁴ Georgetown University, ⁵ George Washington University

- lack of familiarity with BioCompute Objects, broad diversity of research interests, and motivation to submit high quality work.
- Most beginner track scores were high, indicating that most users did not struggle with the specification, demonstrating the approachability of the BCO specification for bioinformatics novices

Crowdsourcing Advances Reproducibility Standards and Biomarker Development

PrecisionFDA offers a high-performance computing platform, access to a community of experts, a library of tools and applications, a competition framework, and virtual lab workspaces to allow FDA scientists and reviewers to collaborate with external partners.

COMING SOON - precisionFDA is adding capabilities to enable data scientists to easily use Shiny R apps, Python, and Jupyter Notebooks.

More than a dozen community challenges and app-a-thons have been run on precisionFDA.

Insights gleaned from the BioCompute Object app-a-thon, such as the explicit demarcation of required fields, were incorporated into **BioCompute specification version 1.4.**

Multi-omic biomarkers of brain tumor prognosis were identified by the participants of the Brain **Cancer Predictive Modeling and Biomarker Discovery Challenge.**

Models

The top performing model, submitted by the Sentieon team, used 46 features including 40 genes, 4 cytobands and 2 clinical attributes.

Support Vector Machine

Logistic Regression

Conclusions

Sub-challenge 2 may be more challenging than sub-challenge 1 because DNA copy number was more complex compared to gene expression data. TGF-beta regulation of extracellular matrix pathway was enriched among the 40 genes selected by the top performing model. TGF-β signaling is dysregulated and promotes tumor progression in cancer.