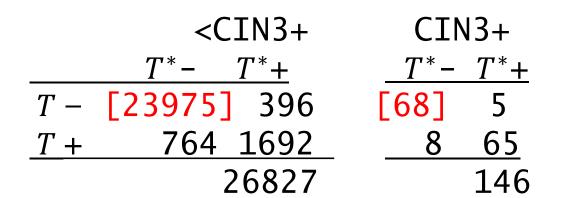

Using Gibbs Sampling and Data Augmentation to Compare Diagnostic Tests in RWE Studies with Extreme Verification Bias Gene Pennello² and Qin Li¹, FDA/CDRH, ¹Division of Biostatistics, ²Division of Imaging Diagnostics & Software Reliability

Abstract

Diagnostic tests are used to detect or predict presence or absence of a disease or a clinical condition now or in the future. Clinical studies are often designed to evaluate the performance of the diagnostic tests with the comparison to the reference method that is used to determine the true status of the subjects. Meanwhile, alternative sources of evidence such as real-world data (RWD) may exist for the diagnostic tests of interest. Verification bias (partial or extreme) is not uncommon to encounter in a clinical study and RWD, when the reference procedure used to verify disease status is invasive or otherwise unethical to perform on everyone. It is difficult to evaluate the diagnostic tests and can be a challenge for regulatory decision making in this situation, especially when the extreme verification bias exists (i.e. no one or more subgroups are verified). In this poster, we develop Bayesian models to make the comparison of two tests possible under the situation of extreme verification bias. A Gibbs sampler-based computation algorithm is developed accordingly for drawing posterior samples and inference. As an example, the proposed method is applied to a Human papilloma virus (HPV) diagnostic device.


Background and motivation

Verification Bias: Estimates of accuracy – sensitivity (Se) and specificity (Sp) are biased if selection of subjects for verification of disease status is nonrandom.

Extreme Verification Bias: In one or more subsets, no one is verified for disease status. It occurs by design when the reference procedure used to verify disease status is invasive and thus deemed unethical to perform on anyone in particular subsets.

HPV tests are used to screen for HPV genotypes that are precursors to cervical cancer or cervical squamous intraepithelial neoplasia stage 3 (CIN3+ histology).

Verify-the-Positive (VTP) Design A subject is referred to coloposcopy to verify cervical cancer status only if they are test positive by one of two HPV tests being compared (Schatzkin et al, *Biometrics*, 1987).

- NILM: Pap Cytology Result is Negative for Intraepithelial Lesion or Malignancy.
- CIN3+ prevalence is 0.54% (146/26973).
- VTP design [] is missing

Estimable Quantities: Ratio of TPF (sensitivity), Ratio of FPF (1specificity), PPVs

Bayesian Model

		Data Notation						
) —		D +			Total			
<i>T</i> * –	$T^{*} +$	Test	T * -	$T^{*} +$	Test	$T^* - 7$	[* +	
<i>n</i> ₀₀₀	<i>n</i> ₀₁₀	<i>T</i> –	<i>n</i> ₀₀₁	<i>n</i> ₀₁₁	<i>T</i> –	n_{00} .	n ₀₁ .	
<i>n</i> ₁₀₀	<i>n</i> ₁₁₀	T +	<i>n</i> ₁₀₁	<i>n</i> ₁₁₁	T +	n_{10} .	n ₁₁ .	

 $n_{tsd} = \text{cell count for test results } T = t, T^* = s,$ disease status D = d, for t, s, d = 0, 1 or - , +

Data Distribution

$$\underline{n} \sim Mult(n..., \underline{\theta}),$$

$$\underline{n} = \{n_{ts}, \} = (n_{00}, n_{01}, n_{10}, n_{11})$$

$$n_{\bullet\bullet\bullet} = \sum_{t=0,1} \sum_{s=0,1} n_{ts\bullet}$$

 $\underline{\boldsymbol{\theta}} = \{\theta_{ts}, \} = (\theta_{00}, \theta_{01}, \theta_{10}, \theta_{11})$ =joint prob of test results

 $n_{ts1} \sim Bin(n_{ts \bullet}, p_{ts}),$ $n_{ts\bullet} = \sum_{d=0,1} n_{tsd}$ $p_{ts} = \Pr(D = 1 | T = t, T^* = s)$ = predictive value of T = t, $T^* = s$.

Diffuse Priors

$$\underline{\theta} \sim Dir(\underline{\gamma}),$$

$$\underline{\gamma} = (\gamma_{00}, \gamma_{01}, \gamma_{10}, \gamma_{11})$$

$$= (0.25, 0.25, 0.25, 0.25)$$

$$p_{ts} \sim Beta(\underline{\alpha}), t, s = 0, 1$$

$$\underline{\alpha} = (0.5, 0.5)$$

Computation

Markov Chain Monte Carlo (MCMC) Gibbs

Sampling. Parameter values were sampled from their full conditional posterior distributions until Markov Chain converged to samples from the joint posterior distribution of the parameters.

• **Data Augmentation**. Missing disease status for HPV test double negatives was sampled from its full conditional posterior predictive distribution, greatly simplifying the Gibbs sampler.

Gibbs Sampler

$$\begin{split} \underline{\theta}^{(i+1)} | rest \sim Dir(\underline{\gamma} + \underline{n}) \\ p_{ts}^{(i+1)} | rest \sim Beta(\alpha_0 + n_{ts0}, \alpha_1 + n_{ts1}) \\ & \text{for } (t, s) = (0, 1), (1, 0), \text{ or } (1, 1) \\ n_{001}^{(i+1)} | rest \sim Bin\left(n_{00\bullet}, p_{00}^{(i)}\right) \\ p_{00}^{(i+1)} | rest \sim Beta(\alpha_0 + n_{000}^{(i+1)}, \alpha_1 + n_{001}^{(i+1)}) \end{split}$$

Model Constraints

Constraint 1:

None of HPV double negatives is verified.

That is, the data provide no information on

$$p_{00} = \Pr(D =$$

A reasonable constraint is that

$$p_{00} < m$$

Constraint 2:

HPV tests are based on similar technology.

A reasonable assumption: conditional on disease status the two HPV tests are *positively dependent*, that is, the classification probability

$$Pr(T = t, T)$$

is bounded below by conditional independence:

$$Pr(T = t, T^* = s | D = d)$$
$$Pr(T = t | D = d) \times Pr(T^* = s | D = d)$$

$$Pr(T = t, T^* = s | D = d)$$

>
$$Pr(T = t | D = d) \times Pr(T^* = s | D = d)$$

No disease table

D –	T^* —	T^* +	
T –	$1 - FPF_T - FPF_{T^*} + \theta_0$	$FPF_{T^*} - \theta_0$	$1 - FPF_T$
T +	$FPF_T - \theta_0$	$\boldsymbol{\theta}_{0}$	FPF _T
	$1 - FPF_{T^*}$	FPF _{T*}	

$$FPF_T \times FPF_{T^*} < \theta_0 < \min(FPF_T, FPF_{T^*})$$

Disease table

D +	T^* —	T^* +	
T -	$1 - TPF_T - TPF_{T^*} + \theta_1$	$TPF_{T^*} - \theta_1$	$1 - TPF_T$
T +	$TPF_T - \theta_1$	$\boldsymbol{ heta_1}$	TPF _T
	$1 - TPF_{T^*}$	TPF_{T^*}	

 $TPF_T \times TPF_{T^*} < \theta_1 < \min(TPF_T, TPF_{T^*})$

In the Gibbs sampler, we only accept samples that satisfy these constraints.

Estimation

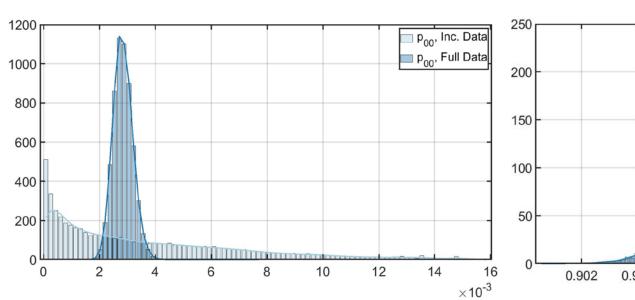
marks

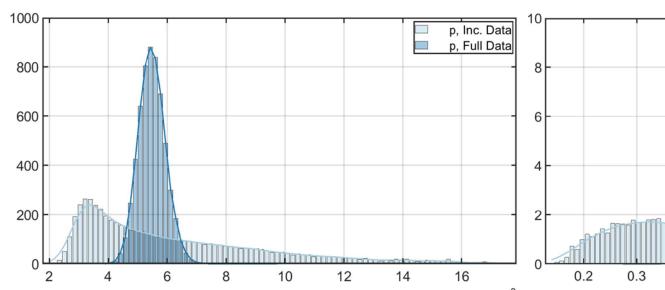
Re

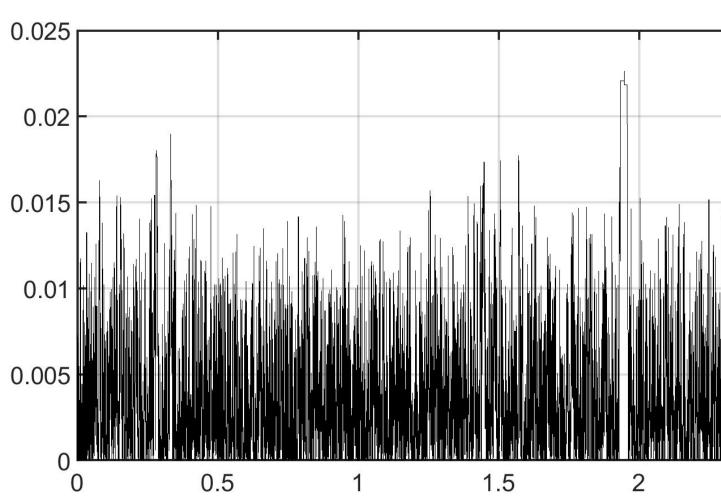
50

<u>.</u>

Conclud


- one of the tests.


 $= 1|T = 0, T^* = 0)$


 $\textit{nin}(p_{10}, p_{01})$

 $T^* = s | D = d$

vs. Sample Estimates for Fully Verified Data vs.	st T True	Full	<u>Analysis of I</u> Start Poster.	95%	CI.
Sp	Value	Data	Value Median	2.5%,	<u>97.5%</u>
		0.908		0.905,	
Je		0.500 0.997	0.276 0.521 0.992 0.997	0.201, 0.987,	
yesian Estimates for Incompletely Verified Data NPI PPV		0.997	0.029 0.029	0.987, 0.023,	
NLF		0.550	0.798 0.528	0.076,	
Analysis of Incomplete Data PLR	R 6.033	5.462	2.997 5.685	2.170,	10.222
				-	
	st T*		Analysis of In		
ValueData Value Median 2.5%, 97.5%	True Value	Full Data	Start Poster Value Median		
p_{00} 0.0030.003 0.008 0.003 0.000, 0.012 —	Varue	Data	varue neuran	<u> </u>	<u> </u>
	Sp 0.921	0.922	0.922 0.922		
y_{10} 0.0120.010 0.010 0.011 0.003, 0.020	Se 0.521	0.479	0.264 0.499		
y_{11} 0.040 0.057 0.057 0.057 0.029, 0.047	PV 0.997 PV 0.035		0.992 0.997 0.032 0.033	,	
	LR 0.521		0.798 0.543	-	
	<i>LR</i> 6.575	6.160	3.381 6.424	2.395,	11.593
$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Sp,Row, Inc. Data Sp,Row, Full Data	1200 1000 800 600 400 200 0.984 0.98	36 0.988 0.99 0.992		V,Row, Inc. Data V,Row, Full Data
p, Inc. Data p, Full Data	Se,Row, Inc. Data Se,Row, Full Data				V,Row, Inc. Data V,Row, Full Data
$ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0.8 0.9 1	100 80 60 40 20 0 0.0	02 0.025 0.03	0.035 0.04	4 0.045
Trace Plot for p00	Incomplete Da Probabilities	1 ata 0.9 <mark>1.5</mark>	K Line)		
—pv(1,1)		0.8		TIRLINE	
		$\widehat{}^{0.7}$	A A $\frac{1}{4}$ 67.6% $\frac{1}{4}$ 67.6% $\frac{1}{5}$ 67.6%	(mr.	
		ensitivity)	LI 0.44 0.50	0.00/	
	•••		F - TPF	U. 8 %	
	0%-	щ 0.4			
	n 0//.	<u> </u>	S+A: Superior in Confirming		
	070	0.2	S+P: Superior in Confirming I: Inferior Overall) Disease is Prese	nt
			(FPF [*] , TPF [*])=		
		0.1		.2%,50%) PF > 1, rFPF < rTPF PF ≤ 1, rFPF < 1-10.9)+10.9×rTPF
		0	0.1 0.2 0.3 0.4 0.5	0.6 0.7 0.8	0.9 1
			FPF (1 - spe	ecificity)	
	_		io graph with regions of	-	
05 1 15 2 25 4	vs. a comp	arator with ($(FPF^*, TPF^*) = (0.078,$	0.479) and o	dds ratio $o^* = 10$
0.5 1 1.5 2 2.5					
0.5 1 1.5 2 2.5		ices			
_	Referen				
0.5 1 1.5 2 2.5 State of the second s		ummary	of the Microbiol	ogy Devic	es Panel –
Computation	• Brief Su	ummary 8, 2019,		ogy Devic	es Panel –
Computation • Starting values for Gibbs Sampler:	 Brief Su March 	, 2019,		0,	
 Computation Starting values for Gibbs Sampler: Use \$\heta_{01}\$, \$\heta_{10}\$, \$\heta_{11}\$, \$\heta_{00}\$, \$\heta_{01}\$, \$\heta_{10}\$, \$\heta_{11}\$ as starting 	 Brief Su March <u>https:/</u> 	8, 2019, //www.fd		2803/dow	<u>/nload</u> .
Computation • Starting values for Gibbs Sampler:	 Brief Su March <u>https://</u> Schatzk Compa 	8, 2019, <mark>/www.fd</mark> kin A, Co aring new	l <mark>a.gov/media/12</mark> nnor RJ, Taylor P / and old screeni	2803/dow R, Bunnag ng tests w	<mark>/nload</mark> . g B. /hen a
 Computation Starting values for Gibbs Sampler: Use p̂₀₁, p̂₁₀, p̂₁₁, θ̂₀₀, θ̂₀₁, θ̂₁₀, θ̂₁₁ as starting values for p₀₁, p₁₀, p₁₁, θ₀₀, θ₀₁, θ₁₀, θ₁₁ 	 Brief Su March <u>https://</u> Schatzk Compa referen 	8, 2019, <mark>/www.fd</mark> kin A, Co aring new nce proce	a.gov/media/12 nnor RJ, Taylor P and old screeni edure cannot be	2803/dow R, Bunnag ng tests w performe	<u>/nload</u> . g B. /hen a d on all
 Computation Starting values for Gibbs Sampler: Use \$\heta_{01}\$, \$\heta_{10}\$, \$\heta_{11}\$, \$\heta_{00}\$, \$\heta_{01}\$, \$\heta_{10}\$, \$\heta_{11}\$ as starting 	 Brief Su March <u>https://</u> Schatzk Compa referen screene 	8, 2019, <mark>/www.fd</mark> kin A, Co aring new nce proce ees. Exar	la.gov/media/12 nnor RJ, Taylor P / and old screeni edure cannot be mple of automate	2803/dow R, Bunnag ng tests w performe ed cytome	<mark>/nload</mark> . g B. /hen a d on all etry for early
 Computation Starting values for Gibbs Sampler: Use p̂₀₁, p̂₁₀, p̂₁₁, θ̂₀₀, θ̂₀₁, θ̂₁₀, θ̂₁₁ as starting values for p₀₁, p₁₀, p₁₁, θ₀₀, θ₀₁, θ₁₀, θ₁₁ 	 Brief Su March <u>https://</u> Schatzk Compareferent screente detecti 	8, 2019, <mark>/www.fd</mark> kin A, Co aring new nce proce ees. Exar	a.gov/media/12 nnor RJ, Taylor P and old screeni edure cannot be	2803/dow R, Bunnag ng tests w performe ed cytome	<mark>/nload</mark> . g B. /hen a d on all etry for early

Bayesian posterior medians with unknown disease status for test double negatives (24043/26973 = 89%) agreed surprisingly well with sample estimates when they were known.

• Majority of CIN3+ disease (78/146, 53.4%) occurred in subjects who were test positive by

• The two constraints on the predictive values and classification probabilities place a lot of structure on their distribution, increasing the precision of the Bayesian estimates.

- $rTPF = \frac{Se}{Se^*}, rFPF = \frac{1-Se}{1-Se^*}, PPV, PPV^*,$

For these quantities, Bayesian estimates should agree with sample estimates or something is wrong.

HPV Example Results

- Biggerstaff BJ. Comparing diagnostic tests: a simple graphic using likelihood ratios. Stat Med. 2000 Mar 15;19(5):649-63.
- Black MA, Craig BA. Estimating disease prevalence in the absence of a gold standard. Statist. Med. 2002; 21:2653-2669 (DOI: 10.1002/sim.1178).