Development considerations for *Candida auris*

Development Considerations of Antifungal Drugs to Address Unmet Medical Need

August 2020

David Angulo, MD
Chief Medical Officer at SCYNEXIS

Disclosures: employee and shareholder of SCYNEXIS, Inc
Ibrexafungerp (SCY-078)

Novel Glucan Synthase Inhibitor (GSI)

Structurally distinct from other GSIs (echinocandins)

- Different enzyme-drug interaction → lower impact of common FKS mutations
- Oral bioavailability

Attributes / Development

- *In vitro* and *in vivo* activity against:
 - *Candida* spp
 - Including *Candida auris*
 - *Aspergillus* spp
 - *Pneumocystis* spp
 - *Coccidioides* spp
- Extensive tissue distribution \((V_{dss} > 5 \text{ L/kg})\)
- In clinical development for:
 - Invasive candidiasis (P2 study completed)
 - Vulvovaginal candidiasis (P3 studies completed)
 - Recurrent VVC (P3 study ongoing)
 - Invasive aspergillosis (P2 study ongoing)
 - Refractory invasive fungal diseases (P3 ongoing)
 - *Candida auris* infection (P3 ongoing)
Developing new antifungals for *Candida auris*

Regulatory Background

- **FDA:**
 - Invasive Candidiasis
 - Single pivotal, randomized, controlled trial (RCT), typically noninferiority
 - LPAD Pathway
 - Based on a benefit-risk assessment that more flexibly takes into account the severity, rarity or prevalence of the infection and the lack of alternatives available.
 - The drug is intended to treat serious or life-threatening infection in a limited population with unmet needs
 - A streamlined clinical development program for a limited population may involve smaller, shorter, or fewer clinical trials.
 - Substantial evidence of effectiveness must be provided
 - Acceptance of a greater uncertainty based on risk-benefit assessment
Typical antifungal development path for invasive candidiasis

- A Phase 2 dose POC / dose ranging study
- A Phase 3, randomized, controlled, double blind, properly powered study to demonstrate non-inferiority to SOC
 - Size of P3 study (NCT03667690) in invasive candidiasis IC : ~220
 - Candidemia incidence in US (cdc.gov): 25,000/year
 - Enrolling ~220 subjects takes ~2 years in 64 centers worldwide

- Estimated time for Phase 2 and 3 completion is 4-5 years with estimated cost >$60M
Development of antifungals for *C. auris*

• Enrolling patients with *C. auris* in clinical trials is difficult:
 – Limited number of patients (~500/year in US) and many heavily treated
 – High mortality – difficult to enroll
 – Multiple centers/countries are needed (trials are $$$$$ and long)
 – Need to chase the hotspot
• Clinical evidence from a statistically powered RCT in patients with *C. auris* is unlikely to be feasible

• Alternative approaches are needed to generate substantial evidence of effectiveness
 – A well-balanced definition of “substantial”, in-light-of the *unmet medical need*, will facilitate/accelerate availability of new therapies
Potential paths for development of antifungals for *C. auris*

- For uncommon, MDR fungal infections, where clinical data will be limited, other sources should be considered to compile the substantial evidence of effectiveness.

 - *In vitro, in vivo* evidence of activity - efficacy
 - PK/PD target attainment
 - Safety in sufficient number of patients
 - Evidence of clinical efficacy

- RCT in invasive candidiasis, enriched with *C. auris* population

- RCT in other candida (or other fungal?) diseases + PLUS
 - A small study in *C. auris* patients:
 - Non-randomized compared versus external controls (contemporaneous and/or historical)
 - RCT (but not necessarily powered)

- Other alternatives: Multiple studies (smaller) in different fungal diseases
Development Opportunities

• We need to identify **efficient development paths** for new therapeutics for this challenging infection, that are:
 – Well-defined
 – Streamlined
 – Feasible within a reasonable timeframe
 – Endorsed by regulatory authorities, scientific community and executable within the industry framework
 – Supported by funding

• Alternative development approaches seems justified based on:
 • unmet need
 • limited number cases,
 • high mortality,
 • high rate of MDR,
 • transmission potential, potential public health impact,
 • available non-clinical models to supplement clinical data