

FY 2020 Generic Drug Regulatory Science Initiatives Public Workshop

Breakout session 4: Data Analysis and Model-Based Bioequivalence Session summary

May 4, 2020

Lanyan (Lucy) Fang, Ph.D.

Division of Quantitative Methods and Modeling
Office of Research and Standards, Office of Generic Drugs, CDER, FDA

Expert Discussants

- Liang Zhao, PhD FDA, CDER/OGD/ORS/DQMM, Session moderator
- Amin Rostami, PhD University of Manchester, Centre for Applied Pharmacokinetic Research
- Andrew Hooker, PhD Uppsala University, Department of Pharmaceutical Biosciences
- Charlie DiLiberti Montclair Bioequivalence Services, LLC
- **Glenys Barber, PhD** University of Manchester
- Sandra Suarez-Sharp, PhD Simulations Plus, Inc.
- Viera Lukacova, PhD Simulations Plus, Inc.
- Stella C. Grosser, PhD FDA, CDER/OTS/OB (Office of Biostatistics)/DBVIII
- **Stephan Schmidt, PhD** University of Florida, Center for Pharmacometrics & Systems Pharmacology
- **Sid Bhoopathy, PhD** Absorption Systems
- Raja Velagapudi, PhD Sandoz Pharmaceuticals, Clinical Development (US)
- Lanyan (Lucy) Fang, PhD FDA, CDER/OGD/ORS/DQMM
- All break out session participants

Presentation

Speaker	Topics
Charlie DiLiberti	Modeling to Support Relaxation of Compositional/Microstructural Criteria to Qualify for Streamlined Bioequivalence Approaches
Sid Bhoopathy	Model Informed BE Expanding the Reach and Utility
Amin Rostami	Virtual BE: Requirement for Prudent Use of PBPK in Uncharted Territories
Andrew Hooker	Improved BE Assessment through Model-informed and Model-based strategies
Stephan Schmidt	A Model- and Systems-Based Approach to Efficacy and Safety Questions Related to Generic Substitution
Sandra Suarez-Sharp; Viera Lukacova	Comments to each question

Presentation Summary

- Modeling and simulation can accelerate generic drug development and assessment
 - Prior knowledge exists from new drug
 - Generating model integrated evidence for generic drug development and assessment

There are emerging quantitative methods and modeling expertise/tools in implementing new BE approaches for various purposes.

Panel Discussions (1)

- ➤ How to evaluate data from in vitro studies and which in vitro studies are clinically relevant
 - Solid oral dosage forms: in vitro release/dissolution testing is the quality attribute that best represents the drug product performance
 - Using modeling methods to probe the impact of deviations from narrow compositional/microstructural criteria on expected product performance in vivo
 - BCS 3 waiver expansion for other "non-qualifying" oral drug products
 - Expanding the reach and utility of modeling supported BE to more product categories
 - Application of PBPK model

Panel Discussions (2)

- ➤ What are the challenges for industry in implementing PBPK/absorption models to support more efficient BE methods (such as alternatives to comparative clinical endpoint BE studies)?
 - Improved understanding of the biological systems is needed
 - GI tract is dynamic + all levels of variability
 - Formulation-dependent interactions with GI tract
 - Uncertainty of the model which best describes the system; Bias or misspecification of model parameters
- Global harmonization & regulatory guidance www.fda.gov

Panel Discussions (3)

- ➤ What are the emerging QMM expertise/tools in implementing new BE approaches?
 - NLME modeling informed & based BE approaches
 - Virtual BE simulations
 - Optimal design methodology for BE studies
 - Model averaging to address model mis-specification
 - PBPK modeling
 - Using model to justify/qualify streamlined BE approaches
 - Usage of PBPK model to support alternative BE methods
 - Pharmacologically feasible aberrant observations
 - Combined Bio-informatics, PBPK and PKPD approach
 - Probe statistically significant and mechanism-plausible real-world signals

Final Remarks

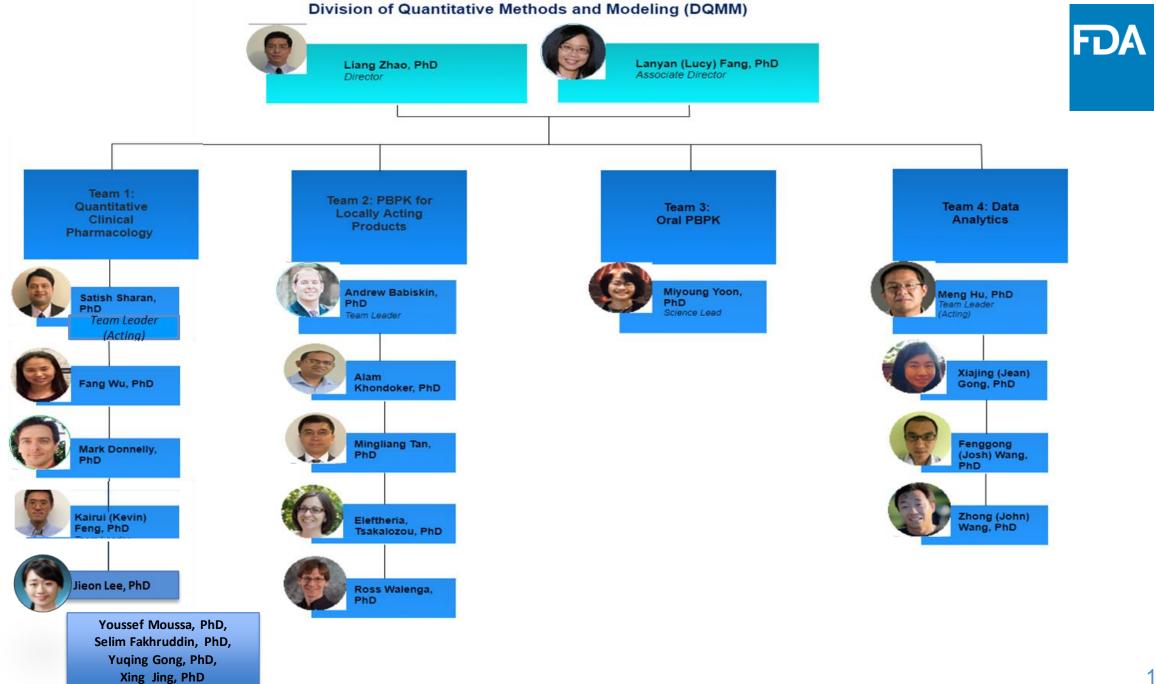
- > Significant opportunities exist to apply modeling methods in generic drug development and assessment.
 - Vision: Accelerate development and regulatory assessment of generic products by modeling and simulation

Assessment

Big Data Analytics

- Division of Quantitative Methods and Modeling (DQMM)/ORS/OGD
 - Quantitative Clinical Pharmacology (QCP)
 - PBPK for locally acting product
 - PBPK for orally administered drugs
 - Data Analytics

FY2020 GDUFA Research Science Priorities


that are most relevant to Data Analysis and Model-Based Bioequivalence

A. Complex active ingredients, formulations, or dosage forms

B. Complex routes of delivery

C. Complex drugdevice combinations D. Tools and methodologies for bioequivalence (BE) and substitutability evaluation

- D1. Improve quantitative pharmacology and BE trial simulation to optimize design of BE studies for complex generic drug products
- D2. Integrate predictive dissolution, PBPK and Pharmacokinetic/Pharmacodynamic (PK/PD) models establishing generic drug bioequivalence standards
- D3. Expand the scientific understanding of the role of excipients in generic drug products to support the expansion of BCS Class
 3 biowaivers to drug products with differences in formulations larger than currently recommended in FDA guidance
- D4. Develop methods and integrated technological solutions that will allow FDA to leverage large data sets (such as bioequivalence study submissions, electronic health records, substitution/utilization patterns, drug safety data, and drug quality data) to support regulatory decisions and improve postmarket surveillance of generic drug substitution

