Newly Approved Complex Drug Products and Potential Challenges to Generic Drug Development

Lei Zhang, PhD

Deputy Director, Office of Research and Standards
Office of Generic Drugs
Center for Drug Evaluation and Research, U.S. FDA

FY 2020 Generic Drug Regulatory Science Initiatives Public Workshop
May 4, 2020
<table>
<thead>
<tr>
<th>Complex Products</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex active pharmaceutical ingredient (API)</td>
<td>Any drug product containing a complex API, regardless of administration routes and dosage forms.</td>
<td>e.g., Conjugated Estrogen Tablet, Glatiramer Acetate Injection</td>
</tr>
<tr>
<td>Complex routes of delivery</td>
<td>Any non-solution drug product with a non-systemic site of action (e.g., topical, ophthalmic, local gastrointestinal (GI) action)</td>
<td>e.g., Cyclosporine Emulsion, Acyclovir Cream</td>
</tr>
<tr>
<td>Complex dosage forms/formulations</td>
<td>Any non-oral complex formulation/dosage form product where there are often two or more discrete states of matter within the formulation</td>
<td>e.g., Doxorubicin HCl Liposomes, Leuprolide Acetate for Depot Suspension</td>
</tr>
<tr>
<td>Complex drug-device combinations</td>
<td>Where the drug constituent part is pre-loaded in a product-specific device constituent part or is specifically cross-labeled for use with a specific device, in which the device design affects drug delivery to the site of action and/or absorption</td>
<td>e.g., Epinephrine Injection (autoinjector)</td>
</tr>
<tr>
<td>Other products</td>
<td>Any solid oral opioid drug products with FDA approved labeling for that show properties (and thus gaining their labeling) to meaningfully deter drug abuse</td>
<td>e.g., Hydrocodone Bitartrate ER Tablet</td>
</tr>
</tbody>
</table>

Approved New Drug Applications (NDAs) FY2015-2019

Number of NDAs Approved

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Total</th>
<th>New Molecular Entity (NME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2015</td>
<td>117</td>
<td>32</td>
</tr>
<tr>
<td>FY2016</td>
<td>124</td>
<td>23</td>
</tr>
<tr>
<td>FY2017</td>
<td>122</td>
<td>30</td>
</tr>
<tr>
<td>FY2018</td>
<td>154</td>
<td>38</td>
</tr>
<tr>
<td>FY2019</td>
<td>128</td>
<td>38</td>
</tr>
</tbody>
</table>

FY: Fiscal year (Oct 1-Sept 30)
Complex Drug Products in Approved NDAs FY2015-2019

*Numbers noted on the bar graph are the number of approved NDAs, and the height of the graph is normalized. NMEs: New Molecular Entities

FY: Fiscal year (Oct 1-Sept 30)
Product-Specific Guidances (PSGs) Published in FY2019

<table>
<thead>
<tr>
<th>Total Number of PSGs</th>
<th>New</th>
<th>Revised</th>
<th>Complex</th>
<th>Non-Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>252</td>
<td>107</td>
<td>145</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(44%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>141</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(56%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 new</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(17%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>83 new</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(75%)</td>
</tr>
</tbody>
</table>

FY: Fiscal Year (Oct 1-Sept 30)

Website to Forecast Upcoming PSGs for Complex Products

- Launched in April 2019
- New or revised guidances for complex products that FDA plans to issue in the next 12 months
 - For revision, revision category and a brief description of the reason are provided
 - Timing may be subject to change
- Updated quarterly when a new batch of PSGs is posted

FY2020 GDUFA Research Science Priority Areas
15 priority areas under 4 broad categories

A. Complex active ingredients, formulations, or dosage forms
B. Complex routes of delivery
C. Complex drug-device combinations
D. Tools and methodologies for bioequivalence (BE) and substitutability evaluation

https://www.fda.gov/media/132370/download
• Do these research priorities address the scientific challenges to developing generics of recently approved complex NDAs (NMEs and Non-NMEs)?

• To aid in this analysis, we will review the landscape and identify possible gaps
FY2015-2018 NDA Approval Cohorts

Complex Products
PSG Development for Recent Complex Drug Products (FY2015-2018 NDA Approval Cohorts)

* Number includes PSG published and drug products that may be eligible for “biowaiver” under 21 CFR 320.22(b)

As of March 2020

www.fda.gov
Recently Approved Complex Drug Products Without PSG FY2015 (N=10, All Non-NME)

1. Complex active ingredients, formulations, or dosage forms
2. Complex routes of delivery
3. Complex drug-device combinations
4. Tools and methodologies for bioequivalence (BE) and substitutability evaluation

- 5/10 (50%)
 3 Complex APIs
 2 LAIs

- 4/10 (40%)
 1 Implanter
 1 Auto-injectors
 2 Drug-delivery Devices (e.g., nasal, inhalation)
 2 Inhalation
 1 Topical
 1 Intrauterine

- FDA posted 1 new PSG (nasal/drug-delivery device) referencing FY2015 newly approved complex products in May 2019
- 3/10 are included in the “upcoming PSGs” list
Recently Approved Complex Drug Products Without PSG FY2016 (N=13, 3 are NMEs)

1. Complex active ingredients, formulations, or dosage forms
6/13 (46%)
3 Complex APIs (all NMEs)
2 LAIs
1 ADF

3. Complex drug-device combinations
6/13 (46%)
2 Implanters
2 Auto-injectors
2 Drug-delivery Devices (e.g., nasal, inhalation)

4. Tools and methodologies for bioequivalence (BE) and substitutability evaluation
5/13 (38%)
2 Inhalation
1 Topical
1 Intrauterine
1 GI (NME)

2. Complex routes of delivery

• FDA posted 5 new PSGs referencing FY2016 newly approved complex products between May 2019 and March 2020: 1 topical, 1 nasal/drug-delivery device; 1 auto-injector, 1 inhalation/drug-delivery device, and 1 complex injectable

• 4/13 are included in the “upcoming PSGs” list

NME: New Molecular Entity; API: Active Pharmaceutical Ingredient; LAI: Long-acting Injectable; ADF: Abuse-deterrent Formulation; GI: Gastrointestinal
Recently Approved Complex Drug Products Without PSG FY2017 (N=13, 3 are NMEs)

10/13 (77%)
5 Complex APIs (1 is LAI, 3 are NMEs)
2 LAIs
3 Complex injectables
1 ADF

5/13 (38%)
1 Auto-injector (NME)
4 Drug-delivery Devices (e.g., nasal, inhalation)

1. Complex active ingredients, formulations, or dosage forms
2. Complex routes of delivery
3. Complex drug-device combinations
4. Tools and methodologies for bioequivalence (BE) and substitutability evaluation

4/13 (31%)
1 GI
2 Nasal
1 Inhalation

- FDA posted 4 new PSGs referencing FY2017 newly approved complex products between May 2019 and March 2020: 1 topical and 3 inhalation/drug-delivery device
- 4/13 are included in the “upcoming PSGs” list
Recently Approved Complex Drug Products Without PSG FY2018 (N=29, 4 are NMEs)

18/29 (62%)
5 Complex APIs (2 are NMEs)
8 LAI
5 Complex injectable (1 is NME)

11/29 (38%)
1 Implanter
1 Ingestible Event Marker Sensor
5 Auto-injectors or PFS
4 Drug-delivery Devices (e.g., nasal, inhalation, 1 is NME)

1. Complex active ingredients, formulations, or dosage forms
2. Complex routes of delivery
3. Complex drug-device combinations
4. Tools and methodologies for bioequivalence (BE) and substitutability evaluation

11/29 (38%)
2 GI (1 is NME)
2 Inhalation
1 Intraocular
1 Ophthalmic
3 Topical
2 Vaginal

• FDA posted 5 new PSGs referencing FY2018 newly approved complex products between May 2019 and March 2020: 2 are complex NMEs, 1 topical, 1 ophthalmic, and 1 autoinjector
• 11/29 are included in the “upcoming PSGs” list

NME: New Molecular Entity; API: Active Pharmaceutical Ingredient; LAI: Long-acting Injectable; PFS: Pre-filled Syringes; GI: Gastrointestinal
FY2018 Approved NMEs that are Complex (N=7)

<table>
<thead>
<tr>
<th>NDA Number</th>
<th>Active Ingredients</th>
<th>Dosage Form; Route of Administration</th>
<th>Reasons of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>208700</td>
<td>LUTETIUM DOTATATE LU-177</td>
<td>SOLUTION</td>
<td>Complex API</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSG published in Nov 2019</td>
</tr>
<tr>
<td>207078</td>
<td>SODIUM ZIRCONIUM CYCLOSILICATE*</td>
<td>FOR SUSPENSION; ORAL</td>
<td>Complex Route of Delivery</td>
</tr>
<tr>
<td>209637</td>
<td>SEMAGLUTIDE</td>
<td>SOLUTION</td>
<td>Complex API; Complex Drug-Device</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSG published in March 2020</td>
</tr>
<tr>
<td>208945</td>
<td>OZENOXACIN</td>
<td>CREAM;TOPICAL</td>
<td>Complex Route of Delivery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSG published in Feb 2019</td>
</tr>
<tr>
<td>210589</td>
<td>FISH OIL TRIGLYCERIDES*</td>
<td>EMULSION; INTRAVENOUS</td>
<td>Complex API; Complex Dosage Form</td>
</tr>
<tr>
<td>209627</td>
<td>ETHINYL ESTRADIOL; SEGESTERONE ACETATE*</td>
<td>RING; VAGINAL</td>
<td>Complex Dosage Form; Complex Drug-Device</td>
</tr>
<tr>
<td>210922</td>
<td>PATISIRAN SODIUM</td>
<td>SOLUTION; INTRAVENOUS</td>
<td>Complex API</td>
</tr>
</tbody>
</table>

PSG published in:
- Nov 2019
- March 2020
- Feb 2019

FY2019 NDA Approval Cohort

Complex Products
FY2019 Approved NCEs that are Complex

<table>
<thead>
<tr>
<th>NDA Number</th>
<th>Active Ingredients</th>
<th>Dosage Form; Route of Administration</th>
<th>Reasons of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>210557</td>
<td>BREMELANOTIDE ACETATE*</td>
<td>SOLUTION; SUBCUTANEOUS</td>
<td>Complex Drug-Device</td>
</tr>
<tr>
<td>211243</td>
<td>ESKETAMINE HYDROCHLORIDE*</td>
<td>SPRAY; NASAL</td>
<td>Complex Drug-Device</td>
</tr>
<tr>
<td>211172</td>
<td>INOTERSEN SODIUM</td>
<td>SOLUTION; SUBCUTANEOUS</td>
<td>Complex API</td>
</tr>
<tr>
<td>210910</td>
<td>RIFAMYCIN SODIUM</td>
<td>TABLET, DELAYED RELEASE; ORAL</td>
<td>Complex Route of Delivery</td>
</tr>
<tr>
<td>211801</td>
<td>TENAPANOR HYDROCHLORIDE</td>
<td>TABLET; ORAL</td>
<td>Complex Route of Delivery</td>
</tr>
</tbody>
</table>

* Research conducted in previous years has prepared us to develop PSGs for complex products.

NCE: New Chemical Entity
Recently Approved Complex Drug Products Without PSG FY2019 (N=20, 5 are NCEs)

1. Complex active ingredients, formulations, or dosage forms
2. Complex routes of delivery
3. Complex drug-device combinations
4. Tools and methodologies for bioequivalence (BE) and substitutability evaluation

- 6/20 (30%)
 - 5 Complex APIs (1 is NCE)
 - 1 LAI

- 11/20 (55%)
 - 3 Auto-injectors or intravitreal applicator (1 is NCE)
 - 8 Drug-delivery Devices (e.g., nasal, inhalation, 1 is NCE)

- 11/20 (55%)
 - 4 GI (2 are NCEs)
 - 3 Inhalation
 - 1 Intravitreal
 - 1 Ophthalmic
 - 2 Topical

- FDA posted 7 new PSGs referencing FY2019 newly approved complex products between May 2019 and March 2020, none is NCE:
 - 4 inhalation/drug-delivery device

- 9/20 are included in the “upcoming PSGs” list (2 are NCEs)

NCE: New Chemical Entity; API: Active Pharmaceutical Ingredient; LAI: Long-acting Injectable; GI: Gastrointestinal
VYLEESI (Bremelanotide Acetate)

- New Molecular Entity
- Approved on 6/21/2019 (NDA 210557)
- **API:** Synthetic, cyclic heptapeptide
- **Dosage Form/Route:** Solution/Subcutaneous
- **Indication:** A melanocortin receptor agonist indicated for the treatment of premenopausal women with acquired, generalized hypoactive sexual desire disorder (HSDD)
- **Complexity:** Complex drug-device combination (autoinjector)

[Visit the FDA website for more information](https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/210557s000lbl.pdf)
TEGSEDI (Inotersen Sodium)

- New Molecular Entity
- Approved on 10/5/2018 (NDA 211172)
- **API:** An antisense oligonucleotide (ASO)
- **Dosage Form/Route:** Solution/Subcutaneous
- **Indication:** An inhibitor of human transthyretin (TTR) protein synthesis for the treatment of the polyneuropathy of hereditary transthyretin-mediated amyloidosis in adults
- **Complexity:** Complex API

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211172s004lbl.pdf
Inotersen Sodium

- Antisense oligonucleotide
- The molecular formula of inotersen sodium is $C_{230}H_{299}N_{69}Na_{19}O_{121}P_{19}S_{19}$
- The molecular weight is 7600.73 Da.

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211172s004lbl.pdf
SPRAVATO™ (Esketamine)

- New Active Ingredient
- Approved on 3/5/2019 (NDA 211243)
- API: Esketamine
- Dosage Form/Route: Spray/Nasal
- Indication: A non-competitive N-methyl D-aspartate (NMDA) receptor antagonist indicated, in conjunction with an oral antidepressant, for the treatment of treatment-resistant depression (TRD) in adults
 - Schedule III controlled substances/REMS
- Complexity: Complex drug-device combination (intranasal device)
YUTIQ™ (Fluocinolone Acetonide)

- New Formulation
- Approved on 10/12/2018 (NDA 210331)
- **API:** Fluocinolone Acetonide
- **Dosage Form/Route:** Implant/Intravitreal Injection
- **Indication:** A corticosteroid for the treatment of chronic non-infectious uveitis affecting the posterior segment of the eye
- **Complexity:** Complex Dosage Form (Long-Acting Injectable)/Complex drug-device combination (intravitreal applicator)/Complex route of delivery
 - 36-month sustained-release drug delivery system

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210331Orig1s000Lbl.pdf
BAQSIMI (Glucagon)

- New Dosage Form
- Approved on 7/24/2019 (NDA 210134)
- **API:** Glucagon
 - A single chain polypeptide containing 29 amino acid residues
 - Recombinant deoxyribonucleic acid (rDNA) origin
- **Dosage Form/Route:** Powder/Nasal
- **Indication:** An antihypoglycemic agent indicated for the treatment of severe hypoglycemia in patients with diabetes ages 4 years and above
- **Complexity:** Complex API/Complex dosage form/Complex drug-device combination (intranasal device)
- General guidance available:
 - “**ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA**”

www.accessdata.fda.gov/drugsatfda_docs/label/2019/210134s000lbl.pdf
GVOKE (Glucagon)

- **New Dosage Form**
- **Approved on 9/10/2019 (NDA 212097)**
- **API:** Glucagon
 - A single chain polypeptide containing 29 amino acid residues
 - Synthetic
- **Dosage Form/Route:** Solution/Subcutaneous
- **Indication:** An antihypoglycemic agent indicated for the treatment of severe hypoglycemia in pediatric and adult patients with diabetes ages 2 years and above
- **Complexity:** Complex API/Complex drug-device combination (autoinjector)

![Chemical Structure of Glucagon]

Its molecular formula is C_{155}H_{223}N_{45}O_{49}S with the following structure:

\[
\begin{align*}
&\text{NH}_2 - \text{His} - \text{Ser} - \text{Gln} - \text{Gly} - \text{Thr} - \text{Phe} - \text{Thr} - \text{Ser} - \text{Asp} - \text{Tyr} - \text{Ser} - \text{Lys} - \\
&\text{Tyr} - \text{Leu} - \text{Asp} - \text{Ser} - \text{Arg} - \text{Arg} - \text{Ala} - \text{Gln} - \text{Asp} - \text{Phe} - \text{Val} - \text{Gln} - \text{Trp} - \\
&\text{Leu} - \text{Met} - \text{Asn} - \text{Thr} - \text{COOH}
\end{align*}
\]

![Autoinjector Diagram]

www.fda.gov

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/210134s000lbl.pdf
Complex NDA Approved in FY2019
Question for Discussion

• FDA believes that the scientific challenges identified for complex products approved in the FY2015 to FY2019 NDA cohorts fit into our current 15 research priorities

• Further discussions will be held in the four breakout sessions in the afternoon
 – Post-Market Surveillance of Generic Drugs
 – Drug-Device Combination Products
 – In Vitro Bioequivalence Methods
 – Data Analysis and Model-Based Bioequivalence

Is there a need to adapt our research priorities to the change in the landscape of potential reference listed drugs (RLDs)?
Website: GDUFA Science and Research Outcomes

• FY2018 outcomes: Website launched Oct 1, 2019; yearly update
 – GDUFA research supporting the development of generic drug products
 – GDUFA research supporting the generation of evidence needed to support efficient review and timely approval of ANDAs
 – GDUFA research supporting the evaluation of generic drug equivalence

FY2018 Research Outcome Supporting the Evaluation of Generic Drug Equivalence

<table>
<thead>
<tr>
<th>Outcome type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pre-ANDA meetings impacted by research</td>
<td>2</td>
</tr>
<tr>
<td>Number of PSGs that provided new approaches to equivalence</td>
<td>24</td>
</tr>
<tr>
<td>Number of publications, presentations, and external posters that are relevant to this category</td>
<td>45</td>
</tr>
</tbody>
</table>
