HEMOLUNG® RAS
Instructions for Use
TRADEMARKS AND ACKNOWLEDGMENTS

ALung® and Hemolung are registered trademarks of ALung Technologies, Inc.
All other brand names and product names used in this document are trademarks, registered trademarks, or trade names of their respective holders.

The products described are covered by one or more of the following patents:

Caution: Federal law restricts this device to sale by or on the order of a physician.

This device has not been FDA cleared or approved;
This device has been authorized by FDA under an EUA;
This device is authorized only for the duration of the declaration that circumstances exist justifying the authorization of the emergency use of device under section 564(b)(1) of the Act, 21 U.S.C. § 360bbb-3(b)(1), unless the authorization is terminated or revoked sooner.

Authorized physicians will review the authorized Fact Sheet for Healthcare Providers and provide to the individual being treated with the Hemolung RAS the authorized Fact Sheet for Patients.

Authorized physicians will use the Hemolung RAS as outlined in the Hemolung RAS Instructions for Use. Deviations from the authorized procedures, including the authorized Instructions for Use required to use the Hemolung RAS are not permitted.

Authorized physicians will collect information on the performance of the Hemolung RAS and report to DHT2B/OHT2/OPEQ/CDRH (via email CDRH-EUA-Reporting@fda.hhs.gov) and ALung Technologies, Inc. any suspected occurrence of significant deviations from the established performance characteristics of which they become aware.

All personnel using the Hemolung RAS must be appropriately trained in using the Hemolung RAS, use appropriate laboratory and personal protective equipment when interacting with the patient, and use the device in accordance with the authorized labeling.

ALung Technologies, Inc, its authorized distributor(s), and authorized physicians will ensure that any records associated with this EUA are maintained until notified by FDA. Such records will be made available to FDA for inspection upon request.
Notes Relevant information about topic.

Warnings Failure to observe these can cause serious injury or death to the patient.

Cautions Failure to observe these can cause damage to the Hemolung Respiratory Assist System.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ACT</td>
<td>Activated Clotting Time</td>
</tr>
<tr>
<td>aPTT</td>
<td>Activated Partial Thromboplastin Time</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>DIC</td>
<td>Disseminated Intravascular Coagulation</td>
</tr>
<tr>
<td>ECCO₂R</td>
<td>Extracorporeal Carbon Dioxide Removal</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>°F</td>
<td>Degrees Fahrenheit</td>
</tr>
<tr>
<td>Fr</td>
<td>French</td>
</tr>
<tr>
<td>HIT</td>
<td>Heparin Induced Thrombocytopenia</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IFU</td>
<td>Instructions for Use</td>
</tr>
<tr>
<td>in</td>
<td>Inches</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilopascal</td>
</tr>
<tr>
<td>lbs</td>
<td>Pounds</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>L/min</td>
<td>Liters Per Minute</td>
</tr>
<tr>
<td>LPM</td>
<td>Liters Per Minute</td>
</tr>
<tr>
<td>m²</td>
<td>Meter Squared</td>
</tr>
<tr>
<td>mL/hr</td>
<td>Milliliter per hour</td>
</tr>
<tr>
<td>mL/min</td>
<td>Milliliter per minute</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimeter of Mercury</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>pCO₂</td>
<td>Partial pressure of carbon dioxide</td>
</tr>
<tr>
<td>POST</td>
<td>Power-on self-test</td>
</tr>
<tr>
<td>psi</td>
<td>Pounds per square inch</td>
</tr>
<tr>
<td>psig</td>
<td>Pounds per square inch gauge</td>
</tr>
<tr>
<td>RAS</td>
<td>Respiratory Assist System</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per minute</td>
</tr>
</tbody>
</table>
CONTENTS

SYMBOLS & ABBREVIATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Preface</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>12</td>
</tr>
<tr>
<td>Device Description</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>12</td>
</tr>
<tr>
<td>Intended Use</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>12</td>
</tr>
<tr>
<td>Indications for Use</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>13</td>
</tr>
<tr>
<td>Contraindications</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>13</td>
</tr>
<tr>
<td>Warnings</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>19</td>
</tr>
<tr>
<td>Cautions</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>20</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>21</td>
</tr>
<tr>
<td>Potential Complications</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>Product Description</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>24</td>
</tr>
<tr>
<td>Hemolung Cartridge Kit</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>26</td>
</tr>
<tr>
<td>Hemolung Catheter Kit</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>28</td>
</tr>
<tr>
<td>Hemolung Controller</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>39</td>
</tr>
<tr>
<td>Anticoagulation</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>40</td>
</tr>
<tr>
<td>Initial Anticoagulation Bolus</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>40</td>
</tr>
<tr>
<td>Maintenance Anticoagulation</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>41</td>
</tr>
<tr>
<td>ACT Protocol</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>42</td>
</tr>
<tr>
<td>aPTT Protocol</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>43</td>
</tr>
<tr>
<td>Seal Flush Pump</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>44</td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>45</td>
</tr>
<tr>
<td>Seal Flush Pump Occlusion</td>
<td></td>
</tr>
</tbody>
</table>
10 Routine Tasks
10.1 Vacuum Canister Replacement
10.2 Inspect Circuit
10.3 Change Sweep Gas
10.4 Change Seal Flush Fluid
10.5 Catheter Maintenance

11 Special Cases
11.1 Patient Transport
11.2 Pump Stopped During Therapy
11.3 Changing a Controller
11.4 Performance Changes
11.5 Cartridge Change

12 Ending Therapy
12.1 Weaning
12.2 End Therapy: With Blood Rinse Back
12.3 End Therapy: Without Blood Rinse Back

13 Alarms & Troubleshooting
13.1 Overview
13.2 Silencing Audible Alarms
13.3 Alarm Levels
13.4 Alarm Indicators
13.5 Definitions
13.6 High Priority Alarm - Pump Stops
13.7 High Priority Alarm - Pump Continues to Run
13.8 Medium Priority Alarms
13.9 Low Priority Alarms
13.10 Critical Error
13.11 Unexpected System Behavior
13.12 Unexpected System Restart
14 Device Maintenance

14.1 Battery
14.2 Cleaning
14.3 Storage
14.4 Preventative Maintenance

15 Specifications

15.1 Performance Charts
15.2 Hemolung 15.5 Fr Catheters
15.3 Hemolung Cartridge
15.4 Hemolung Controller

16 Support & Warranty

16.1 Warranty
16.2 Training
16.3 Technical Support
16.4 Accessories and Replacement Parts
16.5 Contact Information
This page is intentionally left blank
1.1 Device Description

The Hemolung RAS provides ultra low-flow, veno-venous extracorporeal carbon dioxide removal (ECCO$_2$R) using a single, 15.5 French catheter dual lumen inserted percutaneously in the femoral or jugular vein. Low-flow ECCO$_2$R with the Hemolung RAS provides partial lung support independently of the lungs. The Hemolung RAS removes 25% - 50% of basal metabolic CO$_2$ production at circuit blood flows of 350-550 mL/min. The Hemolung RAS is a fully integrated system designed to minimize the complication risks associated with extracorporeal gas exchange therapy.

Low-flow ECCO$_2$R offers an alternative or supplement to invasive mechanical ventilation (IMV) for patients suffering from acute hypercapnic respiratory failure. In contrast to IMV, low-flow ECCO$_2$R provides partial ventilatory support independently of the lungs.

The Hemolung RAS is not intended to provide therapeutic levels of oxygenation. During Hemolung therapy, blood passing through the circuit is oxygenated; however, at ultra-low extracorporeal blood flows, the limited oxygen carrying capacity of blood precludes meaningful oxygenation of mixed venous blood.

The Hemolung RAS is for use in hospital critical care units by advanced health care providers including physicians, registered nurses, perfusionists, and respiratory therapists.

1.2 Intended Use

The Hemolung RAS is intended to be used for partial extracorporeal respiratory support in the treatment of acute hypercapnic respiratory failure. Oxygen is supplied and carbon dioxide is removed from blood circulated through the Hemolung RAS. The utilization period of this device has been validated for up to 7 days.
1.3 Indications for Use

The Hemolung RAS is intended to be used as an adjunct to noninvasive or invasive mechanical ventilation to reduce hypercapnia and hypercapnic acidosis due to COVID-19, and/or to maintain normalized levels of PCO$_2$ and pH, in patients suffering from acute, reversible respiratory failure due to COVID-19 for whom ventilation of CO$_2$ cannot be adequately, safely, or tolerably achieved.

1.4 Contraindications

The Hemolung RAS is contraindicated for patients with known sensitivity to heparin (e.g., history of heparin-induced thrombocytopenia). The Hemolung Cartridge membranes are coated with heparin and systemic anticoagulation is required when using the device.

Use of the Hemolung 15.5 Fr Femoral Catheter is contraindicated for patients with an inferior vena cava filter.

1.5 Warnings

A WARNING is provided if reasonable evidence exist of an association of a serious hazard with the misuse of this device, or when special attention is required for the safety of the patient. Failure to observe these warnings can cause serious injury or death to the patient.

This Instructions for Use (IFU) is not intended as a substitute for the physician’s experience and judgment in treating a patient. This IFU must be read prior to using the Hemolung RAS.

Additional warnings appear throughout this manual.

- The safety and effectiveness of the Hemolung RAS has not been established in patients who:
 - are less than 18 years old
 - are pregnant or lactating

- Do not use this device unless you have completed the training program.
• Discuss the risks and benefits of extracorporeal respiratory support with the patient. The physician must weigh the benefits and risks involved in employing the Hemolung RAS based on best medical practice.

• The Catheter should be inserted and/or removed by a qualified licensed physician. The size of the Catheter should be appropriately matched with the target vessel.

• The Catheter is intended for use only with the Hemolung RAS and should not be used for any other purpose.

• Inspect each package and component prior to use. The fluid pathway is sterile and nonpyrogenic. Do not use if the package is opened or damaged. Do not use if any protective caps are damaged or missing, or if any product label is missing or shows signs of tampering. Do not use if a sterile package is missing the green inspection sticker which verifies sterilization.

• Do not use the Cartridge, Catheter, or any device components after the expiration date listed on the package.

• Assess the patient’s vascular anatomy and current use of any in-dwelling devices for proper Hemolung Catheter selection and placement. Failure to do so can result in patient harm and/or device malfunction.

• Do not reuse or resterilize the Cartridge, Catheter, blood tubing, or other sterile components. They are intended for “Single Use Only.” Reuse of any of the sterile components can result in contamination that can cause infection of patients and user, component deterioration, and device failure.

• Keep the Controller plugged into an AC power source at all times, including during storage between treatments. Failure to do so will result in battery depletion and device failure. Only disconnect from AC power for patient transport. Battery life is approximately one hour. The pump does not operate when the battery is not properly charged.
• Route the silicone sweep gas outlet tubing through the purge valve on the side of the Hemolung Controller to prevent moisture buildup in the Cartridge fibers. Failure to comply can cause degradation of gas exchange performance and result in an alarm.

• Only the BodyGuard 323 Color Vision™ and Graseby Model 3000/500 Volumetric Infusion Pumps are to be used to provide a continuous saline infusion to the Cartridge.

• Do not use the seal flush port on the Cartridge for drug infusion. Infusion of any fluids other than saline may result in damage to the device.

• Only use smooth clamps when not using the clamps supplied with the tubing or catheter. Alternate the clamping location to avoid damaging the tube. Avoid clamping near the adapters and the hub.

• Avoid striking the Cartridge, including the end caps, during the priming and de-airing process. Use a series of gentle hand taps to remove air bubbles.

• Clear all air bubbles from the Hemolung RAS and components prior to initiating Hemolung therapy. Air bubbles and/or leaks observed during priming and/or operation may result in an air embolism.

• Continuously monitor the system for leaks, cracks, clots, vibrations, air, or other system failures.

• Adhere to the recommended anticoagulation protocol. Proper anticoagulation monitoring must be maintained during Hemolung therapy.

• Always observe proper sterile techniques when handling the Catheter and all other sterile items.

• A pneumothorax can result during jugular catheter placement. Patients on ventilators are at increased risk of pneumothorax during internal jugular cannulation.
• Only use the provided J-tip guidewire for Catheter insertion. Use the guidewire straightener to insert the “J” guidewire end into the introducer needle. Do not force the “J” guidewire during insertion. Forcing can cause the guidewire to kink or break.

• Do not advance the Catheter past the end of the guidewire. Ensure that the guidewire has been sufficiently advanced into the vessel.

• Do not force the guidewire, dilators, or Catheter during insertion. Improper use can result in vessel laceration or perforation.

• Do not place the jugular catheter into or allow it to remain in the right atrium or right ventricle. The tip of the jugular Catheter should be located at the junction of the superior vena cava and right atrium.

• Verification of the Catheter tip location must be confirmed by appropriate imaging guidance to ensure proper placement.

• Do not use alcohol or acetone on any part of the Catheter. Exposure may damage the Catheter.

• Always keep the catheter clamped to prevent air embolisms except when flushing the Catheter, when the stylet is in the Infusion Lumen (RED), or when connecting to bloodlines.

• Never clamp over the wire-reinforced section of the Catheter. Clamping can result in Catheter kinking, fracture, or device failure.

• Do not nick, puncture or move the Catheter when suturing as this could cause bleeding, infection, reduced blood flow, or therapy cessation.

• Do not place sutures around the Catheter body. Place suture around the groove in Catheter hub.

• Ensure that the Hemolung Cartridge is positioned below the level of the patient.
• Position all tubing in such a manner as to prevent kinks or restrictions. Restricted or kinked tubing may alter blood or sweep gas flow and cause device failure.

• Manage the Catheter insertion site per institutional wound care procedures for indwelling vascular catheters. Failure to do so can result in sepsis, bacteremia, and infection.

• Do not use sharp instruments or scissors to remove the patient’s insertion site dressing.

• Continuously monitor the patient while on the Hemolung therapy. Be diligent about recognizing signs and symptoms of fluid imbalance, abnormal laboratory values, infection/sepsis, bleeding, thrombocytopenia, hemolysis, or other complications related to extracorporeal support systems.

• A patient may experience heat loss (hypothermia) from blood exposure to atmospheric temperatures and evaporation of water vapor across the membranes. To minimize heat loss, set the sweep gas flow to the lowest rate that will provide the required level of CO\textsubscript{2} removal.

• Continuously monitor the CO\textsubscript{2} removal and sweep gas flow rates. Adjust therapy as needed.

• If the pump involuntarily turns off because of a system alarm or has intentionally been stopped for any duration, the treating physician must consider the length of time the pump was off, the individual patient’s condition and anticoagulation status, the potential risks associated with thrombus formation, and local procedures when deciding to discontinue therapy or to continue therapy by turning the pump back on.

• Promptly remove the Catheter when therapy is complete. Follow institutional procedures for percutaneous vascular catheter removal and disposal of biological hazards.
• Do not remove the instrument covers on the Hemolung Controller. The Hemolung RAS does not have any user serviceable parts and the battery cannot be replaced by the user. Contact ALung or your medical equipment distributor for service or repairs.

• Do not allow alcohol, alcohol-based fluids, anesthetic fluids (such as isoflurane), or corrosive solvents (such as acetone) to come into contact with the Hemolung RAS as they may jeopardize its structural integrity.

• Possible explosion hazard – the Hemolung RAS is not explosion proof and must not be operated in the presence of flammable anesthetics.

• Compressed gases are used to operate the Hemolung Controller and should be treated as dangerous and hazardous materials.

• Portable oxygen sources may be under high pressure. Follow the manufacturer’s instructions when replacing a portable oxygen source to relieve excess pressure and ensure integrity of the device.

• Use of accessories and cables other than those specified, with the exception of cables sold by ALung, Inc. or its authorized representative, as replacement parts for internal components may result in increased emissions or decreased immunity of the Hemolung System.

• Extracorporeal blood flow through the Hemolung RAS may result in unknown sequestration and lowered levels of pharmacological agents.

• Always ensure the Catheter is adequately secured using the provided Grip-Lok securement device and sutured utilizing the available suture groove. If mobilizing the patient, continuously monitor the Catheter and avoid excessive tension to the blood tubing to prevent Catheter dislodgement during mobilization.
1.6 Cautions

A CAUTION is provided when any special care is to be exercised by the physician to avoid causing damage to the System or other property. Failure to observe these can cause damage to the Hemolung RAS.

Additional cautions appear throughout this manual.

- Do not position the Controller to make it difficult to remove the power cord from the inlet connector. The inlet power connector and the power cord are used as the means to isolate the controller from the main supply power.

- If the AC power cord is disconnected from the Hemolung Controller and the power switch is quickly turned on, a “Battery fan failure” error is generated. This can be cleared by placing the Controller in standby then switching it back on.

- Use only medical grade oxygen with the Hemolung RAS.

- If the oxygen pressure exceeds 690 kPa (100 psig), excess oxygen will be vented from the Hemolung RAS into the surrounding environment.

- Do not spill fluids onto the Controller. The Controller is not waterproof. If a spill occurs, wipe it up immediately.

- After turning off the Hemolung Controller, wait a minimum of 20 seconds before turning it back on again.

- To avoid risk of electric shock, this equipment must be connected to a power supply with a protective earth grounding line.
1.7 Notes

A NOTE is provided to draw attention to special information.

Additional notes appear throughout this manual.

- Prior to circuit set-up, plug device in to A/C power source and turn Controller on. Allow Controller to stabilize for 15 minutes prior to starting pump.

- Condensation/water droplets may appear in the gas outlet port area as a result of temperature differences between the blood and sweep gas. This has no significant effect on the performance of the Hemolung RAS.

- Routinely replace the vacuum canister every 24 hours to ensure the integrity of the canister and overall system performance.
1.8 Potential Complications

Air embolism
Anemia
Arterial cannulation
Arteriovenous fistula
Bacteremia
Bleeding
Brachial plexus injury
Cardiac arrhythmia
Cardiac tamponade
Catheter or circuit thrombosis
Central venous stenosis
Central venous thrombosis
Chylothorax
Compartment syndrome
Death
Dehydration
Disseminated intravascular coagulation
Edema
Endocarditis
Exit site necrosis
Extravasation
Fibrinogen changes
Foreign body reaction
Hematoma
Intracranial Hemorrhage

Hemolysis
Hemorrhage
Hemotherax
Hepatic dysfunction
Hydrothorax
Hypertension
Hypothrombosis
Hypotension
Hypothermia
Hypovolemia
Infection
Pleural effusion
Pneumothorax
Pulmonary embolus
Renal dysfunction
Right atrium puncture, trauma
Septicemia
Shock
Stroke
Subcutaneous tunnel infection
Thoracic duct laceration
Thrombocytopenia
Thrombotic embolus
Vessel laceration
This page is intentionally left blank
2

PRODUCT DESCRIPTION
2.1 Hemolung Cartridge Kit

Description
The Hemolung Cartridge is an integrated extracorporeal gas exchanger and blood pump. Blood is circulated around the outside of the Cartridge’s hollow fiber membranes while a sweep gas flows through the inside of the membranes. Carbon dioxide diffuses out of the blood and is swept away by the sweep gas while oxygen diffuses from the sweep gas into the blood. Blood tubing and other accompanying disposable products are included in the Hemolung Cartridge Kit.

Contents

<table>
<thead>
<tr>
<th>Ref #</th>
<th>Product Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12000</td>
<td>Hemolung Cartridge Kit - SM IV Pump Configuration (XG4)</td>
</tr>
<tr>
<td></td>
<td>Contains all subsequent equipment used to set up therapy</td>
</tr>
<tr>
<td>13000</td>
<td>Hemolung Cartridge Kit - CME IV Pump Configuration (XG4)</td>
</tr>
<tr>
<td></td>
<td>Contains all subsequent equipment used to set up therapy</td>
</tr>
<tr>
<td>10002</td>
<td>Hemolung Cartridge with Preconnected Tubing (XG4)</td>
</tr>
<tr>
<td>12100</td>
<td>Hemolung Accessories Kit - SM IV (XG4)</td>
</tr>
<tr>
<td></td>
<td>Contains the following equipment to set up or stop therapy:</td>
</tr>
<tr>
<td></td>
<td>Hemolung Rinse Back Kit</td>
</tr>
<tr>
<td></td>
<td>Soda Lime Column</td>
</tr>
<tr>
<td></td>
<td>SM IV Administration Sets</td>
</tr>
<tr>
<td></td>
<td>Vaseline Jelly</td>
</tr>
<tr>
<td></td>
<td>(7) 1500 mL Vacuum Canisters</td>
</tr>
<tr>
<td>13100</td>
<td>Hemolung Accessories Kit - CME IV (XG4)</td>
</tr>
<tr>
<td></td>
<td>Contains the following equipment to set up or stop therapy:</td>
</tr>
<tr>
<td></td>
<td>Hemolung Rinse Back Kit</td>
</tr>
<tr>
<td></td>
<td>Soda Lime Column</td>
</tr>
<tr>
<td></td>
<td>CME IV Administration Sets</td>
</tr>
<tr>
<td></td>
<td>Vaseline Jelly</td>
</tr>
<tr>
<td></td>
<td>(7) 1500 mL Vacuum Canisters</td>
</tr>
</tbody>
</table>
Diagram

Hemolung Cartridge

1. Blood Inlet (BLUE)
2. Sweep Gas Inlet
3. Sweep Gas Outlet
4. Blood Outlet (RED)
5. Seal Flush Port with One Way Valve
2.2 Hemolung Catheter Kit

Description
The Hemolung Catheter is a dual lumen venous catheter designed specifically for use with the Hemolung RAS. It exhibits low resistance to flow while also resisting kinks. Individual femoral and jugular Hemolung Catheter Kits are available for use. Each kit includes a Catheter Insertion Kit.

Hemolung Catheter Kit Contents

<table>
<thead>
<tr>
<th>Ref #</th>
<th>Product Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30020</td>
<td>Hemolung 15.5 Fr Femoral Catheter Kit (XG4)</td>
</tr>
<tr>
<td></td>
<td>(1) 15.5 Fr Femoral Catheter with Stylet</td>
</tr>
<tr>
<td></td>
<td>(2) Grip-Lok™ Wide Adhesive Universal Catheter Securement</td>
</tr>
<tr>
<td></td>
<td>(5) 6, 9, 12, 14, & 16 Fr Dilator (1 of each)</td>
</tr>
<tr>
<td></td>
<td>(1) 10 mL Syringe</td>
</tr>
<tr>
<td></td>
<td>(1) #11 Scalpel</td>
</tr>
<tr>
<td></td>
<td>(1) 18 Ga x 7 cm (2.75 in) Introducer Needle</td>
</tr>
<tr>
<td></td>
<td>(1) 0.038 in x 100 cm Guidewire with Straightener and J-Tip</td>
</tr>
<tr>
<td>30120</td>
<td>Hemolung 15.5 Fr Jugular Catheter Kit (XG4)</td>
</tr>
<tr>
<td></td>
<td>(1) 15.5 Fr Jugular Catheter with Stylet</td>
</tr>
<tr>
<td></td>
<td>(2) Grip-Lok™ Wide Adhesive Universal Catheter Securement</td>
</tr>
<tr>
<td></td>
<td>(5) 6, 9, 12, 14, & 16 Fr Dilator (1 of each)</td>
</tr>
<tr>
<td></td>
<td>(1) 10 mL Syringe</td>
</tr>
<tr>
<td></td>
<td>(1) #11 Scalpel</td>
</tr>
<tr>
<td></td>
<td>(1) 18 Ga x 7 cm (2.75 in) Introducer Needle</td>
</tr>
<tr>
<td></td>
<td>(1) 0.038 in x 100 cm Guidewire with Straightener and J-Tip</td>
</tr>
</tbody>
</table>
Diagram

Catheter

Stylet

Femoral

Jugular

1 Stylet
2 Infusion Lumen (RED)
3 Drainage Lumen (BLUE)
4 Drainage Port
5 Infusion Port
2.3 Hemolung Controller

Description
The Hemolung Controller is the mechanism for operating the Hemolung Respiratory Assist System. It controls the extracorporeal blood flow rate and the sweep gas flow rate.

Contents

Ref # Product Description
20000 Hemolung Controller
The reusable part of the Hemolung RAS. This self-contained unit holds all electronics and monitoring sensors.

CAUTION: The Diagnostic port must be covered at all times during use of the Hemolung system. Removal of the Diagnostic Port cover may result in electrical damage (ESD). The Diagnostic Port has no user functionality and should only be accessed by ALung authorized service personnel.
Diagram

Hemolung Controller (Back)

1. Diagnostic Port (Refer to CAUTION on page 28)
2. Vacuum Canister Bracket
3. Display Port
4. Controller Power Switch
5. AC Power Inlet
6. Grounding Port
7. Soda Lime Column
8. Sweep Gas Port to Hemolung Cartridge
9. Vacuum Canister Port
10. O_2 Inlet Port
11. Purge Valve
13. Bubble Detector
14. Magnetic Drive
Hemolung Controller Display

1. Audible Alarm Key
 - 1 sec Hold: Pauses audible alarm for 2 minutes
 - 5 sec Hold: Turns off current audible alarms
 - 1 sec Hold: Turns on audible alarms

2. Pump Start/Stop Key
 - Hold this key for 3 seconds to start or stop the pump

3. Alarm LED
 - Flashing Red: High Priority Alarm
 - Flashing Yellow: Medium Priority Alarm
 - Solid Yellow: Low Priority Alarm

4. AC Power LED

5. Arrow Keys

6. Arrow Keys

7. Function Keys
Screen Display Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Battery Status]</td>
<td>Moving Bar Indicates Charging</td>
</tr>
<tr>
<td>[Battery Status]</td>
<td>Low Battery</td>
</tr>
<tr>
<td>[Battery Status]</td>
<td>Critical Battery</td>
</tr>
<tr>
<td>![Alarm]</td>
<td>Audible Alarm Paused</td>
</tr>
<tr>
<td>![Alarm]</td>
<td>Audible Alarm Off</td>
</tr>
<tr>
<td>![No AC Power]</td>
<td>AC Power Present</td>
</tr>
<tr>
<td>![Stationary]</td>
<td>Stationary Pump Stopped</td>
</tr>
<tr>
<td>![Rotating]</td>
<td>Rotating Pump Running</td>
</tr>
<tr>
<td>![No Oxygen]</td>
<td>No Oxygen Connected</td>
</tr>
<tr>
<td>![Oxygen]</td>
<td>Oxygen Connected</td>
</tr>
</tbody>
</table>

CAUTION: Pump will not operate when battery is critical.
User Interface

1. Alarm and Notification Area
 Displays operational mode (device state) and active alarms. Only alarms with the highest priority are displayed.

2. Display Symbol Area
 Indicates the following system status:
 - Audible alarm status
 - Blood pump status
 - Sweep gas source
 - AC power status
 - Battery status

3. Main Area
 Information relevant to the current operational mode and user inputs are displayed here, such as instructions, settings, and therapy parameters.

4. Navigation Area
 Items displayed correspond to the physical Function Keys located on the Controller Display. Selecting an option using one of the Function Keys will change the main area.
Therapy Mode Interface

1. Measured CO₂ Removal Rate
 Displays the measured CO₂ removal rate

2. Measured Blood Flow Rate
 Displays the measured blood flow rate

3. CO₂ Removal Rate Trending Graph
 This area displays the graph for CO₂ removal. Default period is 8 hr but can be cycled through 8 hr, 24 hr, or 7 days.

4. Blood Flow Trending Graph
 This area displays the graph for blood flow rate. Default period is 8 hr but can be cycled through 8 hr, 24 hr, or 7 days.

5. Measured Sweep Gas Flow Rate
 Displays the measured sweep gas flow rate

6. Desired/Set Sweep Gas Flow Rate
 Arrow indicates the user selected sweep gas flow rate

7. Measured Pump Speed
 Displays the measured pump speed (RPM) of the Hemolung Cartridge

8. Desired/Set Pump Speed
 Arrow indicates the user-selected RPM
Pump Off Notice

Description The pump-off timer displays whenever the pump is turned off by the user or when an alarm shuts down the pump. The physician should use this information to determine whether it is safe to resume therapy. Pausing therapy can result in thrombosis.
Setup

Description Initial screen when starting the Hemolung RAS. This is the only screen from which you can change the language or use Recover Mode to directly re-enter therapy (e.g., following Controller replacement). Pressing the Continue Function Key will show the steps required to set up the Controller and disposables to start therapy.

Language

Description Select between different languages using either set of Arrow Keys.
Status

The right side shows a list of all active alarms. The left side shows technical information about the system that can be used during troubleshooting or servicing.

Settings

Description After Priming and Recirculation have been completed, you will be prompted for the Sweep Gas selection. This screen can also be accessed by choosing the Sub Menu Function Key in therapy.
Main Menu Therapy Mode

Description Therapy parameters and settings are displayed. Selecting Trending will temporarily change the time period of the graph. Reset Alarms will clear all resettable alarms and the Sub Menu will provide additional options. Show Help will provide troubleshooting steps for any active alarms.

Sub Menu Therapy Mode

Description Therapy parameters and settings are displayed. Status and Settings can be accessed from the Sub Menu. Pressing End Therapy will provide instructions for rinsing back blood after therapy.
3 ANTICOAGULATION
WARNING: Failure to adequately anticoagulate the patient may result in thromboembolism and/or loss of circuit functionality. The benefits of extracorporeal support must be weighed against the risks of systemic anticoagulation and must be assessed by the prescribing physician.

NOTE: Patients on the Hemolung RAS require systemic anticoagulation to prevent clotting of the extracorporeal circuit. The following heparin-based anticoagulation protocol is meant to serve as a general guideline and not as a substitute for the physician’s experience and judgment when treating a specific patient. Additionally, differing methods for anticoagulation measurement may affect the implementation of this suggested protocol.

3.1 Initial Anticoagulation Bolus
Systemic anticoagulation before insertion of the Hemolung Catheter is required in order to prevent Catheter thrombus.

1. Insert the guidewire in the target vessel.
2. Anticoagulate the patient with an 80 U/kg heparin bolus.
3. Wait 5 minutes for the heparin to circulate and then insert the Catheter.

Prior to connection to the Hemolung RAS, a target activated clotting time (ACT) >150 seconds or activated partial thromboplastin time (aPTT) > 1.5 times baseline is recommended. If a significant delay occurs between administering the heparin bolus and starting Hemolung therapy, verify the anticoagulation level and re-bolus as necessary.

3.2 Maintenance Anticoagulation
The patient will be anticoagulated using an intravenous heparin drip. A separate IV line must be established as the Hemolung extracorporeal circuit has no infusion ports.
3.3 ACT Protocol

1. Administer heparin to target an ACT range of 150–180 seconds.
2. Measure the ACT every 30 minutes until two repeated readings fall within the targeted therapeutic range (150–180 seconds).
3. Once two ACT readings are within range, ACT can be measured hourly (q1h).
4. Once two sequential hourly measurements fall within the therapeutic range, decrease the monitoring frequency to once every 2 hours (q2h).
5. The following table provides a guideline for adjusting the heparin infusion.

ACT PROTOCOL

Initial bolus: 80 U/kg
Initial maintenance drip: 18 U/kg/hr
Target ACT: 150–180 sec

<table>
<thead>
<tr>
<th>ACT (sec)</th>
<th>Bolus</th>
<th>Infusion Titration</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 90</td>
<td>30 U/kg</td>
<td>Increase infusion by 4 U/kg/hr</td>
</tr>
<tr>
<td>90–100</td>
<td>15 U/kg</td>
<td>Increase infusion by 3 U/kg/hr</td>
</tr>
<tr>
<td>100–126</td>
<td>10 U/kg</td>
<td>Increase infusion by 2 U/kg/hr</td>
</tr>
<tr>
<td>126–150</td>
<td>5 U/kg</td>
<td>Increase infusion by 1 U/kg/hr</td>
</tr>
<tr>
<td>151–180</td>
<td>None</td>
<td>No change</td>
</tr>
<tr>
<td>181–200</td>
<td>None</td>
<td>Decrease infusion by 1 U/kg/hr</td>
</tr>
</tbody>
</table>

3.4 aPTT Protocol

1. Administer heparin to target an activated partial thromboplastin time (aPTT) range of 1.5 to 2.3 times baseline (46–70 for baseline of 30 seconds).
2. Measure aPTT 3 hours and then 6 hours following the bolus dose and then every 6 hours thereafter.

aPTT PROTOCOL

Initial bolus: 80 U/kg
Initial maintenance drip: 18 U/kg/hr
Target aPTT: 1.5 to 2.3 x baseline

<table>
<thead>
<tr>
<th>aPTT (sec)</th>
<th>Bolus</th>
<th>Infusion Titration</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.2 x baseline</td>
<td>80 U/kg</td>
<td>Increase infusion by 4 U/kg/hr</td>
</tr>
<tr>
<td>1.2 to 1.5 x baseline</td>
<td>40 U/kg</td>
<td>Increase infusion by 2 U/kg/hr</td>
</tr>
<tr>
<td>1.5 to 2.3 x baseline</td>
<td>None</td>
<td>No change</td>
</tr>
<tr>
<td>2.3 to 3 x baseline</td>
<td>None</td>
<td>Decrease infusion by 2 U/kg/hr</td>
</tr>
<tr>
<td>> 3 x baseline</td>
<td>None</td>
<td>Interrupt infusion for 1 hr, then decrease infusion by 3 U/kg/hr</td>
</tr>
</tbody>
</table>

4

SEAL FLUSH PUMP
4.1 Description

The seal flush pump is an integral part of the Hemolung system. It is used to provide an infusion of saline at 30 mL/hr to provide a continuous flush of the blood pump seal. This flush must be maintained to prevent coagulation within the pump.

See Section 10.4 Change Seal Flush Fluid for instructions on changing the saline to maintain the flush. For detailed instructions on setup and operation of the pump, see either the BodyGuard 323 Color Vision™ Infusion Pump’s Instructions for use or the Graseby Model 3000/500 Volumetric Infusion Infusion Pump’s Instructions for Use.

WARNING: The seal flush port should not be used for drug infusion.

WARNING: The Hemolung Cartridge requires a continuous infusion of saline (0.45% to 0.9% NaCl) at a rate of 30 mL/hr to protect the Cartridge shaft seal. Insensible water loss occurs from the sweep gas of up to 20 mL/hr (depending on the sweep gas flow rate). These factors should be taken into account when managing a patient’s electrolyte and fluid balance.

WARNING: Only the BodyGuard 323 Color Vision™ and Graseby Model 3000/500 Volumetric Infusion Infusion Pumps are approved for use with the Hemolung Controller.
4.2 Seal Flush Pump Occlusion

Refer to either the BodyGuard 323 Color Vision™ or Graseby Model 3000/500 Volumetric Infusion Pumps Instruction Manuals for instructions on how to prime, operate, and troubleshoot the infusion pumps. If a “DOWN OCCLUSION” alarm occurs on the BodyGuard 323 Color Vision™ or an “OCCLUSION BELOW PUMP” alarm occurs on the Graseby Model 3000/500 during therapy:

1. Make sure the clamp on the IV administration set is open.
2. Check for any obstruction of the distal tubing.
3. If the alarm still occurs after the previous steps have been taken, disconnect the IV administration set from the check valve on the Hemolung Cartridge. Connect a syringe filled with sterile normal saline for injection into the check valve and slowly inject the saline. DO NOT APPLY EXCESSIVE FORCE TO FLUSH.
4. Any excessive resistance to the saline flush is most likely the result of an occlusion in the seal flush tube.
5. Reconnect the IV administration set and resume flow at 30 mL/hr.
6. If the preceding steps do not clear the alarm, replace the Hemolung Cartridge according to the instructions in Section 11.5 Cartridge Change.
This page is intentionally left blank
5
HEMOLUNG SETUP
5.1 Overview

This section describes the steps to prepare the Hemolung for connection to the patient. The steps for Hemolung setup include:

- Connecting the blood tubing and sweep gas tubing circuits
- Priming the blood tubing circuit
- Recirculating the priming fluid to check system operation and to remove air
- Selecting and connecting the sweep gas (if using oxygen).

Power On Self Test

When turning on the system, a Power On Self Test (POST) will be done to ensure proper operation of the Controller. If a POST failure occurs, a particular error code will be displayed. Contact your authorized ALung representative and report the error, along with the error code.

NOTE: The system will fail POST if oxygen is connected.
Start Up Workflow/Screen Navigation
The following diagram shows the start-up screen workflow used for Hemolung setup:

After successful completion of POST, the system will show the Setup screen. The Setup screen provides access to all other possible start-up operations, including system status, system recovery, language selection, and preparation for use (including priming, recirculation, sweep gas selection, and Catheter connection). You can move back and forth freely between all Start Up screens until you enter Therapy mode. Once Therapy is started, you cannot return to any of the Start Up screens.
Status Screen

During start-up, the Status screen is used primarily for troubleshooting under the direction of ALung representatives. This screen also provides access to preventative maintenance functions for trained and authorized personnel.

Recover Screen

The Recover screen provides a mechanism to resume Therapy directly from Setup under certain conditions. See Section 11.2 Pump Stopped During Therapy or Section 11.3 Changing a Controller for more details.

Language Screen

The Language screen allows selection of the language used to display all information. This setting is saved across power cycles. The language cannot be changed once the system enters Therapy.
Preparation for Use Screens

For Priming, Recirculation, and Catheter Connection

The Preparation for Use screens provide the user with directed guidance on properly setting up the system to administer Therapy. Each Priming screen contains Next and Skip Function Keys. Pressing Next allows the user to page through the Priming screens sequentially, while pressing Skip allows for the remaining priming screens to be passed over to access the final priming screen, just before Recirculation. The Back Function Key on all Preparation for Use screens allows the user to review any previous steps. The ability to go back is available until Therapy is started.

5.2 Preparing the Hemolung RAS

Procedure

STEP 1 Plug Hemolung Controller to AC Outlet

Lock the casters on the Controller and plug into an AC outlet. Turn on using the power switch on the back of the Controller. The system will enter a POST sequence during which the audible and visible alarm indicators are tested. The LED sequence will be as follows:

- **Low Priority Alarm** Solid yellow
- **Medium Priority Alarm** Flashing yellow with 3 long beeps, a pause, then 3 long beeps
- **High Priority Alarm** Flashing red with 10 short beeps, pause, 10 short beeps, long pause, repeat once

WARNING: If the POST indicator lights do not turn on or if the audible alarm is not activated, there is a problem with the Hemolung RAS. Do not use the device. Contact Technical Support.

NOTE: During POST, the vacuum pump and cartridge motor are tested. Noise coming from the vacuum pump and motor during POST is expected.
STEP 2 Setup Overview

The Setup screen will be displayed after successfully passing the POST

- Press the **Recover Function Key** to resume therapy if the patient is already catheterized and connected to the Cartridge.
- Press the **Language Function Key** to select the language.
- Press the **Continue Function Key** to prime a new circuit. This will advance you to the **Select Disposables Set** screen.

STEP 3 Select Disposable Set

Use the up and down arrows to select which disposable set you will be using, then press the **Next Function Key**. If using the separate individually bagged components, select the top configuration. If using the pre-connected components within the sealed tray, select the bottom configuration.
5.3 Priming with Pre-Connected Tubing

NOTE: Changing the soda lime at the beginning of each new setup is required for accurate CO₂ removal measurements. Failure to change soda lime before each new setup may result in inaccurate measurements.

STEP 1 Remove Old Soda Lime

Pull the old soda lime column out of the Controller and remove the reusable end caps. Discard the old soda lime column.

STEP 2 Assemble and Attach New Soda Lime Column

1. Remove the red shipping plugs from the new column. Do not remove the foam plugs.
2. Attach the reusable end caps to the column.
3. Install the new soda lime column on the Controller.
STEP 3 **Hang the Saline for Seal Flush**

Hang the container of saline for providing the seal flush on the Hemolung Controller. If necessary, adjust the height of the pole so that the bottom of the saline container is between 15 cm and 30 cm (between 6 inches and 12 inches) above the seal flush pump.

STEP 4 **Set up Seal Flush**

1. Prime the IV administration set for the Infusion Pump.

2. Load the IV administration set into the pump. Refer to the Instructions for Use that accompanies the IV administration set and infusion pump for these procedures.
STEP 5 **Prepare Priming Solution**

Prepare a priming solution of at least 500 mL and hang on the Controller. One (1) unit (U) heparin per milliliter (mL) saline is recommended as the priming solution.

NOTE: Other priming fluids have not been qualified for use with the Hemolung RAS. Use only at the discretion of the prescribing physician.

STEP 6 **Open Disposables**

1. Remove the sterile cover from the tray.
2. To remove the contents from the tray, begin by lifting the string at the top of the recirculation bag to unravel the tubing.
3. Then remove the Cartridge from the tray last.

NOTE: The contents inside the tray are sterile until the lid is removed.
STEP 7 **Hang Recirculation Bag and Sit Cartridge on Controller**

1. Hang the recirculation bag by the attached string on the IV pole so that it is below the saline bags.
2. Temporarily set the Cartridge on top of the Controller.

STEP 8 **Connect Infusion Pump and Run at 30 mL/hr**

1. Remove the cap from the seal flush port on the Cartridge.
2. Open the clamps on the IV administration set and start the seal flush infusion at 30 mL/hr.

WARNING: The seal flush port should not be used for drug infusion.
WARNING: The Hemolung Cartridge requires a continuous infusion of saline (0.45% to 0.9% NaCl) at a rate of 30 mL/hr to protect the Cartridge shaft seal. Insensible water loss occurs through the sweep gas of up to 20 mL/hr (depending on the sweep gas flow rate). These factors should be taken into account when managing a patient’s electrolyte and fluid balance.

STEP 9 Close White Clamp and Spike Saline

1. Close the white clamp located near the priming spike on the blue tubing.
2. Spike the priming solution with the spike line from the recirculation bag.

STEP 10 Close Blue Clamp on Recirculation Bag

Connect the blue clamp on the recirculation bag.
STEP 11 Prime the Cartridge

1. Hold the Hemolung Cartridge upside-down with the red blood outlet port facing up.
2. Open the white clamp located near the priming spike. This will start the flow of priming solution into the Hemolung circuit. Walk the air through the tubing until it is completely primed and solution begins to enter the Hemolung Cartridge.

STEP 12 Fill the Cartridge

Fill the Cartridge by keeping the red port up and the entire Cartridge below the saline bags.
STEP 13 **Remove Air**

With the Cartridge in the same position, tap the side to remove any trapped air. Prime the Cartridge with at least 500 mL of priming solution.

STEP 14 **Close the White Clamp**

Once the Cartridge is full, close the white clamp.
STEP 15 **Open Blue Clamp and Remove Air**

1. Open the blue clamp to allow any trapped air to travel up and into the recirculation bag.
2. Shake the line to assist in this process if needed.

STEP 16 **Check System for Air**

Visually inspect the entire circuit for air bubbles. If air bubbles are found in the circuit, guide them into the recirculation bag.
STEP 17 **Apply Petroleum Jelly, Install Cartridge and Tubing**

1. Place the Cartridge on the Controller as shown.
2. Apply a small amount of petroleum jelly to the area of the tubing that sits in the flow sensor.
3. Place the tubing into the bubble detector and flow sensor, and close the flow sensor door.

CAUTION: Do not place petroleum jelly on the section of tubing that is placed into the bubble detector.

STEP 18 **Assemble the Vacuum Canister**

Place the lid on top of the vacuum canister and apply pressure around the circumference of the lid to secure it. Several “clicks” will be heard when the canister lid is properly secured. Visually inspect the canister lid for proper securement.
CAUTION: The vacuum canister lid must be firmly attached to the canister to form a vacuum. Failure to do so will result in a low sweep gas flow alarm.

STEP 19 Cap Ports and Place Canister

1. Cap the large port labeled “ACCESSORY” and the small port labeled “TANDOM”. These ports will not be used.
2. Hang the vacuum canister on the side of the Controller using the provided bracket.

STEP 20 Connect Tube to Port

Connect the free end of the sweep gas vacuum tube to the vacuum canister port on the rear panel of the Controller.
STEP 21 **Install Tube in Purge Valve and Connect to Canister**

1. Install the silicone sweep gas tube coming from the Cartridge into the purge valve by pulling it upwards into the valve.
2. Connect the elbow on the end of the tube to the vacuum canister port labeled “PATIENT”.

STEP 22 **Connect Sweep Gas Supply Tube**

Connect the sweep gas supply tube (with bacterial filter) to the sweep gas port on the Controller as shown.
STEP 23 **Check Tubing Connections and Check for Air**

Check all tubing connections. Inspect the entire circuit for signs of fluid leakage. If a leak is found, do not use the device. Check the circuit for air bubbles. Small air bubbles can be removed during recirculation. If large air bubbles are present, guide them into the recirculation bag before starting recirculation.

STEP 24 **Start Recirculation**

Press the *Continue Function Key* to start the recirculation process. The pump will start automatically.
5.4 Recirculation

The purpose of recirculation is to remove any remaining air bubbles in the blood circuit. The pump will circulate the saline through the blood circuit to remove any remaining air bubbles. The system will also conduct several self-checks to ensure proper sweep gas flow rates and blood flow rates. A test purge cycle will be performed to ensure that the vacuum canister and purge valve are operating correctly. The system also checks for air bubbles.

WARNING: The user is responsible for ensuring that no air bubbles are left in the circuit before continuing.

Procedure

STEP 1 Enter Recirculation Mode

Upon entering recirculation, the pump and system checks will start automatically.

WARNING: Ensure that the patient is not connected to the Hemolung RAS before starting recirculation. Running the system in recirculation mode with the patient connected may result in an air embolism or unmonitored therapy.
STEP 2 Allow the System to Self-test

Errors

If an error is found in the system during Recirculation, the pump will stop, a red ‘X’ will be displayed next to the failed check, and the screen will display possible courses of action to correct the problem. Once the problem has been addressed, press and hold the Pump Start/Stop Key to restart the system checks. The Recirculation checks will restart from the beginning any time the pump is stopped and then resumed.

If air is found at the inlet to the cartridge (blue connector), guide it up the tube into the recirculation bag. Repeat recirculation until all air is clear.

When the system successfully completes all Recirculation checks, indicated by four green check marks on the screen, it will stop the pump to allow the user to check the circuit for signs of air bubbles. If any air is present, press and hold the Pump Start/Stop Key to restart recirculation. Recirculation may be repeated until all air is removed.
Successful Completion

When all recirculation checks have passed, and air has been removed from the circuit, press the *Continue Function Key* to proceed to the Settings screen.
5.5 Select Sweep Gas

Procedure

STEP 1 Select Sweep Gas Source

Upon entering the Settings screen the pump will automatically restart. Use the Arrow Keys to select the desired sweep gas source. If supplemental oxygenation is desired, oxygen should be connected and selected as the sweep gas source. Press the Continue Function Key to accept changes and to proceed to the Catheter insertion instructions.
5.6 Wait for Catheter Connection

Procedure

STEP 1 No Immediate Action Required on Controller

Once the Catheter Connection screen is entered, the pump will run continuously until ready to connect the patient. Only press Next when ready to begin the patient connection procedure. Pressing Next will stop the pump and display instructions and graphics for connecting to the patient. The following chapters will focus on catheterizing the patient and connecting the Catheter to the Hemolung Cartridge.
CATHETER PREPARATION
6.1 Catheter Insertion

Procedure

STEP 1 Prepare Catheter and Insertion Supplies

Fill three (3) 20 mL syringes with 20 mL each of sterile saline for injection.

Fill one (1) 10 mL syringe with 3 mL of sterile saline for injection.

Using a sterile technique, insert the stylet with RED priming adapter into the Infusion Lumen (RED), placing the priming adapter over the barb connector.

Unscrew the stylet from the RED priming adapter and remove it from the Catheter.

Connect one of the 20 mL syringes to the RED priming adapter. Hold the catheter with the tip up, and flush the Infusion Lumen (RED) with approximately 10 mL of saline. Remove the syringe and replace the stylet into the Infusion Lumen (RED).

CAUTION: Do not clamp the Infusion Lumen (RED) with the stylet in place.

Connect one of the 20 mL syringes to the Drainage Lumen (BLUE) priming adapter. Hold the Catheter with the tip up and flush the Drainage Lumen (BLUE) with approximately 10 mL of saline. Clamp the Drainage Lumen (BLUE) using the attached slide clamp. Remove the syringe.

STEP 2 Prepare Insertion Site

Prepare the insertion site according to your institution’s protocol. Ensure that proper sterile precautions are taken to prevent infections.

NOTE: For jugular insertion, position the patient in a slight Trendelenberg position.
STEP 3 **Puncture Vessel**

With a sterile scalpel blade, nick the skin over the target vessel.

Attach a 10 mL syringe to the introducer needle and insert the needle into the target vessel using appropriate imaging technology. Aspirate to ensure proper placement.

NOTE: Free blood flow indicates vessel entry. If the blood is bright red or a pulsating return is encountered, withdraw and redirect the needle. If no blood flow is observed, the needle is not inside of the blood vessel and must be redirected.

Remove the syringe and place a thumb over the end of the introducer needle to prevent blood loss or air embolism.

Once blood has been aspirated, slide the flexible “J” tip end of the guidewire back into the advancer so that only the tip of the guidewire is visible.

Insert the advancer’s distal end into the needle hub.

Advance the guidewire with a forward motion into and past the needle hub so that it reaches the target vessel. Insertion length depends on the patient’s size. Do not allow the guidewire to enter the right atrium.

Securely holding the guidewire, remove the needle.

WARNING: Do not force the guidewire, as doing so can kink it.

WARNING: Cardiac arrhythmias can result if the guidewire and or catheter is allowed to enter the right atrium. Place the patient on a cardiac monitor to detect any arrhythmias.
CAUTION: The use of appropriate imaging guidance is recommended to ensure proper guidewire insertion and placement.

CAUTION: If the guidewire must be withdrawn while the needle is inserted, remove both the needle and guidewire as a unit to prevent the needle from damaging the guidewire.

STEP 4 Anticoagulate the Patient

After the guidewire is placed in the target vessel, anticoagulate the patient. See Section 3 Anticoagulation for anticoagulation recommendations.

Proceed to Step 5 while the Heparin circulates through the patient.

STEP 5 Dilate Vessel

Slide the vessel dilator onto the guidewire. Advance the dilator through the skin and into the vessel. Use a shallow angle approach to reduce the potential risk that the guidewire kinks or a vessel is punctured.

If a larger dilator is needed, remove the first one and thread a larger dilator over the guidewire and into the vessel. Repeat this process until the tissue is sufficiently dilated.

Next, remove the dilator, leaving the guidewire in place.
Guidewire and Dilator Insertion Tips

The following tips are provided to minimize guidewire kinking:

1. Position the patient to create a “straight shot” through the tissue and into the target vessel.

2. Insert the introducer needle, and subsequently the guidewire, at a shallow angle (more parallel to the target vessel than a standard 45° approach).

3. If resistance is encountered while inserting the guidewire through the introducer needle, the guidewire should not be advanced. Withdraw the guidewire and needle as an assembly to prevent cutting and shearing of the wire by the sharp needle tip.

4. Pass the dilators over the guidewire at the same angle the needle/guidewire was placed. Forcing the dilator in a direction that diverges from the path of the guidewire can result in kinking the guidewire.

5. Maintain adequate tension of the guidewire taking care to always control the end of the guidewire.

6. Ensure adequate tissue relaxation with each dilation step. Consider repeatedly inserting/retreating the dilator at each step until the tissue is fully relaxed and resistance to insertion is minimal. Utilize rotational motion to gently advance the dilators through the tissue.

Incorrect: Dilator inserted at a different angle than the guidewire resulting in kinking in the subcutaneous tissue.
Correct: Dilator inserted at a shallow insertion angle to avoid guidewire kinking.

STEP 6 Insert the Catheter

Feed the distal section of the stylet over the guidewire. Proper Catheter location will be indicated by free blood flow.

Verify the advancement, positioning, and placement of the Catheter using appropriate imaging guidance.

For JUGULAR insertion, advance the Catheter tip to the junction of the superior vena cava and right atrium.

For FEMORAL insertion, advance the Catheter tip into the inferior vena cava.

WARNING: Do not place the Catheter into or allow it to remain in the right atrium or right ventricle. Failure to follow these instructions can result in patient injury or death.

After Catheter placement verification, withdraw the guidewire from the stylet.

Remove the stylet from the Catheter by unscrewing it from the priming adaptor and withdrawing.
STEP 7 Check Catheter Patency
Check Catheter patency and remove any air. Attach a 10 mL syringe filled with 3 mL sterile normal saline to the priming adaptor of each Catheter lumen.

Release each Catheter clamp and aspirate blood through each lumen. Blood should aspirate easily through both lumens.

If either lumen exhibits excessive resistance to blood aspiration, rotate or reposition the Catheter to obtain adequate blood flow.

NOTE: Do not suture Catheter into place until proper Catheter placement has been verified and adequate blood flow is present.

STEP 8 Irrigate Lumens
Irrigate both lumens with saline-filled syringes (20 mL) using a quick bolus technique.

Be sure that the lumen clamps are open during the irrigation procedure.

After flushing, use the attached RED and BLUE slide clamps to clamp the lumens.

WARNING: Failure to clamp the lumens before connecting the blood tubing to the patient can lead to air embolism.

After flushing the lumens with saline, immediately connect the blood tubing and start extracorporeal blood flow. If a delay occurs in establishing extracorporeal blood flow, the Catheter lumens should be flushed continuously with a saline infusion to prevent clotting.

STEP 9 Secure the Catheter
Femoral Catheter Securement

Secure the Catheter hub to the skin using a strong suture. The suture should be placed in the groove of the Catheter hub and must be securely tightened. Place the lumens in the Grip-Lok device. Secure the Grip-Lok device to the skin per the Grip-Lok IFU. Grip-Lok devices are provided in the Catheter kit.

Jugular Catheter Securement

The jugular Catheter must be secured at both the exit site and the Catheter hub for maximum stability. Place the Catheter body in the Grip-Lok device at the point where it exits the skin. Secure the Grip-Lok device to the skin per the Grip-Lok IFU. Secure the Catheter hub to the skin using a strong suture. The suture should be placed in the groove of the Catheter hub and must be securely tightened.

WARNING: If the suture is not positioned properly, it can damage or cut the Catheter. Sharp objects may puncture or cut the lumen and cause Catheter failure.

WARNING: Position the Hemolung Controller directly adjacent to the patient’s bed to ensure the security of the blood tubing. Application of excessive tension to the blood tubing may result in its accidental disconnection or catheter dislodgement, resulting in cessation of therapy and bleeding risk.
STEP 10 Proceed to the Next Step

Once the patient has been catheterized, the Controller will provide steps to connect the circuit to the catheter. From the “Catheter Connection” screen, press the Next Function Key to stop the pump and proceed to the connection sequence.

NOTE: If a sufficiently long portion of the femoral Catheter resides outside of the body, an additional Grip-Lok device can be used to secure the Catheter at the point where it exits the skin.
This page is intentionally left blank
STARTING THERAPY
7.1 Connect Tubing to Catheter

Procedure

STEP 1 Close All Clamps

Close all clamps in the circuit. Ensure clamps are closed near the end of each blood tube to minimize the introduction of air.

STEP 2 Connect TO PATIENT (Red) Tubing Set to Catheter

Disconnect the TO PATIENT (Red) Tubing Set from the recirculation bag. Using a wet-to-wet technique, connect the tube to the red connector on the Catheter. Ensure that the tubing is placed completely over the connector for a secure connection.
STEP 3 Connect FROM PATIENT (Blue) Tubing Set to Catheter

Disconnect the FROM PATIENT (Blue) Tubing Set from the Y-connector. Using a wet-to-wet technique, connect the tube to the blue connector on the Catheter. Ensure that the tubing is placed completely over the connector for a secure connection.

STEP 4 Open All Clamps

Open all clamps before starting the blood pump.
7.2 Start Blood Pump

After connecting the primed extracorporeal circuit to the Catheter, Therapy is initiated by entering the Main Therapy screen, which causes blood to flow through the extracorporeal circuit and sweep gas to pass through the Cartridge membranes. The Hemolung Cartridge will initially operate at the default pump speed (500 RPM) and sweep gas flow rate (1 L/min). The pump speed and sweep gas flow rate can then be slowly adjusted to the desired settings while carefully monitoring the patient. See Section 8 Managing Therapy for more details on changing Therapy parameters.

Procedure

STEP 1 **Check for Air**
Check the circuit for air bubbles. If air is present in the circuit, it must be removed before proceeding.

STEP 2 **Check Seal Flush**
Ensure that the seal flush is flowing at a rate of 30 mL/hr.

STEP 3 **Release All Clamps**
Release all clamps on the tubing and Catheter lumens.

STEP 4 **Press the Start Therapy Function Key**
From the last Catheter Connection screen, press the Start Therapy Function Key to enter Therapy Mode.

WARNING: Have a back up Hemolung Cartridge Kit available during therapy.
MANAGING THERAPY
8.1 Theory of Operation

Control of CO₂ removal is dependent on three fundamental factors. These are:

- Patient pCO₂
- Sweep gas flow rate
- Blood flow rate (determined by motor RPM)

CO₂ removal is achieved by running the selected sweep gas (oxygen or room air) through the center of the hollow fibers in the Cartridge while blood is circulated around the outside of the fibers. The sweep gas flow is determined by the programmed sweep gas flow rate and the blood flow rate is determined by the pump speed.

The difference in CO₂ concentration between the patient’s blood (high) and the sweep gas (low) will cause CO₂ to diffuse from the blood, across the fiber boundary, and into the sweep gas. The CO₂ will then be exhausted from the Hemolung.

Increasing either the blood flow rate via the motor RPM or the sweep gas flow rate will result in a higher CO₂ removal rate.

As the patient’s pCO₂ drops, the partial pressure difference of pCO₂ in the blood versus CO₂ in the sweep gas will be reduced, resulting in a lower CO₂ exchange rate.

CO₂ removal rate should not be used as a primary indicator of patient condition. In addition to using CO₂ removal rate, monitor the patient’s condition and make appropriate use of arterial blood gas.

In addition to providing CO₂ removal, the Hemolung RAS can be utilized to provide supplemental oxygenation. Oxygen will be delivered to the blood when it is utilized as a sweep gas. The amount of oxygen delivered to the patient is a function of the blood flow rate. The system provides no measurement of oxygen delivery.
8.2 Managing Initial Therapy

Managing the initial Therapy using the Hemolung RAS should be based on the patient’s status and the desired therapy goals. Factors to consider include hemodynamic status, ventilatory status, pCO\(_2\) level, and distress level, as well as the patient’s general overall condition.

When determining initial pump speed settings, consideration should be given to reaching a minimum blood flow (350 mL/min) as quickly as possible to reduce the chances of thrombus formation. However, changing blood flow rates too quickly or setting them too high may result in hemodynamic instability.

When determining initial sweep gas flow settings, one should take into account that CO\(_2\) removal when starting Therapy is nearly instantaneous. The impact to the patient varies based on pCO\(_2\) level and patient status. Raising the sweep gas flow setting too quickly could result in the patient becoming hypocapnic.

During initial Therapy, Hemolung CO\(_2\) removal, ventilator status, and arterial blood gasses should be monitored closely and managed for the desired therapeutic outcome. Continued monitoring of these parameters throughout ongoing Therapy is recommended.
8.3 Controlling Sweep Gas Flow

Increasing the sweep gas flow rate will increase CO₂ removal. The sweep gas flow rate can be set to 0 L/min, or be adjusted between 1.0 and 10.0 L/min. The sweep gas flow rate can only be changed from Therapy Mode.

To adjust the sweep gas flow rate:

STEP 1 Use the upper set of Arrow Keys to increase or decrease the flow rate in increments of 0.1 L/min.

CAUTION: The sweep gas flow rate should be set at the lowest setting that produces an adequate level of carbon dioxide removal. High sweep gas flow rates can cause patient heat loss from evaporation of water vapor across the Cartridge membranes. Patient temperature should be closely monitored during Hemolung therapy.

8.4 Controlling Pump Speed

Increasing the blood flow rate will increase CO₂ removal. The blood flow rate is adjusted by varying the pump speed using the Controller. The pump speed can be set between 500 and 1400 RPM to achieve the desired blood flow rate. Pump speed can only be changed from Therapy Mode.

The recommended blood flow rate is 350 to 550 mL/min. Higher blood flows will result in greater CO₂ removal and reduce the risk of thrombus formation in the extracorporeal circuit. Consult Section 13 Alarms and Troubleshooting for details.

To adjust the pump speed:

STEP 1 Use the lower set of Arrow Keys to increase or decrease the speed in increments of 10 RPM.

NOTE: The maximum pump speed will not always generate the greatest blood flow. Negative pressure generated by the pump at maximum speed can cause the Catheter to lodge against the vessel wall. The pump speed should be adjusted to the lowest setting that provides the desired blood flow.
If inadequate blood flows are obtained, increase the pump speed. If increasing the pump speed does not increase the blood flow rate, consider the following:

- Check the blood circuit and Catheter for kinks and/or thrombus.
- Consider repositioning the Catheter and/or patient if a vessel obstruction is suspected.
- Consider the patient’s volume status and adjust as necessary. A hypovolemic patient may experience lower blood flows, while a hypervolemic patient may experience increased blood flows.

8.5 Providing Supplemental O_2

If deemed necessary by the physician, the Hemolung RAS can provide supplemental oxygenation to the patient through the use of oxygen as the sweep gas. See Section 10.3 Change Sweep Gas for details on selecting the sweep gas source.

8.6 Operation During Purge

During Therapy Mode, the Hemolung Controller enters a purge cycle every 15 minutes. The purpose of the purge cycle is to remove moisture from the fiber membrane. The purge cycle occurs automatically and does not require any action by the user. During the purge cycle, the purge valve first closes for 30 seconds, occluding the sweep gas outlet tubing and creating a vacuum in the vacuum canister. The speed of the sweep gas vacuum pump increases during the purge cycle, causing it to become temporarily louder. The purge valve then opens and allows the system to recover for 30 seconds, causing a large flow of sweep gas that purges moisture from the membranes.

During the purge cycle, carbon dioxide removal is not measured and is displayed on the screen as "---". The Low Sweep Gas Flow and Running on Air alarms are disabled, and sweep gas cannot be adjusted.
This page is intentionally left blank
9

USING THE SYSTEM
9.1 Therapy Operation

The “Therapy Screen” is the primary screen used while providing patient Therapy. From this screen, the user can control all Therapy parameters, monitor Therapy trends, and manage alarms. The diagram for the Therapy screen workflow is shown below:

![Therapy Screen Workflow Diagram]

NOTE: To ensure safe operation, any screen that does not display patient therapy parameters will automatically return to the main Therapy screen after 60 seconds.

Function Key Menus

The Function Keys are used to provide two specific menus from the Therapy screen. The primary menu has the following options:

- Show Help
- Trending
- Reset Alarms
- Sub Menu

Pressing the **Sub Menu Function Key** displays the secondary menu, which has the following options:

- Status
- Settings
- End Therapy
- Main Menu
Pressing the **Main Menu Function Key** on the secondary menu will return to the primary menu. If the secondary menu is selected and no action takes place, the Function key menu will revert to the primary menu in 60 seconds.

Therapy (Main) Screen

This is the primary screen used while the Hemolung is providing Therapy. This screen will allow the user to:

- View and control the sweep gas flow and pump speed settings
- View CO_2 removal rate and blood flow rate
- Evaluate Therapy trending data (see *Section 9.2 Monitoring Trends in Therapy* for more details)
- Obtain Help on system operation and alarms

NOTE: Use of the *Help Function Key* during normal operation (with no active alarms) will provide general help on operation of the screen. If there are any active alarms, pressing the *Help Function Key* will provide alarm troubleshooting information.
Status Screen

The Status Screen displays all patient therapy parameters, as well as system parameters. In addition, it will display all active alarms.

Settings Screen

The Settings screen is used to select the sweep gas source for the system. See Section 10.3 Change Sweep Gas for instructions on selecting the sweep gas source.

End Therapy Screens

The End Therapy screens will provide guidance to the user for determining whether it is appropriate to end therapy. The initial screen provides guidance and will not cause the system to leave Therapy mode. Once the user selects Continue on the initial screen to continue with End Therapy, the pump motor will stop and the system will no longer provide patient therapy. See Section 12 Ending Therapy for more details on ending therapy.
WARNING: Once End Therapy has been confirmed, Hemolung operation can only be resumed by restarting the system.

9.2 Monitoring Trends in Therapy

While in Therapy mode, the system provides a graphical display of the historical CO₂ removal and blood flow rates to detect trends. The default time scale on these graphs is 8 hours.

Press the *Trending Function Key* to change the time scale used on the CO₂ removal rate and blood flow rate graphs. Press the *Function Key* multiple times to cycle the time scale of the graphs in the following order:

- 8 hours
- 24 hours
- 7 days

To reduce the chance of misinterpreting trends, the time scale will automatically return to the 8 hour display after two minutes.

NOTE: When evaluating trends, it is important to remember that the CO₂ removal rate and blood flow rate shown on the graphs are a function of device settings (sweep gas flow rate and pump speed), as well as patient condition.
This page is intentionally left blank
10

ROUTINE TASKS
10.1 Vacuum Canister Replacement

NOTE: The sweep gas vacuum canister must be changed daily to ensure adequate sweep gas flow. No changes or operations to the therapy parameters or blood pump are necessary to complete this task.

Procedure

STEP 1 Assemble New Vacuum Canister

Place the lid on top of the new vacuum canister and apply pressure around the circumference of the lid to secure it. Several “clicks” will be heard when the canister lid is properly secured. Visually inspect the canister lid for proper securement.

STEP 2 Close Unused Ports and Attach Vacuum Tubing

Cap the large port labeled “ACCESSORY” and the small port labeled “TANDEM”. These ports will not be used. Disconnect the vacuum tube from the center port labeled “VACUUM SOURCE” from the old canister and attach it to the same port on the new vacuum canister.
STEP 3 **Attach Sweep Gas Elbow**

Disconnect the sweep gas elbow from the vacuum canister port labeled “PATIENT” and attach it to the same port on the new vacuum canister.

NOTE: Alarms will temporarily appear on the display screen during and following the vacuum canister change and should clear within approximately 1 minute. Monitor the device following canister replacement to ensure that the system is properly functioning.

NOTE: After changing the vacuum canister, if the system is unable to reach the desired set point, verify that the top is properly attached to the canister. Also, verify tubing connections to ensure that a proper vacuum is present.

10.2 Inspect Circuit

Routinely inspect the entire circuit, including the Hemolung Cartridge, Catheter, and blood tubing, for signs of failure such as:

- Blood leaking from the circuit
- Blood leaking into sweep gas
- Damage to the sweep gas circuit
- Bubbles in the blood
- Excessive vibration
- Thrombus formation

If any of the above conditions are found, replace the faulty component at the discretion of the physician.
10.3 Change Sweep Gas

The Hemolung RAS achieves CO\(_2\) removal using a sweep gas, which flows through the inside of the hollow fiber membranes of the Cartridge. Here, CO\(_2\) diffuses out of the blood and is swept away by the sweep gas, while oxygen diffuses from the sweep gas into the blood.

Either room air or oxygen may be used as the sweep gas. CO\(_2\) removal will be the same regardless of sweep gas selection. However, oxygen should be used if supplemental oxygenation to the patient is desired. The purpose of selecting the sweep gas on the Hemolung RAS is to configure the alarms used to ensure proper system operation. Specifically, an alarm will be generated if supplemental oxygenation is desired, but the oxygen runs empty or is disconnected.

NOTE:
If high pressure oxygen is connected to the Hemolung Controller, oxygen will be used as the sweep gas, regardless of the sweep gas setting.

While in Therapy mode, the system provides a way to choose the sweep gas using the Settings screen. To choose the sweep gas from the Therapy screen:

Procedure

1. **STEP 1** Press the *Sub Menu Function Key* to enter the secondary menu.
2. **STEP 2** Press the *Settings Function Key*.
3. **STEP 3** Use either set of *Arrow Keys* to select the desired sweep gas.

NOTE:
If the selected sweep gas does not match the current configuration, an instructional message will be displayed on the screen.

4. **STEP 4** Connect or disconnect oxygen to the Hemolung, depending on the sweep gas selected.
5. **STEP 5** If desired, press the *Main Menu Function Key* to return to the main Therapy screen.
10.4 Change Seal Flush Fluid

Replenish seal flush fluid according to hospital procedures using normal saline. Refer to Section 5.4 Circuit Priming for instructions on setting up the seal flush.

10.5 Catheter Maintenance

Catheter maintenance and insertion site care is recommended per your institutional protocol.

Acceptable cleaning solutions and disinfectants include:

- Aqueous based povidone iodine (Betadine®)
- Chlorhexidine Gluconate (Hibiclens®)
- Chlorhexidine patches (Biopatch®)
- Bacitracin and Neosporin® Ointments
- Aqueous chlorhexidine topical solutions (ChloraPrep®)

CAUTION: Do not use acetone or alcohol on any part of the Catheter tubing. Exposure to these liquids may damage the Catheter.
This page is intentionally left blank
11

SPECIAL CASES
11.1 Patient Transport

The Hemolung RAS can be utilized in transport situations. Before transporting a patient, ensure that the battery is fully charged. A properly maintained and fully charged battery will provide up to 1 hour of run time. During transport, room air or an approved portable oxygen source can be utilized as sweep gas. Position the display so that it is over the top of the Controller. Only use the handle bars on the front of the controller to push the device and take extra precaution not to strike the vacuum canister during transportation. Immediately connect the Controller to an AC power outlet following transport.

11.2 Pump Stopped During Therapy

Controller On in Therapy Mode

Any time the pump is stopped during Therapy, either manually or because of an error or alarm condition, the system will revert to the main Therapy screen and will display a large “Pump Off” message. The “Pump Off” message will include a timer, indicating the time in minutes and seconds that the pump has been stopped.

WARNING: DO NOT restart the pump and continue Hemolung Therapy before performing a COMPLETE evaluation of the patient and RAS, including but not limited to: (1) evaluating the individual patient’s condition and anticoagulation status, (2) considering the length of time since the pump was stopped, (3) checking the system for signs of thrombus formation, and (4) considering any local or institutional procedures for continuing therapy. Failure to properly evaluate patient and system conditions before reinitiating therapy may result in thromboembolism.

If it is deemed appropriate to restart Therapy after evaluating the patient and device, press and hold the **Pump Start/Stop Key** to restart the pump.
Controller Powered Off
If the power is cycled on the Controller while providing Therapy to a patient, Recover Mode should be used to skip the initial setup procedures and immediately resume Therapy.

WARNING: DO NOT restart the pump and continue Hemolung Therapy before performing a COMPLETE evaluation of the patient and RAS, including but not limited to: (1) evaluating the individual patient’s condition and anticoagulation status, (2) considering the length of time since the pump was stopped, (3) checking the system for signs of thrombus formation, and (4) considering any local or institutional procedures for continuing therapy. Failure to properly evaluate patient and system conditions before reinitiating therapy may result in thromboembolism.

WARNING: DO NOT perform Priming or Recirculation while connected to a patient.

Procedure

STEP 1
Ensure that the Controller is plugged into an AC outlet if possible.

STEP 2
Turn on the system using the power switch on the back of the Controller. Once the Controller has completed the Power On Self Test, the Setup Screen will appear.
STEP 3
Press the *Recover Function Key*. The following screen will appear.

![Screen showing Recover Mode]

WARNING:
Before proceeding, inspect the extracorporeal circuit for thrombosis. **DO NOT** continue if thrombosis is seen or suspected. Prolonged stoppages of extracorporeal blood flow can result in circuit thrombosis.

STEP 4
Review the warnings and press the *Recover Function Key* again to continue to Therapy Mode. Press **Cancel** to return to the Setup screen.

11.3 Changing a Controller

The Hemolung RAS has the ability to skip the initial setup procedures and immediately restart therapy if a cartridge being used in therapy needs to be switched to a new Controller.
Procedure

STEP 1
Press the Recover Function Key on the replacement Controller.

STEP 2
Review the warnings.

Recover Mode

Recover Mode allows therapy to be resumed immediately. The priming screens and recirculation checks will be skipped.

Use Recover Mode only when moving the Hemolung Cartridge to a new controller or after loss of power during therapy.

WARNING:
Before proceeding, inspect the extracorporeal circuit for thrombosis. DO NOT continue if thrombosis is seen or suspected. Prolonged stoppages of extracorporeal blood flow can result in circuit thrombosis.
STEP 3
Disconnect sweep gas tubes from the Controller.

STEP 4
Release infusion line from infusion pump.

STEP 5
Release TO PATIENT (Red) Tubing from flow sensor.

STEP 6
Move the Cartridge, vacuum canister, and blood tubing/sweep gas tubing to the new Controller.

STEP 7
Install TO PATIENT (Red) Tubing in flow sensor with a layer of petroleum jelly.

STEP 8
Install infusion line and connect sweep gas tubes.

STEP 9
Restart therapy by pressing “Recover”.

11.4 Performance Changes

The performance of the Hemolung RAS must be continuously monitored. The primary and secondary indicators of device performance are the CO$_2$ removal rate and blood flow rate, respectively. In the event of reduced CO$_2$ removal, carefully monitor the patient for changes to respiratory status. If the CO$_2$ removal rate is inadequate or the blood flow rate is continuously below 350 mL/min, consider replacing the Hemolung Cartridge. Low blood flow rates can lead to decreased CO$_2$ removal and circuit thrombosis.

WARNING: If circuit thrombosis is suspected, do not rinse back the blood to the patient at the conclusion of therapy or when replacing the Hemolung Cartridge.
11.5 Cartridge Change

Supplies Required

<table>
<thead>
<tr>
<th>Sterile Precautions</th>
<th>Disinfectant Solution</th>
<th>Hemolung Cartridge Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterile Scissors</td>
<td>Hemolung Rinseback Kit</td>
<td>500 mL bag of saline</td>
</tr>
</tbody>
</table>

Procedure

NOTE: If blood rinse back is desired, follow the procedures in Section 12.2 End Therapy: With Blood Rinse Back. Blood should only be returned to the body if there are no signs of clotting or thrombosis.

STEP 1
Prime Hemolung Cartridge

Assemble, prime, and recirculate a new Hemolung Cartridge (with new blood tubing). See Section 5.4 Circuit Priming and Section 5.5 Recirculation for instructions.

STEP 2
Prepare Syringes

Fill the 30 mL syringes with normal saline. They will be used to provide irrigation during tubing connections.

STEP 3
Disinfect Blood Tubes

Clean and disinfect a 30 cm (12 in) length of each blood tube, starting at the catheter barb connector and moving toward the Hemolung Cartridge. Use one of the following approved solutions.

- Aqueous based povidone iodine (Betadine®)
- Chlorhexidine Gluconate (Hibiclens®)
- Aqueous chlorhexidine topical solutions (ChloraPrep®)
STEP 4 **Reduce Pump Speed**
Reduce the Hemolung Cartridge pump speed to approximately 500 RPM.

STEP 5 **Stop Pump**
Press and hold the Pump Start/Stop Key to stop the Hemolung Cartridge pump. Because stopping the blood flow increases the risk of clotting, the remaining steps should be completed as quickly as possible.

STEP 6 **Close All Four (4) Clamps**

STEP 7 **Cut Blue and Red Tubings**
Cut the tubing between the tubing clamp and the Catheter barb in the area that was previously cleaned.

STEP 8 **Insert Barb-Barb Connector**
Attach the barb-barb connectors to the tubing remaining on the Catheter.
STEP 9 Connect New Cartridge

Using a wet-wet technique, connect the new Cartridge to the Catheter.
This page is intentionally left blank
12 ENDING THERAPY
12.1 Weaning

Weaning from Therapy is done by progressively reducing the amount of CO$_2$ removal while closely monitoring the patient.

To reduce the level of CO$_2$ removal, reduce the sweep gas flow rate. After reducing the sweep gas flow rate, the new CO$_2$ removal rate will display on the screen after approximately 2 minutes.

The sweep gas flow rate can be reduced to zero while circuit blood flow is maintained to evaluate the patient’s response to withdrawing Therapy.

“Weaning mode” will appear on the display screen at sweep gas flows below 5 L/min. The “Low CO$_2$ Removal” alarm is disabled in weaning mode.

12.2 End Therapy: With Blood Rinse Back

Following Hemolung therapy, the attending physician may decide to return blood from the circuit back to the patient using the Hemolung Rinse Back Kit. Prior to rinse back, prepare all necessary supplies.

Additional Supplies Required

<table>
<thead>
<tr>
<th>Sterile precautions</th>
<th>Sterile scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disinfectant solution</td>
<td>500 mL bag of saline</td>
</tr>
<tr>
<td>Irrigation syringe</td>
<td>Saline for syringe</td>
</tr>
</tbody>
</table>
Procedure

STEP 1 Enter Rinse Back Mode on Controller

On the Controller Display in the main menu, press the Sub Menu Function Key to display the sub menu options. Select the End Therapy Function Key to enter Rinse Back. After reading all warnings, press the Continue Function Key to begin the on screen instructions.

WARNING: Once the rinse back procedure is initiated, the pump will stop and the user cannot restart therapy without power cycling the Controller. In case of accidental initiation of the rinse back procedure, power cycle the Controller and use the Recovery option to immediately restart therapy. See Section 11.2 Pump Stopped During Therapy for instructions on recovery mode.
STEP 2 Close Blue Clamp and Spike Saline Bag

Close the blue clamp on the IV tubing and spike the saline bag.

STEP 3 Hang the Saline Bag and Prime Drip Chamber

Hang the saline bag on the Controller. Squeeze the plastic chamber to prime the IV tube.
STEP 4 Clamp Blue Tubing and Lumen

 Clamp the FROM PATIENT (Blue) Tubing approximately 20 cm (8 in) from the Catheter connection using the attached ratchet clamp or another tubing clamp.

STEP 5 Sterilize FROM PATIENT (Blue) Tubing

Clean and disinfect a 30 cm (12 in) length of each blood tube, starting at the Catheter barb connector and moving toward the Cartridge. Use one of the following approved solutions:
Aqueous based povidone iodine (Betadine®)
Chlorhexidine Gluconate (Hibiclens®)
Aqueous chlorhexidine topical solutions (ChloraPrep®)
STEP 6 **Cut FROM PATIENT (Blue) Tubing**

After ensuring that the clamps are closed, cut the FROM PATIENT (Blue) Tubing between the tubing clamp and the Catheter barb connector in the area that was previously cleaned.

STEP 7 **Connect FROM PATIENT (Blue) Tubing to IV Tube**

Using a wet-to-wet technique, connect the priming spike barb connector to the FROM PATIENT (Blue) Tubing, ensuring no air is trapped in the tubing. Use a 30 mL saline-filled syringe to provide irrigation for connection.
STEP 8 **Release Blue Clamps**

Release the clamp on the FROM PATIENT (Blue) Tubing and the blue slide clamp on the IV connector. Saline will begin to flow by gravity through the Cartridge, rinsing the blood back to the patient.

STEP 9 **Close Blue Clamps**

Once the blood is returned, clamp the FROM PATIENT (Blue) Tubing and IV line using the attached ratchet clamps.
STEP 10 **Alternatives to Removing Catheter**

If the physician decides to discontinue therapy but wants to leave the Catheter in place, cut the TO PATIENT (Red) Tubing using the same method as the FROM PATIENT (Blue) Tubing (Steps 3–5). Barb to Luer connectors can be used to connect a continuous infusion line to prevent clotting. If the Catheter needs to be locked, use the provided caps. If treatment is to be resumed, follow steps for changing Cartridges in *Section 11.5 Cartridge Change*, using the provided barb-to-barb connectors to splice the new tubing set.

STEP 11 **Clamp Red Tubing and Remove Catheter**

![Image of red tubing being clamped](image)

Close the TO PATIENT (Red) Tubing and remove the Catheter in the same manner as any other large bore central venous Catheter.

![CAUTION](image)

CAUTION: Take appropriate sterile precautions during Catheter removal. Utilize aseptic techniques.

STEP 12 **Dispose Catheter and Circuit**

Dispose of the Catheter and blood circuit following hospital procedures for biological wastes.
12.3 End Therapy: Without Blood Rinse Back

The attending physician may decide that returning blood to the patient is not necessary and discard the entire circuit.

Procedure

STEP 1 Turn off Hemolung
Press and hold the Pump Start/Stop Key to stop the Hemolung Cartridge pump.

STEP 2 Clamp Catheter Lumens
Clamp both Catheter lumens with the attached slide clamps.

STEP 3 Clamp Blood Tubes
Clamp both blood tubes approximately 15 cm (6 in) from the Catheter connection using the attached ratchet clamps or other tubing clamps.

STEP 4 Remove Catheter
Remove the Catheter using standard clinical procedures for removal of large-bore central venous catheters.

⚠️ CAUTION: Take appropriate sterile precautions during Catheter removal. Utilize aseptic techniques.

STEP 5 Dispose Catheter and Circuit
Dispose of the Catheter and blood circuit following hospital procedures for biological wastes.
This page is intentionally left blank
ALARMS & TROUBLESHOOTING
13.1 Overview
The Hemolung Controller has an intelligent alarm system to indicate abnormal operation and to warn the operator of potential hazards to the patient from the device. The Hemolung Controller provides audible and visible warnings for both critical errors and alarms.

13.2 Silencing Audible Alarms
Audible alarms can be paused or turned off using the Audible Alarm Key located on the display. Pressing this key once will pause the audible alarm for 2 minutes. Pressing and holding this key will turn the active audible alarm off indefinitely. The occurrence of a new alarm condition or pressing the key again will result in reactivation of the audible alarm.

13.3 Alarm Levels
The device prioritizes alarm notifications and the audible and visual indicators always indicate the highest priority alarm. High priority alarms have precedence over any other type of alarm. When multiple alarms occur, only the alarms of the highest priority are displayed in the notification area. The alarms will appear one at a time with their corresponding color code.

High Priority Pump stopped/Pump not stopped
High priority alarms notify the user of an urgent safety hazard, diminished therapy delivery, or loss of therapy. An immediate response is required from the user. In certain cases, the pump is stopped to prevent harm to the patient.

Medium Priority
Medium priority alarms notify the user that the device is operating in an unexpected state. A prompt response by the user is required to prevent diminished performance of the system. The pump always continues to run in the event of a medium priority alarm.

Low Priority
Low priority alarms notify the user that the device is operating in an unexpected state. Alarms in this category include CALL SERVICE alarms caused by component failures. The pump always continues to run in the event of a low priority alarm.
Critical Errors
Critical errors are failure conditions that render the equipment status undetermined or unreliable. When a critical error occurs, therapy is stopped, the system is placed in a safe state, the pump is stopped, and the user is notified if possible. The user interface keys are rendered non-operational during a critical error. The error must be corrected and the power cycled for the system to become operational again.

13.4 Alarm Indicators

Alarm descriptions are presented on the screen in conjunction with an audible alarm and an indicator light. Text displayed in the Alarm and Notification Area has a background color set to the color for the associated alarm priority. The indicator light is a single LED that will illuminate red, yellow, or green based on alarm priority. The LED illuminates green when no alarms are present. The following chart shows a summary of the alarm types and user notifications.

<table>
<thead>
<tr>
<th>Alarm Priority</th>
<th>Visual Indication</th>
<th>Audible Indication</th>
<th>On-Screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Pump Stops</td>
<td>Red LED Flash at 2 Hz 50% Duty Cycle</td>
<td>10 repeating beeps</td>
<td>Red Notification</td>
</tr>
<tr>
<td>High Pump Runs</td>
<td>Red LED Flash at 2 Hz 50% Duty Cycle</td>
<td>10 repeating beeps</td>
<td>Red Notification</td>
</tr>
<tr>
<td>Medium Pump Runs</td>
<td>Yellow LED Flash at 1/2 Hz 50% Duty Cycle</td>
<td>3 repeating beeps</td>
<td>Yellow Notification</td>
</tr>
<tr>
<td>Low Pump Runs</td>
<td>Yellow LED Solid On</td>
<td>None</td>
<td>Yellow Notification</td>
</tr>
<tr>
<td>Critical Error</td>
<td>Red LED Flash at 2 Hz 50% Duty Cycle</td>
<td>10 repeating beeps</td>
<td>Message with special instructions</td>
</tr>
</tbody>
</table>
Additionally, the system provides the follow audible indicators not associated with alarms.

- 2 beeps when the pump starts on the start of recirculation
- 2 beeps when the pump is started with the Pump Start/Stop Key
- 1 beep when the motor is stopped with the Pump Start/Stop Key

13.5 Definitions

Soak Time Indicates the amount of time an alarm condition must persist before it is asserted.

Reset Time Indicates the amount of time an alarm condition must no longer exist before the alarm automatically clears.

Latched
Yes – Alarm persists even if the alarm condition no longer exists.
No – Alarm will clear automatically after the reset time.

Resettable
Yes – Alarm can be reset by pressing the Reset Alarms Function Key or in applicable cases the Pump Start/Stop Key.
No – Alarm cannot be reset.
13.6 High Priority Alarm - Pump Stops

Description

Air in Blood Line

Problem Air has been detected in the outflow blood tubing.
Solution Check all blood tubing connections. If air cannot be removed, set up a new circuit. Pump stoppages can result in circuit clotting. The pump should not be restarted if circuit clotting is suspected.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Latched</th>
<th>Reset Time</th>
<th>Manually Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate</td>
<td>Yes</td>
<td>Resettable</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Low Battery

Problem The battery is completely discharged.
Solution Immediately connect the controller to AC power immediately. Restart the pump by pressing and holding the Pump Start/Stop Key. Pump stoppages can result in circuit clotting. The pump should not be restarted if circuit clotting is suspected.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Latched</th>
<th>Reset Time</th>
<th>Manually Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 sec</td>
<td>Yes</td>
<td>Resettable</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Blood Flow Invalid

Problem A flow sensor error has been detected.
Solution Check that the blood tubing is properly seated in the flow sensor and the sensor door is properly closed. Restart the pump by pressing and holding the Pump Start/Stop Key. Pump stoppages can result in circuit clotting. The pump should not be restarted if circuit clotting is suspected. Monitor the blood flow. The alarm will clear automatically when the problem is resolved. If the problem persists, contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Latched</th>
<th>Reset Time</th>
<th>Manually Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 sec</td>
<td>Yes</td>
<td>Resettable</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Pump Off

Problem The pump is stopped. Therapy cannot begin or resume until the pump is started.
Solution Start the pump by pressing and holding the Pump Start/Stop Key. Pump stoppages can result in circuit clotting. The pump should not be restarted if circuit clotting is suspected.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Latched</th>
<th>Reset Time</th>
<th>Manually Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate</td>
<td>No</td>
<td>Resettable</td>
<td>Yes</td>
</tr>
</tbody>
</table>
13.7 High Priority Alarm - Pump Continues to Run

Description

Low Blood Flow
Problem A low blood flow has been detected (< 315 mL/min). Low blood flow can increase the risk of clotting.
Solution Check the blood tubing for blood clots and kinks. Reposition the patient if necessary. Increase the blood flow rate by increasing the pump speed.

Soak Time 15 sec
Latched No
Reset Time 6 sec
Resettable Yes

CO₂ Removal Low
Problem A low carbon dioxide removal rate has been detected (< 45 mL/min).
NOTE: This alarm is disabled when the sweep gas flow is less than 5 L/min.
Solution Increase sweep gas flow rate and/or blood flow rate. If the level of CO₂ removal remains low, consider replacing the Hemolung Cartridge. See Section 11.5 Cartridge Change for more details.

Soak Time 3 sec
Latched No
Reset Time 6 sec
Resettable Yes

High Sweep Gas Flow
Problem The sweep gas flow rate is greater than 0.3 L/min above the set point.
Solution This alarm may occur as a result of a sweep gas tubing occlusion being removed. The alarm will automatically clear once the condition is resolved. If the problem persists, contact technical support.

Soak Time 30 sec
Latched Yes
Reset Time Manually Reset
Resettable Yes

Battery Dead
Problem The battery has failed. The system will not operate if AC power is removed or fails because of a power outage.
Solution This alarm cannot be cleared. Restarting the system during this alarm will cause the POST to fail and result in an inoperable system. Contact technical support immediately.
Note: Potentially after power up or upon AC charge completion the system may display the Battery Dead alarm. Disregard if the alarm clears after a few minutes. Contact technical support if the alarm persists.

Soak Time 3 sec
Latched No
Reset Time Immediate
Resettable No

Disconnect Oxygen
Problem High pressure has been detected in the Sweep Gas Circuit.
Solution Disconnect the high pressure oxygen from the Hemolung Controller immediately. Therapy may continue using Room Air for the Sweep Gas.
Note: The alarm will clear once oxygen is disconnected. However, it will immediately become active if oxygen is reconnected.

Soak Time 2 sec
Latched Yes
Reset Time Never
Resettable No
13.8 Medium Priority Alarms

Description

No Vacuum During Purge

Problem No vacuum developed during the purge cycle, which may make CO$_2$ removal ineffective.

Solution Check the sweep gas tubing for proper placement in the purge valve. Ensure that there are no leaks in the sweep gas tubing and press the **Reset Alarms Function Key**. If the condition persists, contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 sec</td>
<td>Manually Reset</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Running on Battery

Problem The Hemolung Controller is running on battery power.

Solution The Hemolung Controller will operate on a properly maintained and fully charged battery for up to 1 hour. When the battery is depleted, the system will shut off. Monitor the battery life using the battery icon on the display and reconnect to AC power before battery depletion to ensure uninterrupted system operation.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 sec</td>
<td>3 sec</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Low Sweep Gas Flow

Problem The sweep gas rate is less than 0.3 L/min below the set point.

Solution Check the sweep gas tubing for kinks, loose connections, and liquid. Replace the vacuum canister. The alarm will clear automatically once the problem is resolved. If the problem persists, contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 sec</td>
<td>5 sec</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Running on Air

Problem The sweep gas is configured for oxygen but the system is currently using room air.

Solution Check the oxygen source connection and pressure. If room air sweep gas is desired, switch the sweep gas source from OXYGEN to ROOM AIR in the SETTINGS menu. Check the sweep gas connections for leaks. The alarm will clear automatically once the condition is corrected. If the condition persists, contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 sec</td>
<td>5 sec</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
13.9 Low Priority Alarms

Description

High Blood Flow

Problem A high blood flow has been detected (> 600 mL/min).
Solution Check blood tubing connections for leaks and proper placement in the flow sensor. "Blood flow beyond intended flow rate". Adjust the pump speed to obtain a flow less than 600 mL/min. The alarm will clear automatically once the condition is resolved. Contact technical support if the problem persists.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sec</td>
<td>Manually Reset</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Running on Oxygen

Problem The sweep gas source is set to room air but oxygen is connected to the controller and is being used as the sweep gas.
NOTE: The system will automatically use oxygen if connected; however, no alarm will sound if oxygen is disconnected.
Solution Access the SETTINGS screen and select oxygen as the sweep gas source or disconnect the oxygen. If the problem persists, contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 sec</td>
<td>5 sec</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

CALL SERVICE: CS1 (Data Recorder Failure)

Problem A data log error has occurred. Data logging has been disabled and no data will be available for download.
Solution This alarm cannot be cleared. Contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate</td>
<td>15 min</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

CALL SERVICE: CS2 (Purge Valve Failure)

Problem The sweep gas purge valve has failed. This will prevent the successful completion of the purge cycle and will degrade CO₂ removal performance over time.
Solution This alarm will clear automatically once the condition is resolved. Restarting the system will cause POST to fail and result in an inoperable system. Contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 sec</td>
<td>Manually Reset</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

CALL SERVICE: CS3 or CS4 (Case Fan Failure)

Problem A Controller fan is not working. This can lead to increased system operating temperature and/or internal oxygen accumulation.
Solution This alarm will clear automatically once the condition is resolved. Restarting the system will cause POST to fail and result in an inoperable system. Contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 sec</td>
<td>3 sec</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
CALL SERVICE: CS5 (High Sweep Gas Vacuum)

Problem A high sweep gas vacuum has been detected.
Solution Check the sweep gas tubing for kinks. Press the Reset Alarms Function Key to clear the error. Remove the sweep gas tubing from the purge valve if the valve is not releasing the vacuum. Replace the vacuum canister if the problem persists. If the problem cannot be resolved, contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Latched</th>
<th>Reset Time</th>
<th>Resettable</th>
<th>Manually Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate</td>
<td>Yes</td>
<td>Resettable</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

CALL SERVICE: CS6 (Battery Charger Fan Failure)

Problem The battery charger fan has failed and the charger has been disabled. The Controller will not charge the battery.
Solution This alarm will clear automatically once the condition has been resolved. Rebooting the system during an alarm will cause the POST to fail and result in an inoperable system. If the condition persists, contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Latched</th>
<th>Reset Time</th>
<th>Resettable</th>
<th>Immediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 sec</td>
<td>No</td>
<td>Resettable</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

CALL SERVICE: CS7 (Communication Error)

Problem A communication error has occurred between the display and Controller.
Solution Check the cable connection between the display and the Controller. Tighten the connection if necessary. The alarm will automatically clear if the condition is resolved. If the condition persists, contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Latched</th>
<th>Reset Time</th>
<th>Resettable</th>
<th>3 sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate</td>
<td>No</td>
<td>Resettable</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

CALL SERVICE: CS9 (High Sweep Gas Pressure)

Problem A high pressure has been detected in the sweep gas circuit (> 10 mmHg).
Solution Disconnect oxygen to continue using the system. If the problem persists, contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Latched</th>
<th>Reset Time</th>
<th>Resettable</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 sec</td>
<td>Yes</td>
<td>Resettable</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

CALL SERVICE: CS10 (CO₂ Monitor Failure)

Problem The CO₂ monitor has a high out of range value.
Solution Contact technical support. Use other methods of determining CO₂ removal.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Latched</th>
<th>Reset Time</th>
<th>Resettable</th>
<th>3 sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 sec</td>
<td>Yes</td>
<td>Resettable</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
13.10 Critical Error

Description

Main Bus Voltage Exceeded (Error Code 101)

Problem The main bus voltage has exceeded 32 volts.

Solution The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sec</td>
<td>Never</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Cabinet Oxygen Leak (Error Code 102)

Problem Oxygen concentration is >25% inside the Controller.

Solution The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 sec</td>
<td>Never</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Blood Pump Motor Current Exceeded (Error Code 103)

Problem The pump motor current has exceeded 2.0 amperes.

Solution The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 sec</td>
<td>Never</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Motor Speed Exceeded (Error Code 104)

Problem The pump motor speed is above 1700 RPM.

Solution The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 sec</td>
<td>Never</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Case Temperature Exceeded (Error Code 105)

Problem The inside case temperature of the Controller is above 55 °C.

Solution The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

<table>
<thead>
<tr>
<th>Soak Time</th>
<th>Reset Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 sec</td>
<td>Never</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latched</th>
<th>Resettable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Stack Overrun (Error Code 106)

Problem The stack guard band value was overwritten.

Solution The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

| Soak Time | 1 sec | Latched | Yes | Reset Time | Never | Resettable | No |

PCB Voltage Exceeded (Error Code 107)

Problem PCB logic voltage has gone outside the specifications.

Solution The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

| Soak Time | 5 sec | Latched | Yes | Reset Time | Never | Resettable | No |

Cabinet O₂ Sensor Failure (Error Code 108)

Problem The oxygen detection sensor inside the Hemolung Controller has stopped responding or is reporting an abnormal number. Oxygen buildup inside the controller will not be detected.

Solution The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

| Soak Time | 3 sec | Latched | Yes | Reset Time | Never | Resettable | No |

PCB Communication Failure (Error Code 109)

Problem The printed circuit board (PCB) cannot communicate with components inside the Controller.

Solution The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

| Soak Time | 3 sec | Latched | Yes | Reset Time | Never | Resettable | No |

Blood Pump Failed (Error Code 110)

Problem The blood pump speed has dropped below 50 RPM during Therapy or Recirculation.

Solution The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

| Soak Time | 3 sec | Latched | Yes | Reset Time | Never | Resettable | No |
Blood Flow Sensor Failure (Error Code 111)

Problem: The blood flow sensor has stopped responding to the Controller.
Solution: The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

Soak Time: Immediate
Latched: Yes
Reset Time: Never
Resettable: No

Missing or invalid Calibration Data (Error Code 112)

Problem: There is no calibration data or the data is invalid.
Solution: The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

Soak Time: Immediate
Latched: Yes
Reset Time: Never
Resettable: No

Analog Input Failure (Error Code 114)

Problem: Sensor input error
Solution: The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

Soak Time: 3 sec
Latched: Yes
Reset Time: Never
Resettable: No

Analog Output Failure (Error Code 115)

Problem: The pump or vacuum control has failed.
Solution: The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

Soak Time: Immediate
Latched: Yes
Reset Time: Never
Resettable: No

Display Not Responding (Error Code 117)

Problem: A communication error has occurred between the display and Controller.
Solution: The Hemolung Controller has failed and was placed in a safe state (pump stopped). Power must be cycled for the system to become operational again. Contact technical support.

Soak Time: 30 sec
Latched: Yes
Reset Time: Never
Resettable: No
13.11 Unexpected System Behavior

In the event the system displays an unexpected behavior and one of the following conditions exist, therapy should be discontinued.

- The system has become inoperable due to an overall system failure as indicated by the alarm status LED blinking red and a high priority audible alarm.
- The system is unresponsive to user inputs (e.g. changes to therapy parameters).

Discontinue use of the Hemolung Controller and contact ALung Service in the event of an unexpected system behavior.

13.12 Unexpected System Restart

An “unexpected system restart” occurs when a system in operation unexpectedly returns to the Power On Self Test (POST) or Setup Screen.

This indicates that the Hemolung Controller has suffered a significant failure. Discontinue use of the Hemolung Controller and contact ALung Service in the event of an unexpected system restart.
This page is intentionally left blank
14

DEVICE MAINTENANCE
14.1 Battery

The battery should be tested on a monthly basis. With the Hemolung Controller turned on, unplug the Controller from the AC power and observe the battery charge indicator. If it does not indicate a full charge, contact ALung Service or an ALung authorized distributor.

CAUTION: The battery only charges when the Hemolung Controller is plugged into an active AC power source. Failure to leave the Controller plugged into an active AC power source will result in battery failure, making power unavailable during patient transport or AC power failure.

CAUTION: Do not remove the instrument covers on the Hemolung Controller. The Hemolung RAS does not have any user serviceable parts and the battery cannot be replaced by the user. Contact ALung or your medical equipment distributor for service or repairs.

14.2 Cleaning

Clean the Hemolung Controller with a damp sponge and a mild soap solution and/or a 10% bleach solution. DO NOT USE organic solvents or abrasive cleansers. Standard institutional procedures regarding cleaning and infection control should always be observed.

Clean the Hemolung Controller screen carefully to prevent scratches. Dust and dirt particles can be blown off or brushed off using a soft cloth. Fingerprints and stains may be removed by using a liquid cleaner and a soft cloth. DO NOT wipe a dry screen. DO NOT USE alcohol or chlorinated hydrocarbon solvents.
14.3 Storage
Check the power cord and display cable between each use. Replace any damaged cords.

Turn off and disconnect the portable oxygen source (if using).

Keep the Hemolung Controller plugged into an AC outlet at all times.

CAUTION: Only use power cords provided by ALung. Failure to do so may result in diminished or unsafe performance.

14.4 Preventative Maintenance
There are no user serviceable parts. The Hemolung Controller requires an annual calibration and safety check by a certified technician.
This page is intentionally left blank
15
SPECIFICATIONS
15.1 Performance Charts

CO₂ Removal vs. Sweep Gas Flow
Blood Flow = 400 mL/min; pCO₂ = 45 mmHg; 100% O₂

O₂ Exchange vs. Sweep Gas Flow
Blood Flow = 400 mL/min; sO₂ = 65%; 100% O₂
CO₂ Removal vs. Blood Flow
Gas Flow = 9.5 LPM 100% O₂

Hypercapnic (pCO₂ = 75 mmHg)
Normocapnic (pCO₂ = 45 mmHg)

O₂ Exchange vs. Blood Flow
Gas Flow = 9.5 LPM 100% O₂

Hypoxic (sO₂ = 45%)
Normoxic (sO₂ = 65%)
15.2 Hemolung 15.5 Fr Catheters

<table>
<thead>
<tr>
<th>Catheter Material</th>
<th>Polyurethane/silicone blend with stainless steel wire reinforcement</th>
</tr>
</thead>
</table>
| **Lumens** | Inner - Infusion (to patient, RED)
 Outer - Drainage (from patient, BLUE) |
| **Nominal Outer Diameter** | 15.5 Fr (5.17 mm) |
| **Connectors** | ¼ in (0.64 cm) Barb |
| **Minimum Pressure** | -220 mmHg |
| **Maximum Pressure** | 220 mmHg |
| **Implant Length** | Femoral: 26 cm (10.24 in)
 Jugular: 17 cm (6.69 in) |
| **Guidewire Compatibility** | Stylet fits 0.038 in. (0.97 mm) guidewire |
| **Lumen Volumes** | Femoral
 Jugular
 Infusion (RED) 6.1 mL
 Drainage (BLUE) 8.1 mL
 Infusion (RED) 7.1 mL
 Drainage (BLUE) 9.7 mL |
| **Transportation/Storage Conditions-Disposables** | Avoid exposure to temperatures below 10 °C or above 40 °C
 Store in a dry location at room temperature |
15.3 Hemolung Cartridge

<table>
<thead>
<tr>
<th>Membrane Type</th>
<th>Microporous polypropylene hollow fibers coated with siloxane and heparin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane Surface Area</td>
<td>0.59 m²</td>
</tr>
<tr>
<td>Static Priming Volume</td>
<td>144 mL (Cartridge) + 115 mL (blood tubing) = 259 mL (entire circuit)</td>
</tr>
<tr>
<td>Blood Flow Range</td>
<td>350–550 mL/min</td>
</tr>
<tr>
<td>Sweep Gas Flow Rate Range</td>
<td>1–10 LPM</td>
</tr>
<tr>
<td>Venous Inlet Port</td>
<td>¼ in (0.64 cm) barb connector</td>
</tr>
<tr>
<td>Arterial Outlet Port</td>
<td>¼ in (0.64 cm) barb connector</td>
</tr>
<tr>
<td>Oxygen Inlet Port</td>
<td>⅛ in (0.48 cm) barb connector</td>
</tr>
<tr>
<td>Gas Outlet Port</td>
<td>Pre-connected ⅛ in (0.48 cm) silicone tubing</td>
</tr>
<tr>
<td>Blood Tubing</td>
<td>¼ in (0.64 cm) ID x ⅜ in (0.24 cm) Wall Tygon S-50-HL, two 1.83 m (6 ft) lengths</td>
</tr>
</tbody>
</table>

Transportation/Storage Conditions-Disposables

- **Temperature Range**: Avoid exposure to temperatures below 10 °C or above 40 °C
- **Relative Humidity**: Store in a dry location at room temperature
15.4 Hemolung Controller

Operating Conditions

- **Temp Range**: 10 °C to 35 °C (50 °F to 95 °F)
- **Relative Humidity**: 20% to 90%, non-condensing, steady state

Transportation/Storage Conditions-Controller

- **Ambient Temperature**: –20 °C to +50 °C (−4 °F to +122 °F)
- **Relative Humidity (non-condensing, steady state)**: 15% to 95%

Cable Lengths

- **Power Cord**: 2.5 m (98 in)
- **Display Cable**: 0.91 m (36 in)

Dimensions (L x W x H)

- 69 cm x 51 cm x 122 cm
- 27 in x 20 in x 48 in

Weight

- 63.5 kg (140 lbs)

Power Requirements

- 100 to 240 V, 50–60 Hz, 480 VA

O₂ Inlet Pressure Range

- 280–600 kPa (40.6–87 psig) at 15 L/min flow.

O₂ Connection Type

- DISS 1240 (oxygen)
Hemolung Controller Display

- **Dimensions (L x W x H)**
 - 34.3 cm x 7.6 cm x 26.7 cm
 - 13.5 in x 3.0 in x 10.5 in

- **Type**
 - Liquid crystal display (LCD)

- **Viewing Area**
 - 18.4 cm x 24.8 cm
 - 7.25 in x 9.75 in

- **Resolution**
 - 800 pixels by 600 pixels

Hemolung Controller Battery

- **Battery Type**
 - Sealed lead acid,
 - 2 x 12 V/10.5 A-hr

- **Run Time**
 - 1 hour minimum
 - (1250 RPM and 8 LPM)

- **Recharge Time from battery cutoff threshold**
 - 12 hour maximum to fully recharge

- **Battery Low Threshold**
 - 23 V Yellow battery bar

- **Battery Cutoff Threshold**
 - 21 V Red battery bar, low battery alarm

Hemolung Controller: Sensors

- **Carbon Dioxide Analyzer**
 - 0.0% to 5.0% (± 0.1%)
 - Warm-up 15 min

- **Oxygen Sensor**
 - 0.0 to 100.0% (± 5%)

- **Mass flow Sensor**
 - 0.0 to 20.0 LPM (± 0.3 LPM)

- **Pressure Sensor**
 - –259 to 259 mmHg (± 10%)#

- **Blood Flow Meter**
 - 0 to 1000 mL/min (± 10 %)

- **Pressure Switch**
 - Triggers at 172 kPa (25 psi)

- **Bubble Detector**
 - 0.5 mL bubble detection at all flow rates
Hemolung Controller: Safety & Regulatory

Regulatory Specifications

Intended Use
See Intended Use in the manual above.

Safety Standards
IEC 60601-1:1988+A1+A2
EN 60601-1:1990+A1+A2,
“Medical Electrical Equipment, Part 1: General Requirements for Safety”

Electromagnetic compatibility (EMC)
Refer to following tables

Classifications

<table>
<thead>
<tr>
<th>Type of protection, shock</th>
<th>Defibrillation Proof Type CF Applied Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of protection, fluid ingress</td>
<td>System: IPX1</td>
</tr>
<tr>
<td>Flammable mixtures</td>
<td>Not for use in the presence of flammable anesthetic mixture with air or with oxygen or nitrous oxide</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

Leakage/Auxilliary Currents

<table>
<thead>
<tr>
<th>Maximum allowable patient leakage current</th>
<th>10 µA normal condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 µA single fault condition</td>
</tr>
</tbody>
</table>

Alarm Signal Sound Pressure Range
65–70 dB measured at 1 m from all sides
A potential equalization connector provides a direct connection between the equipment and the potential equalization busbar of the electrical installation. The connector is marked with symbol IEC 60417-5021 per IEC 60601-1.

This product contains electronic and other components (such as batteries) that may contain materials that, if disposed of with general household waste, could be damaging to the environment. In accordance with Directive 2002/96/EC Waste Electrical and Electronic Equipment, ALung Technologies requires that residents of the European Union return this product for proper disposal at the end of its useful life. Contact ALung Technical Support or your Authorized ALung Distributor for further directions.

When disposing of the Hemolung RAS, its batteries, or any of its accessories, ensure that any negative impact on the environment is minimized. Contact your local waste disposal service and use local recycling or disposal schemes. Separate any other parts of the equipment where arrangements can be made for their recovery, either by recycling or energy recovery. The main batteries are potentially harmful and will require separate disposal according to manufacturer’s instructions or local regulations.
Hemolung Controller: Electrical Specifications

System Power Input-AC
IEC power inlet receptacle

Line Input Voltage
100 to 240 V, 50–60 Hz, 480 VA

Internal Battery Fuse
5 x 20 mm, 6.3 A, 250 V
Fast Blow Fuse, F6.3AL 250 V

Power Entry Module Fuse
5 x 20 mm, 6.3 A, 250 V, High Breaking Capacity, Time Delay Fuse, T6.3A H 250 V

Electromagnetic Emissions
The ALung Hemolung RAS is intended for use in the electromagnetic environment specified below. The customer or user of the Hemolung RAS should assure that the Controller used in such an environment.

Electromagnetic Emissions

RF emissions CISPR 11
Compliance Level Group 1

The Hemolung RAS uses RF energy only for internal functions. RF emissions are very low and are not likely to cause any interference in nearby electrical equipment.

RF emissions CISPR 11
Compliance Level Class A

The Hemolung Controller is suitable for use in all establishments other than domestic and those directly connected to the public low-voltage power supply network that supplies buildings used for domestic purposes.

Harmonic emissions IEC 61000-3-2
Compliance Level Class A

Voltage fluctuations/flicker emissions IEC 61000-3-3
Compliance Level Complies
Electromagnetic Immunity

Electrostatic discharge (ESD)
IEC 61000-4-2
± 6 kV contact
± 8 kV air
Compliance Level Complies
Floors should be wood, concrete, or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.

Electrical fast transient/burst
IEC 61000-4-4
± 2 kV for power supply lines
± 1 kV for input/output lines
Compliance Level Complies
Mains power quality should be that of a typical commercial or hospital environment.

Surge
IEC 61000-4-5
± 1 kV differential mode
± 2 kV common mode
Compliance Level Complies
Mains power quality should be that of a typical commercial or hospital environment.

Voltage dips, interruptions, and variations on power supply line*
IEC 61000-4-11
<5% U₀ (>95% dip in U₀) for 0.5 cycles
40% U₀ (60% dip in U₀) for 5 cycles
70% U₀ (30% dip in U₀) for 25 cycles
<5% U₀ (>95% dip in U₀) for 5 sec
Compliance Level Complies
Mains power quality should be that of a typical commercial or hospital environment.
If the user of the Hemolung RAS requires continued operation during power mains interruptions, it is recommended that the Controller be powered from an uninterruptible power supply or a battery.

Power frequency (50/60 Hz) magnetic field
IEC 61000-4-8
3 A/m
Compliance Level Complies
Power frequency magnetic fields should be at levels characteristic of a typical commercial or hospital environment.

*Note: U₀ is the AC mains voltage before application of the test level.
Electromagnetic Immunity (continued)

Conducted RF
IEC 61000-4-6
3 V_{rms}
150 kHz to 80 MHz
Compliance Level 3 V_{rms}

Radiated RF
IEC 61000-4-3
3 V/m
80 MHz to 2.5 GHz
Compliance Level 10 V/m

Portable and mobile RF communications equipment should be used no closer to any part of the Hemolung Controller, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter.

\[
d = \left(\frac{3.5}{3} \right) \sqrt{P}
\]

- 80 to 800 MHz
- 800 MHz to 2.5 GHz

Where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and d is the recommended separation distance in meters (m).

Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey, should be less than the compliance level in each frequency range.

Interference may occur near equipment marked with this symbol:

* Field strengths from fixed transmitters, such as base stations for radio, (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast, and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment from fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the Hemolung RAS is used exceeds the applicable RF compliance level above, the Hemolung RAS should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorienting or relocating the Hemolung RAS.

* Over the frequency range of 150 kHz to 80 MHz, field strengths should be less than 10 V/m.

* At 80 MHz and 800 MHz, the higher frequency range applies.
Recommended Separation Distances Between Portable and Mobile RF Communications Equipment and the Hemolung RAS

Separation distance according to frequency of transmitter in meters[^2] for \(V_1 = 3 \text{ V rms} \) and \(E_1 = 10 \text{ V/m} \)

<table>
<thead>
<tr>
<th>Rated maximum output power of transmitter (W)</th>
<th>150 kHz to 80 MHz (d = \frac{3.5}{V_1 \sqrt{P}})</th>
<th>80 MHz to 800 MHz[^1] (d = \frac{3.5}{E_1 \sqrt{P}})</th>
<th>800 MHz to 2.5 GHz (d = \frac{7}{E_1 \sqrt{P}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.12</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>0.1</td>
<td>0.37</td>
<td>0.11</td>
<td>0.22</td>
</tr>
<tr>
<td>1</td>
<td>1.17</td>
<td>0.35</td>
<td>0.70</td>
</tr>
<tr>
<td>10</td>
<td>3.70</td>
<td>1.11</td>
<td>2.22</td>
</tr>
<tr>
<td>100</td>
<td>11.70</td>
<td>3.5</td>
<td>7.00</td>
</tr>
</tbody>
</table>

For transmitters rated at a maximum output power not listed above, the recommended separation distance (\(d \)) in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where \(P \) is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

[^1]: At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

[^2]: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.
This page is intentionally left blank
16.1 Warranty

Warranty details are provided in the Terms and Conditions of sale or your purchasing contract.

16.2 Training

All users are required to complete product training prior to using the Hemolung RAS. A comprehensive training program is offered by ALung Technologies and its distributors. Product training includes a combination of classroom and hands-on activities related to the proper setup, use, and maintenance of the Hemolung RAS. Refresher training is also available by request. Institutions using the device are encouraged to develop on-going training programs for their staff.

16.3 Technical Support

Before requesting service, ALung Technologies, Inc. recommends performing a complete operational check to verify proper control settings on the Hemolung. If problems persist, contact the ALung Service or an ALung authorized distributor.

Please have available the model and serial numbers along with a description of the problem when placing a service request.

16.4 Accessories and Replacement Parts

Use only accessories and replacement parts supplied by ALung or an ALung authorized distributor. Failure to do so may adversely affect system performance and EMC compliance, and will void your warranty.

Contact ALung Technologies, Inc. or an ALung authorized distributor to order accessories and replacement parts for the Hemolung Respiratory Assist System.

16.5 Contact Information

ALung Technologies, Inc.
2500 Jane Street
Suite 1
Pittsburgh, PA 15203 USA
Tel +1-412-697-3370
Fax +1-412-697-3376
Web www.alung.com
This page is intentionally left blank