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Rationale behind animal chosen

* Mouse model

« Murine models have proven useful historically for the study of
host/pathogen interactions and preclinical drug efficacy studies.

NIH workshop review paper: Bulitta JB, Hope WW, Eakin AE, Guina T, Tam VH, Louie A, Drusano GL, Hoover JL.
Antimicrob Agents Chemother. 2019; 63. pii: €02307-18. PMCID: PMC6496039.



https://www.ncbi.nlm.nih.gov/pubmed/%3Fterm=bulitta+eakin
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TWA = Temperature, Weight, and Activity Scores
CFUs = Blood (and lung homogenate for OA model)
iStat= blood pH, serum bicarbonate, lactate, and base deficit
Cytokines = Measure blood, lung and ELF compartments.
proinflammatory IL-1B, IL-6, and TNF and the anti-inflammatory IL-10.



Hypotheses

» Treatment of mice with FDA-approved antibiotics that
are active in vitro against the infecting isolate will
result in clinical success

 Survival, clinical endpoints, decrease in CFU burden,
inflammatory and physiological endpoints

 In contrast, treatment of mice infected with strains
that are resistant to the FDA approved antibiotics will
result in clinical failure.



A. baumannii virulence
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A. baumannii clinical

isolates

Table 2. LD100s of A. baumannii Isolates.!

Table 1. Antibiotic MICs for Clinical
A. baumannii isolates.

MIC (ug/ml)

A. baumannii AMK MER PMB
Strain

*HUMC1 128 128 0.25
*VA-AB41 8 64 0.50
LAC-A4 128 4 0.25
*LAC-4 ColR 64 1 64
ATCC 17978 8 0.25 0.5
C-14 2 1 8
C-8 8 8 16

*HUMC1

LAC-4

*LAC-4 ColR
*VA-AB41
ATCC 17978

C-14
C-8

IV bacteremia model

OA pneumonia model

Sublethal LD Sublethal LD;, CFU

CFU CFU CFU
5.4x106 2.0x107  2.5x108 4.7x108
1.0x107 2.5x107  1.9x107 2.8x107
5.7x107 9.7x107  2.4x107 7.6x107
1.0x107 4.3x107  3.2x108 6.2x108
5.0x108 9.0x108 N/A N/A
5.0x108 N/A N/A N/A
8.6x108 9.6x108 N/A N/A

I'The number shown reflect the highest sublethal inocula or lowest
lethal inocula identified




Temperature and
Activity Scores

* Blood infection model: The
physiology and host
response indicates that the
mice die due to sepsis.

* QOral aspiration pneumonia:

The physiology and host
response indicates that the
mice die due to respiratory
failure.

Bacteremia Model
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Sepsis Biomarkers

* Blood infection model: The
physiology and host
response indicates that the
mice die due to sepsis.

* QOral aspiration pneumonia:
The physiology and host
response indicates that the

mice die due to respiratory
failure.
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Cytokines

* Blood infection model: The
physiology and host
response indicates that the
mice die due to sepsis.

* QOral aspiration pneumonia:

The physiology and host
response indicates that the
mice die due to respiratory
failure.

e Mice in the bacteremia
model tend to be sicker

than those in the OA model.
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Mouse model summary

e A. baumannii Isolates

« Available upon request.

« Isolates will be deposited to CDC & FDA Antibiotic Resistance Isolate
Bank

* Trigger to treat
 Treatment is initiated 2 hrs post infection.

« Decrease 1n activity score.
* Increase in proinflammatory cytokines



Mouse model summary

To validate the mouse models by testing the efficacy of FDA-
approved antibiotics, which have been confirmed by FDA to be
effective for treating clinical infections based on adequate and
well-controlled clinical trials.

Our goal is to further characterize their validity for predicting
efficacy of proven antibiotics that will or will not be effective at
treating A. baumannii infections.



Projected use of animal model in future drug
development

 Useful for testing novel therapeutic agents or novel therapeutic
combinations
« Academia and Industry
 No other validated mouse model for the study of A. baumannii

infection
 Immune competent infection models

 Characterized host/pathogen interaction
 Humanized PK regimens

* PK modeling in sick mice
« Validated clinical endpoints



Projected use of animal model in future drug
development (cont.)

e Mouse # Human

 Limitations
« Comparatively higher inoculum to cause disease

 Not all human clinical isolates are virulent in the mice
(for A. baumannii, hypervirulent strains differ from non-hypervirulent

strains; this is important to consider for PK/PD studies)
» Differences in mouse vs human PK



Efficacy
(IV Model)

« HUMC1 (AMKR)
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* Response to
therapy
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reflects
predicted clinical
outcomes
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PK- Amikacin



Plasma conc. (mg/L)
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Plasma conc. (mg/L)

Lung ELF conc. (mg/L)

Amikacin dose range study: visual predictive check — OA challenge
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Population PK estimates for amikacin dose range studies

Parameter

Clearance

Absorption half-life

Volume of central compartment
Ratio of AUC(elf) by AUC(plasma)
ELF to plasma equil. half-life
Volume of ELF

IV Model - Amikacin

Symbol Unit Mean (SE) BSV (SE)
CL mL/h  9.93 (7.9%) 0.185 (54.8%)
T1/2abs min 1.75(12.1%) 0.1 (fixed)
Vil mL 11.4 (14.1%) 0.1 (fixed)

Same clearance after IV and OA challenge.

Slightly larger volume of distribution for IV vs. OA.
Terminal half-life: 48 min for IV and 36 min for OA.
AUC(ELF) 72.7% of the AUC(plasma).

OA Model - Amikacin

Symbol Unit Mean (SE) BSV (SE)
CL mL/h  9.93(7.9%) 0.185 (54.8%)
T1/2abs min  1.01 (34.9%) 0.1 (fixed)
Vil mL  8.56(10.6%) 0.1 (fixed)
Felf - 0.727 (16.9%) 0.1 (fixed)
T1/2elf min 21.9 (8.2%) 0.1 (fixed)
Velf mL 0.1 (fixed)



Clinical datasets used as Population Pharmacokinetic Modeling and Optimal

. : : Sampling Strategy for Bayesian Estimation of Amikacin
input for the humanization Exposure in Critically Ill Septic Patients

Eur J Clin Pharmacol (2015) 71:75-83
o Isabelle K. Delanre, MSc,* Flora T. Musuamba, PharmD.*} Joakim Nvberg, MSe,}
PHARMACOKINETICS AND DISPOSITION Fabio 8 Taccome, MD.§ Pierre-Francois Laterre, MD," Roger K Verbeeck, PhD,}
Frederigue Jacohs, MDD, PhD.§ and Pierre E. Wallemacg, PRD*
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Amikacin humanized dosing IV method (4 doses every 6 h) — Plasma

Daily Dose — 117 mg/kg/day
Fractions of daily doses 61.8% at 0 h, 18.6% at6 h, 11.3% at 12 h, and 8.2% at 18 h.
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Amikacin humanized dosing OA method (4 doses every 6 h) — Plasma

Daily Dose — 96.7 mg/kg/day
Fractions of daily doses 65.0% at 0 h, 16.9% at 6 h, 10.5% at 12 h, and 7.4% at 18 h.
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Amikacin PK validation:
visual predictive checks

Plasma conc. (mg/L)
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-> Large variability
from 18 to 24 h

Plasma conc. (mg/L)

Lung ELF conc. (mg/L)

80
1

60

40

) 90th percentile == =
o\ OA model 75th percentile « =+ =
.\ S0th percentile — —
W\ 25th percentile + =+ =
. ‘i\ 10th percentile == ==

A\ Observations ®

24



Plasma concentration (mg/L)

Amikacin IV model

Linear scale
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Population PK estimates for amikacin from humanized PK validation

IV Model - Amikacin

Parameter
CL_0-6h
CL_6-12h
CL_12-18h
CL_18-24h
T1/2abs
V1 0-6h
V1 6-12h
V1 12-18h
V1 18-24h

Unit
mL/h
mL/h
mL/h
mL/h
min
mL
mL
mL
mL

Mean (SE)
7.35 (6.8%)
3.81 (6.5%)
1.39 (25.1%)
1.60 (23.5%)
1.00 (21.2%)
9.75 (14.7%)
5.24 (10.4%)
3.50 (28.3%)
1.51 (18.6%)

BSV (SE)
0.1 (fixed)
0.155 (68.5%)
1.07 (29.9%)
0.779 (47.4%)
0.115 (146%)
0.1 (fixed)
0.250 (72.4%)
0.430 (80.9%)
0.195 (147%)

OA Model - Amikacin

Parameter
CL_0-6h
CL_6-12h
CL_12-18h
CL_18-24h
T1/2abs
Vi

Felf
T1/2elf
Velf

Unit
mL/h
mL/h
mL/h
mL/h
min
mL
min
mL

Mean (SE) BSV (SE)
7.44 (5.5%) 0.1 (fixed)
7.69 (4.9%) 0.1 (fixed)

5.92 (13.1%) 0.500 (42.3%)
4.39 (17.6%) 0.656 (39.7%)
1.12 (24.7%) 0.1 (fixed)
7.69 (6.4%) 0.1 (fixed)
0.604 (4.9%) 0.1 (fixed)
36.4 (4.4%) 0.1 (fixed)
0.10 (fixed)

* C(Clearance decreased over time in both models (more pronounced for IV model).
* Volume of distribution also decrease for IV model.

e Large between subject variability (BSV) for clearance after 12 h.

* ELF penetration results comparable to those in the dose range studly.

26



Conclusions of dosing simulations — Amikacin
- PK model in mice was used to simulate human-like drug exposures.

- We targeted the 9ot percentile of concentrations in VABP patients.

- The AUCs for amikacin associated with the 10t and 9ot percentiles
were approximately 179 and 851 mg-h/L

- The AUC in patients for a dose of 30 mg/kg is ~308 mg-h/L.
- Peaks in critically-ill patient are typically 60 to 100 mg/L (medians).
- Humanized concentrations were similar to the targeted conc. range.

- Clearances decreased and became more variable after 12 h,
potentially due to bacterial damage to the kidneys.



PK- Polymyxin B
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SC dose

SC dose
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Feas

SC dose
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Xplasma
PB1 (V1)

Xplasma
PB1-ILe (V1)
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PB2 (V1)

Xplasma
PB3 (V1)

JCL

JCL

JCL

\CL

Structural model for all 5 dependent variables in IV challenge mice

Structure: One-compartment model for each component, sum of four F equal to 1

Total polymyxin B
concentration modeled
as the sum of all 4
components.

V1 and CL were shared
across all four components
of polymyxin B.

Other modeling choices
and estimation algorithms
were thoroughly tested at
this stage.
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Plasma concentration (mg/L)

Polymyxin B dose range study: VPC for 16 mg/kg — IV challenge
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Polymyxin B (sum)

31



Parameter estimates for polymyxin B for IV model
(importance sampling in S-ADAPT; Luna et al. dataset)

Symbol Parameter Unit Population Mean Between Subject
(relative standard error, Variability,
SE%) CV (SE%)

T1/2abs(L)  Absorption half-life at 8 and 12 mg/kg min 7.20 (9.2%) 0.109 (77.5%)
T1/2abs(H)  Absorption half-life at 16 mg/kg min 11.7 (54.7%) 0.125 (105%)
CL Clearance mL/h 5.60 (6.0%) 0.471 (26.2%)
V1 Volume of distribution for central compartment mL 26.3 (6.2%) 0.308 (26.1%)
F(PB1) Bioavailability of PB1 - 72.4% (2.7%) small
F(PB1-ILe) Bioavailability of PB1-ILe - 12.0% (3.3%) small
F(PB2) Bioavailability of PB2 - 12.8% (3.2%) small
F(PB3) Bioavailability of PB3 - 2.83% small

Estimating the same volume of distribution for all components stabilized the model and
allowed us to estimate the BSV for both CL and V1.

All additive residual error standard deviations were fixed to 0.025 mg/L.
All proportional residual errors were fixed to a 10% coefficient of variation.
32



Polymyxin B in plasma (mg/L)

Humanized dosing for polymyxin B for IV model

Polymyxin B in critically ill patients
2 mg/kg load, 1.5 mg/kg Q12h maintenance dose;

20 - IV: Mouse: 11 mg/kg at 0 h and 10 mg/kg at 12h
Mouse_b: 9.5 @ Oh, 1.5 @ 6h, 8.5 @ 12h, 1.5 @ 18h AUC (mg*h/L)
1S4 90% 116
A Percentiles
50% 80 in Patients
----------- 10% 52
Mouse 83 Mean
predictions
Mouse_b 81 in mice

We recommend 11 mg/kg at 0 h
and 10 mg/kg at 12 h option

Time (h)

Total concentrations were matched. This assumes that the protein

binding in plasma was similar between infected mice and patients. 23



Polymyxin B dose range study: VPC for validation — |V challenge
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Conclusions for humanizing PMB

 For the IV model: we recommend 11 mg/kg (0 h) & 10 mg/kg (12 h)
« Match the total drug AUC in plasma from 0 to 24 h between patients and mice
« Mouse values stay between the 10th and 9oth percentile in humans

e For the OA model, we recommend 7 mg/kg (0 h) & 6 mg/kg (12 h)

 This matches the total drug AUC from 0 to 24 h in patient plasma with the
unbound AUC in mouse ELF. The mouse plasma AUC are slightly higher.

« The IV vs. OA challenge considerable affected total clearance.

« It seems important to validate the PK in the mouse model using the
same isolates and pathogens that are used in efficacy studies.



PK- Meropenem



Meropenem peak and trough concentrations for
bolus and short-term infusion regimens in
critically ill patients

* We sought to mirror the PK in critically ill patients with normal
renal function by humanizing the mouse dosage regimens.

» Targeted dosage regimen in humans: 2g short-term (30min)
infusions every 8h.

For this dosage regimen:

» The average peak concentrations ~60 to 100 mg/L.

« The average trough concentrations ~ 1 to 10 mg/L.

* Meropenem is minimally protein bound in human plasma.



Monte Carlo simulated meropenem concentrations in humans for
2g q8h as 30 min infusion in critically ill patients

Linear scale Log-scale

Meropenem concentrations in critically ill patients L . :
Meropenem concentrations in critically ill patients
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Monte Carlo simulated meropenem concentrations in humans for
2g q8h as 30 min infusion in critically ill patients

Linear scale Humanized mouse regimen Log-scale
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Best capture of the human concentration time profile. However, this would result in 12 (=4 x 3) doses

per day.
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Monte Carlo simulated meropenem concentrations in humans for
2g q8h as 30 min infusion in critically ill patients

Linear scale Humanized mouse regimen Log-scale
Meropenem concentrations in critically ill patients Meropenem concentrations in critically ill patients
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If we use the criterion not to over-shoot the 90% percentile in patients, 2 doses every 8 h (i.e. 6 doses
per day) do likely not well capture the time-course of plasma concentrations in humans.
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Free time above MIC (fT>MIC) for different humanized regimens in mouse
(OA model) using 4, 3 or 2 doses every 8 h

Carbapenem targets in mice: Stasis: ~20% fT>MIC
Near-max killing:  ~40% fT>MIC
MIC (mg/L)
Regimen 0.5 1 2 4 8 16
4 doses Q8h 50 mg/kg @ Oh  Plasma 87% 76% 65% 52% 37% 22%
30mg/kg @ 1.5h  ELF 75% 63% 47% 25% 8% 0%

18 mg/kg @ 3.5h
11 mg/kg @ 5.5h

2doses Q8h 50 mg/kg @ Oh Plasma| 51% 43% 36% 28% 21% 13%
17mg/kg @3.5h ELF | 43% 35% 26% 14% 7% 0%

2 doses Q8h would only achieve fT>MIC >35% for MICs up to 2 mg/L in plasma.
The covered MICs in ELF were approximately 2-fold lower than those in plasma.
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Meropenem in mice

 Very short half-life relative to that in humans.
 Limited to 6 daily SC injections

» The addition of cilastatin or probenecid may reduce
meropenem clearance and improve murine model.

 Uranyl nitrate likely no option, since this compound
is toxic and is becoming increasingly hard to purchase.



Summary

 Immune competent mouse model

 Humanized PK
« AMK and PMB
« MERO 1n progress

« Therapeutic outcomes

« Amikacin- outcomes reflect in vitro antimicrobial sensitivity
data.

* Polymyxin B & Meropenem- In progress

« Each drug to be studied has its own unique problems for
developing a humanized dosing strategy
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