Validation of AI Algorithms in Guided Imaging Applications

Berkman Sahiner, PhD
Division of Imaging, Diagnostics, and Software Reliability
OSEL/CDRH/FDA
Performance Testing: Non-Clinical and Clinical

• Non-clinical
 – Characterize the technical performance of the AI system for guided image acquisition

• Clinical
 – Evaluate diagnostic utility of the device when representative users use the device on a representative patient population
Why Do We Need Both?

• Non-clinical
 – Can be performed on larger data sets
 • May be able answer questions that require good precision
 – May be helpful for future iterations of the device

• Clinical
 – Quantitative analysis of expected utility in the hands of users
Non-Clinical Performance Testing

• Technical performance of the AI system by itself
 – Interaction between the AI system and the user in the intended manner is not necessary
 – Can be component-by-component
Non-Clinical Testing

• Some potential non-clinical testing questions for an ultrasound image guidance device
 – Is the AI system able to assess/determine
 • Image quality
 • Closeness of the probe to the desired location to acquire a particular US view
 • Desired manipulation of the probe that will improve image quality
 • ...
Basic Steps in Non-Clinical Testing

• Define
 1. Non-clinical testing questions to be addressed
 2. Assessment method and metric(s)
 3. Reference standard or comparator (ideally, “ground truth”)
 4. Data set

• Provide relevant statistical data on the assessment results, sub-group analyses
Example (Assessment Method & Metric)

• Non-clinical testing question
 – Algorithm performance in assessing image quality

• Assessment method:
 – Compare the quality ranking for pairs of images between
 • Algorithm
 • Experts

• Assessment metric:
 – Concordance measured by Kendall’s τ
Example (Reference Standard or Comparator)

- Comparator
 - Side-by-side comparison of two US images by experts in image interpretation

\[\tau = \frac{N_C - N_D}{N_C + N_D} \]

<table>
<thead>
<tr>
<th>Computer</th>
<th>(I_1 > I_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>(I_1 > I_2)</td>
</tr>
<tr>
<td>Expert 2</td>
<td>(I_1 < I_2)</td>
</tr>
<tr>
<td>Expert 3</td>
<td>(I_1 > I_2)</td>
</tr>
<tr>
<td>Expert 4</td>
<td>(I_1 > I_2)</td>
</tr>
</tbody>
</table>
Example (Data Set)

• Independent from the data set used for algorithm training

• Consideration for
 – Relevance and representativeness of the data set for the component to be tested
 – Sample size
Example (Results)

• 95% confidence interval for concordance between algorithm and experts
• Relevant comparisons
• Relevant sub-group analyses
• ...
Clinical Performance Testing

• Clinical safety and effectiveness of the guidance device for its intended use, when used by the intended user
 – Clinical testing
 – Accepted virtual/physical systems designed to capture clinical variability
 – Comparison to a closely-related device with established clinical performance
 – Other sources that are appropriately justified
Clinical Performance Testing

• A quantitative evaluation of
 – Diagnostic utility and quality of images acquired / optimized
 – Performance in representative user and patient populations, under anticipated conditions of use
Example

• Comparison of diagnostic performance of experts, between
 – Images acquired with standard of care
 – Images acquired by a representative user population with guidance from the AI algorithm
Example (Continued)

Patient with / without condition X

Standard of care imaging

Expert image interpretation

Diagnosis for condition X

Image acquired with device guidance

Expert image interpretation

Diagnosis for condition X

Compare
Clinical Performance Testing

• Appropriateness of the clinical testing method depends on device benefits/risks
 – Image quality assessment comparison
 • Standard of care images
 • Acquired with the help of device
 – Comparison to a closely-related device with established clinical performance
 – Meeting a benchmark
 – ...

• Topic of discussion at a Q-Sub meeting
Statistical Analysis Plan

• Pre-specification!

• Some elements (not exhaustive)
 – Endpoints
 – Statistical analysis methods
 – Process for defining truth (reference standard)
 – Statistical and clinical justification of sample size
 – Plan for multiple hypothesis testing if appropriate
 – Plan for handling missing data
Statistical Analysis for Sub-Groups

• Sufficient number of cases from important sub-groups to estimate performance and confidence intervals

• Powering for sub-groups may not be necessary
 – Depending on the clinical application
 – Unless specific sub-group performance claims are included
Technological Characteristics

• Needed for
 – Understanding scope of a change in a modification
 – Comparing two devices
 – May reduce performance testing requirements

• Flowchart describing processing, inputs, outputs, features, models, classifiers

• Algorithm training methods and training **DATA SETS**

• Algorithm parameter selection
Algorithm Modifications

• Potential to discuss plans for modifications during the initial premarket review

• Pre-determined change control plan
 – Ability to manage/control resultant risks of modifications
Generalizability

• Heightened importance because of the data-driven nature of most AI algorithms
• In addition to patient and user populations, how does the performance generalize to
 – Data acquisition equipment / conditions
 – Data acquisition sites
 – ...

