PBPK Model Applications: Supplementing Clinical Trials with limited Patient PK Data

Tycho Heimbach, Wen Lin, Handan He, Heidi Einolf, Helen Gu, Birgit Schoeberl
Unmet Needs with PBPK Models

• PBPK models have been used successfully for waivers of DDI trials and for PBBM absorption models (e.g. Shebley, M. (2018). Clin. Pharmacol. Ther., 104: 88-110. doi:10.1002/cpt.1013)

• For specific populations:
 – Often limited patient availability and sample PK collection

 – Pediatrics:
 ▪ Dose Selections and Label Extension based on PBPK have been accepted with very limited PK data
 ▪ PBPK models have successfully supplemented clinical trials for > 2 year old
 ▪ Unmet Need: ADME not fully characterized in neonates and young infants

 – Organ Impairment:
 ▪ PBPK modeling is often done a priori to inform the study
 ▪ Unmet Need: Low confidence, Lack of Publications of PK in cirrhosis, Study waivers are still uncommon, even when limited data has been collected
Case Study Nilotinib:

Physiologically Based Pharmacokinetic Modeling to Supplement Pharmacokinetics and Confirm Dose Selection in Pediatric Patients

Tycho Heimbach, Wen Lin, Handan He, Heidi Einolf, Helen Gu, Birgit Schoeberl
Health Authority Question for Nilotinib Pediatric Trial

“Data available in children below the age of 6 is seen as not sufficient to characterize PK or to conclude whether a BSA dosing approach is adequate in this population. provide a proposal how this data can be generated to allow a more valid modelling in the population below the age of 6”

• In < 6 y patient, only one patient has a full PK profile, two patients have C_{min,ss} data

Pediatric PBPK Model can simulate observed Cp-Time profile in 6 - 17 years olds

Day 1

Day 8 to Day 335

12 -< 18 yrs

6 -< 12 yrs

2 -< 6 yrs

Ontogeny profiles

Figure 2. An integrated visualization of in vivo CYP ontogeny for the major hepatic CYPs: (A) CYP1A2 (black), (B) CYP2A6 (gray), (C) CYP2B6, CYP2D6 (purple), (D) CYP2C9 (green), (E) CYP2C19 (red), (F) CYP2E1 (gold), and (G) CYP3A (blue).
Summary

- Pediatric PBPK model can well simulate Nilotinib PK on in 2 to < 6 yrs. olds, 6 to < 12 yrs. olds and 12 to < 18 yrs. olds after a single or multiple doses.
- The model predicted similar $AUC_{\tau,ss}$, $C_{max,ss}$ and $C_{min,ss}$ in 2 to < 6 years old patients as compared to those in 12 to < 18 years old and 6 to < 12 years old patients.

<table>
<thead>
<tr>
<th>Age group</th>
<th>$C_{max,ss}$ (ng/mL)</th>
<th>$C_{min,ss}$ (ng/mL)</th>
<th>$AUC_{\tau,ss}$ (ng•h/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 to < 6 years</td>
<td>1620</td>
<td>1067</td>
<td>17031</td>
</tr>
<tr>
<td>6 to < 12 years</td>
<td>1649</td>
<td>1131</td>
<td>17576</td>
</tr>
<tr>
<td>12 to < 18 years</td>
<td>1586</td>
<td>1130</td>
<td>17049</td>
</tr>
</tbody>
</table>

Conclusion: A BSA approach was appropriate in 2 to < 6 years old patients.

AUC, area under the curve; BSA, Body surface area; $C_{max,ss}$, maximum concentration at steady state; $C_{min,ss}$, minimum plasma concentration at steady state; PBPK, physiologically based pharmacokinetics; PK, pharmacokinetics.
Case Study Compound Z

Evaluation of Pharmacokinetics in Patients with Normal or Impaired Hepatic Function Using PBPK Modeling

Helen Gu, Noelia Nebot, Yasong Lu (PMX), Tycho Heimbach, Heidi Einolf, Abhijit Chakraborty, Handan He

Pharmacokinetic Sciences
Novartis Institute for Biomedical Research
East Hanover, NJ
Compound Z ADME Characteristics

• Absorption: Rapid absorption
• Distribution: Highly plasma protein bound
• Metabolism/elimination: Non-CYP-mediated metabolism, no renal CL

Question: Can a PBPK model predict and supplement the limited clinical PK in patients with severe hepatic impairment, N=2?
A PBPK modeling strategy

Model development

- PBPK model in normal
 - Compound parameters
 - System parameters (normal)

- PBPK model in impaired
 - Compound parameters
 - System parameters (impaired)

Model modification (fup, fugut, CL/F, Vss/F)

Customized population (albumin concentration, liver volume fraction, cardiac output, hepatic blood flow)

Model verification

- Predict PK in steady-state; predict mean albumin concentration across all groups
- Compare predicted PK profiles and values against those observed clinically
- Conduct sensitivity analysis for assessing the impact of changing in compound-specific and system/population-specific parameters on prediction of PK

Model application

Simulate clinical PK in virtual populations with control, and mild to severe hepatic impairment groups
PBPK can describe observed plasma concentration-time profiles of Compound Z after QD dosing at steady-state

Control

Mean systemic concentration in plasma over time in control population

Mild Hepatic OI, N=6

Mean systemic concentration in plasma over time in Mild population

Moderate Hepatic OI, N=4

Mean systemic concentration in plasma over time in Moderate population

Severe Hepatic OI, N=2

Mean systemic concentration in plasma over time in Severe population
Conclusions

• A PBPK model was developed by taking into account nonCYP-mediated metabolism pathways, as well as the differences in the ex vivo protein binding across the groups

• The model performance was evaluated by comparing the simulated Compound Z PK data vs observed data which included plasma albumin concentrations

• The steady state total and unbound Compound Z exposure were predicted at different degree of hepatic impairment in a larger virtual population

• The approach can be potentially used to inform dose adjustment for patients with hepatic impairment
Validation of Albumin Concentration in Hepatic OI Populations (obs vs. pred)

Actual measured vs. predicted albumin concentrations in patients with customized mild, moderate, and severe hepatic impairment populations

<table>
<thead>
<tr>
<th>Albumin (g/L)</th>
<th>Control</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted (Mean ± SD)</td>
<td>50</td>
<td>41.4 ± 6.8</td>
<td>39.4 ± 7.4</td>
<td>31.5 ± 5.0</td>
</tr>
<tr>
<td>Measured (Mean ± SD)</td>
<td>37.8 ± 3.8</td>
<td>33.2 ± 6.0</td>
<td>32.0 ± 4.0</td>
<td></td>
</tr>
</tbody>
</table>

Ratio of predicted/measured 1.10 1.19 0.98

The changes in mean value of plasma albumin protein concentrations can be calculated using the following equation (Johnson et al 2010), using ex vivo plasma protein binding data measured in a clinical study

\[
[\text{Albumin}]_{\text{impaired}} = \frac{(1-f_{u,\text{impaired obs}})}{f_{u,\text{impaired obs}}} \times [\text{Albumin control}] \times f_{u,\text{control}}
\]

[Albumin]control and [Albumin]impaired are plasma protein concentrations in subjects with normal liver function and impairment, respectively, \(f_{u,\text{control}}\) and \(f_{u,\text{impaired}}\) are the average measured unbound fraction of the compound in plasma for subjects with normal liver function and hepatic impairment, respectively.
Predicted Steady State Exposure following QD dosing in mild, moderate, severe Hepatic Impairment Patients compared to Controls

The predictions were consistent with the observed data. No dose adjustment is warranted based on PBPK modeling.
Supplementals
• **Absorption: formulation relevant**
 - Age was not but meal type was
 - GE by aqueous solution: 48 min; GE by solid food: 98 min
 - Studies of gastric emptying times across a wide age range with different meals and using scintigraphy are needed
 - Bile salts concentrations in premature neonates, full-term neonates, infants and children
 - For BCS II and IV compounds, age may impact bile salts enhancement on solubility and in vivo dissolution
 - Frequent feeding in neonates and young infants may bring about food effect
 - Ontogeny of intestinal transporters – PK study in juvenile animals may help predict the bioavailability change in infants, particularly for BCS III drugs

• **Distribution**
 - Brain distribution in infants: blood-brain barrier; transporters, etc; juvenile animals study
 - The impact of higher extracellular water on drug distribution pattern in pre- and full term neonates, young infants

• **Elimination**
 - In vivo ontogeny profiles for enzymes
 - Much less is known about the ontogeny of transporters