

Model Credibility Assessment in PBPK: Potential Application of a Risk-Informed Evidentiary Framework

Colleen Kuemmel, PhD

Office of Clinical Pharmacology, US Food & Drug Administration

Development of Best Practices in Physiologically Based Pharmacokinetic Modeling to Support Clinical Pharmacology Regulatory Decision-Making FDA Public Workshop

> November 18, 2019 Silver Spring, MD

Advancing PBPK through Guidance

What makes a PBPK model credible for regulatory applications?

EMA guideline (2018)

EUROPEAN MEDICINES AGENCY		According to im
13 December 2018 DBA(CHPP) 4212335 Constraint for Helicitude Products for Human Line (CHPP) Guideline on the reporting of physiolo pharmacokinetic (PBPK) modelling ar	ogically based d simulation	High impact
Draft agreed by Modelling and Simulation Working Group	April 2016	
Draft agreed by Pharmacokinetics Working Party	May 2016	
Adopted by CHMP for release for consultation	21 July 2016	Medium impact
Start of public consultation	29 July 2016	
End of consultation (deadline for comments)	31 January 2017	Scientific adv
Agreed by Modelling and Simulation Working Group	October 2018	
Agreed by Pharmacokinetics Working Party	October 2018	
Adopted by CHMP	13 December 2018	L and been at .
Date of coming into effect	1 July 2019	Low impact
Keywords pharmacokinetics, modelling, simulat performance	tion, qualification, predictive	Scientific adv

 Framework for M&S in Regulatory Review

 According to impact on regulatory decision

 High impact (a) M&S to replace the usual evidence base

 Scientific advice, supporting documentation,

 Regulatory Scrutiny

 Medium impact (a) M&S to justify the evidence base

 Scientific advice, supporting documentation,

 Hegulatory scrutiny

 Hegulatory scrutiny

 Scientific advice, supporting documentation,

 Hegulatory scrutiny

 Hegulatory scrutiny

 Hegulatory scrutiny

 Hegulatory scrutiny

 Hegulatory scrutiny

PMID: 23835942

https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-reporting-physiologically-based-pharmacokineticpbpk-modelling-simulation en.pdf

FDA

What makes a PBPK model credible for regulatory applications?

FDA guidance (2018)

Physiologically Based Pharmacokinetic Analyses — Format and Content Guidance for Industry

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> > August 2018 Clinical Pharmacology

Inflection Point

- Mechanistic knowledge still evolving
- Understanding of high-level model credibility principles
- Inconsistent use of terms and definitions

Consideration for an overarching framework

- Standardize language
- Establish a uniform approach to model evaluation
- Harmonize

Consideration of an Overarching Framework

ASME: American Society of Mechanical Engineers

ASME Framework Terminology

	Model credibility	: trust in the predictive capability of a model	
		<pre>// credibility can be established through collection of V&V evidence</pre>	
-	Verification	: evaluation of the software	
		// Verification demonstrates equations are solved correctly	
-	Validation	: evaluation of the model	
		// Validation demonstrates correct equations are being solved	

ASME framework

Five key concepts; not entirely new

Tailorable steps enable framework to be case-specific

Requires a team of experts

Defining Question of Interest & COU

- Question of interest: key question or decision
- Context of use (COU): how the model will be used to address the question
- Question of interest maybe broader than COU

FDA

Assess Model Risk

- Model influence: weight of the model in totality of evidence
- Decision consequence: potential consequences of a wrong decision

Assess Model Risk

FDA

- Rigor of V&V evidence commensurate with model risk
- Model risk drives selection of credibility activities (V&V) and goals

Establishing Credibility: Verification

ASME framework

🗌 Code

Calculation

Application to PBPK

Check for errors, ensure reliability & reproducibility

Details of verification based on COU, rigor linked to model risk

Software evaluation not described in FDA guidance but quality checks are routine

© chinnarach / Adobe Stock

Establishing Credibility: Validation

Application to PBPK

Mathematical model structure and input parameters

Explore uncertainty and sensitivity, including mechanistic assumptions

© paulaphoto / Adobe Stock

Establishing Credibility: Validation

ASME framework

Comparator

Assessment

New terminology, but familiar concept – observed data serves as 'comparator' for predicted data

Various types of validation evidence maybe considered depending on COU and availability of data

© paulaphoto / Adobe Stock

Establishing Credibility: Validation

ASME framework

🗆 Model

Comparator

🗌 Assessment <

Rigor and agreement of output E.g., low risk – qualitative vs. high risk – quantitative assessment

Details of validation based on COU, rigor of evidence to balance model risk

© paulaphoto / Adobe Stock

Establishing Credibility: Applicability

ASME framework

Applicability

Application to PBPK

Not currently in guidance but intuitive

Credibility increases when there overlap between COU and validation

Comparator study conditions will not exactly match simulation but relevance should be considered

Assessing Credibility

FDA

Potential Impact

Standardized De-risk and Provides path Starting point terminology for discussions advance PBPK towards and approach and perhaps harmonization in early development to assessment other MIDD approaches

Acknowledgements

- OCP
 - Issam Zineh
 - Yuching Yang
 - Xinyuan Zhang
 - Jeffry Florian
 - Hao Zhu
 - Shiew Mei Huang
 - Yaning Wang

- CDRH
 - Tina Morrison
 - Pras Pathmanathan
- CBER
 - Million Tegenge
- Workshop organizers

Questions

1. What parts of the framework can be readily applied to drug development and regulatory review for PBPK?

2. What part(s) of the framework may need to be discussed further or modified?

3. What steps should be considered if the goal is harmonization?

ASME Credibility Activities and Factors

Activity	Credibility Factor
Verification	
Code	Software quality assurance Numerical code verification
Calculation	Discretization error Numerical solver error Use error
Validation	
Model	Model form Model inputs (incl. quantification of sensitivities and uncertainties)
Comparator	Test samples (incl. quantity, range of characteristics, uncertainty of measurements) Test conditions ""
Assessment	Equivalency of input parameters Output comparison (incl. quantity, equivalency, rigor, agreement)
Applicability	Relevance of the quantities of interest Relevance of the validation activities to the COU

Summary of FDA PBPK Guidance

Executive Summary	 Objectives (intended uses) Overview of model development and simulations Key conclusions
Introduction	 Brief and relevant drug's physicochemical, PK, PD, and E-R properties PBPK related regulatory history including cross-referencing to PBPK study reports for different intended uses
Materials and Methods	 Details about model development, verification/modification (justification), and application Details and sources of input parameters and key assumptions Simulation design Software (version)
Results	 Results from model verification/validation, and sensitivity analysis Results from model application
Discussion	 Discuss the adequacy of PBPK analyses to support intended uses Discuss any recommendation based on PBPK analyses and additional relevant evidence Discuss model limitation
Appendices	List of tables, figures, acronyms and abbreviations, references

Summary of EMA PBPK Guideline

Background information	 Objectives and intended regulatory purpose Information about the drug including physicochemical properties, ADME, solubility, permeability, E/R, PK, DDI, pharmacogenetics Summary of clinical studies (data relevant to intended use) Quantitative mass-balance diagram
Platform qualification	 Evaluation of 8-10 compounds with similar ADME to intended use Verification of correct mathematical model structure; error-free
Model parameters	 Data to support assumptions and their rationale Justification of system-dependent parameters Description of drug model structure and drug-dependent parameters
Model development	Overview of model building process
Simulation with intended scenario	Description of study design to be simulated and virtual population
Platform and drug model evaluation and results	 System and drug model evaluation; predictive performance of drug model assessed by comparison of predicted and observed data Sensitivity analyses
Discussion of regulatory application	 Contribution of PBPK M&S to regulatory decision-making and use Confidence/Uncertainty

https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation_en.pdf