Advancing the Development of Pediatric Therapeutics (ADEPT) Workshop Summary

William Cooper, MD, MPH
Cornelius Vanderbilt Professor of Pediatrics and Health Policy
Vanderbilt University Medical Center

Disclosures

• The speaker has no financial conflicts of interest to disclose.

Workshop Summary

• Key Concepts
• Innovative Approaches
• Importance of Partnership
• Challenges and Caveats
• Future State and Next Steps
What words come to mind when you think about “Big Data” for pediatric safety?

National System Paradigm Shift

Regulatory science initiatives - EMA planned activity and projects:

1. The Task Force should identify all sources of big data and define the main drivers, in which they can be responsed to work to
2. The Task Force should produce a list of recommendations and big data roadmap
3. The Task Force should describe the current status of expertise, future needs and challenges
4. The Task Force should describe the current status of expertise, future needs and challenges
Key Concept: Big Data and Safety

- Types of Questions
 - Exposure – depends on the data source
 - Outcome – depends on the completeness
 - Confounders – consider wide info sources (omics)

- Types of Information
 - Clinical characterization – use patterns
 - Population level estimates of risk
 - Patient level estimates of risk

According to US Food and Drug Administration
What does big data offer?

- **Breadth** – large numbers of individuals get us closer to the underlying source population
- **Depth** – increasing amount of data on each individual increases the chance that we will have measures of likely confounders
- **Diversity** – different types of data offer the potential to “cross check” findings for any particular data source
- **FDA-Sentinel system**: more than 100 million patient health care data

From: D Martin EMA big data workshop

What is unique about Big Data for pediatrics?

- Age by itself is not a barrier (if date of birth is known)
- Issues around exposure to medical products during pregnancy and birth outcomes
 - Complex to link moms and babies to assess birth outcomes
 - Health plan data challenges in days after birth
 - Coded for the mom or baby?
- Unique patterns of care?
 - Critical information dispersed (no data source has a clear)
 - Hospital, pediatrician, insurer, birth registry, vaccine registry
 - Do kids see more specialists leading to more data dispersion?
 - Care at school?
- Regulatory constraints/ research with minors
Key Concept: Big Data and Safety

• Driving Force
 — Need for Certainty – Fit for Purpose
 • Risk – to restrict use
 • Efficacy – to expand use

• Areas of Opportunity
 — Patient reported outcomes (surveys, apps)
 — Inference (lessons from machine learning)

Key Concept: Validation

• Validation of Data Elements
 — Medical record review
 — Assessing temporal relationship
 — Completeness of data against expected

• Validation of Findings
 — Multiple sites
 — Multiple studies or independent sites
 — Machine Learning – Internal & External validation

Key Concept: Big Data in Children

• Standards for age, gender, developmental
 — Note
 — Note
 — Note

• Incorporate developmental factors

Key Concept: Big Data in Children

• Family-centric analyses
• Genomics
Key Concept: Big Data in Children

- Long-term safety data
 - Key given long time horizon
- Challenges
 - No unique identifiers
 - Fragmented healthcare
 - Mobility and life changes (i.e. college, military)

Innovative Approaches to Big Data

other tools for clinical exploration

Videos and Papers at http://iperer.org
Neonatal Sepsis and SpellS

Question: Can we identify neonatal spells prior to onset of nosocomial infection?

- Thommandram et al., built a neonatal spells algorithm [3] for detecting spells activity in real-time

Classifications:
- central apnoea
-onasal apnoea
- obstructive
- obstructive central
- central obstructive
- isolated blood oxygen desaturation
- isolated bradycardia,

Event Stream Processing (Spark Streaming)

- Process with dataframes
- Interactively query with SQL
- Spark SQL
- MLlib
Importance of Partnerships

- Rare exposures & rare outcomes
- Shared knowledge and experience
- Efficient use of limited resources
Key Concept: Partnerships

• Types of questions (hierarchy)
 – Descriptive
 – Safety
 – Effectiveness
 – More complex questions

• Caveats
 – Health care delivery and access to meds differs
 – Clinical definitions may differ (neonate, live birth)

Key Concept: Partnerships

• Steps needed to pursue partnerships
 – Engage children, families, clinicians
 – Strategic collaborations
 – Careful design (exposure, outcomes, confounders)
 – Ethics/Data Protections
 – Sustainability

Link Primary and Secondary Data

OHDSI Open Source Partnerships
Key Concepts: FDA/EMA Partnerships

- Pediatric Cluster
 - PMDA, HealthCanada, EMA, FDA
 - Common approaches
 - Safety signal and responses
- Monthly Pharmacovigilance Calls (EMA/FDA)

Key Concepts: Partnerships

- How to bring the right people together
 - Note

Challenges and Caveats
Key Concepts: Challenges

- Limitations in phenotypes
 - Note
 - Note
- Heterogeneity in pediatric drug response
 - Note
 - Note

Biases and Causality Leakage

- Site/specialty effects:
 - Example: obgyns prescribe prozac
- Causality leakage:

(Examples: mortality prediction from pneumonia, ICU)

From your perspective, what barriers do you see in using “Big Data” to support you (or your organization’s) work?
Key Concepts: Ethics/Regulatory

- How actionable are results - regulatory
 - Depends on certainty of data
 - Future state – need standards on certainty, precision
 - Benefit:Risk Considerations
 - CURES – Real World Evidence
- How actionable are results – clinical
 - Depends on certainty of data
 - Guided by regulatory (off-label)
 - Available ≠ Accessible

Key Concepts: Ethics/Regulatory

- Changes in clinical and regulatory processes
 - Note
 - Note
- “Big Data” serve regulatory processes
 - Note
 - Note

Key Concepts: Ethics/Regulatory

- Adjustments that can be made
 - Recognize importance of trust
 - Where data reside is key
 - Advocate for appropriate ethics oversight
Next Steps/Future State

Genomic Based Mechanism of Action

- Cystic fibrosis is caused by one of nearly 2000 mutations.
- CF drug, ivacaftor which targets G551D mutation in the CFTR gene (4% of CF population).
- Delivers increases in FEV1 ~10%.

Indication gradually expanded to covers further mutations

The future
- Challenge of determining the level of evidence required to extend indications when further mutations are identified.

Looking to the Future

Visualization of the topology of complex data from the U-BIOPRED consortium of adult severe asthma cohorts

Cohorts are generated following the integration of multiple biomarkers
- How are the individual components validated?
- How reproducible are the cohorts?
- How is data weighted within the algorithms to define the cohorts?
- How do you identify the stability of the cohorts over time?
- Are the cohorts translatable to a defined patient population?

Aim: how do we generate certainty for regulatory decision making?

Implications for Effective, Safe AIs

Regulation
- Identify scenarios that matter.
- Require that data relevant to those scenarios are collected.
- Seek explanation, but not transparency.

Research/Tech
- Design systems to provide explanation.
- Determine how to extract information relevant to scenarios (including proxies).
Utility: During Drug Development Life Cycle
- Provide evidence to support acceptability of efficacy extrapolation for a given indication
- Support proof of concept
- Inform need for juvenile toxicity studies
- Identify settings for opportunistic PK studies
- Identify trends in short- and long-term product safety

Utility: Overall Product Safety
- Identify previously unrecognized, unlabeled serious ARs
- Capture product safety
 - Broader population (e.g., wider age range, more co-morbidities, variable disease severity, variety of concomitant drug use)
 - When co-prescribed with other drugs
 - With off-label use
 - With accidental exposures
 - Related to excipient content

Utility: Capturing Long-Term Safety
- Identify trends in safety of products
 - Taken chronically during childhood or over a lifetime
 - Taken for shorter duration but during critical stages of development
- Detect ARs
 - Reversible versus permanent
 - Manifest months to years after product exposure

What are the most important next steps?